1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright IBM Corp. 2006, 2020 4 * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com> 5 * Martin Schwidefsky <schwidefsky@de.ibm.com> 6 * Ralph Wuerthner <rwuerthn@de.ibm.com> 7 * Felix Beck <felix.beck@de.ibm.com> 8 * Holger Dengler <hd@linux.vnet.ibm.com> 9 * Harald Freudenberger <freude@linux.ibm.com> 10 * 11 * Adjunct processor bus. 12 */ 13 14 #define KMSG_COMPONENT "ap" 15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 16 17 #include <linux/kernel_stat.h> 18 #include <linux/moduleparam.h> 19 #include <linux/init.h> 20 #include <linux/delay.h> 21 #include <linux/err.h> 22 #include <linux/freezer.h> 23 #include <linux/interrupt.h> 24 #include <linux/workqueue.h> 25 #include <linux/slab.h> 26 #include <linux/notifier.h> 27 #include <linux/kthread.h> 28 #include <linux/mutex.h> 29 #include <asm/airq.h> 30 #include <linux/atomic.h> 31 #include <asm/isc.h> 32 #include <linux/hrtimer.h> 33 #include <linux/ktime.h> 34 #include <asm/facility.h> 35 #include <linux/crypto.h> 36 #include <linux/mod_devicetable.h> 37 #include <linux/debugfs.h> 38 #include <linux/ctype.h> 39 40 #include "ap_bus.h" 41 #include "ap_debug.h" 42 43 /* 44 * Module parameters; note though this file itself isn't modular. 45 */ 46 int ap_domain_index = -1; /* Adjunct Processor Domain Index */ 47 static DEFINE_SPINLOCK(ap_domain_lock); 48 module_param_named(domain, ap_domain_index, int, 0440); 49 MODULE_PARM_DESC(domain, "domain index for ap devices"); 50 EXPORT_SYMBOL(ap_domain_index); 51 52 static int ap_thread_flag; 53 module_param_named(poll_thread, ap_thread_flag, int, 0440); 54 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off)."); 55 56 static char *apm_str; 57 module_param_named(apmask, apm_str, charp, 0440); 58 MODULE_PARM_DESC(apmask, "AP bus adapter mask."); 59 60 static char *aqm_str; 61 module_param_named(aqmask, aqm_str, charp, 0440); 62 MODULE_PARM_DESC(aqmask, "AP bus domain mask."); 63 64 static struct device *ap_root_device; 65 66 /* Hashtable of all queue devices on the AP bus */ 67 DEFINE_HASHTABLE(ap_queues, 8); 68 /* lock used for the ap_queues hashtable */ 69 DEFINE_SPINLOCK(ap_queues_lock); 70 71 /* Default permissions (ioctl, card and domain masking) */ 72 struct ap_perms ap_perms; 73 EXPORT_SYMBOL(ap_perms); 74 DEFINE_MUTEX(ap_perms_mutex); 75 EXPORT_SYMBOL(ap_perms_mutex); 76 77 /* # of bus scans since init */ 78 static atomic64_t ap_scan_bus_count; 79 80 /* completion for initial APQN bindings complete */ 81 static DECLARE_COMPLETION(ap_init_apqn_bindings_complete); 82 83 static struct ap_config_info *ap_qci_info; 84 85 /* 86 * AP bus related debug feature things. 87 */ 88 debug_info_t *ap_dbf_info; 89 90 /* 91 * Workqueue timer for bus rescan. 92 */ 93 static struct timer_list ap_config_timer; 94 static int ap_config_time = AP_CONFIG_TIME; 95 static void ap_scan_bus(struct work_struct *); 96 static DECLARE_WORK(ap_scan_work, ap_scan_bus); 97 98 /* 99 * Tasklet & timer for AP request polling and interrupts 100 */ 101 static void ap_tasklet_fn(unsigned long); 102 static DECLARE_TASKLET_OLD(ap_tasklet, ap_tasklet_fn); 103 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait); 104 static struct task_struct *ap_poll_kthread; 105 static DEFINE_MUTEX(ap_poll_thread_mutex); 106 static DEFINE_SPINLOCK(ap_poll_timer_lock); 107 static struct hrtimer ap_poll_timer; 108 /* 109 * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds. 110 * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling. 111 */ 112 static unsigned long long poll_timeout = 250000; 113 114 /* Maximum domain id, if not given via qci */ 115 static int ap_max_domain_id = 15; 116 /* Maximum adapter id, if not given via qci */ 117 static int ap_max_adapter_id = 63; 118 119 static struct bus_type ap_bus_type; 120 121 /* Adapter interrupt definitions */ 122 static void ap_interrupt_handler(struct airq_struct *airq, bool floating); 123 124 static int ap_airq_flag; 125 126 static struct airq_struct ap_airq = { 127 .handler = ap_interrupt_handler, 128 .isc = AP_ISC, 129 }; 130 131 /** 132 * ap_using_interrupts() - Returns non-zero if interrupt support is 133 * available. 134 */ 135 static inline int ap_using_interrupts(void) 136 { 137 return ap_airq_flag; 138 } 139 140 /** 141 * ap_airq_ptr() - Get the address of the adapter interrupt indicator 142 * 143 * Returns the address of the local-summary-indicator of the adapter 144 * interrupt handler for AP, or NULL if adapter interrupts are not 145 * available. 146 */ 147 void *ap_airq_ptr(void) 148 { 149 if (ap_using_interrupts()) 150 return ap_airq.lsi_ptr; 151 return NULL; 152 } 153 154 /** 155 * ap_interrupts_available(): Test if AP interrupts are available. 