xref: /openbmc/linux/drivers/s390/crypto/ap_bus.c (revision f4356947)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright IBM Corp. 2006, 2021
4  * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
5  *	      Martin Schwidefsky <schwidefsky@de.ibm.com>
6  *	      Ralph Wuerthner <rwuerthn@de.ibm.com>
7  *	      Felix Beck <felix.beck@de.ibm.com>
8  *	      Holger Dengler <hd@linux.vnet.ibm.com>
9  *	      Harald Freudenberger <freude@linux.ibm.com>
10  *
11  * Adjunct processor bus.
12  */
13 
14 #define KMSG_COMPONENT "ap"
15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
16 
17 #include <linux/kernel_stat.h>
18 #include <linux/moduleparam.h>
19 #include <linux/init.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/freezer.h>
23 #include <linux/interrupt.h>
24 #include <linux/workqueue.h>
25 #include <linux/slab.h>
26 #include <linux/notifier.h>
27 #include <linux/kthread.h>
28 #include <linux/mutex.h>
29 #include <asm/airq.h>
30 #include <asm/tpi.h>
31 #include <linux/atomic.h>
32 #include <asm/isc.h>
33 #include <linux/hrtimer.h>
34 #include <linux/ktime.h>
35 #include <asm/facility.h>
36 #include <linux/crypto.h>
37 #include <linux/mod_devicetable.h>
38 #include <linux/debugfs.h>
39 #include <linux/ctype.h>
40 #include <linux/module.h>
41 
42 #include "ap_bus.h"
43 #include "ap_debug.h"
44 
45 /*
46  * Module parameters; note though this file itself isn't modular.
47  */
48 int ap_domain_index = -1;	/* Adjunct Processor Domain Index */
49 static DEFINE_SPINLOCK(ap_domain_lock);
50 module_param_named(domain, ap_domain_index, int, 0440);
51 MODULE_PARM_DESC(domain, "domain index for ap devices");
52 EXPORT_SYMBOL(ap_domain_index);
53 
54 static int ap_thread_flag;
55 module_param_named(poll_thread, ap_thread_flag, int, 0440);
56 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
57 
58 static char *apm_str;
59 module_param_named(apmask, apm_str, charp, 0440);
60 MODULE_PARM_DESC(apmask, "AP bus adapter mask.");
61 
62 static char *aqm_str;
63 module_param_named(aqmask, aqm_str, charp, 0440);
64 MODULE_PARM_DESC(aqmask, "AP bus domain mask.");
65 
66 static int ap_useirq = 1;
67 module_param_named(useirq, ap_useirq, int, 0440);
68 MODULE_PARM_DESC(useirq, "Use interrupt if available, default is 1 (on).");
69 
70 atomic_t ap_max_msg_size = ATOMIC_INIT(AP_DEFAULT_MAX_MSG_SIZE);
71 EXPORT_SYMBOL(ap_max_msg_size);
72 
73 static struct device *ap_root_device;
74 
75 /* Hashtable of all queue devices on the AP bus */
76 DEFINE_HASHTABLE(ap_queues, 8);
77 /* lock used for the ap_queues hashtable */
78 DEFINE_SPINLOCK(ap_queues_lock);
79 
80 /* Default permissions (ioctl, card and domain masking) */
81 struct ap_perms ap_perms;
82 EXPORT_SYMBOL(ap_perms);
83 DEFINE_MUTEX(ap_perms_mutex);
84 EXPORT_SYMBOL(ap_perms_mutex);
85 
86 /* # of bus scans since init */
87 static atomic64_t ap_scan_bus_count;
88 
89 /* # of bindings complete since init */
90 static atomic64_t ap_bindings_complete_count = ATOMIC64_INIT(0);
91 
92 /* completion for initial APQN bindings complete */
93 static DECLARE_COMPLETION(ap_init_apqn_bindings_complete);
94 
95 static struct ap_config_info *ap_qci_info;
96 static struct ap_config_info *ap_qci_info_old;
97 
98 /*
99  * AP bus related debug feature things.
100  */
101 debug_info_t *ap_dbf_info;
102 
103 /*
104  * Workqueue timer for bus rescan.
105  */
106 static struct timer_list ap_config_timer;
107 static int ap_config_time = AP_CONFIG_TIME;
108 static void ap_scan_bus(struct work_struct *);
109 static DECLARE_WORK(ap_scan_work, ap_scan_bus);
110 
111 /*
112  * Tasklet & timer for AP request polling and interrupts
113  */
114 static void ap_tasklet_fn(unsigned long);
115 static DECLARE_TASKLET_OLD(ap_tasklet, ap_tasklet_fn);
116 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
117 static struct task_struct *ap_poll_kthread;
118 static DEFINE_MUTEX(ap_poll_thread_mutex);
119 static DEFINE_SPINLOCK(ap_poll_timer_lock);
120 static struct hrtimer ap_poll_timer;
121 /*
122  * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
123  * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.
124  */
125 static unsigned long poll_high_timeout = 250000UL;
126 
127 /*
128  * Some state machine states only require a low frequency polling.
129  * We use 25 Hz frequency for these.
130  */
131 static unsigned long poll_low_timeout = 40000000UL;
132 
133 /* Maximum domain id, if not given via qci */
134 static int ap_max_domain_id = 15;
135 /* Maximum adapter id, if not given via qci */
136 static int ap_max_adapter_id = 63;
137 
138 static struct bus_type ap_bus_type;
139 
140 /* Adapter interrupt definitions */
141 static void ap_interrupt_handler(struct airq_struct *airq,
142 				 struct tpi_info *tpi_info);
143 
144 static bool ap_irq_flag;
145 
146 static struct airq_struct ap_airq = {
147 	.handler = ap_interrupt_handler,
148 	.isc = AP_ISC,
149 };
150 
151 /**
152  * ap_airq_ptr() - Get the address of the adapter interrupt indicator
153  *
154  * Returns the address of the local-summary-indicator of the adapter
155  * interrupt handler for AP, or NULL if adapter interrupts are not
156  * available.
157  */
158 void *ap_airq_ptr(void)
159 {
160 	if (ap_irq_flag)
161 		return ap_airq.lsi_ptr;
162 	return NULL;
163 }
164 
165 /**
166  * ap_interrupts_available(): Test if AP interrupts are available.
167  *
168  * Returns 1 if AP interrupts are available.
169  */
170 static int ap_interrupts_available(void)
171 {
172 	return test_facility(65);
173 }
174 
175 /**
176  * ap_qci_available(): Test if AP configuration
177  * information can be queried via QCI subfunction.
178  *
179  * Returns 1 if subfunction PQAP(QCI) is available.
180  */
181 static int ap_qci_available(void)
182 {
183 	return test_facility(12);
184 }
185 
186 /**
187  * ap_apft_available(): Test if AP facilities test (APFT)
188  * facility is available.
189  *
190  * Returns 1 if APFT is available.
191  */
192 static int ap_apft_available(void)
193 {
194 	return test_facility(15);
195 }
196 
197 /*
198  * ap_qact_available(): Test if the PQAP(QACT) subfunction is available.
199  *
200  * Returns 1 if the QACT subfunction is available.
201  */
202 static inline int ap_qact_available(void)
203 {
204 	if (ap_qci_info)
205 		return ap_qci_info->qact;
206 	return 0;
207 }
208 
209 /*
210  * ap_sb_available(): Test if the AP secure binding facility is available.
211  *
212  * Returns 1 if secure binding facility is available.
213  */
214 int ap_sb_available(void)
215 {
216 	if (ap_qci_info)
217 		return ap_qci_info->apsb;
218 	return 0;
219 }
220 
221 /*
222  * ap_fetch_qci_info(): Fetch cryptographic config info
223  *
224  * Returns the ap configuration info fetched via PQAP(QCI).
225  * On success 0 is returned, on failure a negative errno
226  * is returned, e.g. if the PQAP(QCI) instruction is not
227  * available, the return value will be -EOPNOTSUPP.
228  */
229 static inline int ap_fetch_qci_info(struct ap_config_info *info)
230 {
231 	if (!ap_qci_available())
232 		return -EOPNOTSUPP;
233 	if (!info)
234 		return -EINVAL;
235 	return ap_qci(info);
236 }
237 
238 /**
239  * ap_init_qci_info(): Allocate and query qci config info.
240  * Does also update the static variables ap_max_domain_id
241  * and ap_max_adapter_id if this info is available.
242  */
243 static void __init ap_init_qci_info(void)
244 {
245 	if (!ap_qci_available()) {
246 		AP_DBF_INFO("%s QCI not supported\n", __func__);
247 		return;
248 	}
249 
250 	ap_qci_info = kzalloc(sizeof(*ap_qci_info), GFP_KERNEL);
251 	if (!ap_qci_info)
252 		return;
253 	ap_qci_info_old = kzalloc(sizeof(*ap_qci_info_old), GFP_KERNEL);
254 	if (!ap_qci_info_old) {
255 		kfree(ap_qci_info);
256 		ap_qci_info = NULL;
257 		return;
258 	}
259 	if (ap_fetch_qci_info(ap_qci_info) != 0) {
260 		kfree(ap_qci_info);
261 		kfree(ap_qci_info_old);
262 		ap_qci_info = NULL;
263 		ap_qci_info_old = NULL;
264 		return;
265 	}
266 	AP_DBF_INFO("%s successful fetched initial qci info\n", __func__);
267 
268 	if (ap_qci_info->apxa) {
269 		if (ap_qci_info->na) {
270 			ap_max_adapter_id = ap_qci_info->na;
271 			AP_DBF_INFO("%s new ap_max_adapter_id is %d\n",
272 				    __func__, ap_max_adapter_id);
273 		}
274 		if (ap_qci_info->nd) {
275 			ap_max_domain_id = ap_qci_info->nd;
276 			AP_DBF_INFO("%s new ap_max_domain_id is %d\n",
277 				    __func__, ap_max_domain_id);
278 		}
279 	}
280 
281 	memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info));
282 }
283 
284 /*
285  * ap_test_config(): helper function to extract the nrth bit
286  *		     within the unsigned int array field.
287  */
288 static inline int ap_test_config(unsigned int *field, unsigned int nr)
289 {
290 	return ap_test_bit((field + (nr >> 5)), (nr & 0x1f));
291 }
292 
293 /*
294  * ap_test_config_card_id(): Test, whether an AP card ID is configured.
295  *
296  * Returns 0 if the card is not configured
297  *	   1 if the card is configured or
298  *	     if the configuration information is not available
299  */
300 static inline int ap_test_config_card_id(unsigned int id)
301 {
302 	if (id > ap_max_adapter_id)
303 		return 0;
304 	if (ap_qci_info)
305 		return ap_test_config(ap_qci_info->apm, id);
306 	return 1;
307 }
308 
309 /*
310  * ap_test_config_usage_domain(): Test, whether an AP usage domain
311  * is configured.
