1 /* 2 * Copyright IBM Corp. 2006, 2012 3 * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com> 4 * Martin Schwidefsky <schwidefsky@de.ibm.com> 5 * Ralph Wuerthner <rwuerthn@de.ibm.com> 6 * Felix Beck <felix.beck@de.ibm.com> 7 * Holger Dengler <hd@linux.vnet.ibm.com> 8 * 9 * Adjunct processor bus. 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * This program is distributed in the hope that it will be useful, 17 * but WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 * GNU General Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program; if not, write to the Free Software 23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 24 */ 25 26 #define KMSG_COMPONENT "ap" 27 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 28 29 #include <linux/kernel_stat.h> 30 #include <linux/module.h> 31 #include <linux/init.h> 32 #include <linux/delay.h> 33 #include <linux/err.h> 34 #include <linux/interrupt.h> 35 #include <linux/workqueue.h> 36 #include <linux/slab.h> 37 #include <linux/notifier.h> 38 #include <linux/kthread.h> 39 #include <linux/mutex.h> 40 #include <asm/reset.h> 41 #include <asm/airq.h> 42 #include <linux/atomic.h> 43 #include <asm/isc.h> 44 #include <linux/hrtimer.h> 45 #include <linux/ktime.h> 46 #include <asm/facility.h> 47 #include <linux/crypto.h> 48 49 #include "ap_bus.h" 50 51 /* Some prototypes. */ 52 static void ap_scan_bus(struct work_struct *); 53 static void ap_poll_all(unsigned long); 54 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *); 55 static int ap_poll_thread_start(void); 56 static void ap_poll_thread_stop(void); 57 static void ap_request_timeout(unsigned long); 58 static inline void ap_schedule_poll_timer(void); 59 static int __ap_poll_device(struct ap_device *ap_dev, unsigned long *flags); 60 static int ap_device_remove(struct device *dev); 61 static int ap_device_probe(struct device *dev); 62 static void ap_interrupt_handler(struct airq_struct *airq); 63 static void ap_reset(struct ap_device *ap_dev, unsigned long *flags); 64 static void ap_config_timeout(unsigned long ptr); 65 static int ap_select_domain(void); 66 static void ap_query_configuration(void); 67 68 /* 69 * Module description. 70 */ 71 MODULE_AUTHOR("IBM Corporation"); 72 MODULE_DESCRIPTION("Adjunct Processor Bus driver, " \ 73 "Copyright IBM Corp. 2006, 2012"); 74 MODULE_LICENSE("GPL"); 75 MODULE_ALIAS_CRYPTO("z90crypt"); 76 77 /* 78 * Module parameter 79 */ 80 int ap_domain_index = -1; /* Adjunct Processor Domain Index */ 81 module_param_named(domain, ap_domain_index, int, S_IRUSR|S_IRGRP); 82 MODULE_PARM_DESC(domain, "domain index for ap devices"); 83 EXPORT_SYMBOL(ap_domain_index); 84 85 static int ap_thread_flag = 0; 86 module_param_named(poll_thread, ap_thread_flag, int, S_IRUSR|S_IRGRP); 87 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off)."); 88 89 static struct device *ap_root_device = NULL; 90 static struct ap_config_info *ap_configuration; 91 static DEFINE_SPINLOCK(ap_device_list_lock); 92 static LIST_HEAD(ap_device_list); 93 94 /* 95 * Workqueue & timer for bus rescan. 96 */ 97 static struct workqueue_struct *ap_work_queue; 98 static struct timer_list ap_config_timer; 99 static int ap_config_time = AP_CONFIG_TIME; 100 static DECLARE_WORK(ap_config_work, ap_scan_bus); 101 102 /* 103 * Tasklet & timer for AP request polling and interrupts 104 */ 105 static DECLARE_TASKLET(ap_tasklet, ap_poll_all, 0); 106 static atomic_t ap_poll_requests = ATOMIC_INIT(0); 107 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait); 108 static struct task_struct *ap_poll_kthread = NULL; 109 static DEFINE_MUTEX(ap_poll_thread_mutex); 110 static DEFINE_SPINLOCK(ap_poll_timer_lock); 111 static struct hrtimer ap_poll_timer; 112 /* In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds. 113 * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.*/ 114 static unsigned long long poll_timeout = 250000; 115 116 /* Suspend flag */ 117 static int ap_suspend_flag; 118 /* Flag to check if domain was set through module parameter domain=. This is 119 * important when supsend and resume is done in a z/VM environment where the 120 * domain might change. */ 121 static int user_set_domain = 0; 122 static struct bus_type ap_bus_type; 123 124 /* Adapter interrupt definitions */ 125 static int ap_airq_flag; 126 127 static struct airq_struct ap_airq = { 128 .handler = ap_interrupt_handler, 129 .isc = AP_ISC, 130 }; 131 132 /** 133 * ap_using_interrupts() - Returns non-zero if interrupt support is 134 * available. 135 */ 136 static inline int ap_using_interrupts(void) 137 { 138 return ap_airq_flag; 139 } 140 141 /** 142 * ap_intructions_available() - Test if AP instructions are available. 143 * 144 * Returns 0 if the AP instructions are installed. 145 */ 146 static inline int ap_instructions_available(void) 147 { 148 register unsigned long reg0 asm ("0") = AP_MKQID(0,0); 149 register unsigned long reg1 asm ("1") = -ENODEV; 150 register unsigned long reg2 asm ("2") = 0UL; 151 152 asm volatile( 153 " .long 0xb2af0000\n" /* PQAP(TAPQ) */ 154 "0: la %1,0\n" 155 "1:\n" 156 EX_TABLE(0b, 1b) 157 : "+d" (reg0), "+d" (reg1), "+d" (reg2) : : "cc" ); 158 return reg1; 159 } 160 161 /** 162 * ap_interrupts_available(): Test if AP interrupts are available. 163 * 164 * Returns 1 if AP interrupts are available. 165 */ 166 static int ap_interrupts_available(void) 167 { 168 return test_facility(65); 169 } 170 171 /** 172 * ap_configuration_available(): Test if AP configuration 173 * information is available. 174 * 175 * Returns 1 if AP configuration information is available. 176 */ 177 static int ap_configuration_available(void) 178 { 179 return test_facility(12); 180 } 181 182 /** 183 * ap_test_queue(): Test adjunct processor queue. 184 * @qid: The AP queue number 185 * @queue_depth: Pointer to queue depth value 186 * @device_type: Pointer to device type value 187 * 188 * Returns AP queue status structure. 189 */ 190 static inline struct ap_queue_status 191 ap_test_queue(ap_qid_t qid, int *queue_depth, int *device_type) 192 { 193 register unsigned long reg0 asm ("0") = qid; 194 register struct ap_queue_status reg1 asm ("1"); 195 register unsigned long reg2 asm ("2") = 0UL; 196 197 asm volatile(".long 0xb2af0000" /* PQAP(TAPQ) */ 198 : "+d" (reg0), "=d" (reg1), "+d" (reg2) : : "cc"); 199 *device_type = (int) (reg2 >> 24); 200 *queue_depth = (int) (reg2 & 0xff); 201 return reg1; 202 } 203 204 /** 205 * ap_query_facilities(): PQAP(TAPQ) query facilities. 206 * @qid: The AP queue number 207 * 208 * Returns content of general register 2 after the PQAP(TAPQ) 209 * instruction was called. 210 */ 211 static inline unsigned long ap_query_facilities(ap_qid_t qid) 212 { 213 register unsigned long reg0 asm ("0") = qid | 0x00800000UL; 214 register unsigned long reg1 asm ("1"); 215 register unsigned long reg2 asm ("2") = 0UL; 216 217 asm volatile(".long 0xb2af0000" /* PQAP(TAPQ) */ 218 : "+d" (reg0), "=d" (reg1), "+d" (reg2) : : "cc"); 219 return reg2; 220 } 221 222 /** 223 * ap_reset_queue(): Reset adjunct processor queue. 224 * @qid: The AP queue number 225 * 226 * Returns AP queue status structure. 227 */ 228 static inline struct ap_queue_status ap_reset_queue(ap_qid_t qid) 229 { 230 register unsigned long reg0 asm ("0") = qid | 0x01000000UL; 231 register struct ap_queue_status reg1 asm ("1"); 232 register unsigned long reg2 asm ("2") = 0UL; 233 234 asm volatile( 235 ".long 0xb2af0000" /* PQAP(RAPQ) */ 236 : "+d" (reg0), "=d" (reg1), "+d" (reg2) : : "cc"); 237 return reg1; 238 } 239 240 /** 241 * ap_queue_interruption_control(): Enable interruption for a specific AP. 242 * @qid: The AP queue number 243 * @ind: The notification indicator byte 244 * 245 * Returns AP queue status. 