156 * 157 * Returns 1 if AP interrupts are available. 158 */ 159 static int ap_interrupts_available(void) 160 { 161 return test_facility(65); 162 } 163 164 /** 165 * ap_qci_available(): Test if AP configuration 166 * information can be queried via QCI subfunction. 167 * 168 * Returns 1 if subfunction PQAP(QCI) is available. 169 */ 170 static int ap_qci_available(void) 171 { 172 return test_facility(12); 173 } 174 175 /** 176 * ap_apft_available(): Test if AP facilities test (APFT) 177 * facility is available. 178 * 179 * Returns 1 if APFT is is available. 180 */ 181 static int ap_apft_available(void) 182 { 183 return test_facility(15); 184 } 185 186 /* 187 * ap_qact_available(): Test if the PQAP(QACT) subfunction is available. 188 * 189 * Returns 1 if the QACT subfunction is available. 190 */ 191 static inline int ap_qact_available(void) 192 { 193 if (ap_qci_info) 194 return ap_qci_info->qact; 195 return 0; 196 } 197 198 /* 199 * ap_fetch_qci_info(): Fetch cryptographic config info 200 * 201 * Returns the ap configuration info fetched via PQAP(QCI). 202 * On success 0 is returned, on failure a negative errno 203 * is returned, e.g. if the PQAP(QCI) instruction is not 204 * available, the return value will be -EOPNOTSUPP. 205 */ 206 static inline int ap_fetch_qci_info(struct ap_config_info *info) 207 { 208 if (!ap_qci_available()) 209 return -EOPNOTSUPP; 210 if (!info) 211 return -EINVAL; 212 return ap_qci(info); 213 } 214 215 /** 216 * ap_init_qci_info(): Allocate and query qci config info. 217 * Does also update the static variables ap_max_domain_id 218 * and ap_max_adapter_id if this info is available. 219 220 */ 221 static void __init ap_init_qci_info(void) 222 { 223 if (!ap_qci_available()) { 224 AP_DBF_INFO("%s QCI not supported\n", __func__); 225 return; 226 } 227 228 ap_qci_info = kzalloc(sizeof(*ap_qci_info), GFP_KERNEL); 229 if (!ap_qci_info) 230 return; 231 if (ap_fetch_qci_info(ap_qci_info) != 0) { 232 kfree(ap_qci_info); 233 ap_qci_info = NULL; 234 return; 235 } 236 AP_DBF_INFO("%s successful fetched initial qci info\n", __func__); 237 238 if (ap_qci_info->apxa) { 239 if (ap_qci_info->Na) { 240 ap_max_adapter_id = ap_qci_info->Na; 241 AP_DBF_INFO("%s new ap_max_adapter_id is %d\n", 242 __func__, ap_max_adapter_id); 243 } 244 if (ap_qci_info->Nd) { 245 ap_max_domain_id = ap_qci_info->Nd; 246 AP_DBF_INFO("%s new ap_max_domain_id is %d\n", 247 __func__, ap_max_domain_id); 248 } 249 } 250 } 251 252 /* 253 * ap_test_config(): helper function to extract the nrth bit 254 * within the unsigned int array field. 255 */ 256 static inline int ap_test_config(unsigned int *field, unsigned int nr) 257 { 258 return ap_test_bit((field + (nr >> 5)), (nr & 0x1f)); 259 } 260 261 /* 262 * ap_test_config_card_id(): Test, whether an AP card ID is configured. 263 * 264 * Returns 0 if the card is not configured 265 * 1 if the card is configured or 266 * if the configuration information is not available 267 */ 268 static inline int ap_test_config_card_id(unsigned int id) 269 { 270 if (id > ap_max_adapter_id) 271 return 0; 272 if (ap_qci_info) 273 return ap_test_config(ap_qci_info->apm, id); 274 return 1; 275 } 276 277 /* 278 * ap_test_config_usage_domain(): Test, whether an AP usage domain 279 * is configured. 280 * 281 * Returns 0 if the usage domain is not configured 282 * 1 if the usage domain is configured or 283 * if the configuration information is not available 284 */ 285 int ap_test_config_usage_domain(unsigned int domain) 286 { 287 if (domain > ap_max_domain_id) 288 return 0; 289 if (ap_qci_info) 290 return ap_test_config(ap_qci_info->aqm, domain); 291 return 1; 292 } 293 EXPORT_SYMBOL(ap_test_config_usage_domain); 294 295 /* 296 * ap_test_config_ctrl_domain(): Test, whether an AP control domain 297 * is configured. 298 * @domain AP control domain ID 299 * 300 * Returns 1 if the control domain is configured 301 * 0 in all other cases 302 */ 303 int ap_test_config_ctrl_domain(unsigned int domain) 304 { 305 if (!ap_qci_info || domain > ap_max_domain_id) 306 return 0; 307 return ap_test_config(ap_qci_info->adm, domain); 308 } 309 EXPORT_SYMBOL(ap_test_config_ctrl_domain); 310 311 /* 312 * ap_queue_info(): Check and get AP queue info. 313 * Returns true if TAPQ succeeded and the info is filled or 314 * false otherwise. 