312  *
313  * Returns 0 if the usage domain is not configured
314  *	   1 if the usage domain is configured or
315  *	     if the configuration information is not available
316  */
317 int ap_test_config_usage_domain(unsigned int domain)
318 {
319 	if (domain > ap_max_domain_id)
320 		return 0;
321 	if (ap_qci_info)
322 		return ap_test_config(ap_qci_info->aqm, domain);
323 	return 1;
324 }
325 EXPORT_SYMBOL(ap_test_config_usage_domain);
326 
327 /*
328  * ap_test_config_ctrl_domain(): Test, whether an AP control domain
329  * is configured.
330  * @domain AP control domain ID
331  *
332  * Returns 1 if the control domain is configured
333  *	   0 in all other cases
334  */
335 int ap_test_config_ctrl_domain(unsigned int domain)
336 {
337 	if (!ap_qci_info || domain > ap_max_domain_id)
338 		return 0;
339 	return ap_test_config(ap_qci_info->adm, domain);
340 }
341 EXPORT_SYMBOL(ap_test_config_ctrl_domain);
342 
343 /*
344  * ap_queue_info(): Check and get AP queue info.
345  * Returns: 1 if APQN exists and info is filled,
346  *	    0 if APQN seems to exit but there is no info
347  *	      available (eg. caused by an asynch pending error)
348  *	   -1 invalid APQN, TAPQ error or AP queue status which
349  *	      indicates there is no APQN.
350  */
351 static int ap_queue_info(ap_qid_t qid, int *q_type, unsigned int *q_fac,
352 			 int *q_depth, int *q_ml, bool *q_decfg, bool *q_cstop)
353 {
354 	struct ap_queue_status status;
355 	struct ap_tapq_gr2 tapq_info;
356 
357 	tapq_info.value = 0;
358 
359 	/* make sure we don't run into a specifiation exception */
360 	if (AP_QID_CARD(qid) > ap_max_adapter_id ||
361 	    AP_QID_QUEUE(qid) > ap_max_domain_id)
362 		return -1;
363 
364 	/* call TAPQ on this APQN */
365 	status = ap_test_queue(qid, ap_apft_available(), &tapq_info);
366 
367 	/* handle pending async error with return 'no info available' */
368 	if (status.async)
369 		return 0;
370 
371 	switch (status.response_code) {
372 	case AP_RESPONSE_NORMAL:
373 	case AP_RESPONSE_RESET_IN_PROGRESS:
374 	case AP_RESPONSE_DECONFIGURED:
375 	case AP_RESPONSE_CHECKSTOPPED:
376 	case AP_RESPONSE_BUSY:
377 		/*
378 		 * According to the architecture in all these cases the
379 		 * info should be filled. All bits 0 is not possible as
380 		 * there is at least one of the mode bits set.
381 		 */
382 		if (WARN_ON_ONCE(!tapq_info.value))
383 			return 0;
384 		*q_type = tapq_info.at;
385 		*q_fac = tapq_info.fac;
386 		*q_depth = tapq_info.qd;
387 		*q_ml = tapq_info.ml;
388 		*q_decfg = status.response_code == AP_RESPONSE_DECONFIGURED;
389 		*q_cstop = status.response_code == AP_RESPONSE_CHECKSTOPPED;
390 		switch (*q_type) {
391 			/* For CEX2 and CEX3 the available functions
392 			 * are not reflected by the facilities bits.
393 			 * Instead it is coded into the type. So here
394 			 * modify the function bits based on the type.
395 			 */
396 		case AP_DEVICE_TYPE_CEX2A:
397 		case AP_DEVICE_TYPE_CEX3A:
398 			*q_fac |= 0x08000000;
399 			break;
400 		case AP_DEVICE_TYPE_CEX2C:
401 		case AP_DEVICE_TYPE_CEX3C:
402 			*q_fac |= 0x10000000;
403 			break;
404 		default:
405 			break;
406 		}
407 		return 1;
408 	default:
409 		/*
410 		 * A response code which indicates, there is no info available.
411 		 */
412 		return -1;
413 	}
414 }
415 
416 void ap_wait(enum ap_sm_wait wait)
417 {
418 	ktime_t hr_time;
419 
420 	switch (wait) {
421 	case AP_SM_WAIT_AGAIN:
422 	case AP_SM_WAIT_INTERRUPT:
423 		if (ap_irq_flag)
424 			break;
425 		if (ap_poll_kthread) {
426 			wake_up(&ap_poll_wait);
427 			break;
428 		}
429 		fallthrough;
430 	case AP_SM_WAIT_LOW_TIMEOUT:
431 	case AP_SM_WAIT_HIGH_TIMEOUT:
432 		spin_lock_bh(&ap_poll_timer_lock);
433 		if (!hrtimer_is_queued(&ap_poll_timer)) {
434 			hr_time =
435 				wait == AP_SM_WAIT_LOW_TIMEOUT ?
436 				poll_low_timeout : poll_high_timeout;
437 			hrtimer_forward_now(&ap_poll_timer, hr_time);
438 			hrtimer_restart(&ap_poll_timer);
439 		}
440 		spin_unlock_bh(&ap_poll_timer_lock);
441 		break;
442 	case AP_SM_WAIT_NONE:
443 	default:
444 		break;
445 	}
446 }
447 
448 /**
449  * ap_request_timeout(): Handling of request timeouts
450  * @t: timer making this callback
451  *
452  * Handles request timeouts.
453  */
454 void ap_request_timeout(struct timer_list *t)
455 {
456 	struct ap_queue *aq = from_timer(aq, t, timeout);
457 
458 	spin_lock_bh(&aq->lock);
459 	ap_wait(ap_sm_event(aq, AP_SM_EVENT_TIMEOUT));
460 	spin_unlock_bh(&aq->lock);
461 }
462 
463 /**
464  * ap_poll_timeout(): AP receive polling for finished AP requests.
465  * @unused: Unused pointer.
466  *
467  * Schedules the AP tasklet using a high resolution timer.
468  */
469 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
470 {
471 	tasklet_schedule(&ap_tasklet);
472 	return HRTIMER_NORESTART;
473 }
474 
475 /**
476  * ap_interrupt_handler() - Schedule ap_tasklet on interrupt
477  * @airq: pointer to adapter interrupt descriptor
478  * @tpi_info: ignored
479  */
480 static void ap_interrupt_handler(struct airq_struct *airq,
481 				 struct tpi_info *tpi_info)
482 {
483 	inc_irq_stat(IRQIO_APB);
484 	tasklet_schedule(&ap_tasklet);
485 }
486 
487 /**
488  * ap_tasklet_fn(): Tasklet to poll all AP devices.
489  * @dummy: Unused variable
490  *
491  * Poll all AP devices on the bus.
492  */
493 static void ap_tasklet_fn(unsigned long dummy)
494 {
495 	int bkt;
496 	struct ap_queue *aq;
497 	enum ap_sm_wait wait = AP_SM_WAIT_NONE;
498 
499 	/* Reset the indicator if interrupts are used. Thus new interrupts can
500 	 * be received. Doing it in the beginning of the tasklet is therefor
501 	 * important that no requests on any AP get lost.
502 	 */
503 	if (ap_irq_flag)
504 		xchg(ap_airq.lsi_ptr, 0);
505 
506 	spin_lock_bh(&ap_queues_lock);
507 	hash_for_each(ap_queues, bkt, aq, hnode) {
508 		spin_lock_bh(&aq->lock);
509 		wait = min(wait, ap_sm_event_loop(aq, AP_SM_EVENT_POLL));
510 		spin_unlock_bh(&aq->lock);
511 	}
512 	spin_unlock_bh(&ap_queues_lock);
513 
514 	ap_wait(wait);
515 }
516 
517 static int ap_pending_requests(void)
518 {
519 	int bkt;
520 	struct ap_queue *aq;
521 
522 	spin_lock_bh(&ap_queues_lock);
523 	hash_for_each(ap_queues, bkt, aq, hnode) {
524 		if (aq->queue_count == 0)
525 			continue;
526 		spin_unlock_bh(&ap_queues_lock);
527 		return 1;
528 	}
529 	spin_unlock_bh(&ap_queues_lock);
530 	return 0;
531 }
532 
533 /**
534  * ap_poll_thread(): Thread that polls for finished requests.
535  * @data: Unused pointer
536  *
537  * AP bus poll thread. The purpose of this thread is to poll for
538  * finished requests in a loop if there is a "free" cpu - that is
539  * a cpu that doesn't have anything better to do. The polling stops
540  * as soon as there is another task or if all messages have been
541  * delivered.
542  */
543 static int ap_poll_thread(void *data)
544 {
545 	DECLARE_WAITQUEUE(wait, current);
546 
547 	set_user_nice(current, MAX_NICE);
548 	set_freezable();
549 	while (!kthread_should_stop()) {
550 		add_wait_queue(&ap_poll_wait, &wait);
551 		set_current_state(TASK_INTERRUPTIBLE);
552 		if (!ap_pending_requests()) {
553 			schedule();
554 			try_to_freeze();
555 		}
556 		set_current_state(TASK_RUNNING);
557 		remove_wait_queue(&ap_poll_wait, &wait);
558 		if (need_resched()) {
559 			schedule();
560 			try_to_freeze();
561 			continue;
562 		}
563 		ap_tasklet_fn(0);
564 	}
565 
566 	return 0;
567 }
568 
569 static int ap_poll_thread_start(void)
570 {
571 	int rc;
572 
573 	if (ap_irq_flag || ap_poll_kthread)
574 		return 0;
575 	mutex_lock(&ap_poll_thread_mutex);
576 	ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
577 	rc = PTR_ERR_OR_ZERO(ap_poll_kthread);
578 	if (rc)
579 		ap_poll_kthread = NULL;
580 	mutex_unlock(&ap_poll_thread_mutex);
581 	return rc;
582 }
583 
584 static void ap_poll_thread_stop(void)
585 {
586 	if (!ap_poll_kthread)
587 		return;
588 	mutex_lock(&ap_poll_thread_mutex);
589 	kthread_stop(ap_poll_kthread);
590 	ap_poll_kthread = NULL;
591 	mutex_unlock(&ap_poll_thread_mutex);
592 }
593 
594 #define is_card_dev(x) ((x)->parent == ap_root_device)
595 #define is_queue_dev(x) ((x)->parent != ap_root_device)
596 
597 /**
598  * ap_bus_match()
599  * @dev: Pointer to device
600  * @drv: Pointer to device_driver
601  *
602  * AP bus driver registration/unregistration.
603  */
604 static int ap_bus_match(struct device *dev, struct device_driver *drv)
605 {
606 	struct ap_driver *ap_drv = to_ap_drv(drv);
607 	struct ap_device_id *id;
608 
609 	/*
610 	 * Compare device type of the device with the list of
611 	 * supported types of the device_driver.