246 */ 247 static inline struct ap_queue_status 248 ap_queue_interruption_control(ap_qid_t qid, void *ind) 249 { 250 register unsigned long reg0 asm ("0") = qid | 0x03000000UL; 251 register unsigned long reg1_in asm ("1") = 0x0000800000000000UL | AP_ISC; 252 register struct ap_queue_status reg1_out asm ("1"); 253 register void *reg2 asm ("2") = ind; 254 asm volatile( 255 ".long 0xb2af0000" /* PQAP(AQIC) */ 256 : "+d" (reg0), "+d" (reg1_in), "=d" (reg1_out), "+d" (reg2) 257 : 258 : "cc" ); 259 return reg1_out; 260 } 261 262 static inline struct ap_queue_status 263 __ap_query_functions(ap_qid_t qid, unsigned int *functions) 264 { 265 register unsigned long reg0 asm ("0") = 0UL | qid | (1UL << 23); 266 register struct ap_queue_status reg1 asm ("1") = AP_QUEUE_STATUS_INVALID; 267 register unsigned long reg2 asm ("2"); 268 269 asm volatile( 270 ".long 0xb2af0000\n" /* PQAP(TAPQ) */ 271 "0:\n" 272 EX_TABLE(0b, 0b) 273 : "+d" (reg0), "+d" (reg1), "=d" (reg2) 274 : 275 : "cc"); 276 277 *functions = (unsigned int)(reg2 >> 32); 278 return reg1; 279 } 280 281 static inline int __ap_query_configuration(struct ap_config_info *config) 282 { 283 register unsigned long reg0 asm ("0") = 0x04000000UL; 284 register unsigned long reg1 asm ("1") = -EINVAL; 285 register unsigned char *reg2 asm ("2") = (unsigned char *)config; 286 287 asm volatile( 288 ".long 0xb2af0000\n" /* PQAP(QCI) */ 289 "0: la %1,0\n" 290 "1:\n" 291 EX_TABLE(0b, 1b) 292 : "+d" (reg0), "+d" (reg1), "+d" (reg2) 293 : 294 : "cc"); 295 296 return reg1; 297 } 298 299 /** 300 * ap_query_functions(): Query supported functions. 301 * @qid: The AP queue number 302 * @functions: Pointer to functions field. 303 * 304 * Returns 305 * 0 on success. 306 * -ENODEV if queue not valid. 307 * -EBUSY if device busy. 308 * -EINVAL if query function is not supported 309 */ 310 static int ap_query_functions(ap_qid_t qid, unsigned int *functions) 311 { 312 struct ap_queue_status status; 313 314 status = __ap_query_functions(qid, functions); 315 316 if (ap_queue_status_invalid_test(&status)) 317 return -ENODEV; 318 319 switch (status.response_code) { 320 case AP_RESPONSE_NORMAL: 321 return 0; 322 case AP_RESPONSE_Q_NOT_AVAIL: 323 case AP_RESPONSE_DECONFIGURED: 324 case AP_RESPONSE_CHECKSTOPPED: 325 case AP_RESPONSE_INVALID_ADDRESS: 326 return -ENODEV; 327 case AP_RESPONSE_RESET_IN_PROGRESS: 328 case AP_RESPONSE_BUSY: 329 case AP_RESPONSE_OTHERWISE_CHANGED: 330 default: 331 return -EBUSY; 332 } 333 } 334 335 /** 336 * ap_queue_enable_interruption(): Enable interruption on an AP. 337 * @qid: The AP queue number 338 * @ind: the notification indicator byte 339 * 340 * Enables interruption on AP queue via ap_queue_interruption_control(). Based 341 * on the return value it waits a while and tests the AP queue if interrupts 342 * have been switched on using ap_test_queue(). 343 */ 344 static int ap_queue_enable_interruption(struct ap_device *ap_dev, void *ind) 345 { 346 struct ap_queue_status status; 347 348 status = ap_queue_interruption_control(ap_dev->qid, ind); 349 switch (status.response_code) { 350 case AP_RESPONSE_NORMAL: 351 case AP_RESPONSE_OTHERWISE_CHANGED: 352 return 0; 353 case AP_RESPONSE_Q_NOT_AVAIL: 354 case AP_RESPONSE_DECONFIGURED: 355 case AP_RESPONSE_CHECKSTOPPED: 356 case AP_RESPONSE_INVALID_ADDRESS: 357 return -ENODEV; 358 case AP_RESPONSE_RESET_IN_PROGRESS: 359 case AP_RESPONSE_BUSY: 360 default: 361 return -EBUSY; 362 } 363 } 364 365 /** 366 * __ap_send(): Send message to adjunct processor queue. 367 * @qid: The AP queue number 368 * @psmid: The program supplied message identifier 369 * @msg: The message text 370 * @length: The message length 371 * @special: Special Bit 372 * 373 * Returns AP queue status structure. 374 * Condition code 1 on NQAP can't happen because the L bit is 1. 375 * Condition code 2 on NQAP also means the send is incomplete, 376 * because a segment boundary was reached. The NQAP is repeated. 377 */ 378 static inline struct ap_queue_status 379 __ap_send(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length, 380 unsigned int special) 381 { 382 typedef struct { char _[length]; } msgblock; 383 register unsigned long reg0 asm ("0") = qid | 0x40000000UL; 384 register struct ap_queue_status reg1 asm ("1"); 385 register unsigned long reg2 asm ("2") = (unsigned long) msg; 386 register unsigned long reg3 asm ("3") = (unsigned long) length; 387 register unsigned long reg4 asm ("4") = (unsigned int) (psmid >> 32); 388 register unsigned long reg5 asm ("5") = psmid & 0xffffffff; 389 390 if (special == 1) 391 reg0 |= 0x400000UL; 392 393 asm volatile ( 394 "0: .long 0xb2ad0042\n" /* NQAP */ 395 " brc 2,0b" 396 : "+d" (reg0), "=d" (reg1), "+d" (reg2), "+d" (reg3) 397 : "d" (reg4), "d" (reg5), "m" (*(msgblock *) msg) 398 : "cc" ); 399 return reg1; 400 } 401 402 int ap_send(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length) 403 { 404 struct ap_queue_status status; 405 406 status = __ap_send(qid, psmid, msg, length, 0); 407 switch (status.response_code) { 408 case AP_RESPONSE_NORMAL: 409 return 0; 410 case AP_RESPONSE_Q_FULL: 411 case AP_RESPONSE_RESET_IN_PROGRESS: 412 return -EBUSY; 413 case AP_RESPONSE_REQ_FAC_NOT_INST: 414 return -EINVAL; 415 default: /* Device is gone. */ 416 return -ENODEV; 417 } 418 } 419 EXPORT_SYMBOL(ap_send); 420 421 /** 422 * __ap_recv(): Receive message from adjunct processor queue. 423 * @qid: The AP queue number 424 * @psmid: Pointer to program supplied message identifier 425 * @msg: The message text 426 * @length: The message length 427 * 428 * Returns AP queue status structure. 429 * Condition code 1 on DQAP means the receive has taken place 430 * but only partially. The response is incomplete, hence the 431 * DQAP is repeated. 432 * Condition code 2 on DQAP also means the receive is incomplete, 433 * this time because a segment boundary was reached. Again, the 434 * DQAP is repeated. 435 * Note that gpr2 is used by the DQAP instruction to keep track of 436 * any 'residual' length, in case the instruction gets interrupted. 437 * Hence it gets zeroed before the instruction. 438 */ 439 static inline struct ap_queue_status 440 __ap_recv(ap_qid_t qid, unsigned long long *psmid, void *msg, size_t length) 441 { 442 typedef struct { char _[length]; } msgblock; 443 register unsigned long reg0 asm("0") = qid | 0x80000000UL; 444 register struct ap_queue_status reg1 asm ("1"); 445 register unsigned long reg2 asm("2") = 0UL; 446 register unsigned long reg4 asm("4") = (unsigned long) msg; 447 register unsigned long reg5 asm("5") = (unsigned long) length; 448 register unsigned long reg6 asm("6") = 0UL; 449 register unsigned long reg7 asm("7") = 0UL; 450 451 452 asm volatile( 453 "0: .long 0xb2ae0064\n" /* DQAP */ 454 " brc 6,0b\n" 455 : "+d" (reg0), "=d" (reg1), "+d" (reg2), 456 "+d" (reg4), "+d" (reg5), "+d" (reg6), "+d" (reg7), 457 "=m" (*(msgblock *) msg) : : "cc" ); 458 *psmid = (((unsigned long long) reg6) << 32) + reg7; 459 return reg1; 460 } 461 462 int ap_recv(ap_qid_t qid, unsigned long long *psmid, void *msg, size_t length) 463 { 464 struct ap_queue_status status; 465 466 status = __ap_recv(qid, psmid, msg, length); 467 switch (status.response_code) { 468 case AP_RESPONSE_NORMAL: 469 return 0; 470 case AP_RESPONSE_NO_PENDING_REPLY: 471 if (status.queue_empty) 472 return -ENOENT; 473 return -EBUSY; 474 case AP_RESPONSE_RESET_IN_PROGRESS: 475 return -EBUSY; 476 default: 477 return -ENODEV; 478 } 479 } 480 EXPORT_SYMBOL(ap_recv); 481 482 /** 483 * __ap_schedule_poll_timer(): Schedule poll timer. 484 * 485 * Set up the timer to run the poll tasklet 486 */ 487 static inline void __ap_schedule_poll_timer(void) 488 { 489 ktime_t hr_time; 490 491 spin_lock_bh(&ap_poll_timer_lock); 492 if (!hrtimer_is_queued(&ap_poll_timer) && !ap_suspend_flag) { 493 hr_time = ktime_set(0, poll_timeout); 494 hrtimer_forward_now(&ap_poll_timer, hr_time); 495 hrtimer_restart(&ap_poll_timer); 496 } 497 spin_unlock_bh(&ap_poll_timer_lock); 498 } 499 500 /** 501 * ap_schedule_poll_timer(): Schedule poll timer. 502 * 503 * Set up the timer to run the poll tasklet 504 */ 505 static inline void ap_schedule_poll_timer(void) 506 { 507 if (ap_using_interrupts()) 508 return; 509 __ap_schedule_poll_timer(); 510 } 511 512 513 /** 514 * ap_query_queue(): Check if an AP queue is available. 