315 */ 316 static bool ap_queue_info(ap_qid_t qid, int *q_type, 317 unsigned int *q_fac, int *q_depth, bool *q_decfg) 318 { 319 struct ap_queue_status status; 320 unsigned long info = 0; 321 322 /* make sure we don't run into a specifiation exception */ 323 if (AP_QID_CARD(qid) > ap_max_adapter_id || 324 AP_QID_QUEUE(qid) > ap_max_domain_id) 325 return false; 326 327 /* call TAPQ on this APQN */ 328 status = ap_test_queue(qid, ap_apft_available(), &info); 329 switch (status.response_code) { 330 case AP_RESPONSE_NORMAL: 331 case AP_RESPONSE_RESET_IN_PROGRESS: 332 case AP_RESPONSE_DECONFIGURED: 333 case AP_RESPONSE_CHECKSTOPPED: 334 case AP_RESPONSE_BUSY: 335 /* 336 * According to the architecture in all these cases the 337 * info should be filled. All bits 0 is not possible as 338 * there is at least one of the mode bits set. 339 */ 340 if (WARN_ON_ONCE(!info)) 341 return false; 342 *q_type = (int)((info >> 24) & 0xff); 343 *q_fac = (unsigned int)(info >> 32); 344 *q_depth = (int)(info & 0xff); 345 *q_decfg = status.response_code == AP_RESPONSE_DECONFIGURED; 346 switch (*q_type) { 347 /* For CEX2 and CEX3 the available functions 348 * are not reflected by the facilities bits. 349 * Instead it is coded into the type. So here 350 * modify the function bits based on the type. 351 */ 352 case AP_DEVICE_TYPE_CEX2A: 353 case AP_DEVICE_TYPE_CEX3A: 354 *q_fac |= 0x08000000; 355 break; 356 case AP_DEVICE_TYPE_CEX2C: 357 case AP_DEVICE_TYPE_CEX3C: 358 *q_fac |= 0x10000000; 359 break; 360 default: 361 break; 362 } 363 return true; 364 default: 365 /* 366 * A response code which indicates, there is no info available. 367 */ 368 return false; 369 } 370 } 371 372 void ap_wait(enum ap_sm_wait wait) 373 { 374 ktime_t hr_time; 375 376 switch (wait) { 377 case AP_SM_WAIT_AGAIN: 378 case AP_SM_WAIT_INTERRUPT: 379 if (ap_using_interrupts()) 380 break; 381 if (ap_poll_kthread) { 382 wake_up(&ap_poll_wait); 383 break; 384 } 385 fallthrough; 386 case AP_SM_WAIT_TIMEOUT: 387 spin_lock_bh(&ap_poll_timer_lock); 388 if (!hrtimer_is_queued(&ap_poll_timer)) { 389 hr_time = poll_timeout; 390 hrtimer_forward_now(&ap_poll_timer, hr_time); 391 hrtimer_restart(&ap_poll_timer); 392 } 393 spin_unlock_bh(&ap_poll_timer_lock); 394 break; 395 case AP_SM_WAIT_NONE: 396 default: 397 break; 398 } 399 } 400 401 /** 402 * ap_request_timeout(): Handling of request timeouts 403 * @t: timer making this callback 404 * 405 * Handles request timeouts. 406 */ 407 void ap_request_timeout(struct timer_list *t) 408 { 409 struct ap_queue *aq = from_timer(aq, t, timeout); 410 411 spin_lock_bh(&aq->lock); 412 ap_wait(ap_sm_event(aq, AP_SM_EVENT_TIMEOUT)); 413 spin_unlock_bh(&aq->lock); 414 } 415 416 /** 417 * ap_poll_timeout(): AP receive polling for finished AP requests. 418 * @unused: Unused pointer. 419 * 420 * Schedules the AP tasklet using a high resolution timer. 421 */ 422 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused) 423 { 424 tasklet_schedule(&ap_tasklet); 425 return HRTIMER_NORESTART; 426 } 427 428 /** 429 * ap_interrupt_handler() - Schedule ap_tasklet on interrupt 430 * @airq: pointer to adapter interrupt descriptor 431 */ 432 static void ap_interrupt_handler(struct airq_struct *airq, bool floating) 433 { 434 inc_irq_stat(IRQIO_APB); 435 tasklet_schedule(&ap_tasklet); 436 } 437 438 /** 439 * ap_tasklet_fn(): Tasklet to poll all AP devices. 440 * @dummy: Unused variable 441 * 442 * Poll all AP devices on the bus. 443 */ 444 static void ap_tasklet_fn(unsigned long dummy) 445 { 446 int bkt; 447 struct ap_queue *aq; 448 enum ap_sm_wait wait = AP_SM_WAIT_NONE; 449 450 /* Reset the indicator if interrupts are used. Thus new interrupts can 451 * be received. Doing it in the beginning of the tasklet is therefor 452 * important that no requests on any AP get lost. 453 */ 454 if (ap_using_interrupts()) 455 xchg(ap_airq.lsi_ptr, 0); 456 457 spin_lock_bh(&ap_queues_lock); 458 hash_for_each(ap_queues, bkt, aq, hnode) { 459 spin_lock_bh(&aq->lock); 460 wait = min(wait, ap_sm_event_loop(aq, AP_SM_EVENT_POLL)); 461 spin_unlock_bh(&aq->lock); 462 } 463 spin_unlock_bh(&ap_queues_lock); 464 465 ap_wait(wait); 466 } 467 468 static int ap_pending_requests(void) 469 { 470 int bkt; 471 struct ap_queue *aq; 472 473 spin_lock_bh(&ap_queues_lock); 474 hash_for_each(ap_queues, bkt, aq, hnode) { 475 if (aq->queue_count == 0) 476 continue; 477 spin_unlock_bh(&ap_queues_lock); 478 return 1; 479 } 480 spin_unlock_bh(&ap_queues_lock); 481 return 0; 482 } 483 484 /** 485 * ap_poll_thread(): Thread that polls for finished requests. 486 * @data: Unused pointer 487 * 488 * AP bus poll thread. The purpose of this thread is to poll for 489 * finished requests in a loop if there is a "free" cpu - that is 490 * a cpu that doesn't have anything better to do. The polling stops 491 * as soon as there is another task or if all messages have been 492 * delivered. 