612 	 */
613 	for (id = ap_drv->ids; id->match_flags; id++) {
614 		if (is_card_dev(dev) &&
615 		    id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE &&
616 		    id->dev_type == to_ap_dev(dev)->device_type)
617 			return 1;
618 		if (is_queue_dev(dev) &&
619 		    id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE &&
620 		    id->dev_type == to_ap_dev(dev)->device_type)
621 			return 1;
622 	}
623 	return 0;
624 }
625 
626 /**
627  * ap_uevent(): Uevent function for AP devices.
628  * @dev: Pointer to device
629  * @env: Pointer to kobj_uevent_env
630  *
631  * It sets up a single environment variable DEV_TYPE which contains the
632  * hardware device type.
633  */
634 static int ap_uevent(const struct device *dev, struct kobj_uevent_env *env)
635 {
636 	int rc = 0;
637 	const struct ap_device *ap_dev = to_ap_dev(dev);
638 
639 	/* Uevents from ap bus core don't need extensions to the env */
640 	if (dev == ap_root_device)
641 		return 0;
642 
643 	if (is_card_dev(dev)) {
644 		struct ap_card *ac = to_ap_card(&ap_dev->device);
645 
646 		/* Set up DEV_TYPE environment variable. */
647 		rc = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
648 		if (rc)
649 			return rc;
650 		/* Add MODALIAS= */
651 		rc = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
652 		if (rc)
653 			return rc;
654 
655 		/* Add MODE=<accel|cca|ep11> */
656 		if (ap_test_bit(&ac->functions, AP_FUNC_ACCEL))
657 			rc = add_uevent_var(env, "MODE=accel");
658 		else if (ap_test_bit(&ac->functions, AP_FUNC_COPRO))
659 			rc = add_uevent_var(env, "MODE=cca");
660 		else if (ap_test_bit(&ac->functions, AP_FUNC_EP11))
661 			rc = add_uevent_var(env, "MODE=ep11");
662 		if (rc)
663 			return rc;
664 	} else {
665 		struct ap_queue *aq = to_ap_queue(&ap_dev->device);
666 
667 		/* Add MODE=<accel|cca|ep11> */
668 		if (ap_test_bit(&aq->card->functions, AP_FUNC_ACCEL))
669 			rc = add_uevent_var(env, "MODE=accel");
670 		else if (ap_test_bit(&aq->card->functions, AP_FUNC_COPRO))
671 			rc = add_uevent_var(env, "MODE=cca");
672 		else if (ap_test_bit(&aq->card->functions, AP_FUNC_EP11))
673 			rc = add_uevent_var(env, "MODE=ep11");
674 		if (rc)
675 			return rc;
676 	}
677 
678 	return 0;
679 }
680 
681 static void ap_send_init_scan_done_uevent(void)
682 {
683 	char *envp[] = { "INITSCAN=done", NULL };
684 
685 	kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
686 }
687 
688 static void ap_send_bindings_complete_uevent(void)
689 {
690 	char buf[32];
691 	char *envp[] = { "BINDINGS=complete", buf, NULL };
692 
693 	snprintf(buf, sizeof(buf), "COMPLETECOUNT=%llu",
694 		 atomic64_inc_return(&ap_bindings_complete_count));
695 	kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
696 }
697 
698 void ap_send_config_uevent(struct ap_device *ap_dev, bool cfg)
699 {
700 	char buf[16];
701 	char *envp[] = { buf, NULL };
702 
703 	snprintf(buf, sizeof(buf), "CONFIG=%d", cfg ? 1 : 0);
704 
705 	kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp);
706 }
707 EXPORT_SYMBOL(ap_send_config_uevent);
708 
709 void ap_send_online_uevent(struct ap_device *ap_dev, int online)
710 {
711 	char buf[16];
712 	char *envp[] = { buf, NULL };
713 
714 	snprintf(buf, sizeof(buf), "ONLINE=%d", online ? 1 : 0);
715 
716 	kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp);
717 }
718 EXPORT_SYMBOL(ap_send_online_uevent);
719 
720 static void ap_send_mask_changed_uevent(unsigned long *newapm,
721 					unsigned long *newaqm)
722 {
723 	char buf[100];
724 	char *envp[] = { buf, NULL };
725 
726 	if (newapm)
727 		snprintf(buf, sizeof(buf),
728 			 "APMASK=0x%016lx%016lx%016lx%016lx\n",
729 			 newapm[0], newapm[1], newapm[2], newapm[3]);
730 	else
731 		snprintf(buf, sizeof(buf),
732 			 "AQMASK=0x%016lx%016lx%016lx%016lx\n",
733 			 newaqm[0], newaqm[1], newaqm[2], newaqm[3]);
734 
735 	kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
736 }
737 
738 /*
739  * calc # of bound APQNs
740  */
741 
742 struct __ap_calc_ctrs {
743 	unsigned int apqns;
744 	unsigned int bound;
745 };
746 
747 static int __ap_calc_helper(struct device *dev, void *arg)
748 {
749 	struct __ap_calc_ctrs *pctrs = (struct __ap_calc_ctrs *)arg;
750 
751 	if (is_queue_dev(dev)) {
752 		pctrs->apqns++;
753 		if (dev->driver)
754 			pctrs->bound++;
755 	}
756 
757 	return 0;
758 }
759 
760 static void ap_calc_bound_apqns(unsigned int *apqns, unsigned int *bound)
761 {
762 	struct __ap_calc_ctrs ctrs;
763 
764 	memset(&ctrs, 0, sizeof(ctrs));
765 	bus_for_each_dev(&ap_bus_type, NULL, (void *)&ctrs, __ap_calc_helper);
766 
767 	*apqns = ctrs.apqns;
768 	*bound = ctrs.bound;
769 }
770 
771 /*
772  * After initial ap bus scan do check if all existing APQNs are
773  * bound to device drivers.
774  */
775 static void ap_check_bindings_complete(void)
776 {
777 	unsigned int apqns, bound;
778 
779 	if (atomic64_read(&ap_scan_bus_count) >= 1) {
780 		ap_calc_bound_apqns(&apqns, &bound);
781 		if (bound == apqns) {
782 			if (!completion_done(&ap_init_apqn_bindings_complete)) {
783 				complete_all(&ap_init_apqn_bindings_complete);
784 				AP_DBF_INFO("%s complete\n", __func__);
785 			}
786 			ap_send_bindings_complete_uevent();
787 		}
788 	}
789 }
790 
791 /*
792  * Interface to wait for the AP bus to have done one initial ap bus
793  * scan and all detected APQNs have been bound to device drivers.
794  * If these both conditions are not fulfilled, this function blocks
795  * on a condition with wait_for_completion_interruptible_timeout().
796  * If these both conditions are fulfilled (before the timeout hits)
797  * the return value is 0. If the timeout (in jiffies) hits instead
798  * -ETIME is returned. On failures negative return values are
799  * returned to the caller.
800  */
801 int ap_wait_init_apqn_bindings_complete(unsigned long timeout)
802 {
803 	long l;
804 
805 	if (completion_done(&ap_init_apqn_bindings_complete))
806 		return 0;
807 
808 	if (timeout)
809 		l = wait_for_completion_interruptible_timeout(
810 			&ap_init_apqn_bindings_complete, timeout);
811 	else
812 		l = wait_for_completion_interruptible(
813 			&ap_init_apqn_bindings_complete);
814 	if (l < 0)
815 		return l == -ERESTARTSYS ? -EINTR : l;
816 	else if (l == 0 && timeout)
817 		return -ETIME;
818 
819 	return 0;
820 }
821 EXPORT_SYMBOL(ap_wait_init_apqn_bindings_complete);
822 
823 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data)
824 {
825 	if (is_queue_dev(dev) &&
826 	    AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long)data)
827 		device_unregister(dev);
828 	return 0;
829 }
830 
831 static int __ap_revise_reserved(struct device *dev, void *dummy)
832 {
833 	int rc, card, queue, devres, drvres;
834 
835 	if (is_queue_dev(dev)) {
836 		card = AP_QID_CARD(to_ap_queue(dev)->qid);
837 		queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
838 		mutex_lock(&ap_perms_mutex);
839 		devres = test_bit_inv(card, ap_perms.apm) &&
840 			test_bit_inv(queue, ap_perms.aqm);
841 		mutex_unlock(&ap_perms_mutex);
842 		drvres = to_ap_drv(dev->driver)->flags
843 			& AP_DRIVER_FLAG_DEFAULT;
844 		if (!!devres != !!drvres) {
845 			AP_DBF_DBG("%s reprobing queue=%02x.%04x\n",
846 				   __func__, card, queue);
847 			rc = device_reprobe(dev);
848 			if (rc)
849 				AP_DBF_WARN("%s reprobing queue=%02x.%04x failed\n",
850 					    __func__, card, queue);
851 		}
852 	}
853 
854 	return 0;
855 }
856 
857 static void ap_bus_revise_bindings(void)
858 {
859 	bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved);
860 }
861 
862 /**
863  * ap_owned_by_def_drv: indicates whether an AP adapter is reserved for the
864  *			default host driver or not.
865  * @card: the APID of the adapter card to check
866  * @queue: the APQI of the queue to check
867  *
868  * Note: the ap_perms_mutex must be locked by the caller of this function.
869  *
870  * Return: an int specifying whether the AP adapter is reserved for the host (1)
871  *	   or not (0).
872  */
873 int ap_owned_by_def_drv(int card, int queue)
874 {
875 	int rc = 0;
876 
877 	if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS)
878 		return -EINVAL;
879 
880 	if (test_bit_inv(card, ap_perms.apm) &&
881 	    test_bit_inv(queue, ap_perms.aqm))
882 		rc = 1;
883 
884 	return rc;
885 }
886 EXPORT_SYMBOL(ap_owned_by_def_drv);
887 
888 /**
889  * ap_apqn_in_matrix_owned_by_def_drv: indicates whether every APQN contained in
890  *				       a set is reserved for the host drivers
891  *				       or not.
892  * @apm: a bitmap specifying a set of APIDs comprising the APQNs to check
893  * @aqm: a bitmap specifying a set of APQIs comprising the APQNs to check
894  *
895  * Note: the ap_perms_mutex must be locked by the caller of this function.
896  *
897  * Return: an int specifying whether each APQN is reserved for the host (1) or
898  *	   not (0)
899  */
900 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm,
901 				       unsigned long *aqm)
902 {
903 	int card, queue, rc = 0;
904 
905 	for (card = 0; !rc && card < AP_DEVICES; card++)
906 		if (test_bit_inv(card, apm) &&
907 		    test_bit_inv(card, ap_perms.apm))
908 			for (queue = 0; !rc && queue < AP_DOMAINS; queue++)
909 				if (test_bit_inv(queue, aqm) &&
910 				    test_bit_inv(queue, ap_perms.aqm))
911 					rc = 1;
912 
913 	return rc;
914 }
915 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv);
916 
917 static int ap_device_probe(struct device *dev)
918 {
919 	struct ap_device *ap_dev = to_ap_dev(dev);
920 	struct ap_driver *ap_drv = to_ap_drv(dev->driver);
921 	int card, queue, devres, drvres, rc = -ENODEV;
922 
923 	if (!get_device(dev))
924 		return rc;
925 
926 	if (is_queue_dev(dev)) {
927 		/*
928 		 * If the apqn is marked as reserved/used by ap bus and
929 		 * default drivers, only probe with drivers with the default
930 		 * flag set. If it is not marked, only probe with drivers
931 		 * with the default flag not set.