515 * @qid: The AP queue number 516 * @queue_depth: Pointer to queue depth value 517 * @device_type: Pointer to device type value 518 */ 519 static int ap_query_queue(ap_qid_t qid, int *queue_depth, int *device_type) 520 { 521 struct ap_queue_status status; 522 int t_depth, t_device_type; 523 524 status = ap_test_queue(qid, &t_depth, &t_device_type); 525 switch (status.response_code) { 526 case AP_RESPONSE_NORMAL: 527 *queue_depth = t_depth + 1; 528 *device_type = t_device_type; 529 return 0; 530 case AP_RESPONSE_Q_NOT_AVAIL: 531 case AP_RESPONSE_DECONFIGURED: 532 case AP_RESPONSE_CHECKSTOPPED: 533 case AP_RESPONSE_INVALID_ADDRESS: 534 return -ENODEV; 535 case AP_RESPONSE_RESET_IN_PROGRESS: 536 case AP_RESPONSE_OTHERWISE_CHANGED: 537 case AP_RESPONSE_BUSY: 538 return -EBUSY; 539 default: 540 BUG(); 541 } 542 } 543 544 /** 545 * ap_init_queue(): Reset an AP queue. 546 * @qid: The AP queue number 547 * 548 * Submit the Reset command to an AP queue. 549 * Since the reset is asynchron set the state to 'RESET_IN_PROGRESS' 550 * and check later via ap_poll_queue() if the reset is done. 551 */ 552 static int ap_init_queue(struct ap_device *ap_dev) 553 { 554 struct ap_queue_status status; 555 556 status = ap_reset_queue(ap_dev->qid); 557 switch (status.response_code) { 558 case AP_RESPONSE_NORMAL: 559 ap_dev->interrupt = AP_INTR_DISABLED; 560 ap_dev->reset = AP_RESET_IN_PROGRESS; 561 return 0; 562 case AP_RESPONSE_RESET_IN_PROGRESS: 563 case AP_RESPONSE_BUSY: 564 return -EBUSY; 565 case AP_RESPONSE_Q_NOT_AVAIL: 566 case AP_RESPONSE_DECONFIGURED: 567 case AP_RESPONSE_CHECKSTOPPED: 568 default: 569 return -ENODEV; 570 } 571 } 572 573 /** 574 * ap_increase_queue_count(): Arm request timeout. 575 * @ap_dev: Pointer to an AP device. 576 * 577 * Arm request timeout if an AP device was idle and a new request is submitted. 578 */ 579 static void ap_increase_queue_count(struct ap_device *ap_dev) 580 { 581 int timeout = ap_dev->drv->request_timeout; 582 583 ap_dev->queue_count++; 584 if (ap_dev->queue_count == 1) { 585 mod_timer(&ap_dev->timeout, jiffies + timeout); 586 ap_dev->reset = AP_RESET_ARMED; 587 } 588 } 589 590 /** 591 * ap_decrease_queue_count(): Decrease queue count. 592 * @ap_dev: Pointer to an AP device. 593 * 594 * If AP device is still alive, re-schedule request timeout if there are still 595 * pending requests. 596 */ 597 static void ap_decrease_queue_count(struct ap_device *ap_dev) 598 { 599 int timeout = ap_dev->drv->request_timeout; 600 601 ap_dev->queue_count--; 602 if (ap_dev->queue_count > 0) 603 mod_timer(&ap_dev->timeout, jiffies + timeout); 604 else 605 /* 606 * The timeout timer should to be disabled now - since 607 * del_timer_sync() is very expensive, we just tell via the 608 * reset flag to ignore the pending timeout timer. 609 */ 610 ap_dev->reset = AP_RESET_IGNORE; 611 } 612 613 /* 614 * AP device related attributes. 615 */ 616 static ssize_t ap_hwtype_show(struct device *dev, 617 struct device_attribute *attr, char *buf) 618 { 619 struct ap_device *ap_dev = to_ap_dev(dev); 620 return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->device_type); 621 } 622 623 static DEVICE_ATTR(hwtype, 0444, ap_hwtype_show, NULL); 624 625 static ssize_t ap_raw_hwtype_show(struct device *dev, 626 struct device_attribute *attr, char *buf) 627 { 628 struct ap_device *ap_dev = to_ap_dev(dev); 629 630 return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->raw_hwtype); 631 } 632 633 static DEVICE_ATTR(raw_hwtype, 0444, ap_raw_hwtype_show, NULL); 634 635 static ssize_t ap_depth_show(struct device *dev, struct device_attribute *attr, 636 char *buf) 637 { 638 struct ap_device *ap_dev = to_ap_dev(dev); 639 return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->queue_depth); 640 } 641 642 static DEVICE_ATTR(depth, 0444, ap_depth_show, NULL); 643 static ssize_t ap_request_count_show(struct device *dev, 644 struct device_attribute *attr, 645 char *buf) 646 { 647 struct ap_device *ap_dev = to_ap_dev(dev); 648 int rc; 649 650 spin_lock_bh(&ap_dev->lock); 651 rc = snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->total_request_count); 652 spin_unlock_bh(&ap_dev->lock); 653 return rc; 654 } 655 656 static DEVICE_ATTR(request_count, 0444, ap_request_count_show, NULL); 657 658 static ssize_t ap_requestq_count_show(struct device *dev, 659 struct device_attribute *attr, char *buf) 660 { 661 struct ap_device *ap_dev = to_ap_dev(dev); 662 int rc; 663 664 spin_lock_bh(&ap_dev->lock); 665 rc = snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->requestq_count); 666 spin_unlock_bh(&ap_dev->lock); 667 return rc; 668 } 669 670 static DEVICE_ATTR(requestq_count, 0444, ap_requestq_count_show, NULL); 671 672 static ssize_t ap_pendingq_count_show(struct device *dev, 673 struct device_attribute *attr, char *buf) 674 { 675 struct ap_device *ap_dev = to_ap_dev(dev); 676 int rc; 677 678 spin_lock_bh(&ap_dev->lock); 679 rc = snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->pendingq_count); 680 spin_unlock_bh(&ap_dev->lock); 681 return rc; 682 } 683 684 static DEVICE_ATTR(pendingq_count, 0444, ap_pendingq_count_show, NULL); 685 686 static ssize_t ap_reset_show(struct device *dev, 687 struct device_attribute *attr, char *buf) 688 { 689 struct ap_device *ap_dev = to_ap_dev(dev); 690 int rc = 0; 691 692 spin_lock_bh(&ap_dev->lock); 693 switch (ap_dev->reset) { 694 case AP_RESET_IGNORE: 695 rc = snprintf(buf, PAGE_SIZE, "No Reset Timer set.\n"); 696 break; 697 case AP_RESET_ARMED: 698 rc = snprintf(buf, PAGE_SIZE, "Reset Timer armed.\n"); 699 break; 700 case AP_RESET_DO: 701 rc = snprintf(buf, PAGE_SIZE, "Reset Timer expired.\n"); 702 break; 703 case AP_RESET_IN_PROGRESS: 704 rc = snprintf(buf, PAGE_SIZE, "Reset in progress.\n"); 705 break; 706 default: 707 break; 708 } 709 spin_unlock_bh(&ap_dev->lock); 710 return rc; 711 } 712 713 static DEVICE_ATTR(reset, 0444, ap_reset_show, NULL); 714 715 static ssize_t ap_interrupt_show(struct device *dev, 716 struct device_attribute *attr, char *buf) 717 { 718 struct ap_device *ap_dev = to_ap_dev(dev); 719 int rc = 0; 720 721 spin_lock_bh(&ap_dev->lock); 722 switch (ap_dev->interrupt) { 723 case AP_INTR_DISABLED: 724 rc = snprintf(buf, PAGE_SIZE, "Interrupts disabled.\n"); 725 break; 726 case AP_INTR_ENABLED: 727 rc = snprintf(buf, PAGE_SIZE, "Interrupts enabled.\n"); 728 break; 729 case AP_INTR_IN_PROGRESS: 730 rc = snprintf(buf, PAGE_SIZE, "Enable Interrupt pending.\n"); 731 break; 732 } 733 spin_unlock_bh(&ap_dev->lock); 734 return rc; 735 } 736 737 static DEVICE_ATTR(interrupt, 0444, ap_interrupt_show, NULL); 738 739 static ssize_t ap_modalias_show(struct device *dev, 740 struct device_attribute *attr, char *buf) 741 { 742 return sprintf(buf, "ap:t%02X\n", to_ap_dev(dev)->device_type); 743 } 744 745 static DEVICE_ATTR(modalias, 0444, ap_modalias_show, NULL); 746 747 static ssize_t ap_functions_show(struct device *dev, 748 struct device_attribute *attr, char *buf) 749 { 750 struct ap_device *ap_dev = to_ap_dev(dev); 751 return snprintf(buf, PAGE_SIZE, "0x%08X\n", ap_dev->functions); 752 } 753 754 static DEVICE_ATTR(ap_functions, 0444, ap_functions_show, NULL); 755 756 static struct attribute *ap_dev_attrs[] = { 757 &dev_attr_hwtype.attr, 758 &dev_attr_raw_hwtype.attr, 759 &dev_attr_depth.attr, 760 &dev_attr_request_count.attr, 761 &dev_attr_requestq_count.attr, 762 &dev_attr_pendingq_count.attr, 763 &dev_attr_reset.attr, 764 &dev_attr_interrupt.attr, 765 &dev_attr_modalias.attr, 766 &dev_attr_ap_functions.attr, 767 NULL 768 }; 769 static struct attribute_group ap_dev_attr_group = { 770 .attrs = ap_dev_attrs 771 }; 772 773 /** 774 * ap_bus_match() 775 * @dev: Pointer to device 776 * @drv: Pointer to device_driver 777 * 778 * AP bus driver registration/unregistration. 779 */ 780 static int ap_bus_match(struct device *dev, struct device_driver *drv) 781 { 782 struct ap_device *ap_dev = to_ap_dev(dev); 783 struct ap_driver *ap_drv = to_ap_drv(drv); 784 struct ap_device_id *id; 785 786 /* 787 * Compare device type of the device with the list of 788 * supported types of the device_driver. 