493 */ 494 static int ap_poll_thread(void *data) 495 { 496 DECLARE_WAITQUEUE(wait, current); 497 498 set_user_nice(current, MAX_NICE); 499 set_freezable(); 500 while (!kthread_should_stop()) { 501 add_wait_queue(&ap_poll_wait, &wait); 502 set_current_state(TASK_INTERRUPTIBLE); 503 if (!ap_pending_requests()) { 504 schedule(); 505 try_to_freeze(); 506 } 507 set_current_state(TASK_RUNNING); 508 remove_wait_queue(&ap_poll_wait, &wait); 509 if (need_resched()) { 510 schedule(); 511 try_to_freeze(); 512 continue; 513 } 514 ap_tasklet_fn(0); 515 } 516 517 return 0; 518 } 519 520 static int ap_poll_thread_start(void) 521 { 522 int rc; 523 524 if (ap_using_interrupts() || ap_poll_kthread) 525 return 0; 526 mutex_lock(&ap_poll_thread_mutex); 527 ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll"); 528 rc = PTR_ERR_OR_ZERO(ap_poll_kthread); 529 if (rc) 530 ap_poll_kthread = NULL; 531 mutex_unlock(&ap_poll_thread_mutex); 532 return rc; 533 } 534 535 static void ap_poll_thread_stop(void) 536 { 537 if (!ap_poll_kthread) 538 return; 539 mutex_lock(&ap_poll_thread_mutex); 540 kthread_stop(ap_poll_kthread); 541 ap_poll_kthread = NULL; 542 mutex_unlock(&ap_poll_thread_mutex); 543 } 544 545 #define is_card_dev(x) ((x)->parent == ap_root_device) 546 #define is_queue_dev(x) ((x)->parent != ap_root_device) 547 548 /** 549 * ap_bus_match() 550 * @dev: Pointer to device 551 * @drv: Pointer to device_driver 552 * 553 * AP bus driver registration/unregistration. 554 */ 555 static int ap_bus_match(struct device *dev, struct device_driver *drv) 556 { 557 struct ap_driver *ap_drv = to_ap_drv(drv); 558 struct ap_device_id *id; 559 560 /* 561 * Compare device type of the device with the list of 562 * supported types of the device_driver. 563 */ 564 for (id = ap_drv->ids; id->match_flags; id++) { 565 if (is_card_dev(dev) && 566 id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE && 567 id->dev_type == to_ap_dev(dev)->device_type) 568 return 1; 569 if (is_queue_dev(dev) && 570 id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE && 571 id->dev_type == to_ap_dev(dev)->device_type) 572 return 1; 573 } 574 return 0; 575 } 576 577 /** 578 * ap_uevent(): Uevent function for AP devices. 579 * @dev: Pointer to device 580 * @env: Pointer to kobj_uevent_env 581 * 582 * It sets up a single environment variable DEV_TYPE which contains the 583 * hardware device type. 584 */ 585 static int ap_uevent(struct device *dev, struct kobj_uevent_env *env) 586 { 587 int rc; 588 struct ap_device *ap_dev = to_ap_dev(dev); 589 590 /* Uevents from ap bus core don't need extensions to the env */ 591 if (dev == ap_root_device) 592 return 0; 593 594 /* Set up DEV_TYPE environment variable. */ 595 rc = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type); 596 if (rc) 597 return rc; 598 599 /* Add MODALIAS= */ 600 rc = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type); 601 if (rc) 602 return rc; 603 604 return 0; 605 } 606 607 static void ap_send_init_scan_done_uevent(void) 608 { 609 char *envp[] = { "INITSCAN=done", NULL }; 610 611 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp); 612 } 613 614 static void ap_send_bindings_complete_uevent(void) 615 { 616 char *envp[] = { "BINDINGS=complete", NULL }; 617 618 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp); 619 } 620 621 /* 622 * calc # of bound APQNs 623 */ 624 625 struct __ap_calc_ctrs { 626 unsigned int apqns; 627 unsigned int bound; 628 }; 629 630 static int __ap_calc_helper(struct device *dev, void *arg) 631 { 632 struct __ap_calc_ctrs *pctrs = (struct __ap_calc_ctrs *) arg; 633 634 if (is_queue_dev(dev)) { 635 pctrs->apqns++; 636 if ((to_ap_dev(dev))->drv) 637 pctrs->bound++; 638 } 639 640 return 0; 641 } 642 643 static void ap_calc_bound_apqns(unsigned int *apqns, unsigned int *bound) 644 { 645 struct __ap_calc_ctrs ctrs; 646 647 memset(&ctrs, 0, sizeof(ctrs)); 648 bus_for_each_dev(&ap_bus_type, NULL, (void *) &ctrs, __ap_calc_helper); 649 650 *apqns = ctrs.apqns; 651 *bound = ctrs.bound; 652 } 653 654 /* 655 * After initial ap bus scan do check if all existing APQNs are 656 * bound to device drivers. 657 */ 658 static void ap_check_bindings_complete(void) 659 { 660 unsigned int apqns, bound; 661 662 if (atomic64_read(&ap_scan_bus_count) >= 1) { 663 ap_calc_bound_apqns(&apqns, &bound); 664 if (bound == apqns) { 665 if (!completion_done(&ap_init_apqn_bindings_complete)) { 666 complete_all(&ap_init_apqn_bindings_complete); 667 AP_DBF(DBF_INFO, "%s complete\n", __func__); 668 } 669 ap_send_bindings_complete_uevent(); 670 } 671 } 672 } 673 674 /* 675 * Interface to wait for the AP bus to have done one initial ap bus 676 * scan and all detected APQNs have been bound to device drivers. 