932 		 */
933 		card = AP_QID_CARD(to_ap_queue(dev)->qid);
934 		queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
935 		mutex_lock(&ap_perms_mutex);
936 		devres = test_bit_inv(card, ap_perms.apm) &&
937 			test_bit_inv(queue, ap_perms.aqm);
938 		mutex_unlock(&ap_perms_mutex);
939 		drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT;
940 		if (!!devres != !!drvres)
941 			goto out;
942 	}
943 
944 	/* Add queue/card to list of active queues/cards */
945 	spin_lock_bh(&ap_queues_lock);
946 	if (is_queue_dev(dev))
947 		hash_add(ap_queues, &to_ap_queue(dev)->hnode,
948 			 to_ap_queue(dev)->qid);
949 	spin_unlock_bh(&ap_queues_lock);
950 
951 	rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
952 
953 	if (rc) {
954 		spin_lock_bh(&ap_queues_lock);
955 		if (is_queue_dev(dev))
956 			hash_del(&to_ap_queue(dev)->hnode);
957 		spin_unlock_bh(&ap_queues_lock);
958 	} else {
959 		ap_check_bindings_complete();
960 	}
961 
962 out:
963 	if (rc)
964 		put_device(dev);
965 	return rc;
966 }
967 
968 static void ap_device_remove(struct device *dev)
969 {
970 	struct ap_device *ap_dev = to_ap_dev(dev);
971 	struct ap_driver *ap_drv = to_ap_drv(dev->driver);
972 
973 	/* prepare ap queue device removal */
974 	if (is_queue_dev(dev))
975 		ap_queue_prepare_remove(to_ap_queue(dev));
976 
977 	/* driver's chance to clean up gracefully */
978 	if (ap_drv->remove)
979 		ap_drv->remove(ap_dev);
980 
981 	/* now do the ap queue device remove */
982 	if (is_queue_dev(dev))
983 		ap_queue_remove(to_ap_queue(dev));
984 
985 	/* Remove queue/card from list of active queues/cards */
986 	spin_lock_bh(&ap_queues_lock);
987 	if (is_queue_dev(dev))
988 		hash_del(&to_ap_queue(dev)->hnode);
989 	spin_unlock_bh(&ap_queues_lock);
990 
991 	put_device(dev);
992 }
993 
994 struct ap_queue *ap_get_qdev(ap_qid_t qid)
995 {
996 	int bkt;
997 	struct ap_queue *aq;
998 
999 	spin_lock_bh(&ap_queues_lock);
1000 	hash_for_each(ap_queues, bkt, aq, hnode) {
1001 		if (aq->qid == qid) {
1002 			get_device(&aq->ap_dev.device);
1003 			spin_unlock_bh(&ap_queues_lock);
1004 			return aq;
1005 		}
1006 	}
1007 	spin_unlock_bh(&ap_queues_lock);
1008 
1009 	return NULL;
1010 }
1011 EXPORT_SYMBOL(ap_get_qdev);
1012 
1013 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
1014 		       char *name)
1015 {
1016 	struct device_driver *drv = &ap_drv->driver;
1017 
1018 	drv->bus = &ap_bus_type;
1019 	drv->owner = owner;
1020 	drv->name = name;
1021 	return driver_register(drv);
1022 }
1023 EXPORT_SYMBOL(ap_driver_register);
1024 
1025 void ap_driver_unregister(struct ap_driver *ap_drv)
1026 {
1027 	driver_unregister(&ap_drv->driver);
1028 }
1029 EXPORT_SYMBOL(ap_driver_unregister);
1030 
1031 void ap_bus_force_rescan(void)
1032 {
1033 	/* processing a asynchronous bus rescan */
1034 	del_timer(&ap_config_timer);
1035 	queue_work(system_long_wq, &ap_scan_work);
1036 	flush_work(&ap_scan_work);
1037 }
1038 EXPORT_SYMBOL(ap_bus_force_rescan);
1039 
1040 /*
1041  * A config change has happened, force an ap bus rescan.
1042  */
1043 void ap_bus_cfg_chg(void)
1044 {
1045 	AP_DBF_DBG("%s config change, forcing bus rescan\n", __func__);
1046 
1047 	ap_bus_force_rescan();
1048 }
1049 
1050 /*
1051  * hex2bitmap() - parse hex mask string and set bitmap.
1052  * Valid strings are "0x012345678" with at least one valid hex number.
1053  * Rest of the bitmap to the right is padded with 0. No spaces allowed
1054  * within the string, the leading 0x may be omitted.
1055  * Returns the bitmask with exactly the bits set as given by the hex
1056  * string (both in big endian order).
1057  */
1058 static int hex2bitmap(const char *str, unsigned long *bitmap, int bits)
1059 {
1060 	int i, n, b;
1061 
1062 	/* bits needs to be a multiple of 8 */
1063 	if (bits & 0x07)
1064 		return -EINVAL;
1065 
1066 	if (str[0] == '0' && str[1] == 'x')
1067 		str++;
1068 	if (*str == 'x')
1069 		str++;
1070 
1071 	for (i = 0; isxdigit(*str) && i < bits; str++) {
1072 		b = hex_to_bin(*str);
1073 		for (n = 0; n < 4; n++)
1074 			if (b & (0x08 >> n))
1075 				set_bit_inv(i + n, bitmap);
1076 		i += 4;
1077 	}
1078 
1079 	if (*str == '\n')
1080 		str++;
1081 	if (*str)
1082 		return -EINVAL;
1083 	return 0;
1084 }
1085 
1086 /*
1087  * modify_bitmap() - parse bitmask argument and modify an existing
1088  * bit mask accordingly. A concatenation (done with ',') of these
1089  * terms is recognized:
1090  *   +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>]
1091  * <bitnr> may be any valid number (hex, decimal or octal) in the range
1092  * 0...bits-1; the leading + or - is required. Here are some examples:
1093  *   +0-15,+32,-128,-0xFF
1094  *   -0-255,+1-16,+0x128
1095  *   +1,+2,+3,+4,-5,-7-10
1096  * Returns the new bitmap after all changes have been applied. Every
1097  * positive value in the string will set a bit and every negative value
1098  * in the string will clear a bit. As a bit may be touched more than once,
1099  * the last 'operation' wins:
1100  * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be
1101  * cleared again. All other bits are unmodified.
1102  */
1103 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits)
1104 {
1105 	int a, i, z;
1106 	char *np, sign;
1107 
1108 	/* bits needs to be a multiple of 8 */
1109 	if (bits & 0x07)
1110 		return -EINVAL;
1111 
1112 	while (*str) {
1113 		sign = *str++;
1114 		if (sign != '+' && sign != '-')
1115 			return -EINVAL;
1116 		a = z = simple_strtoul(str, &np, 0);
1117 		if (str == np || a >= bits)
1118 			return -EINVAL;
1119 		str = np;
1120 		if (*str == '-') {
1121 			z = simple_strtoul(++str, &np, 0);
1122 			if (str == np || a > z || z >= bits)
1123 				return -EINVAL;
1124 			str = np;
1125 		}
1126 		for (i = a; i <= z; i++)
1127 			if (sign == '+')
1128 				set_bit_inv(i, bitmap);
1129 			else
1130 				clear_bit_inv(i, bitmap);
1131 		while (*str == ',' || *str == '\n')
1132 			str++;
1133 	}
1134 
1135 	return 0;
1136 }
1137 
1138 static int ap_parse_bitmap_str(const char *str, unsigned long *bitmap, int bits,
1139 			       unsigned long *newmap)
1140 {
1141 	unsigned long size;
1142 	int rc;
1143 
1144 	size = BITS_TO_LONGS(bits) * sizeof(unsigned long);
1145 	if (*str == '+' || *str == '-') {
1146 		memcpy(newmap, bitmap, size);
1147 		rc = modify_bitmap(str, newmap, bits);
1148 	} else {
1149 		memset(newmap, 0, size);
1150 		rc = hex2bitmap(str, newmap, bits);
1151 	}
1152 	return rc;
1153 }
1154 
1155 int ap_parse_mask_str(const char *str,
1156 		      unsigned long *bitmap, int bits,
1157 		      struct mutex *lock)
1158 {
1159 	unsigned long *newmap, size;
1160 	int rc;
1161 
1162 	/* bits needs to be a multiple of 8 */
1163 	if (bits & 0x07)
1164 		return -EINVAL;
1165 
1166 	size = BITS_TO_LONGS(bits) * sizeof(unsigned long);
1167 	newmap = kmalloc(size, GFP_KERNEL);
1168 	if (!newmap)
1169 		return -ENOMEM;
1170 	if (mutex_lock_interruptible(lock)) {
1171 		kfree(newmap);
1172 		return -ERESTARTSYS;
1173 	}
1174 	rc = ap_parse_bitmap_str(str, bitmap, bits, newmap);
1175 	if (rc == 0)
1176 		memcpy(bitmap, newmap, size);
1177 	mutex_unlock(lock);
1178 	kfree(newmap);
1179 	return rc;
1180 }
1181 EXPORT_SYMBOL(ap_parse_mask_str);
1182 
1183 /*
1184  * AP bus attributes.