789 */ 790 for (id = ap_drv->ids; id->match_flags; id++) { 791 if ((id->match_flags & AP_DEVICE_ID_MATCH_DEVICE_TYPE) && 792 (id->dev_type != ap_dev->device_type)) 793 continue; 794 return 1; 795 } 796 return 0; 797 } 798 799 /** 800 * ap_uevent(): Uevent function for AP devices. 801 * @dev: Pointer to device 802 * @env: Pointer to kobj_uevent_env 803 * 804 * It sets up a single environment variable DEV_TYPE which contains the 805 * hardware device type. 806 */ 807 static int ap_uevent (struct device *dev, struct kobj_uevent_env *env) 808 { 809 struct ap_device *ap_dev = to_ap_dev(dev); 810 int retval = 0; 811 812 if (!ap_dev) 813 return -ENODEV; 814 815 /* Set up DEV_TYPE environment variable. */ 816 retval = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type); 817 if (retval) 818 return retval; 819 820 /* Add MODALIAS= */ 821 retval = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type); 822 823 return retval; 824 } 825 826 static int ap_bus_suspend(struct device *dev, pm_message_t state) 827 { 828 struct ap_device *ap_dev = to_ap_dev(dev); 829 unsigned long flags; 830 831 if (!ap_suspend_flag) { 832 ap_suspend_flag = 1; 833 834 /* Disable scanning for devices, thus we do not want to scan 835 * for them after removing. 836 */ 837 del_timer_sync(&ap_config_timer); 838 if (ap_work_queue != NULL) { 839 destroy_workqueue(ap_work_queue); 840 ap_work_queue = NULL; 841 } 842 843 tasklet_disable(&ap_tasklet); 844 } 845 /* Poll on the device until all requests are finished. */ 846 do { 847 flags = 0; 848 spin_lock_bh(&ap_dev->lock); 849 __ap_poll_device(ap_dev, &flags); 850 spin_unlock_bh(&ap_dev->lock); 851 } while ((flags & 1) || (flags & 2)); 852 853 spin_lock_bh(&ap_dev->lock); 854 ap_dev->unregistered = 1; 855 spin_unlock_bh(&ap_dev->lock); 856 857 return 0; 858 } 859 860 static int ap_bus_resume(struct device *dev) 861 { 862 struct ap_device *ap_dev = to_ap_dev(dev); 863 int rc; 864 865 if (ap_suspend_flag) { 866 ap_suspend_flag = 0; 867 if (ap_interrupts_available()) { 868 if (!ap_using_interrupts()) { 869 rc = register_adapter_interrupt(&ap_airq); 870 ap_airq_flag = (rc == 0); 871 } 872 } else { 873 if (ap_using_interrupts()) { 874 unregister_adapter_interrupt(&ap_airq); 875 ap_airq_flag = 0; 876 } 877 } 878 ap_query_configuration(); 879 if (!user_set_domain) { 880 ap_domain_index = -1; 881 ap_select_domain(); 882 } 883 init_timer(&ap_config_timer); 884 ap_config_timer.function = ap_config_timeout; 885 ap_config_timer.data = 0; 886 ap_config_timer.expires = jiffies + ap_config_time * HZ; 887 add_timer(&ap_config_timer); 888 ap_work_queue = create_singlethread_workqueue("kapwork"); 889 if (!ap_work_queue) 890 return -ENOMEM; 891 tasklet_enable(&ap_tasklet); 892 if (!ap_using_interrupts()) 893 ap_schedule_poll_timer(); 894 else 895 tasklet_schedule(&ap_tasklet); 896 if (ap_thread_flag) 897 rc = ap_poll_thread_start(); 898 else 899 rc = 0; 900 } else 901 rc = 0; 902 if (AP_QID_QUEUE(ap_dev->qid) != ap_domain_index) { 903 spin_lock_bh(&ap_dev->lock); 904 ap_dev->qid = AP_MKQID(AP_QID_DEVICE(ap_dev->qid), 905 ap_domain_index); 906 spin_unlock_bh(&ap_dev->lock); 907 } 908 queue_work(ap_work_queue, &ap_config_work); 909 910 return rc; 911 } 912 913 static struct bus_type ap_bus_type = { 914 .name = "ap", 915 .match = &ap_bus_match, 916 .uevent = &ap_uevent, 917 .suspend = ap_bus_suspend, 918 .resume = ap_bus_resume 919 }; 920 921 static int ap_device_probe(struct device *dev) 922 { 923 struct ap_device *ap_dev = to_ap_dev(dev); 924 struct ap_driver *ap_drv = to_ap_drv(dev->driver); 925 int rc; 926 927 ap_dev->drv = ap_drv; 928 929 spin_lock_bh(&ap_device_list_lock); 930 list_add(&ap_dev->list, &ap_device_list); 931 spin_unlock_bh(&ap_device_list_lock); 932 933 rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV; 934 if (rc) { 935 spin_lock_bh(&ap_device_list_lock); 936 list_del_init(&ap_dev->list); 937 spin_unlock_bh(&ap_device_list_lock); 938 } else { 939 if (ap_dev->reset == AP_RESET_IN_PROGRESS || 940 ap_dev->interrupt == AP_INTR_IN_PROGRESS) 941 __ap_schedule_poll_timer(); 942 } 943 return rc; 944 } 945 946 /** 947 * __ap_flush_queue(): Flush requests. 948 * @ap_dev: Pointer to the AP device 949 * 950 * Flush all requests from the request/pending queue of an AP device. 951 */ 952 static void __ap_flush_queue(struct ap_device *ap_dev) 953 { 954 struct ap_message *ap_msg, *next; 955 956 list_for_each_entry_safe(ap_msg, next, &ap_dev->pendingq, list) { 957 list_del_init(&ap_msg->list); 958 ap_dev->pendingq_count--; 959 ap_msg->receive(ap_dev, ap_msg, ERR_PTR(-ENODEV)); 960 } 961 list_for_each_entry_safe(ap_msg, next, &ap_dev->requestq, list) { 962 list_del_init(&ap_msg->list); 963 ap_dev->requestq_count--; 964 ap_msg->receive(ap_dev, ap_msg, ERR_PTR(-ENODEV)); 965 } 966 } 967 968 void ap_flush_queue(struct ap_device *ap_dev) 969 { 970 spin_lock_bh(&ap_dev->lock); 971 __ap_flush_queue(ap_dev); 972 spin_unlock_bh(&ap_dev->lock); 973 } 974 EXPORT_SYMBOL(ap_flush_queue); 975 976 static int ap_device_remove(struct device *dev) 977 { 978 struct ap_device *ap_dev = to_ap_dev(dev); 979 struct ap_driver *ap_drv = ap_dev->drv; 980 981 ap_flush_queue(ap_dev); 982 del_timer_sync(&ap_dev->timeout); 983 spin_lock_bh(&ap_device_list_lock); 984 list_del_init(&ap_dev->list); 985 spin_unlock_bh(&ap_device_list_lock); 986 if (ap_drv->remove) 987 ap_drv->remove(ap_dev); 988 spin_lock_bh(&ap_dev->lock); 989 atomic_sub(ap_dev->queue_count, &ap_poll_requests); 990 spin_unlock_bh(&ap_dev->lock); 991 return 0; 992 } 993 994 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner, 995 char *name) 996 { 997 struct device_driver *drv = &ap_drv->driver; 998 999 drv->bus = &ap_bus_type; 1000 drv->probe = ap_device_probe; 1001 drv->remove = ap_device_remove; 1002 drv->owner = owner; 1003 drv->name = name; 1004 return driver_register(drv); 1005 } 1006 EXPORT_SYMBOL(ap_driver_register); 1007 1008 void ap_driver_unregister(struct ap_driver *ap_drv) 1009 { 1010 driver_unregister(&ap_drv->driver); 1011 } 1012 EXPORT_SYMBOL(ap_driver_unregister); 1013 1014 void ap_bus_force_rescan(void) 1015 { 1016 /* reconfigure the AP bus rescan timer. */ 1017 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ); 1018 /* processing a asynchronous bus rescan */ 1019 queue_work(ap_work_queue, &ap_config_work); 1020 flush_work(&ap_config_work); 1021 } 1022 EXPORT_SYMBOL(ap_bus_force_rescan); 1023 1024 /* 1025 * ap_test_config(): helper function to extract the nrth bit 1026 * within the unsigned int array field. 1027 */ 1028 static inline int ap_test_config(unsigned int *field, unsigned int nr) 1029 { 1030 if (nr > 0xFFu) 1031 return 0; 1032 return ap_test_bit((field + (nr >> 5)), (nr & 0x1f)); 1033 } 1034 1035 /* 1036 * ap_test_config_card_id(): Test, whether an AP card ID is configured. 1037 * @id AP card ID 1038 * 1039 * Returns 0 if the card is not configured 1040 * 1 if the card is configured or 1041 * if the configuration information is not available 1042 */ 1043 static inline int ap_test_config_card_id(unsigned int id) 1044 { 1045 if (!ap_configuration) 1046 return 1; 1047 return ap_test_config(ap_configuration->apm, id); 1048 } 1049 1050 /* 1051 * ap_test_config_domain(): Test, whether an AP usage domain is configured. 1052 * @domain AP usage domain ID 1053 * 1054 * Returns 0 if the usage domain is not configured 1055 * 1 if the usage domain is configured or 1056 * if the configuration information is not available 1057 */ 1058 static inline int ap_test_config_domain(unsigned int domain) 1059 { 1060 if (!ap_configuration) /* QCI not supported */ 1061 if (domain < 16) 1062 return 1; /* then domains 0...15 are configured */ 1063 else 1064 return 0; 1065 else 1066 return ap_test_config(ap_configuration->aqm, domain); 1067 } 1068 1069 /* 1070 * AP bus attributes. 