677 * If these both conditions are not fulfilled, this function blocks 678 * on a condition with wait_for_completion_interruptible_timeout(). 679 * If these both conditions are fulfilled (before the timeout hits) 680 * the return value is 0. If the timeout (in jiffies) hits instead 681 * -ETIME is returned. On failures negative return values are 682 * returned to the caller. 683 */ 684 int ap_wait_init_apqn_bindings_complete(unsigned long timeout) 685 { 686 long l; 687 688 if (completion_done(&ap_init_apqn_bindings_complete)) 689 return 0; 690 691 if (timeout) 692 l = wait_for_completion_interruptible_timeout( 693 &ap_init_apqn_bindings_complete, timeout); 694 else 695 l = wait_for_completion_interruptible( 696 &ap_init_apqn_bindings_complete); 697 if (l < 0) 698 return l == -ERESTARTSYS ? -EINTR : l; 699 else if (l == 0 && timeout) 700 return -ETIME; 701 702 return 0; 703 } 704 EXPORT_SYMBOL(ap_wait_init_apqn_bindings_complete); 705 706 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data) 707 { 708 if (is_queue_dev(dev) && 709 AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long) data) 710 device_unregister(dev); 711 return 0; 712 } 713 714 static int __ap_revise_reserved(struct device *dev, void *dummy) 715 { 716 int rc, card, queue, devres, drvres; 717 718 if (is_queue_dev(dev)) { 719 card = AP_QID_CARD(to_ap_queue(dev)->qid); 720 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid); 721 mutex_lock(&ap_perms_mutex); 722 devres = test_bit_inv(card, ap_perms.apm) 723 && test_bit_inv(queue, ap_perms.aqm); 724 mutex_unlock(&ap_perms_mutex); 725 drvres = to_ap_drv(dev->driver)->flags 726 & AP_DRIVER_FLAG_DEFAULT; 727 if (!!devres != !!drvres) { 728 AP_DBF_DBG("reprobing queue=%02x.%04x\n", 729 card, queue); 730 rc = device_reprobe(dev); 731 } 732 } 733 734 return 0; 735 } 736 737 static void ap_bus_revise_bindings(void) 738 { 739 bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved); 740 } 741 742 int ap_owned_by_def_drv(int card, int queue) 743 { 744 int rc = 0; 745 746 if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS) 747 return -EINVAL; 748 749 mutex_lock(&ap_perms_mutex); 750 751 if (test_bit_inv(card, ap_perms.apm) 752 && test_bit_inv(queue, ap_perms.aqm)) 753 rc = 1; 754 755 mutex_unlock(&ap_perms_mutex); 756 757 return rc; 758 } 759 EXPORT_SYMBOL(ap_owned_by_def_drv); 760 761 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm, 762 unsigned long *aqm) 763 { 764 int card, queue, rc = 0; 765 766 mutex_lock(&ap_perms_mutex); 767 768 for (card = 0; !rc && card < AP_DEVICES; card++) 769 if (test_bit_inv(card, apm) && 770 test_bit_inv(card, ap_perms.apm)) 771 for (queue = 0; !rc && queue < AP_DOMAINS; queue++) 772 if (test_bit_inv(queue, aqm) && 773 test_bit_inv(queue, ap_perms.aqm)) 774 rc = 1; 775 776 mutex_unlock(&ap_perms_mutex); 777 778 return rc; 779 } 780 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv); 781 782 static int ap_device_probe(struct device *dev) 783 { 784 struct ap_device *ap_dev = to_ap_dev(dev); 785 struct ap_driver *ap_drv = to_ap_drv(dev->driver); 786 int card, queue, devres, drvres, rc = -ENODEV; 787 788 if (!get_device(dev)) 789 return rc; 790 791 if (is_queue_dev(dev)) { 792 /* 793 * If the apqn is marked as reserved/used by ap bus and 794 * default drivers, only probe with drivers with the default 795 * flag set. If it is not marked, only probe with drivers 796 * with the default flag not set. 797 */ 798 card = AP_QID_CARD(to_ap_queue(dev)->qid); 799 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid); 800 mutex_lock(&ap_perms_mutex); 801 devres = test_bit_inv(card, ap_perms.apm) 802 && test_bit_inv(queue, ap_perms.aqm); 803 mutex_unlock(&ap_perms_mutex); 804 drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT; 805 if (!!devres != !!drvres) 806 goto out; 807 } 808 809 /* Add queue/card to list of active queues/cards */ 810 spin_lock_bh(&ap_queues_lock); 811 if (is_queue_dev(dev)) 812 hash_add(ap_queues, &to_ap_queue(dev)->hnode, 813 to_ap_queue(dev)->qid); 814 spin_unlock_bh(&ap_queues_lock); 815 816 ap_dev->drv = ap_drv; 817 rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV; 818 819 if (rc) { 820 spin_lock_bh(&ap_queues_lock); 821 if (is_queue_dev(dev)) 822 hash_del(&to_ap_queue(dev)->hnode); 823 spin_unlock_bh(&ap_queues_lock); 824 ap_dev->drv = NULL; 825 } else 826 ap_check_bindings_complete(); 827 828 out: 829 if (rc) 830 put_device(dev); 831 return rc; 832 } 833 834 static int ap_device_remove(struct device *dev) 835 { 836 struct ap_device *ap_dev = to_ap_dev(dev); 837 struct ap_driver *ap_drv = ap_dev->drv; 838 839 /* prepare ap queue device removal */ 840 if (is_queue_dev(dev)) 