1185  */
1186 
1187 static ssize_t ap_domain_show(const struct bus_type *bus, char *buf)
1188 {
1189 	return sysfs_emit(buf, "%d\n", ap_domain_index);
1190 }
1191 
1192 static ssize_t ap_domain_store(const struct bus_type *bus,
1193 			       const char *buf, size_t count)
1194 {
1195 	int domain;
1196 
1197 	if (sscanf(buf, "%i\n", &domain) != 1 ||
1198 	    domain < 0 || domain > ap_max_domain_id ||
1199 	    !test_bit_inv(domain, ap_perms.aqm))
1200 		return -EINVAL;
1201 
1202 	spin_lock_bh(&ap_domain_lock);
1203 	ap_domain_index = domain;
1204 	spin_unlock_bh(&ap_domain_lock);
1205 
1206 	AP_DBF_INFO("%s stored new default domain=%d\n",
1207 		    __func__, domain);
1208 
1209 	return count;
1210 }
1211 
1212 static BUS_ATTR_RW(ap_domain);
1213 
1214 static ssize_t ap_control_domain_mask_show(const struct bus_type *bus, char *buf)
1215 {
1216 	if (!ap_qci_info)	/* QCI not supported */
1217 		return sysfs_emit(buf, "not supported\n");
1218 
1219 	return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1220 			  ap_qci_info->adm[0], ap_qci_info->adm[1],
1221 			  ap_qci_info->adm[2], ap_qci_info->adm[3],
1222 			  ap_qci_info->adm[4], ap_qci_info->adm[5],
1223 			  ap_qci_info->adm[6], ap_qci_info->adm[7]);
1224 }
1225 
1226 static BUS_ATTR_RO(ap_control_domain_mask);
1227 
1228 static ssize_t ap_usage_domain_mask_show(const struct bus_type *bus, char *buf)
1229 {
1230 	if (!ap_qci_info)	/* QCI not supported */
1231 		return sysfs_emit(buf, "not supported\n");
1232 
1233 	return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1234 			  ap_qci_info->aqm[0], ap_qci_info->aqm[1],
1235 			  ap_qci_info->aqm[2], ap_qci_info->aqm[3],
1236 			  ap_qci_info->aqm[4], ap_qci_info->aqm[5],
1237 			  ap_qci_info->aqm[6], ap_qci_info->aqm[7]);
1238 }
1239 
1240 static BUS_ATTR_RO(ap_usage_domain_mask);
1241 
1242 static ssize_t ap_adapter_mask_show(const struct bus_type *bus, char *buf)
1243 {
1244 	if (!ap_qci_info)	/* QCI not supported */
1245 		return sysfs_emit(buf, "not supported\n");
1246 
1247 	return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1248 			  ap_qci_info->apm[0], ap_qci_info->apm[1],
1249 			  ap_qci_info->apm[2], ap_qci_info->apm[3],
1250 			  ap_qci_info->apm[4], ap_qci_info->apm[5],
1251 			  ap_qci_info->apm[6], ap_qci_info->apm[7]);
1252 }
1253 
1254 static BUS_ATTR_RO(ap_adapter_mask);
1255 
1256 static ssize_t ap_interrupts_show(const struct bus_type *bus, char *buf)
1257 {
1258 	return sysfs_emit(buf, "%d\n", ap_irq_flag ? 1 : 0);
1259 }
1260 
1261 static BUS_ATTR_RO(ap_interrupts);
1262 
1263 static ssize_t config_time_show(const struct bus_type *bus, char *buf)
1264 {
1265 	return sysfs_emit(buf, "%d\n", ap_config_time);
1266 }
1267 
1268 static ssize_t config_time_store(const struct bus_type *bus,
1269 				 const char *buf, size_t count)
1270 {
1271 	int time;
1272 
1273 	if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
1274 		return -EINVAL;
1275 	ap_config_time = time;
1276 	mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1277 	return count;
1278 }
1279 
1280 static BUS_ATTR_RW(config_time);
1281 
1282 static ssize_t poll_thread_show(const struct bus_type *bus, char *buf)
1283 {
1284 	return sysfs_emit(buf, "%d\n", ap_poll_kthread ? 1 : 0);
1285 }
1286 
1287 static ssize_t poll_thread_store(const struct bus_type *bus,
1288 				 const char *buf, size_t count)
1289 {
1290 	bool value;
1291 	int rc;
1292 
1293 	rc = kstrtobool(buf, &value);
1294 	if (rc)
1295 		return rc;
1296 
1297 	if (value) {
1298 		rc = ap_poll_thread_start();
1299 		if (rc)
1300 			count = rc;
1301 	} else {
1302 		ap_poll_thread_stop();
1303 	}
1304 	return count;
1305 }
1306 
1307 static BUS_ATTR_RW(poll_thread);
1308 
1309 static ssize_t poll_timeout_show(const struct bus_type *bus, char *buf)
1310 {
1311 	return sysfs_emit(buf, "%lu\n", poll_high_timeout);
1312 }
1313 
1314 static ssize_t poll_timeout_store(const struct bus_type *bus, const char *buf,
1315 				  size_t count)
1316 {
1317 	unsigned long value;
1318 	ktime_t hr_time;
1319 	int rc;
1320 
1321 	rc = kstrtoul(buf, 0, &value);
1322 	if (rc)
1323 		return rc;
1324 
1325 	/* 120 seconds = maximum poll interval */
1326 	if (value > 120000000000UL)
1327 		return -EINVAL;
1328 	poll_high_timeout = value;
1329 	hr_time = poll_high_timeout;
1330 
1331 	spin_lock_bh(&ap_poll_timer_lock);
1332 	hrtimer_cancel(&ap_poll_timer);
1333 	hrtimer_set_expires(&ap_poll_timer, hr_time);
1334 	hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
1335 	spin_unlock_bh(&ap_poll_timer_lock);
1336 
1337 	return count;
1338 }
1339 
1340 static BUS_ATTR_RW(poll_timeout);
1341 
1342 static ssize_t ap_max_domain_id_show(const struct bus_type *bus, char *buf)
1343 {
1344 	return sysfs_emit(buf, "%d\n", ap_max_domain_id);
1345 }
1346 
1347 static BUS_ATTR_RO(ap_max_domain_id);
1348 
1349 static ssize_t ap_max_adapter_id_show(const struct bus_type *bus, char *buf)
1350 {
1351 	return sysfs_emit(buf, "%d\n", ap_max_adapter_id);
1352 }
1353 
1354 static BUS_ATTR_RO(ap_max_adapter_id);
1355 
1356 static ssize_t apmask_show(const struct bus_type *bus, char *buf)
1357 {
1358 	int rc;
1359 
1360 	if (mutex_lock_interruptible(&ap_perms_mutex))
1361 		return -ERESTARTSYS;
1362 	rc = sysfs_emit(buf, "0x%016lx%016lx%016lx%016lx\n",
1363 			ap_perms.apm[0], ap_perms.apm[1],
1364 			ap_perms.apm[2], ap_perms.apm[3]);
1365 	mutex_unlock(&ap_perms_mutex);
1366 
1367 	return rc;
1368 }
1369 
1370 static int __verify_card_reservations(struct device_driver *drv, void *data)
1371 {
1372 	int rc = 0;
1373 	struct ap_driver *ap_drv = to_ap_drv(drv);
1374 	unsigned long *newapm = (unsigned long *)data;
1375 
1376 	/*
1377 	 * increase the driver's module refcounter to be sure it is not
1378 	 * going away when we invoke the callback function.
1379 	 */
1380 	if (!try_module_get(drv->owner))
1381 		return 0;
1382 
1383 	if (ap_drv->in_use) {
1384 		rc = ap_drv->in_use(newapm, ap_perms.aqm);
1385 		if (rc)
1386 			rc = -EBUSY;
1387 	}
1388 
1389 	/* release the driver's module */
1390 	module_put(drv->owner);
1391 
1392 	return rc;
1393 }
1394 
1395 static int apmask_commit(unsigned long *newapm)
1396 {
1397 	int rc;
1398 	unsigned long reserved[BITS_TO_LONGS(AP_DEVICES)];
1399 
1400 	/*
1401 	 * Check if any bits in the apmask have been set which will
1402 	 * result in queues being removed from non-default drivers
1403 	 */
1404 	if (bitmap_andnot(reserved, newapm, ap_perms.apm, AP_DEVICES)) {
1405 		rc = bus_for_each_drv(&ap_bus_type, NULL, reserved,
1406 				      __verify_card_reservations);
1407 		if (rc)
1408 			return rc;
1409 	}
1410 
1411 	memcpy(ap_perms.apm, newapm, APMASKSIZE);
1412 
1413 	return 0;
1414 }
1415 
1416 static ssize_t apmask_store(const struct bus_type *bus, const char *buf,
1417 			    size_t count)
1418 {
1419 	int rc, changes = 0;
1420 	DECLARE_BITMAP(newapm, AP_DEVICES);
1421 
1422 	if (mutex_lock_interruptible(&ap_perms_mutex))
1423 		return -ERESTARTSYS;
1424 
1425 	rc = ap_parse_bitmap_str(buf, ap_perms.apm, AP_DEVICES, newapm);
1426 	if (rc)
1427 		goto done;
1428 
1429 	changes = memcmp(ap_perms.apm, newapm, APMASKSIZE);
1430 	if (changes)
1431 		rc = apmask_commit(newapm);
1432 
1433 done:
1434 	mutex_unlock(&ap_perms_mutex);
1435 	if (rc)
1436 		return rc;
1437 
1438 	if (changes) {
1439 		ap_bus_revise_bindings();
1440 		ap_send_mask_changed_uevent(newapm, NULL);
1441 	}
1442 
1443 	return count;
1444 }
1445 
1446 static BUS_ATTR_RW(apmask);
1447 
1448 static ssize_t aqmask_show(const struct bus_type *bus, char *buf)
1449 {
1450 	int rc;
1451 
1452 	if (mutex_lock_interruptible(&ap_perms_mutex))
1453 		return -ERESTARTSYS;
1454 	rc = sysfs_emit(buf, "0x%016lx%016lx%016lx%016lx\n",
1455 			ap_perms.aqm[0], ap_perms.aqm[1],
1456 			ap_perms.aqm[2], ap_perms.aqm[3]);
1457 	mutex_unlock(&ap_perms_mutex);
1458 
1459 	return rc;
1460 }
1461 
1462 static int __verify_queue_reservations(struct device_driver *drv, void *data)
1463 {
1464 	int rc = 0;
1465 	struct ap_driver *ap_drv = to_ap_drv(drv);
1466 	unsigned long *newaqm = (unsigned long *)data;
1467 
1468 	/*
1469 	 * increase the driver's module refcounter to be sure it is not
1470 	 * going away when we invoke the callback function.