1071 */ 1072 static ssize_t ap_domain_show(struct bus_type *bus, char *buf) 1073 { 1074 return snprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index); 1075 } 1076 1077 static BUS_ATTR(ap_domain, 0444, ap_domain_show, NULL); 1078 1079 static ssize_t ap_control_domain_mask_show(struct bus_type *bus, char *buf) 1080 { 1081 if (ap_configuration != NULL) { /* QCI not supported */ 1082 if (test_facility(76)) { /* format 1 - 256 bit domain field */ 1083 return snprintf(buf, PAGE_SIZE, 1084 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1085 ap_configuration->adm[0], ap_configuration->adm[1], 1086 ap_configuration->adm[2], ap_configuration->adm[3], 1087 ap_configuration->adm[4], ap_configuration->adm[5], 1088 ap_configuration->adm[6], ap_configuration->adm[7]); 1089 } else { /* format 0 - 16 bit domain field */ 1090 return snprintf(buf, PAGE_SIZE, "%08x%08x\n", 1091 ap_configuration->adm[0], ap_configuration->adm[1]); 1092 } 1093 } else { 1094 return snprintf(buf, PAGE_SIZE, "not supported\n"); 1095 } 1096 } 1097 1098 static BUS_ATTR(ap_control_domain_mask, 0444, 1099 ap_control_domain_mask_show, NULL); 1100 1101 static ssize_t ap_config_time_show(struct bus_type *bus, char *buf) 1102 { 1103 return snprintf(buf, PAGE_SIZE, "%d\n", ap_config_time); 1104 } 1105 1106 static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf) 1107 { 1108 return snprintf(buf, PAGE_SIZE, "%d\n", 1109 ap_using_interrupts() ? 1 : 0); 1110 } 1111 1112 static BUS_ATTR(ap_interrupts, 0444, ap_interrupts_show, NULL); 1113 1114 static ssize_t ap_config_time_store(struct bus_type *bus, 1115 const char *buf, size_t count) 1116 { 1117 int time; 1118 1119 if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120) 1120 return -EINVAL; 1121 ap_config_time = time; 1122 if (!timer_pending(&ap_config_timer) || 1123 !mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ)) { 1124 ap_config_timer.expires = jiffies + ap_config_time * HZ; 1125 add_timer(&ap_config_timer); 1126 } 1127 return count; 1128 } 1129 1130 static BUS_ATTR(config_time, 0644, ap_config_time_show, ap_config_time_store); 1131 1132 static ssize_t ap_poll_thread_show(struct bus_type *bus, char *buf) 1133 { 1134 return snprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0); 1135 } 1136 1137 static ssize_t ap_poll_thread_store(struct bus_type *bus, 1138 const char *buf, size_t count) 1139 { 1140 int flag, rc; 1141 1142 if (sscanf(buf, "%d\n", &flag) != 1) 1143 return -EINVAL; 1144 if (flag) { 1145 rc = ap_poll_thread_start(); 1146 if (rc) 1147 return rc; 1148 } 1149 else 1150 ap_poll_thread_stop(); 1151 return count; 1152 } 1153 1154 static BUS_ATTR(poll_thread, 0644, ap_poll_thread_show, ap_poll_thread_store); 1155 1156 static ssize_t poll_timeout_show(struct bus_type *bus, char *buf) 1157 { 1158 return snprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout); 1159 } 1160 1161 static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf, 1162 size_t count) 1163 { 1164 unsigned long long time; 1165 ktime_t hr_time; 1166 1167 /* 120 seconds = maximum poll interval */ 1168 if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 || 1169 time > 120000000000ULL) 1170 return -EINVAL; 1171 poll_timeout = time; 1172 hr_time = ktime_set(0, poll_timeout); 1173 1174 spin_lock_bh(&ap_poll_timer_lock); 1175 hrtimer_cancel(&ap_poll_timer); 1176 hrtimer_set_expires(&ap_poll_timer, hr_time); 1177 hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS); 1178 spin_unlock_bh(&ap_poll_timer_lock); 1179 1180 return count; 1181 } 1182 1183 static BUS_ATTR(poll_timeout, 0644, poll_timeout_show, poll_timeout_store); 1184 1185 static ssize_t ap_max_domain_id_show(struct bus_type *bus, char *buf) 1186 { 1187 ap_qid_t qid; 1188 int i, nd, max_domain_id = -1; 1189 unsigned long fbits; 1190 1191 if (ap_configuration) { 1192 if (ap_domain_index >= 0 && ap_domain_index < AP_DOMAINS) { 1193 for (i = 0; i < AP_DEVICES; i++) { 1194 if (!ap_test_config_card_id(i)) 1195 continue; 1196 qid = AP_MKQID(i, ap_domain_index); 1197 fbits = ap_query_facilities(qid); 1198 if (fbits & (1UL << 57)) { 1199 /* the N bit is 0, Nd field is filled */ 1200 nd = (int)((fbits & 0x00FF0000UL)>>16); 1201 if (nd > 0) 1202 max_domain_id = nd; 1203 else 1204 max_domain_id = 15; 1205 } else { 1206 /* N bit is 1, max 16 domains */ 1207 max_domain_id = 15; 1208 } 1209 break; 1210 } 1211 } 1212 } else { 1213 /* no APXA support, older machines with max 16 domains */ 1214 max_domain_id = 15; 1215 } 1216 return snprintf(buf, PAGE_SIZE, "%d\n", max_domain_id); 1217 } 1218 1219 static BUS_ATTR(ap_max_domain_id, 0444, ap_max_domain_id_show, NULL); 1220 1221 static struct bus_attribute *const ap_bus_attrs[] = { 1222 &bus_attr_ap_domain, 1223 &bus_attr_ap_control_domain_mask, 1224 &bus_attr_config_time, 1225 &bus_attr_poll_thread, 1226 &bus_attr_ap_interrupts, 1227 &bus_attr_poll_timeout, 1228 &bus_attr_ap_max_domain_id, 1229 NULL, 1230 }; 1231 1232 /** 1233 * ap_query_configuration(): Query AP configuration information. 1234 * 1235 * Query information of installed cards and configured domains from AP. 1236 */ 1237 static void ap_query_configuration(void) 1238 { 1239 if (ap_configuration_available()) { 1240 if (!ap_configuration) 1241 ap_configuration = 1242 kzalloc(sizeof(struct ap_config_info), 1243 GFP_KERNEL); 1244 if (ap_configuration) 1245 __ap_query_configuration(ap_configuration); 1246 } else 1247 ap_configuration = NULL; 1248 } 1249 1250 /** 1251 * ap_select_domain(): Select an AP domain. 1252 * 1253 * Pick one of the 16 AP domains. 1254 */ 1255 static int ap_select_domain(void) 1256 { 1257 int queue_depth, device_type, count, max_count, best_domain; 1258 ap_qid_t qid; 1259 int rc, i, j; 1260 1261 /* IF APXA isn't installed, only 16 domains could be defined */ 1262 if (!ap_configuration->ap_extended && (ap_domain_index > 15)) 1263 return -EINVAL; 1264 1265 /* 1266 * We want to use a single domain. Either the one specified with 1267 * the "domain=" parameter or the domain with the maximum number 1268 * of devices. 1269 */ 1270 if (ap_domain_index >= 0 && ap_domain_index < AP_DOMAINS) 1271 /* Domain has already been selected. */ 1272 return 0; 1273 best_domain = -1; 1274 max_count = 0; 1275 for (i = 0; i < AP_DOMAINS; i++) { 1276 if (!ap_test_config_domain(i)) 1277 continue; 1278 count = 0; 1279 for (j = 0; j < AP_DEVICES; j++) { 1280 if (!ap_test_config_card_id(j)) 1281 continue; 1282 qid = AP_MKQID(j, i); 1283 rc = ap_query_queue(qid, &queue_depth, &device_type); 1284 if (rc) 1285 continue; 1286 count++; 1287 } 1288 if (count > max_count) { 1289 max_count = count; 1290 best_domain = i; 1291 } 1292 } 1293 if (best_domain >= 0){ 1294 ap_domain_index = best_domain; 1295 return 0; 1296 } 1297 return -ENODEV; 1298 } 1299 1300 /** 1301 * ap_probe_device_type(): Find the device type of an AP. 1302 * @ap_dev: pointer to the AP device. 1303 * 1304 * Find the device type if query queue returned a device type of 0. 1305 */ 1306 static int ap_probe_device_type(struct ap_device *ap_dev) 1307 { 1308 static unsigned char msg[] = { 1309 0x00,0x06,0x00,0x00,0x00,0x00,0x00,0x00, 1310 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 1311 0x00,0x00,0x00,0x58,0x00,0x00,0x00,0x00, 1312 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 1313 0x01,0x00,0x43,0x43,0x41,0x2d,0x41,0x50, 1314 0x50,0x4c,0x20,0x20,0x20,0x01,0x01,0x01, 1315 0x00,0x00,0x00,0x00,0x50,0x4b,0x00,0x00, 1316 0x00,0x00,0x01,0x1c,0x00,0x00,0x00,0x00, 1317 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 1318 0x00,0x00,0x05,0xb8,0x00,0x00,0x00,0x00, 1319 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 1320 0x70,0x00,0x41,0x00,0x00,0x00,0x00,0x00, 1321 0x00,0x00,0x54,0x32,0x01,0x00,0xa0,0x00, 1322 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 1323 0x00,0x00,0x00,0x00,0xb8,0x05,0x00,0x00, 1324 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 1325 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 1326 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 1327 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 1328 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 1329 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 