841 ap_queue_prepare_remove(to_ap_queue(dev)); 842 843 /* driver's chance to clean up gracefully */ 844 if (ap_drv->remove) 845 ap_drv->remove(ap_dev); 846 847 /* now do the ap queue device remove */ 848 if (is_queue_dev(dev)) 849 ap_queue_remove(to_ap_queue(dev)); 850 851 /* Remove queue/card from list of active queues/cards */ 852 spin_lock_bh(&ap_queues_lock); 853 if (is_queue_dev(dev)) 854 hash_del(&to_ap_queue(dev)->hnode); 855 spin_unlock_bh(&ap_queues_lock); 856 ap_dev->drv = NULL; 857 858 put_device(dev); 859 860 return 0; 861 } 862 863 struct ap_queue *ap_get_qdev(ap_qid_t qid) 864 { 865 int bkt; 866 struct ap_queue *aq; 867 868 spin_lock_bh(&ap_queues_lock); 869 hash_for_each(ap_queues, bkt, aq, hnode) { 870 if (aq->qid == qid) { 871 get_device(&aq->ap_dev.device); 872 spin_unlock_bh(&ap_queues_lock); 873 return aq; 874 } 875 } 876 spin_unlock_bh(&ap_queues_lock); 877 878 return NULL; 879 } 880 EXPORT_SYMBOL(ap_get_qdev); 881 882 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner, 883 char *name) 884 { 885 struct device_driver *drv = &ap_drv->driver; 886 887 drv->bus = &ap_bus_type; 888 drv->probe = ap_device_probe; 889 drv->remove = ap_device_remove; 890 drv->owner = owner; 891 drv->name = name; 892 return driver_register(drv); 893 } 894 EXPORT_SYMBOL(ap_driver_register); 895 896 void ap_driver_unregister(struct ap_driver *ap_drv) 897 { 898 driver_unregister(&ap_drv->driver); 899 } 900 EXPORT_SYMBOL(ap_driver_unregister); 901 902 void ap_bus_force_rescan(void) 903 { 904 /* processing a asynchronous bus rescan */ 905 del_timer(&ap_config_timer); 906 queue_work(system_long_wq, &ap_scan_work); 907 flush_work(&ap_scan_work); 908 } 909 EXPORT_SYMBOL(ap_bus_force_rescan); 910 911 /* 912 * A config change has happened, force an ap bus rescan. 913 */ 914 void ap_bus_cfg_chg(void) 915 { 916 AP_DBF_DBG("%s config change, forcing bus rescan\n", __func__); 917 918 ap_bus_force_rescan(); 919 } 920 921 /* 922 * hex2bitmap() - parse hex mask string and set bitmap. 923 * Valid strings are "0x012345678" with at least one valid hex number. 924 * Rest of the bitmap to the right is padded with 0. No spaces allowed 925 * within the string, the leading 0x may be omitted. 926 * Returns the bitmask with exactly the bits set as given by the hex 927 * string (both in big endian order). 928 */ 929 static int hex2bitmap(const char *str, unsigned long *bitmap, int bits) 930 { 931 int i, n, b; 932 933 /* bits needs to be a multiple of 8 */ 934 if (bits & 0x07) 935 return -EINVAL; 936 937 if (str[0] == '0' && str[1] == 'x') 938 str++; 939 if (*str == 'x') 940 str++; 941 942 for (i = 0; isxdigit(*str) && i < bits; str++) { 943 b = hex_to_bin(*str); 944 for (n = 0; n < 4; n++) 945 if (b & (0x08 >> n)) 946 set_bit_inv(i + n, bitmap); 947 i += 4; 948 } 949 950 if (*str == '\n') 951 str++; 952 if (*str) 953 return -EINVAL; 954 return 0; 955 } 956 957 /* 958 * modify_bitmap() - parse bitmask argument and modify an existing 959 * bit mask accordingly. A concatenation (done with ',') of these 960 * terms is recognized: 961 * +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>] 962 * <bitnr> may be any valid number (hex, decimal or octal) in the range 963 * 0...bits-1; the leading + or - is required. Here are some examples: 964 * +0-15,+32,-128,-0xFF 965 * -0-255,+1-16,+0x128 966 * +1,+2,+3,+4,-5,-7-10 967 * Returns the new bitmap after all changes have been applied. Every 968 * positive value in the string will set a bit and every negative value 969 * in the string will clear a bit. As a bit may be touched more than once, 970 * the last 'operation' wins: 971 * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be 972 * cleared again. All other bits are unmodified. 973 */ 974 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits) 975 { 976 int a, i, z; 977 char *np, sign; 978 979 /* bits needs to be a multiple of 8 */ 980 if (bits & 0x07) 981 return -EINVAL; 982 983 while (*str) { 984 sign = *str++; 985 if (sign != '+' && sign != '-') 986 return -EINVAL; 987 a = z = simple_strtoul(str, &np, 0); 988 if (str == np || a >= bits) 989 return -EINVAL; 990 str = np; 991 if (*str == '-') { 992 z = simple_strtoul(++str, &np, 0); 993 if (str == np || a > z || z >= bits) 994 return -EINVAL; 995 str = np; 996 } 997 for (i = a; i <= z; i++) 998 if (sign == '+') 999 set_bit_inv(i, bitmap); 1000 else 1001 clear_bit_inv(i, bitmap); 1002 while (*str == ',' || *str == '\n') 1003 str++; 1004 } 1005 1006 return 0; 1007 } 1008 1009 int ap_parse_mask_str(const char *str, 1010 unsigned long *bitmap, int bits, 1011 struct mutex *lock) 1012 { 1013 unsigned long *newmap, size; 1014 int rc; 