1471 	 */
1472 	if (!try_module_get(drv->owner))
1473 		return 0;
1474 
1475 	if (ap_drv->in_use) {
1476 		rc = ap_drv->in_use(ap_perms.apm, newaqm);
1477 		if (rc)
1478 			rc = -EBUSY;
1479 	}
1480 
1481 	/* release the driver's module */
1482 	module_put(drv->owner);
1483 
1484 	return rc;
1485 }
1486 
1487 static int aqmask_commit(unsigned long *newaqm)
1488 {
1489 	int rc;
1490 	unsigned long reserved[BITS_TO_LONGS(AP_DOMAINS)];
1491 
1492 	/*
1493 	 * Check if any bits in the aqmask have been set which will
1494 	 * result in queues being removed from non-default drivers
1495 	 */
1496 	if (bitmap_andnot(reserved, newaqm, ap_perms.aqm, AP_DOMAINS)) {
1497 		rc = bus_for_each_drv(&ap_bus_type, NULL, reserved,
1498 				      __verify_queue_reservations);
1499 		if (rc)
1500 			return rc;
1501 	}
1502 
1503 	memcpy(ap_perms.aqm, newaqm, AQMASKSIZE);
1504 
1505 	return 0;
1506 }
1507 
1508 static ssize_t aqmask_store(const struct bus_type *bus, const char *buf,
1509 			    size_t count)
1510 {
1511 	int rc, changes = 0;
1512 	DECLARE_BITMAP(newaqm, AP_DOMAINS);
1513 
1514 	if (mutex_lock_interruptible(&ap_perms_mutex))
1515 		return -ERESTARTSYS;
1516 
1517 	rc = ap_parse_bitmap_str(buf, ap_perms.aqm, AP_DOMAINS, newaqm);
1518 	if (rc)
1519 		goto done;
1520 
1521 	changes = memcmp(ap_perms.aqm, newaqm, APMASKSIZE);
1522 	if (changes)
1523 		rc = aqmask_commit(newaqm);
1524 
1525 done:
1526 	mutex_unlock(&ap_perms_mutex);
1527 	if (rc)
1528 		return rc;
1529 
1530 	if (changes) {
1531 		ap_bus_revise_bindings();
1532 		ap_send_mask_changed_uevent(NULL, newaqm);
1533 	}
1534 
1535 	return count;
1536 }
1537 
1538 static BUS_ATTR_RW(aqmask);
1539 
1540 static ssize_t scans_show(const struct bus_type *bus, char *buf)
1541 {
1542 	return sysfs_emit(buf, "%llu\n", atomic64_read(&ap_scan_bus_count));
1543 }
1544 
1545 static ssize_t scans_store(const struct bus_type *bus, const char *buf,
1546 			   size_t count)
1547 {
1548 	AP_DBF_INFO("%s force AP bus rescan\n", __func__);
1549 
1550 	ap_bus_force_rescan();
1551 
1552 	return count;
1553 }
1554 
1555 static BUS_ATTR_RW(scans);
1556 
1557 static ssize_t bindings_show(const struct bus_type *bus, char *buf)
1558 {
1559 	int rc;
1560 	unsigned int apqns, n;
1561 
1562 	ap_calc_bound_apqns(&apqns, &n);
1563 	if (atomic64_read(&ap_scan_bus_count) >= 1 && n == apqns)
1564 		rc = sysfs_emit(buf, "%u/%u (complete)\n", n, apqns);
1565 	else
1566 		rc = sysfs_emit(buf, "%u/%u\n", n, apqns);
1567 
1568 	return rc;
1569 }
1570 
1571 static BUS_ATTR_RO(bindings);
1572 
1573 static ssize_t features_show(const struct bus_type *bus, char *buf)
1574 {
1575 	int n = 0;
1576 
1577 	if (!ap_qci_info)	/* QCI not supported */
1578 		return sysfs_emit(buf, "-\n");
1579 
1580 	if (ap_qci_info->apsc)
1581 		n += sysfs_emit_at(buf, n, "APSC ");
1582 	if (ap_qci_info->apxa)
1583 		n += sysfs_emit_at(buf, n, "APXA ");
1584 	if (ap_qci_info->qact)
1585 		n += sysfs_emit_at(buf, n, "QACT ");
1586 	if (ap_qci_info->rc8a)
1587 		n += sysfs_emit_at(buf, n, "RC8A ");
1588 	if (ap_qci_info->apsb)
1589 		n += sysfs_emit_at(buf, n, "APSB ");
1590 
1591 	sysfs_emit_at(buf, n == 0 ? 0 : n - 1, "\n");
1592 
1593 	return n;
1594 }
1595 
1596 static BUS_ATTR_RO(features);
1597 
1598 static struct attribute *ap_bus_attrs[] = {
1599 	&bus_attr_ap_domain.attr,
1600 	&bus_attr_ap_control_domain_mask.attr,
1601 	&bus_attr_ap_usage_domain_mask.attr,
1602 	&bus_attr_ap_adapter_mask.attr,
1603 	&bus_attr_config_time.attr,
1604 	&bus_attr_poll_thread.attr,
1605 	&bus_attr_ap_interrupts.attr,
1606 	&bus_attr_poll_timeout.attr,
1607 	&bus_attr_ap_max_domain_id.attr,
1608 	&bus_attr_ap_max_adapter_id.attr,
1609 	&bus_attr_apmask.attr,
1610 	&bus_attr_aqmask.attr,
1611 	&bus_attr_scans.attr,
1612 	&bus_attr_bindings.attr,
1613 	&bus_attr_features.attr,
1614 	NULL,
1615 };
1616 ATTRIBUTE_GROUPS(ap_bus);
1617 
1618 static struct bus_type ap_bus_type = {
1619 	.name = "ap",
1620 	.bus_groups = ap_bus_groups,
1621 	.match = &ap_bus_match,
1622 	.uevent = &ap_uevent,
1623 	.probe = ap_device_probe,
1624 	.remove = ap_device_remove,
1625 };
1626 
1627 /**
1628  * ap_select_domain(): Select an AP domain if possible and we haven't
1629  * already done so before.
1630  */
1631 static void ap_select_domain(void)
1632 {
1633 	struct ap_queue_status status;
1634 	int card, dom;
1635 
1636 	/*
1637 	 * Choose the default domain. Either the one specified with
1638 	 * the "domain=" parameter or the first domain with at least
1639 	 * one valid APQN.
1640 	 */
1641 	spin_lock_bh(&ap_domain_lock);
1642 	if (ap_domain_index >= 0) {
1643 		/* Domain has already been selected. */
1644 		goto out;
1645 	}
1646 	for (dom = 0; dom <= ap_max_domain_id; dom++) {
1647 		if (!ap_test_config_usage_domain(dom) ||
1648 		    !test_bit_inv(dom, ap_perms.aqm))
1649 			continue;
1650 		for (card = 0; card <= ap_max_adapter_id; card++) {
1651 			if (!ap_test_config_card_id(card) ||
1652 			    !test_bit_inv(card, ap_perms.apm))
1653 				continue;
1654 			status = ap_test_queue(AP_MKQID(card, dom),
1655 					       ap_apft_available(),
1656 					       NULL);
1657 			if (status.response_code == AP_RESPONSE_NORMAL)
1658 				break;
1659 		}
1660 		if (card <= ap_max_adapter_id)
1661 			break;
1662 	}
1663 	if (dom <= ap_max_domain_id) {
1664 		ap_domain_index = dom;
1665 		AP_DBF_INFO("%s new default domain is %d\n",
1666 			    __func__, ap_domain_index);
1667 	}
1668 out:
1669 	spin_unlock_bh(&ap_domain_lock);
1670 }
1671 
1672 /*
1673  * This function checks the type and returns either 0 for not
1674  * supported or the highest compatible type value (which may
1675  * include the input type value).
1676  */
1677 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func)
1678 {
1679 	int comp_type = 0;
1680 
1681 	/* < CEX2A is not supported */
1682 	if (rawtype < AP_DEVICE_TYPE_CEX2A) {
1683 		AP_DBF_WARN("%s queue=%02x.%04x unsupported type %d\n",
1684 			    __func__, AP_QID_CARD(qid),
1685 			    AP_QID_QUEUE(qid), rawtype);
1686 		return 0;
1687 	}
1688 	/* up to CEX8 known and fully supported */
1689 	if (rawtype <= AP_DEVICE_TYPE_CEX8)
1690 		return rawtype;
1691 	/*
1692 	 * unknown new type > CEX8, check for compatibility
1693 	 * to the highest known and supported type which is
1694 	 * currently CEX8 with the help of the QACT function.
1695 	 */
1696 	if (ap_qact_available()) {
1697 		struct ap_queue_status status;
1698 		union ap_qact_ap_info apinfo = {0};
1699 
1700 		apinfo.mode = (func >> 26) & 0x07;
1701 		apinfo.cat = AP_DEVICE_TYPE_CEX8;
1702 		status = ap_qact(qid, 0, &apinfo);
1703 		if (status.response_code == AP_RESPONSE_NORMAL &&
1704 		    apinfo.cat >= AP_DEVICE_TYPE_CEX2A &&
1705 		    apinfo.cat <= AP_DEVICE_TYPE_CEX8)
1706 			comp_type = apinfo.cat;
1707 	}
1708 	if (!comp_type)
1709 		AP_DBF_WARN("%s queue=%02x.%04x unable to map type %d\n",
1710 			    __func__, AP_QID_CARD(qid),
1711 			    AP_QID_QUEUE(qid), rawtype);
1712 	else if (comp_type != rawtype)
1713 		AP_DBF_INFO("%s queue=%02x.%04x map type %d to %d\n",
1714 			    __func__, AP_QID_CARD(qid), AP_QID_QUEUE(qid),
1715 			    rawtype, comp_type);
1716 	return comp_type;
1717 }
1718 
1719 /*
1720  * Helper function to be used with bus_find_dev
1721  * matches for the card device with the given id
1722  */
1723 static int __match_card_device_with_id(struct device *dev, const void *data)
1724 {
1725 	return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *)data;
1726 }
1727 
1728 /*
1729  * Helper function to be used with bus_find_dev
1730  * matches for the queue device with a given qid
1731  */
1732 static int __match_queue_device_with_qid(struct device *dev, const void *data)
1733 {
1734 	return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long)data;
1735 }
1736 
1737 /*
1738  * Helper function to be used with bus_find_dev
1739  * matches any queue device with given queue id
1740  */
1741 static int __match_queue_device_with_queue_id(struct device *dev, const void *data)
1742 {
1743 	return is_queue_dev(dev) &&
1744 		AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long)data;
1745 }
1746 
1747 /* Helper function for notify_config_changed */
1748 static int __drv_notify_config_changed(struct device_driver *drv, void *data)
1749 {
1750 	struct ap_driver *ap_drv = to_ap_drv(drv);
1751 
1752 	if (try_module_get(drv->owner)) {
1753 		if (ap_drv->on_config_changed)
1754 			ap_drv->on_config_changed(ap_qci_info, ap_qci_info_old);
1755 		module_put(drv->owner);
1756 	}
1757 
1758 	return 0;
1759 }
1760 
1761 /* Notify all drivers about an qci config change */
1762 static inline void notify_config_changed(void)
1763 {
1764 	bus_for_each_drv(&ap_bus_type, NULL, NULL,
1765 			 __drv_notify_config_changed);
1766 }
1767 
1768 /* Helper function for notify_scan_complete */
1769 static int __drv_notify_scan_complete(struct device_driver *drv, void *data)
1770 {
1771 	struct ap_driver *ap_drv = to_ap_drv(drv);
1772 
1773 	if (try_module_get(drv->owner)) {
1774 		if (ap_drv->on_scan_complete)
1775 			ap_drv->on_scan_complete(ap_qci_info,
1776 						 ap_qci_info_old);
1777 		module_put(drv->owner);
1778 	}
1779 
1780 	return 0;
1781 }
1782 
1783 /* Notify all drivers about bus scan complete */
1784 static inline void notify_scan_complete(void)
1785 {
1786 	bus_for_each_drv(&ap_bus_type, NULL, NULL,
1787 			 __drv_notify_scan_complete);
1788 }
1789 
1790 /*
1791  * Helper function for ap_scan_bus().