1330 0x00,0x00,0x0a,0x00,0x00,0x00,0x00,0x00, 1331 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 1332 0x00,0x00,0x00,0x00,0x00,0x00,0x08,0x00, 1333 0x49,0x43,0x53,0x46,0x20,0x20,0x20,0x20, 1334 0x50,0x4b,0x0a,0x00,0x50,0x4b,0x43,0x53, 1335 0x2d,0x31,0x2e,0x32,0x37,0x00,0x11,0x22, 1336 0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00, 1337 0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88, 1338 0x99,0x00,0x11,0x22,0x33,0x44,0x55,0x66, 1339 0x77,0x88,0x99,0x00,0x11,0x22,0x33,0x44, 1340 0x55,0x66,0x77,0x88,0x99,0x00,0x11,0x22, 1341 0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00, 1342 0x11,0x22,0x33,0x5d,0x00,0x5b,0x00,0x77, 1343 0x88,0x1e,0x00,0x00,0x57,0x00,0x00,0x00, 1344 0x00,0x04,0x00,0x00,0x4f,0x00,0x00,0x00, 1345 0x03,0x02,0x00,0x00,0x40,0x01,0x00,0x01, 1346 0xce,0x02,0x68,0x2d,0x5f,0xa9,0xde,0x0c, 1347 0xf6,0xd2,0x7b,0x58,0x4b,0xf9,0x28,0x68, 1348 0x3d,0xb4,0xf4,0xef,0x78,0xd5,0xbe,0x66, 1349 0x63,0x42,0xef,0xf8,0xfd,0xa4,0xf8,0xb0, 1350 0x8e,0x29,0xc2,0xc9,0x2e,0xd8,0x45,0xb8, 1351 0x53,0x8c,0x6f,0x4e,0x72,0x8f,0x6c,0x04, 1352 0x9c,0x88,0xfc,0x1e,0xc5,0x83,0x55,0x57, 1353 0xf7,0xdd,0xfd,0x4f,0x11,0x36,0x95,0x5d, 1354 }; 1355 struct ap_queue_status status; 1356 unsigned long long psmid; 1357 char *reply; 1358 int rc, i; 1359 1360 reply = (void *) get_zeroed_page(GFP_KERNEL); 1361 if (!reply) { 1362 rc = -ENOMEM; 1363 goto out; 1364 } 1365 1366 status = __ap_send(ap_dev->qid, 0x0102030405060708ULL, 1367 msg, sizeof(msg), 0); 1368 if (status.response_code != AP_RESPONSE_NORMAL) { 1369 rc = -ENODEV; 1370 goto out_free; 1371 } 1372 1373 /* Wait for the test message to complete. */ 1374 for (i = 0; i < 6; i++) { 1375 msleep(300); 1376 status = __ap_recv(ap_dev->qid, &psmid, reply, 4096); 1377 if (status.response_code == AP_RESPONSE_NORMAL && 1378 psmid == 0x0102030405060708ULL) 1379 break; 1380 } 1381 if (i < 6) { 1382 /* Got an answer. */ 1383 if (reply[0] == 0x00 && reply[1] == 0x86) 1384 ap_dev->device_type = AP_DEVICE_TYPE_PCICC; 1385 else 1386 ap_dev->device_type = AP_DEVICE_TYPE_PCICA; 1387 rc = 0; 1388 } else 1389 rc = -ENODEV; 1390 1391 out_free: 1392 free_page((unsigned long) reply); 1393 out: 1394 return rc; 1395 } 1396 1397 static void ap_interrupt_handler(struct airq_struct *airq) 1398 { 1399 inc_irq_stat(IRQIO_APB); 1400 tasklet_schedule(&ap_tasklet); 1401 } 1402 1403 /** 1404 * __ap_scan_bus(): Scan the AP bus. 1405 * @dev: Pointer to device 1406 * @data: Pointer to data 1407 * 1408 * Scan the AP bus for new devices. 1409 */ 1410 static int __ap_scan_bus(struct device *dev, void *data) 1411 { 1412 return to_ap_dev(dev)->qid == (ap_qid_t)(unsigned long) data; 1413 } 1414 1415 static void ap_device_release(struct device *dev) 1416 { 1417 struct ap_device *ap_dev = to_ap_dev(dev); 1418 1419 kfree(ap_dev); 1420 } 1421 1422 static void ap_scan_bus(struct work_struct *unused) 1423 { 1424 struct ap_device *ap_dev; 1425 struct device *dev; 1426 ap_qid_t qid; 1427 int queue_depth = 0, device_type = 0; 1428 unsigned int device_functions; 1429 int rc, i; 1430 1431 ap_query_configuration(); 1432 if (ap_select_domain() != 0) { 1433 return; 1434 } 1435 for (i = 0; i < AP_DEVICES; i++) { 1436 qid = AP_MKQID(i, ap_domain_index); 1437 dev = bus_find_device(&ap_bus_type, NULL, 1438 (void *)(unsigned long)qid, 1439 __ap_scan_bus); 1440 if (ap_test_config_card_id(i)) 1441 rc = ap_query_queue(qid, &queue_depth, &device_type); 1442 else 1443 rc = -ENODEV; 1444 if (dev) { 1445 ap_dev = to_ap_dev(dev); 1446 spin_lock_bh(&ap_dev->lock); 1447 if (rc == -ENODEV || ap_dev->unregistered) { 1448 spin_unlock_bh(&ap_dev->lock); 1449 if (ap_dev->unregistered) 1450 i--; 1451 device_unregister(dev); 1452 put_device(dev); 1453 continue; 1454 } 1455 spin_unlock_bh(&ap_dev->lock); 1456 put_device(dev); 1457 continue; 1458 } 1459 if (rc) 1460 continue; 1461 ap_dev = kzalloc(sizeof(*ap_dev), GFP_KERNEL); 1462 if (!ap_dev) 1463 break; 1464 ap_dev->qid = qid; 1465 rc = ap_init_queue(ap_dev); 1466 if ((rc != 0) && (rc != -EBUSY)) { 1467 kfree(ap_dev); 1468 continue; 1469 } 1470 ap_dev->queue_depth = queue_depth; 1471 ap_dev->unregistered = 1; 1472 spin_lock_init(&ap_dev->lock); 1473 INIT_LIST_HEAD(&ap_dev->pendingq); 1474 INIT_LIST_HEAD(&ap_dev->requestq); 1475 INIT_LIST_HEAD(&ap_dev->list); 1476 setup_timer(&ap_dev->timeout, ap_request_timeout, 1477 (unsigned long) ap_dev); 1478 switch (device_type) { 1479 case 0: 1480 /* device type probing for old cards */ 1481 if (ap_probe_device_type(ap_dev)) { 1482 kfree(ap_dev); 1483 continue; 1484 } 1485 break; 1486 default: 1487 ap_dev->device_type = device_type; 1488 } 1489 ap_dev->raw_hwtype = device_type; 1490 1491 rc = ap_query_functions(qid, &device_functions); 1492 if (!rc) 1493 ap_dev->functions = device_functions; 1494 else 1495 ap_dev->functions = 0u; 1496 1497 ap_dev->device.bus = &ap_bus_type; 1498 ap_dev->device.parent = ap_root_device; 1499 if (dev_set_name(&ap_dev->device, "card%02x", 1500 AP_QID_DEVICE(ap_dev->qid))) { 1501 kfree(ap_dev); 1502 continue; 1503 } 1504 ap_dev->device.release = ap_device_release; 1505 rc = device_register(&ap_dev->device); 1506 if (rc) { 1507 put_device(&ap_dev->device); 1508 continue; 1509 } 1510 /* Add device attributes. */ 1511 rc = sysfs_create_group(&ap_dev->device.kobj, 1512 &ap_dev_attr_group); 1513 if (!rc) { 1514 spin_lock_bh(&ap_dev->lock); 1515 ap_dev->unregistered = 0; 1516 spin_unlock_bh(&ap_dev->lock); 1517 } 1518 else 1519 device_unregister(&ap_dev->device); 1520 } 1521 } 1522 1523 static void 1524 ap_config_timeout(unsigned long ptr) 1525 { 1526 queue_work(ap_work_queue, &ap_config_work); 1527 ap_config_timer.expires = jiffies + ap_config_time * HZ; 1528 add_timer(&ap_config_timer); 1529 } 1530 1531 /** 1532 * ap_poll_read(): Receive pending reply messages from an AP device. 1533 * @ap_dev: pointer to the AP device 1534 * @flags: pointer to control flags, bit 2^0 is set if another poll is 1535 * required, bit 2^1 is set if the poll timer needs to get armed 1536 * 1537 * Returns 0 if the device is still present, -ENODEV if not. 1538 */ 1539 static int ap_poll_read(struct ap_device *ap_dev, unsigned long *flags) 1540 { 1541 struct ap_queue_status status; 1542 struct ap_message *ap_msg; 1543 1544 if (ap_dev->queue_count <= 0) 1545 return 0; 1546 status = __ap_recv(ap_dev->qid, &ap_dev->reply->psmid, 1547 ap_dev->reply->message, ap_dev->reply->length); 1548 switch (status.response_code) { 1549 case AP_RESPONSE_NORMAL: 1550 ap_dev->interrupt = status.int_enabled; 1551 atomic_dec(&ap_poll_requests); 1552 ap_decrease_queue_count(ap_dev); 1553 list_for_each_entry(ap_msg, &ap_dev->pendingq, list) { 1554 if (ap_msg->psmid != ap_dev->reply->psmid) 1555 continue; 1556 list_del_init(&ap_msg->list); 1557 ap_dev->pendingq_count--; 1558 ap_msg->receive(ap_dev, ap_msg, ap_dev->reply); 1559 break; 1560 } 1561 if (ap_dev->queue_count > 0) 1562 *flags |= 1; 1563 break; 1564 case AP_RESPONSE_NO_PENDING_REPLY: 1565 ap_dev->interrupt = status.int_enabled; 1566 if (status.queue_empty) { 1567 /* The card shouldn't forget requests but who knows. */ 1568 atomic_sub(ap_dev->queue_count, &ap_poll_requests); 1569 ap_dev->queue_count = 0; 1570 list_splice_init(&ap_dev->pendingq, &ap_dev->requestq); 1571 ap_dev->requestq_count += ap_dev->pendingq_count; 1572 ap_dev->pendingq_count = 0; 1573 } else 1574 *flags |= 2; 1575 break; 1576 default: 1577 return -ENODEV; 1578 } 1579 return 0; 1580 } 1581 1582 /** 1583 * ap_poll_write(): Send messages from the request queue to an AP device. 