1015 1016 /* bits needs to be a multiple of 8 */ 1017 if (bits & 0x07) 1018 return -EINVAL; 1019 1020 size = BITS_TO_LONGS(bits)*sizeof(unsigned long); 1021 newmap = kmalloc(size, GFP_KERNEL); 1022 if (!newmap) 1023 return -ENOMEM; 1024 if (mutex_lock_interruptible(lock)) { 1025 kfree(newmap); 1026 return -ERESTARTSYS; 1027 } 1028 1029 if (*str == '+' || *str == '-') { 1030 memcpy(newmap, bitmap, size); 1031 rc = modify_bitmap(str, newmap, bits); 1032 } else { 1033 memset(newmap, 0, size); 1034 rc = hex2bitmap(str, newmap, bits); 1035 } 1036 if (rc == 0) 1037 memcpy(bitmap, newmap, size); 1038 mutex_unlock(lock); 1039 kfree(newmap); 1040 return rc; 1041 } 1042 EXPORT_SYMBOL(ap_parse_mask_str); 1043 1044 /* 1045 * AP bus attributes. 1046 */ 1047 1048 static ssize_t ap_domain_show(struct bus_type *bus, char *buf) 1049 { 1050 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index); 1051 } 1052 1053 static ssize_t ap_domain_store(struct bus_type *bus, 1054 const char *buf, size_t count) 1055 { 1056 int domain; 1057 1058 if (sscanf(buf, "%i\n", &domain) != 1 || 1059 domain < 0 || domain > ap_max_domain_id || 1060 !test_bit_inv(domain, ap_perms.aqm)) 1061 return -EINVAL; 1062 1063 spin_lock_bh(&ap_domain_lock); 1064 ap_domain_index = domain; 1065 spin_unlock_bh(&ap_domain_lock); 1066 1067 AP_DBF_INFO("stored new default domain=%d\n", domain); 1068 1069 return count; 1070 } 1071 1072 static BUS_ATTR_RW(ap_domain); 1073 1074 static ssize_t ap_control_domain_mask_show(struct bus_type *bus, char *buf) 1075 { 1076 if (!ap_qci_info) /* QCI not supported */ 1077 return scnprintf(buf, PAGE_SIZE, "not supported\n"); 1078 1079 return scnprintf(buf, PAGE_SIZE, 1080 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1081 ap_qci_info->adm[0], ap_qci_info->adm[1], 1082 ap_qci_info->adm[2], ap_qci_info->adm[3], 1083 ap_qci_info->adm[4], ap_qci_info->adm[5], 1084 ap_qci_info->adm[6], ap_qci_info->adm[7]); 1085 } 1086 1087 static BUS_ATTR_RO(ap_control_domain_mask); 1088 1089 static ssize_t ap_usage_domain_mask_show(struct bus_type *bus, char *buf) 1090 { 1091 if (!ap_qci_info) /* QCI not supported */ 1092 return scnprintf(buf, PAGE_SIZE, "not supported\n"); 1093 1094 return scnprintf(buf, PAGE_SIZE, 1095 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1096 ap_qci_info->aqm[0], ap_qci_info->aqm[1], 1097 ap_qci_info->aqm[2], ap_qci_info->aqm[3], 1098 ap_qci_info->aqm[4], ap_qci_info->aqm[5], 1099 ap_qci_info->aqm[6], ap_qci_info->aqm[7]); 1100 } 1101 1102 static BUS_ATTR_RO(ap_usage_domain_mask); 1103 1104 static ssize_t ap_adapter_mask_show(struct bus_type *bus, char *buf) 1105 { 1106 if (!ap_qci_info) /* QCI not supported */ 1107 return scnprintf(buf, PAGE_SIZE, "not supported\n"); 1108 1109 return scnprintf(buf, PAGE_SIZE, 1110 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1111 ap_qci_info->apm[0], ap_qci_info->apm[1], 1112 ap_qci_info->apm[2], ap_qci_info->apm[3], 1113 ap_qci_info->apm[4], ap_qci_info->apm[5], 1114 ap_qci_info->apm[6], ap_qci_info->apm[7]); 1115 } 1116 1117 static BUS_ATTR_RO(ap_adapter_mask); 1118 1119 static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf) 1120 { 1121 return scnprintf(buf, PAGE_SIZE, "%d\n", 1122 ap_using_interrupts() ? 1 : 0); 1123 } 1124 1125 static BUS_ATTR_RO(ap_interrupts); 1126 1127 static ssize_t config_time_show(struct bus_type *bus, char *buf) 1128 { 1129 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_config_time); 1130 } 1131 1132 static ssize_t config_time_store(struct bus_type *bus, 1133 const char *buf, size_t count) 1134 { 1135 int time; 1136 1137 if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120) 1138 return -EINVAL; 1139 ap_config_time = time; 1140 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ); 1141 return count; 1142 } 1143 1144 static BUS_ATTR_RW(config_time); 1145 1146 static ssize_t poll_thread_show(struct bus_type *bus, char *buf) 1147 { 1148 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0); 1149 } 1150 1151 static ssize_t poll_thread_store(struct bus_type *bus, 1152 const char *buf, size_t count) 1153 { 1154 int flag, rc; 1155 1156 if (sscanf(buf, "%d\n", &flag) != 1) 1157 return -EINVAL; 1158 if (flag) { 1159 rc = ap_poll_thread_start(); 1160 if (rc) 1161 count = rc; 1162 } else 1163 ap_poll_thread_stop(); 1164 return count; 1165 } 1166 1167 static BUS_ATTR_RW(poll_thread); 1168 1169 static ssize_t poll_timeout_show(struct bus_type *bus, char *buf) 1170 { 1171 return scnprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout); 1172 } 1173 1174 static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf, 1175 size_t count) 1176 { 1177 unsigned long long time; 1178 