1792  * Remove card device and associated queue devices.
1793  */
1794 static inline void ap_scan_rm_card_dev_and_queue_devs(struct ap_card *ac)
1795 {
1796 	bus_for_each_dev(&ap_bus_type, NULL,
1797 			 (void *)(long)ac->id,
1798 			 __ap_queue_devices_with_id_unregister);
1799 	device_unregister(&ac->ap_dev.device);
1800 }
1801 
1802 /*
1803  * Helper function for ap_scan_bus().
1804  * Does the scan bus job for all the domains within
1805  * a valid adapter given by an ap_card ptr.
1806  */
1807 static inline void ap_scan_domains(struct ap_card *ac)
1808 {
1809 	int rc, dom, depth, type, ml;
1810 	bool decfg, chkstop;
1811 	struct ap_queue *aq;
1812 	struct device *dev;
1813 	unsigned int func;
1814 	ap_qid_t qid;
1815 
1816 	/*
1817 	 * Go through the configuration for the domains and compare them
1818 	 * to the existing queue devices. Also take care of the config
1819 	 * and error state for the queue devices.
1820 	 */
1821 
1822 	for (dom = 0; dom <= ap_max_domain_id; dom++) {
1823 		qid = AP_MKQID(ac->id, dom);
1824 		dev = bus_find_device(&ap_bus_type, NULL,
1825 				      (void *)(long)qid,
1826 				      __match_queue_device_with_qid);
1827 		aq = dev ? to_ap_queue(dev) : NULL;
1828 		if (!ap_test_config_usage_domain(dom)) {
1829 			if (dev) {
1830 				AP_DBF_INFO("%s(%d,%d) not in config anymore, rm queue dev\n",
1831 					    __func__, ac->id, dom);
1832 				device_unregister(dev);
1833 			}
1834 			goto put_dev_and_continue;
1835 		}
1836 		/* domain is valid, get info from this APQN */
1837 		rc = ap_queue_info(qid, &type, &func, &depth,
1838 				   &ml, &decfg, &chkstop);
1839 		switch (rc) {
1840 		case -1:
1841 			if (dev) {
1842 				AP_DBF_INFO("%s(%d,%d) queue_info() failed, rm queue dev\n",
1843 					    __func__, ac->id, dom);
1844 				device_unregister(dev);
1845 			}
1846 			fallthrough;
1847 		case 0:
1848 			goto put_dev_and_continue;
1849 		default:
1850 			break;
1851 		}
1852 		/* if no queue device exists, create a new one */
1853 		if (!aq) {
1854 			aq = ap_queue_create(qid, ac->ap_dev.device_type);
1855 			if (!aq) {
1856 				AP_DBF_WARN("%s(%d,%d) ap_queue_create() failed\n",
1857 					    __func__, ac->id, dom);
1858 				continue;
1859 			}
1860 			aq->card = ac;
1861 			aq->config = !decfg;
1862 			aq->chkstop = chkstop;
1863 			dev = &aq->ap_dev.device;
1864 			dev->bus = &ap_bus_type;
1865 			dev->parent = &ac->ap_dev.device;
1866 			dev_set_name(dev, "%02x.%04x", ac->id, dom);
1867 			/* register queue device */
1868 			rc = device_register(dev);
1869 			if (rc) {
1870 				AP_DBF_WARN("%s(%d,%d) device_register() failed\n",
1871 					    __func__, ac->id, dom);
1872 				goto put_dev_and_continue;
1873 			}
1874 			/* get it and thus adjust reference counter */
1875 			get_device(dev);
1876 			if (decfg)
1877 				AP_DBF_INFO("%s(%d,%d) new (decfg) queue dev created\n",
1878 					    __func__, ac->id, dom);
1879 			else if (chkstop)
1880 				AP_DBF_INFO("%s(%d,%d) new (chkstop) queue dev created\n",
1881 					    __func__, ac->id, dom);
1882 			else
1883 				AP_DBF_INFO("%s(%d,%d) new queue dev created\n",
1884 					    __func__, ac->id, dom);
1885 			goto put_dev_and_continue;
1886 		}
1887 		/* handle state changes on already existing queue device */
1888 		spin_lock_bh(&aq->lock);
1889 		/* checkstop state */
1890 		if (chkstop && !aq->chkstop) {
1891 			/* checkstop on */
1892 			aq->chkstop = true;
1893 			if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1894 				aq->dev_state = AP_DEV_STATE_ERROR;
1895 				aq->last_err_rc = AP_RESPONSE_CHECKSTOPPED;
1896 			}
1897 			spin_unlock_bh(&aq->lock);
1898 			AP_DBF_DBG("%s(%d,%d) queue dev checkstop on\n",
1899 				   __func__, ac->id, dom);
1900 			/* 'receive' pending messages with -EAGAIN */
1901 			ap_flush_queue(aq);
1902 			goto put_dev_and_continue;
1903 		} else if (!chkstop && aq->chkstop) {
1904 			/* checkstop off */
1905 			aq->chkstop = false;
1906 			if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1907 				aq->dev_state = AP_DEV_STATE_OPERATING;
1908 				aq->sm_state = AP_SM_STATE_RESET_START;
1909 			}
1910 			spin_unlock_bh(&aq->lock);
1911 			AP_DBF_DBG("%s(%d,%d) queue dev checkstop off\n",
1912 				   __func__, ac->id, dom);
1913 			goto put_dev_and_continue;
1914 		}
1915 		/* config state change */
1916 		if (decfg && aq->config) {
1917 			/* config off this queue device */
1918 			aq->config = false;
1919 			if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1920 				aq->dev_state = AP_DEV_STATE_ERROR;
1921 				aq->last_err_rc = AP_RESPONSE_DECONFIGURED;
1922 			}
1923 			spin_unlock_bh(&aq->lock);
1924 			AP_DBF_DBG("%s(%d,%d) queue dev config off\n",
1925 				   __func__, ac->id, dom);
1926 			ap_send_config_uevent(&aq->ap_dev, aq->config);
1927 			/* 'receive' pending messages with -EAGAIN */
1928 			ap_flush_queue(aq);
1929 			goto put_dev_and_continue;
1930 		} else if (!decfg && !aq->config) {
1931 			/* config on this queue device */
1932 			aq->config = true;
1933 			if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1934 				aq->dev_state = AP_DEV_STATE_OPERATING;
1935 				aq->sm_state = AP_SM_STATE_RESET_START;
1936 			}
1937 			spin_unlock_bh(&aq->lock);
1938 			AP_DBF_DBG("%s(%d,%d) queue dev config on\n",
1939 				   __func__, ac->id, dom);
1940 			ap_send_config_uevent(&aq->ap_dev, aq->config);
1941 			goto put_dev_and_continue;
1942 		}
1943 		/* handle other error states */
1944 		if (!decfg && aq->dev_state == AP_DEV_STATE_ERROR) {
1945 			spin_unlock_bh(&aq->lock);
1946 			/* 'receive' pending messages with -EAGAIN */
1947 			ap_flush_queue(aq);
1948 			/* re-init (with reset) the queue device */
1949 			ap_queue_init_state(aq);
1950 			AP_DBF_INFO("%s(%d,%d) queue dev reinit enforced\n",
1951 				    __func__, ac->id, dom);
1952 			goto put_dev_and_continue;
1953 		}
1954 		spin_unlock_bh(&aq->lock);
1955 put_dev_and_continue:
1956 		put_device(dev);
1957 	}
1958 }
1959 
1960 /*
1961  * Helper function for ap_scan_bus().
1962  * Does the scan bus job for the given adapter id.
1963  */
1964 static inline void ap_scan_adapter(int ap)
1965 {
1966 	int rc, dom, depth, type, comp_type, ml;
1967 	bool decfg, chkstop;
1968 	struct ap_card *ac;
1969 	struct device *dev;
1970 	unsigned int func;
1971 	ap_qid_t qid;
1972 
1973 	/* Is there currently a card device for this adapter ? */
1974 	dev = bus_find_device(&ap_bus_type, NULL,
1975 			      (void *)(long)ap,
1976 			      __match_card_device_with_id);
1977 	ac = dev ? to_ap_card(dev) : NULL;
1978 
1979 	/* Adapter not in configuration ? */
1980 	if (!ap_test_config_card_id(ap)) {
1981 		if (ac) {
1982 			AP_DBF_INFO("%s(%d) ap not in config any more, rm card and queue devs\n",
1983 				    __func__, ap);
1984 			ap_scan_rm_card_dev_and_queue_devs(ac);
1985 			put_device(dev);
1986 		}
1987 		return;
1988 	}
1989 
1990 	/*
1991 	 * Adapter ap is valid in the current configuration. So do some checks:
1992 	 * If no card device exists, build one. If a card device exists, check
1993 	 * for type and functions changed. For all this we need to find a valid
1994 	 * APQN first.