1584 * @ap_dev: pointer to the AP device 1585 * @flags: pointer to control flags, bit 2^0 is set if another poll is 1586 * required, bit 2^1 is set if the poll timer needs to get armed 1587 * 1588 * Returns 0 if the device is still present, -ENODEV if not. 1589 */ 1590 static int ap_poll_write(struct ap_device *ap_dev, unsigned long *flags) 1591 { 1592 struct ap_queue_status status; 1593 struct ap_message *ap_msg; 1594 1595 if (ap_dev->requestq_count <= 0 || 1596 (ap_dev->queue_count >= ap_dev->queue_depth) || 1597 (ap_dev->reset == AP_RESET_IN_PROGRESS)) 1598 return 0; 1599 /* Start the next request on the queue. */ 1600 ap_msg = list_entry(ap_dev->requestq.next, struct ap_message, list); 1601 status = __ap_send(ap_dev->qid, ap_msg->psmid, 1602 ap_msg->message, ap_msg->length, ap_msg->special); 1603 switch (status.response_code) { 1604 case AP_RESPONSE_NORMAL: 1605 atomic_inc(&ap_poll_requests); 1606 ap_increase_queue_count(ap_dev); 1607 list_move_tail(&ap_msg->list, &ap_dev->pendingq); 1608 ap_dev->requestq_count--; 1609 ap_dev->pendingq_count++; 1610 if (ap_dev->queue_count < ap_dev->queue_depth && 1611 ap_dev->requestq_count > 0) 1612 *flags |= 1; 1613 *flags |= 2; 1614 break; 1615 case AP_RESPONSE_RESET_IN_PROGRESS: 1616 __ap_schedule_poll_timer(); 1617 case AP_RESPONSE_Q_FULL: 1618 *flags |= 2; 1619 break; 1620 case AP_RESPONSE_MESSAGE_TOO_BIG: 1621 case AP_RESPONSE_REQ_FAC_NOT_INST: 1622 return -EINVAL; 1623 default: 1624 return -ENODEV; 1625 } 1626 return 0; 1627 } 1628 1629 /** 1630 * ap_poll_queue(): Poll AP device for pending replies and send new messages. 1631 * Check if the queue has a pending reset. In case it's done re-enable 1632 * interrupts, otherwise reschedule the poll_timer for another attempt. 1633 * @ap_dev: pointer to the bus device 1634 * @flags: pointer to control flags, bit 2^0 is set if another poll is 1635 * required, bit 2^1 is set if the poll timer needs to get armed 1636 * 1637 * Poll AP device for pending replies and send new messages. If either 1638 * ap_poll_read or ap_poll_write returns -ENODEV unregister the device. 1639 * Returns 0. 1640 */ 1641 static inline int ap_poll_queue(struct ap_device *ap_dev, unsigned long *flags) 1642 { 1643 int rc, depth, type; 1644 struct ap_queue_status status; 1645 1646 1647 if (ap_dev->reset == AP_RESET_IN_PROGRESS) { 1648 status = ap_test_queue(ap_dev->qid, &depth, &type); 1649 switch (status.response_code) { 1650 case AP_RESPONSE_NORMAL: 1651 ap_dev->reset = AP_RESET_IGNORE; 1652 if (ap_using_interrupts()) { 1653 rc = ap_queue_enable_interruption( 1654 ap_dev, ap_airq.lsi_ptr); 1655 if (!rc) 1656 ap_dev->interrupt = AP_INTR_IN_PROGRESS; 1657 else if (rc == -ENODEV) { 1658 pr_err("Registering adapter interrupts for " 1659 "AP %d failed\n", AP_QID_DEVICE(ap_dev->qid)); 1660 return rc; 1661 } 1662 } 1663 /* fall through */ 1664 case AP_RESPONSE_BUSY: 1665 case AP_RESPONSE_RESET_IN_PROGRESS: 1666 *flags |= AP_POLL_AFTER_TIMEOUT; 1667 break; 1668 case AP_RESPONSE_Q_NOT_AVAIL: 1669 case AP_RESPONSE_DECONFIGURED: 1670 case AP_RESPONSE_CHECKSTOPPED: 1671 return -ENODEV; 1672 default: 1673 break; 1674 } 1675 } 1676 1677 if ((ap_dev->reset != AP_RESET_IN_PROGRESS) && 1678 (ap_dev->interrupt == AP_INTR_IN_PROGRESS)) { 1679 status = ap_test_queue(ap_dev->qid, &depth, &type); 1680 if (ap_using_interrupts()) { 1681 if (status.int_enabled == 1) 1682 ap_dev->interrupt = AP_INTR_ENABLED; 1683 else 1684 *flags |= AP_POLL_AFTER_TIMEOUT; 1685 } else 1686 ap_dev->interrupt = AP_INTR_DISABLED; 1687 } 1688 1689 rc = ap_poll_read(ap_dev, flags); 1690 if (rc) 1691 return rc; 1692 return ap_poll_write(ap_dev, flags); 1693 } 1694 1695 /** 1696 * __ap_queue_message(): Queue a message to a device. 1697 * @ap_dev: pointer to the AP device 1698 * @ap_msg: the message to be queued 1699 * 1700 * Queue a message to a device. Returns 0 if successful. 1701 */ 1702 static int __ap_queue_message(struct ap_device *ap_dev, struct ap_message *ap_msg) 1703 { 1704 struct ap_queue_status status; 1705 1706 if (list_empty(&ap_dev->requestq) && 1707 (ap_dev->queue_count < ap_dev->queue_depth) && 1708 (ap_dev->reset != AP_RESET_IN_PROGRESS)) { 1709 status = __ap_send(ap_dev->qid, ap_msg->psmid, 1710 ap_msg->message, ap_msg->length, 1711 ap_msg->special); 1712 switch (status.response_code) { 1713 case AP_RESPONSE_NORMAL: 1714 list_add_tail(&ap_msg->list, &ap_dev->pendingq); 1715 atomic_inc(&ap_poll_requests); 1716 ap_dev->pendingq_count++; 1717 ap_increase_queue_count(ap_dev); 1718 ap_dev->total_request_count++; 1719 break; 1720 case AP_RESPONSE_Q_FULL: 1721 case AP_RESPONSE_RESET_IN_PROGRESS: 1722 list_add_tail(&ap_msg->list, &ap_dev->requestq); 1723 ap_dev->requestq_count++; 1724 ap_dev->total_request_count++; 1725 return -EBUSY; 1726 case AP_RESPONSE_REQ_FAC_NOT_INST: 1727 case AP_RESPONSE_MESSAGE_TOO_BIG: 1728 ap_msg->receive(ap_dev, ap_msg, ERR_PTR(-EINVAL)); 1729 return -EINVAL; 1730 default: /* Device is gone. */ 1731 ap_msg->receive(ap_dev, ap_msg, ERR_PTR(-ENODEV)); 1732 return -ENODEV; 1733 } 1734 } else { 1735 list_add_tail(&ap_msg->list, &ap_dev->requestq); 1736 ap_dev->requestq_count++; 1737 ap_dev->total_request_count++; 1738 return -EBUSY; 1739 } 1740 ap_schedule_poll_timer(); 1741 return 0; 1742 } 1743 1744 void ap_queue_message(struct ap_device *ap_dev, struct ap_message *ap_msg) 1745 { 1746 unsigned long flags; 1747 int rc; 1748 1749 /* For asynchronous message handling a valid receive-callback 1750 * is required. */ 1751 BUG_ON(!ap_msg->receive); 1752 1753 spin_lock_bh(&ap_dev->lock); 1754 if (!ap_dev->unregistered) { 1755 /* Make room on the queue by polling for finished requests. */ 1756 rc = ap_poll_queue(ap_dev, &flags); 1757 if (!rc) 1758 rc = __ap_queue_message(ap_dev, ap_msg); 1759 if (!rc) 1760 wake_up(&ap_poll_wait); 1761 if (rc == -ENODEV) 1762 ap_dev->unregistered = 1; 1763 } else { 1764 ap_msg->receive(ap_dev, ap_msg, ERR_PTR(-ENODEV)); 1765 rc = -ENODEV; 1766 } 1767 spin_unlock_bh(&ap_dev->lock); 1768 if (rc == -ENODEV) 1769 device_unregister(&ap_dev->device); 1770 } 1771 EXPORT_SYMBOL(ap_queue_message); 1772 1773 /** 1774 * ap_cancel_message(): Cancel a crypto request. 1775 * @ap_dev: The AP device that has the message queued 1776 * @ap_msg: The message that is to be removed 1777 * 1778 * Cancel a crypto request. This is done by removing the request 1779 * from the device pending or request queue. Note that the 1780 * request stays on the AP queue. When it finishes the message 1781 * reply will be discarded because the psmid can't be found. 1782 */ 1783 void ap_cancel_message(struct ap_device *ap_dev, struct ap_message *ap_msg) 1784 { 1785 struct ap_message *tmp; 1786 1787 spin_lock_bh(&ap_dev->lock); 1788 if (!list_empty(&ap_msg->list)) { 1789 list_for_each_entry(tmp, &ap_dev->pendingq, list) 1790 if (tmp->psmid == ap_msg->psmid) { 1791 ap_dev->pendingq_count--; 1792 goto found; 1793 } 1794 ap_dev->requestq_count--; 1795 found: 1796 list_del_init(&ap_msg->list); 1797 } 1798 spin_unlock_bh(&ap_dev->lock); 1799 } 1800 EXPORT_SYMBOL(ap_cancel_message); 1801 1802 /** 1803 * ap_poll_timeout(): AP receive polling for finished AP requests. 1804 * @unused: Unused pointer. 1805 * 1806 * Schedules the AP tasklet using a high resolution timer. 1807 */ 1808 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused) 1809 { 1810 tasklet_schedule(&ap_tasklet); 1811 return HRTIMER_NORESTART; 1812 } 1813 1814 /** 1815 * ap_reset(): Reset a not responding AP device. 1816 * @ap_dev: Pointer to the AP device 1817 * 1818 * Reset a not responding AP device and move all requests from the 1819 * pending queue to the request queue. 1820 */ 1821 static void ap_reset(struct ap_device *ap_dev, unsigned long *flags) 1822 { 1823 int rc; 1824 1825 atomic_sub(ap_dev->queue_count, &ap_poll_requests); 1826 ap_dev->queue_count = 0; 1827 list_splice_init(&ap_dev->pendingq, &ap_dev->requestq); 1828 ap_dev->requestq_count += ap_dev->pendingq_count; 1829 ap_dev->pendingq_count = 0; 1830 rc = ap_init_queue(ap_dev); 1831 if (rc == -ENODEV) 1832 ap_dev->unregistered = 1; 1833 else 1834 *flags |= AP_POLL_AFTER_TIMEOUT; 1835 } 1836 1837 static int __ap_poll_device(struct ap_device *ap_dev, unsigned long *flags) 1838 { 1839 if (!ap_dev->unregistered) { 1840 if (ap_poll_queue(ap_dev, flags)) 1841 ap_dev->unregistered = 1; 1842 if (ap_dev->reset == AP_RESET_DO) 1843 ap_reset(ap_dev, flags); 1844 } 1845 return 0; 1846 } 1847 1848 /** 1849 * ap_poll_all(): Poll all AP devices. 1850 * @dummy: Unused variable 1851 * 1852 * Poll all AP devices on the bus in a round robin fashion. Continue 1853 * polling until bit 2^0 of the control flags is not set. If bit 2^1 1854 * of the control flags has been set arm the poll timer. 1855 */ 1856 static void ap_poll_all(unsigned long dummy) 1857 { 1858 unsigned long flags; 1859 struct ap_device *ap_dev; 1860 1861 /* Reset the indicator if interrupts are used. Thus new interrupts can 1862 * be received. Doing it in the beginning of the tasklet is therefor 1863 * important that no requests on any AP get lost. 1864 */ 1865 if (ap_using_interrupts()) 1866 xchg(ap_airq.lsi_ptr, 0); 1867 do { 1868 flags = 0; 1869 spin_lock(&ap_device_list_lock); 1870 list_for_each_entry(ap_dev, &ap_device_list, list) { 1871 spin_lock(&ap_dev->lock); 1872 __ap_poll_device(ap_dev, &flags); 1873 spin_unlock(&ap_dev->lock); 1874 } 1875 spin_unlock(&ap_device_list_lock); 1876 } while (flags & AP_POLL_IMMEDIATELY); 1877 if (flags & AP_POLL_AFTER_TIMEOUT) 1878 __ap_schedule_poll_timer(); 1879 } 1880 1881 /** 1882 * ap_poll_thread(): Thread that polls for finished requests. 1883 * @data: Unused pointer 1884 * 1885 * AP bus poll thread. The purpose of this thread is to poll for 1886 * finished requests in a loop if there is a "free" cpu - that is 1887 * a cpu that doesn't have anything better to do. The polling stops 1888 * as soon as there is another task or if all messages have been 1889 * delivered. 1890 */ 1891 static int ap_poll_thread(void *data) 1892 { 1893 DECLARE_WAITQUEUE(wait, current); 1894 unsigned long flags; 1895 int requests; 1896 struct ap_device *ap_dev; 1897 1898 set_user_nice(current, MAX_NICE); 1899 while (1) { 1900 if (ap_suspend_flag) 1901 return 0; 1902 if (need_resched()) { 1903 schedule(); 1904 continue; 1905 } 1906 add_wait_queue(&ap_poll_wait, &wait); 1907 set_current_state(TASK_INTERRUPTIBLE); 1908 if (kthread_should_stop()) 1909 break; 1910 requests = atomic_read(&ap_poll_requests); 1911 if (requests <= 0) 1912 schedule(); 1913 set_current_state(TASK_RUNNING); 1914 remove_wait_queue(&ap_poll_wait, &wait); 1915 1916 flags = 0; 1917 spin_lock_bh(&ap_device_list_lock); 1918 list_for_each_entry(ap_dev, &ap_device_list, list) { 1919 spin_lock(&ap_dev->lock); 1920 __ap_poll_device(ap_dev, &flags); 1921 spin_unlock(&ap_dev->lock); 1922 } 1923 spin_unlock_bh(&ap_device_list_lock); 1924 } 1925 set_current_state(TASK_RUNNING); 1926 remove_wait_queue(&ap_poll_wait, &wait); 1927 return 0; 1928 } 1929 1930 static int ap_poll_thread_start(void) 1931 { 1932 int rc; 1933 1934 if (ap_using_interrupts() || ap_suspend_flag) 1935 return 0; 1936 mutex_lock(&ap_poll_thread_mutex); 1937 if (!ap_poll_kthread) { 1938 ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll"); 1939 rc = PTR_RET(ap_poll_kthread); 1940 if (rc) 1941 ap_poll_kthread = NULL; 1942 } 1943 else 1944 rc = 0; 1945 mutex_unlock(&ap_poll_thread_mutex); 1946 return rc; 1947 } 1948 1949 static void ap_poll_thread_stop(void) 1950 { 1951 mutex_lock(&ap_poll_thread_mutex); 1952 if (ap_poll_kthread) { 1953 kthread_stop(ap_poll_kthread); 1954 ap_poll_kthread = NULL; 1955 } 1956 mutex_unlock(&ap_poll_thread_mutex); 1957 } 1958 1959 /** 1960 * ap_request_timeout(): Handling of request timeouts 1961 * @data: Holds the AP device. 1962 * 1963 * Handles request timeouts. 1964 */ 1965 static void ap_request_timeout(unsigned long data) 1966 { 1967 struct ap_device *ap_dev = (struct ap_device *) data; 1968 1969 if (ap_dev->reset == AP_RESET_ARMED) { 1970 ap_dev->reset = AP_RESET_DO; 1971 1972 if (ap_using_interrupts()) 1973 tasklet_schedule(&ap_tasklet); 1974 } 1975 } 1976 1977 static void ap_reset_domain(void) 1978 { 1979 int i; 1980 1981 if ((ap_domain_index != -1) && (ap_test_config_domain(ap_domain_index))) 1982 for (i = 0; i < AP_DEVICES; i++) 1983 ap_reset_queue(AP_MKQID(i, ap_domain_index)); 1984 } 1985 1986 static void ap_reset_all(void) 1987 { 1988 int i, j; 1989 1990 for (i = 0; i < AP_DOMAINS; i++) { 1991 if (!ap_test_config_domain(i)) 1992 continue; 1993 for (j = 0; j < AP_DEVICES; j++) { 1994 if (!ap_test_config_card_id(j)) 1995 continue; 1996 ap_reset_queue(AP_MKQID(j, i)); 1997 } 1998 } 1999 } 2000 2001 static struct reset_call ap_reset_call = { 2002 .fn = ap_reset_all, 2003 }; 2004 2005 /** 2006 * ap_module_init(): The module initialization code. 2007 * 2008 * Initializes the module. 2009 */ 2010 int __init ap_module_init(void) 2011 { 2012 int rc, i; 2013 2014 if (ap_domain_index < -1 || ap_domain_index >= AP_DOMAINS) { 2015 pr_warning("%d is not a valid cryptographic domain\n", 2016 ap_domain_index); 2017 return -EINVAL; 2018 } 2019 /* In resume callback we need to know if the user had set the domain. 2020 * If so, we can not just reset it. 2021 */ 2022 if (ap_domain_index >= 0) 2023 user_set_domain = 1; 2024 2025 if (ap_instructions_available() != 0) { 2026 pr_warning("The hardware system does not support " 2027 "AP instructions\n"); 2028 return -ENODEV; 2029 } 2030 if (ap_interrupts_available()) { 2031 rc = register_adapter_interrupt(&ap_airq); 2032 ap_airq_flag = (rc == 0); 2033 } 2034 2035 register_reset_call(&ap_reset_call); 2036 2037 /* Create /sys/bus/ap. */ 2038 rc = bus_register(&ap_bus_type); 2039 if (rc) 2040 goto out; 2041 for (i = 0; ap_bus_attrs[i]; i++) { 2042 rc = bus_create_file(&ap_bus_type, ap_bus_attrs[i]); 2043 if (rc) 2044 goto out_bus; 2045 } 2046 2047 /* Create /sys/devices/ap. */ 2048 ap_root_device = root_device_register("ap"); 2049 rc = PTR_RET(ap_root_device); 2050 if (rc) 2051 goto out_bus; 2052 2053 ap_work_queue = create_singlethread_workqueue("kapwork"); 2054 if (!ap_work_queue) { 2055 rc = -ENOMEM; 2056 goto out_root; 2057 } 2058 2059 ap_query_configuration(); 2060 if (ap_select_domain() == 0) 2061 ap_scan_bus(NULL); 2062 2063 /* Setup the AP bus rescan timer. */ 2064 init_timer(&ap_config_timer); 2065 ap_config_timer.function = ap_config_timeout; 2066 ap_config_timer.data = 0; 2067 ap_config_timer.expires = jiffies + ap_config_time * HZ; 2068 add_timer(&ap_config_timer); 2069 2070 /* Setup the high resultion poll timer. 2071 * If we are running under z/VM adjust polling to z/VM polling rate. 2072 */ 2073 if (MACHINE_IS_VM) 2074 poll_timeout = 1500000; 2075 spin_lock_init(&ap_poll_timer_lock); 2076 hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 2077 ap_poll_timer.function = ap_poll_timeout; 2078 2079 /* Start the low priority AP bus poll thread. */ 2080 if (ap_thread_flag) { 2081 rc = ap_poll_thread_start(); 2082 if (rc) 2083 goto out_work; 2084 } 2085 2086 return 0; 2087 2088 out_work: 2089 del_timer_sync(&ap_config_timer); 2090 hrtimer_cancel(&ap_poll_timer); 2091 destroy_workqueue(ap_work_queue); 2092 out_root: 2093 root_device_unregister(ap_root_device); 2094 out_bus: 2095 while (i--) 2096 bus_remove_file(&ap_bus_type, ap_bus_attrs[i]); 2097 bus_unregister(&ap_bus_type); 2098 out: 2099 unregister_reset_call(&ap_reset_call); 2100 if (ap_using_interrupts()) 2101 unregister_adapter_interrupt(&ap_airq); 2102 return rc; 2103 } 2104 2105 static int __ap_match_all(struct device *dev, void *data) 2106 { 2107 return 1; 2108 } 2109 2110 /** 2111 * ap_modules_exit(): The module termination code 2112 * 2113 * Terminates the module. 2114 */ 2115 void ap_module_exit(void) 2116 { 2117 int i; 2118 struct device *dev; 2119 2120 ap_reset_domain(); 2121 ap_poll_thread_stop(); 2122 del_timer_sync(&ap_config_timer); 2123 hrtimer_cancel(&ap_poll_timer); 2124 destroy_workqueue(ap_work_queue); 2125 tasklet_kill(&ap_tasklet); 2126 while ((dev = bus_find_device(&ap_bus_type, NULL, NULL, 2127 __ap_match_all))) 2128 { 2129 device_unregister(dev); 2130 put_device(dev); 2131 } 2132 for (i = 0; ap_bus_attrs[i]; i++) 2133 bus_remove_file(&ap_bus_type, ap_bus_attrs[i]); 2134 root_device_unregister(ap_root_device); 2135 bus_unregister(&ap_bus_type); 2136 unregister_reset_call(&ap_reset_call); 2137 if (ap_using_interrupts()) 2138 unregister_adapter_interrupt(&ap_airq); 2139 } 2140 2141 module_init(ap_module_init); 2142 module_exit(ap_module_exit); 2143