1995 	 */
1996 
1997 	for (dom = 0; dom <= ap_max_domain_id; dom++)
1998 		if (ap_test_config_usage_domain(dom)) {
1999 			qid = AP_MKQID(ap, dom);
2000 			if (ap_queue_info(qid, &type, &func, &depth,
2001 					  &ml, &decfg, &chkstop) > 0)
2002 				break;
2003 		}
2004 	if (dom > ap_max_domain_id) {
2005 		/* Could not find one valid APQN for this adapter */
2006 		if (ac) {
2007 			AP_DBF_INFO("%s(%d) no type info (no APQN found), rm card and queue devs\n",
2008 				    __func__, ap);
2009 			ap_scan_rm_card_dev_and_queue_devs(ac);
2010 			put_device(dev);
2011 		} else {
2012 			AP_DBF_DBG("%s(%d) no type info (no APQN found), ignored\n",
2013 				   __func__, ap);
2014 		}
2015 		return;
2016 	}
2017 	if (!type) {
2018 		/* No apdater type info available, an unusable adapter */
2019 		if (ac) {
2020 			AP_DBF_INFO("%s(%d) no valid type (0) info, rm card and queue devs\n",
2021 				    __func__, ap);
2022 			ap_scan_rm_card_dev_and_queue_devs(ac);
2023 			put_device(dev);
2024 		} else {
2025 			AP_DBF_DBG("%s(%d) no valid type (0) info, ignored\n",
2026 				   __func__, ap);
2027 		}
2028 		return;
2029 	}
2030 	if (ac) {
2031 		/* Check APQN against existing card device for changes */
2032 		if (ac->raw_hwtype != type) {
2033 			AP_DBF_INFO("%s(%d) hwtype %d changed, rm card and queue devs\n",
2034 				    __func__, ap, type);
2035 			ap_scan_rm_card_dev_and_queue_devs(ac);
2036 			put_device(dev);
2037 			ac = NULL;
2038 		} else if ((ac->functions & TAPQ_CARD_FUNC_CMP_MASK) !=
2039 			   (func & TAPQ_CARD_FUNC_CMP_MASK)) {
2040 			AP_DBF_INFO("%s(%d) functions 0x%08x changed, rm card and queue devs\n",
2041 				    __func__, ap, func);
2042 			ap_scan_rm_card_dev_and_queue_devs(ac);
2043 			put_device(dev);
2044 			ac = NULL;
2045 		} else {
2046 			/* handle checkstop state change */
2047 			if (chkstop && !ac->chkstop) {
2048 				/* checkstop on */
2049 				ac->chkstop = true;
2050 				AP_DBF_INFO("%s(%d) card dev checkstop on\n",
2051 					    __func__, ap);
2052 			} else if (!chkstop && ac->chkstop) {
2053 				/* checkstop off */
2054 				ac->chkstop = false;
2055 				AP_DBF_INFO("%s(%d) card dev checkstop off\n",
2056 					    __func__, ap);
2057 			}
2058 			/* handle config state change */
2059 			if (decfg && ac->config) {
2060 				ac->config = false;
2061 				AP_DBF_INFO("%s(%d) card dev config off\n",
2062 					    __func__, ap);
2063 				ap_send_config_uevent(&ac->ap_dev, ac->config);
2064 			} else if (!decfg && !ac->config) {
2065 				ac->config = true;
2066 				AP_DBF_INFO("%s(%d) card dev config on\n",
2067 					    __func__, ap);
2068 				ap_send_config_uevent(&ac->ap_dev, ac->config);
2069 			}
2070 		}
2071 	}
2072 
2073 	if (!ac) {
2074 		/* Build a new card device */
2075 		comp_type = ap_get_compatible_type(qid, type, func);
2076 		if (!comp_type) {
2077 			AP_DBF_WARN("%s(%d) type %d, can't get compatibility type\n",
2078 				    __func__, ap, type);
2079 			return;
2080 		}
2081 		ac = ap_card_create(ap, depth, type, comp_type, func, ml);
2082 		if (!ac) {
2083 			AP_DBF_WARN("%s(%d) ap_card_create() failed\n",
2084 				    __func__, ap);
2085 			return;
2086 		}
2087 		ac->config = !decfg;
2088 		ac->chkstop = chkstop;
2089 		dev = &ac->ap_dev.device;
2090 		dev->bus = &ap_bus_type;
2091 		dev->parent = ap_root_device;
2092 		dev_set_name(dev, "card%02x", ap);
2093 		/* maybe enlarge ap_max_msg_size to support this card */
2094 		if (ac->maxmsgsize > atomic_read(&ap_max_msg_size)) {
2095 			atomic_set(&ap_max_msg_size, ac->maxmsgsize);
2096 			AP_DBF_INFO("%s(%d) ap_max_msg_size update to %d byte\n",
2097 				    __func__, ap,
2098 				    atomic_read(&ap_max_msg_size));
2099 		}
2100 		/* Register the new card device with AP bus */
2101 		rc = device_register(dev);
2102 		if (rc) {
2103 			AP_DBF_WARN("%s(%d) device_register() failed\n",
2104 				    __func__, ap);
2105 			put_device(dev);
2106 			return;
2107 		}
2108 		/* get it and thus adjust reference counter */
2109 		get_device(dev);
2110 		if (decfg)
2111 			AP_DBF_INFO("%s(%d) new (decfg) card dev type=%d func=0x%08x created\n",
2112 				    __func__, ap, type, func);
2113 		else if (chkstop)
2114 			AP_DBF_INFO("%s(%d) new (chkstop) card dev type=%d func=0x%08x created\n",
2115 				    __func__, ap, type, func);
2116 		else
2117 			AP_DBF_INFO("%s(%d) new card dev type=%d func=0x%08x created\n",
2118 				    __func__, ap, type, func);
2119 	}
2120 
2121 	/* Verify the domains and the queue devices for this card */
2122 	ap_scan_domains(ac);
2123 
2124 	/* release the card device */
2125 	put_device(&ac->ap_dev.device);
2126 }
2127 
2128 /**
2129  * ap_get_configuration - get the host AP configuration
2130  *
2131  * Stores the host AP configuration information returned from the previous call
2132  * to Query Configuration Information (QCI), then retrieves and stores the
2133  * current AP configuration returned from QCI.
2134  *
2135  * Return: true if the host AP configuration changed between calls to QCI;
2136  * otherwise, return false.
2137  */
2138 static bool ap_get_configuration(void)
2139 {
2140 	if (!ap_qci_info)	/* QCI not supported */
2141 		return false;
2142 
2143 	memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info));
2144 	ap_fetch_qci_info(ap_qci_info);
2145 
2146 	return memcmp(ap_qci_info, ap_qci_info_old,
2147 		      sizeof(struct ap_config_info)) != 0;
2148 }
2149 
2150 /**
2151  * ap_scan_bus(): Scan the AP bus for new devices
2152  * Runs periodically, workqueue timer (ap_config_time)
2153  * @unused: Unused pointer.
2154  */
2155 static void ap_scan_bus(struct work_struct *unused)
2156 {
2157 	int ap, config_changed = 0;
2158 
2159 	/* config change notify */
2160 	config_changed = ap_get_configuration();
2161 	if (config_changed)
2162 		notify_config_changed();
2163 	ap_select_domain();
2164 
2165 	AP_DBF_DBG("%s running\n", __func__);
2166 
2167 	/* loop over all possible adapters */
2168 	for (ap = 0; ap <= ap_max_adapter_id; ap++)
2169 		ap_scan_adapter(ap);
2170 
2171 	/* scan complete notify */
2172 	if (config_changed)
2173 		notify_scan_complete();
2174 
2175 	/* check if there is at least one queue available with default domain */
2176 	if (ap_domain_index >= 0) {
2177 		struct device *dev =
2178 			bus_find_device(&ap_bus_type, NULL,
2179 					(void *)(long)ap_domain_index,
2180 					__match_queue_device_with_queue_id);
2181 		if (dev)
2182 			put_device(dev);
2183 		else
2184 			AP_DBF_INFO("%s no queue device with default domain %d available\n",
2185 				    __func__, ap_domain_index);
2186 	}
2187 
2188 	if (atomic64_inc_return(&ap_scan_bus_count) == 1) {
2189 		AP_DBF_DBG("%s init scan complete\n", __func__);
2190 		ap_send_init_scan_done_uevent();
2191 		ap_check_bindings_complete();
2192 	}
2193 
2194 	mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
2195 }
2196 
2197 static void ap_config_timeout(struct timer_list *unused)
2198 {
2199 	queue_work(system_long_wq, &ap_scan_work);
2200 }
2201 
2202 static int __init ap_debug_init(void)
2203 {
2204 	ap_dbf_info = debug_register("ap", 2, 1,
2205 				     DBF_MAX_SPRINTF_ARGS * sizeof(long));
2206 	debug_register_view(ap_dbf_info, &debug_sprintf_view);
2207 	debug_set_level(ap_dbf_info, DBF_ERR);
2208 
2209 	return 0;
2210 }
2211 
2212 static void __init ap_perms_init(void)
2213 {
2214 	/* all resources usable if no kernel parameter string given */
2215 	memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm));
2216 	memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm));
2217 	memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm));
2218 
2219 	/* apm kernel parameter string */
2220 	if (apm_str) {
2221 		memset(&ap_perms.apm, 0, sizeof(ap_perms.apm));
2222 		ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES,
2223 				  &ap_perms_mutex);
2224 	}
2225 
2226 	/* aqm kernel parameter string */
2227 	if (aqm_str) {
2228 		memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm));
2229 		ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS,
2230 				  &ap_perms_mutex);
2231 	}
2232 }
2233 
2234 /**
2235  * ap_module_init(): The module initialization code.
2236  *
2237  * Initializes the module.
2238  */
2239 static int __init ap_module_init(void)
2240 {
2241 	int rc;
2242 
2243 	rc = ap_debug_init();
2244 	if (rc)
2245 		return rc;
2246 
2247 	if (!ap_instructions_available()) {
2248 		pr_warn("The hardware system does not support AP instructions\n");
2249 		return -ENODEV;
2250 	}
2251 
2252 	/* init ap_queue hashtable */
2253 	hash_init(ap_queues);
2254 
2255 	/* set up the AP permissions (ioctls, ap and aq masks) */
2256 	ap_perms_init();
2257 
2258 	/* Get AP configuration data if available */
2259 	ap_init_qci_info();
2260 
2261 	/* check default domain setting */
2262 	if (ap_domain_index < -1 || ap_domain_index > ap_max_domain_id ||
2263 	    (ap_domain_index >= 0 &&
2264 	     !test_bit_inv(ap_domain_index, ap_perms.aqm))) {
2265 		pr_warn("%d is not a valid cryptographic domain\n",
2266 			ap_domain_index);
2267 		ap_domain_index = -1;
2268 	}
2269 
2270 	/* enable interrupts if available */
2271 	if (ap_interrupts_available() && ap_useirq) {
2272 		rc = register_adapter_interrupt(&ap_airq);
2273 		ap_irq_flag = (rc == 0);
2274 	}
2275 
2276 	/* Create /sys/bus/ap. */
2277 	rc = bus_register(&ap_bus_type);
2278 	if (rc)
2279 		goto out;
2280 
2281 	/* Create /sys/devices/ap. */
2282 	ap_root_device = root_device_register("ap");
2283 	rc = PTR_ERR_OR_ZERO(ap_root_device);
2284 	if (rc)
2285 		goto out_bus;
2286 	ap_root_device->bus = &ap_bus_type;
2287 
2288 	/* Setup the AP bus rescan timer. */
2289 	timer_setup(&ap_config_timer, ap_config_timeout, 0);
2290 
2291 	/*
2292 	 * Setup the high resultion poll timer.
2293 	 * If we are running under z/VM adjust polling to z/VM polling rate.
2294 	 */
2295 	if (MACHINE_IS_VM)
2296 		poll_high_timeout = 1500000;
2297 	hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2298 	ap_poll_timer.function = ap_poll_timeout;
2299 
2300 	/* Start the low priority AP bus poll thread. */
2301 	if (ap_thread_flag) {
2302 		rc = ap_poll_thread_start();
2303 		if (rc)
2304 			goto out_work;
2305 	}
2306 
2307 	queue_work(system_long_wq, &ap_scan_work);
2308 
2309 	return 0;
2310 
2311 out_work:
2312 	hrtimer_cancel(&ap_poll_timer);
2313 	root_device_unregister(ap_root_device);
2314 out_bus:
2315 	bus_unregister(&ap_bus_type);
2316 out:
2317 	if (ap_irq_flag)
2318 		unregister_adapter_interrupt(&ap_airq);
2319 	kfree(ap_qci_info);
2320 	return rc;
2321 }
2322 device_initcall(ap_module_init);
2323