ktime_t hr_time; 1179 1180 /* 120 seconds = maximum poll interval */ 1181 if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 || 1182 time > 120000000000ULL) 1183 return -EINVAL; 1184 poll_timeout = time; 1185 hr_time = poll_timeout; 1186 1187 spin_lock_bh(&ap_poll_timer_lock); 1188 hrtimer_cancel(&ap_poll_timer); 1189 hrtimer_set_expires(&ap_poll_timer, hr_time); 1190 hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS); 1191 spin_unlock_bh(&ap_poll_timer_lock); 1192 1193 return count; 1194 } 1195 1196 static BUS_ATTR_RW(poll_timeout); 1197 1198 static ssize_t ap_max_domain_id_show(struct bus_type *bus, char *buf) 1199 { 1200 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_max_domain_id); 1201 } 1202 1203 static BUS_ATTR_RO(ap_max_domain_id); 1204 1205 static ssize_t ap_max_adapter_id_show(struct bus_type *bus, char *buf) 1206 { 1207 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_max_adapter_id); 1208 } 1209 1210 static BUS_ATTR_RO(ap_max_adapter_id); 1211 1212 static ssize_t apmask_show(struct bus_type *bus, char *buf) 1213 { 1214 int rc; 1215 1216 if (mutex_lock_interruptible(&ap_perms_mutex)) 1217 return -ERESTARTSYS; 1218 rc = scnprintf(buf, PAGE_SIZE, 1219 "0x%016lx%016lx%016lx%016lx\n", 1220 ap_perms.apm[0], ap_perms.apm[1], 1221 ap_perms.apm[2], ap_perms.apm[3]); 1222 mutex_unlock(&ap_perms_mutex); 1223 1224 return rc; 1225 } 1226 1227 static ssize_t apmask_store(struct bus_type *bus, const char *buf, 1228 size_t count) 1229 { 1230 int rc; 1231 1232 rc = ap_parse_mask_str(buf, ap_perms.apm, AP_DEVICES, &ap_perms_mutex); 1233 if (rc) 1234 return rc; 1235 1236 ap_bus_revise_bindings(); 1237 1238 return count; 1239 } 1240 1241 static BUS_ATTR_RW(apmask); 1242 1243 static ssize_t aqmask_show(struct bus_type *bus, char *buf) 1244 { 1245 int rc; 1246 1247 if (mutex_lock_interruptible(&ap_perms_mutex)) 1248 return -ERESTARTSYS; 1249 rc = scnprintf(buf, PAGE_SIZE, 1250 "0x%016lx%016lx%016lx%016lx\n", 1251 ap_perms.aqm[0], ap_perms.aqm[1], 1252 ap_perms.aqm[2], ap_perms.aqm[3]); 1253 mutex_unlock(&ap_perms_mutex); 1254 1255 return rc; 1256 } 1257 1258 static ssize_t aqmask_store(struct bus_type *bus, const char *buf, 1259 size_t count) 1260 { 1261 int rc; 1262 1263 rc = ap_parse_mask_str(buf, ap_perms.aqm, AP_DOMAINS, &ap_perms_mutex); 1264 if (rc) 1265 return rc; 1266 1267 ap_bus_revise_bindings(); 1268 1269 return count; 1270 } 1271 1272 static BUS_ATTR_RW(aqmask); 1273 1274 static ssize_t scans_show(struct bus_type *bus, char *buf) 1275 { 1276 return scnprintf(buf, PAGE_SIZE, "%llu\n", 1277 atomic64_read(&ap_scan_bus_count)); 1278 } 1279 1280 static BUS_ATTR_RO(scans); 1281 1282 static ssize_t bindings_show(struct bus_type *bus, char *buf) 1283 { 1284 int rc; 1285 unsigned int apqns, n; 1286 1287 ap_calc_bound_apqns(&apqns, &n); 1288 if (atomic64_read(&ap_scan_bus_count) >= 1 && n == apqns) 1289 rc = scnprintf(buf, PAGE_SIZE, "%u/%u (complete)\n", n, apqns); 1290 else 1291 rc = scnprintf(buf, PAGE_SIZE, "%u/%u\n", n, apqns); 1292 1293 return rc; 1294 } 1295 1296 static BUS_ATTR_RO(bindings); 1297 1298 static struct attribute *ap_bus_attrs[] = { 1299 &bus_attr_ap_domain.attr, 1300 &bus_attr_ap_control_domain_mask.attr, 1301 &bus_attr_ap_usage_domain_mask.attr, 1302 &bus_attr_ap_adapter_mask.attr, 1303 &bus_attr_config_time.attr, 1304 &bus_attr_poll_thread.attr, 1305 &bus_attr_ap_interrupts.attr, 1306 &bus_attr_poll_timeout.attr, 1307 &bus_attr_ap_max_domain_id.attr, 1308 &bus_attr_ap_max_adapter_id.attr, 1309 &bus_attr_apmask.attr, 1310 &bus_attr_aqmask.attr, 1311 &bus_attr_scans.attr, 1312 &bus_attr_bindings.attr, 1313 NULL, 1314 }; 1315 ATTRIBUTE_GROUPS(ap_bus); 1316 1317 static struct bus_type ap_bus_type = { 1318 .name = "ap", 1319 .bus_groups = ap_bus_groups, 1320 .match = &ap_bus_match, 1321 .uevent = &ap_uevent, 1322 }; 1323 1324 /** 1325 * ap_select_domain(): Select an AP domain if possible and we haven't 1326 * already done so before. 1327 */ 1328 static void ap_select_domain(void) 1329 { 1330 struct ap_queue_status status; 1331 int card, dom; 1332 1333 /* 1334 * Choose the default domain. Either the one specified with 1335 * the "domain=" parameter or the first domain with at least 1336 * one valid APQN. 1337 */ 1338 spin_lock_bh(&ap_domain_lock); 1339 if (ap_domain_index >= 0) { 1340 /* Domain has already been selected. */ 1341 goto out; 1342 } 1343 for (dom = 0; dom <= ap_max_domain_id; dom++) { 1344 if (!ap_test_config_usage_domain(dom) || 1345 !test_bit_inv(dom, ap_perms.aqm)) 1346 continue; 1347 for (card = 0; card <= ap_max_adapter_id; card++) { 1348 if (!ap_test_config_card_id(card) || 1349 !test_bit_inv(card, ap_perms.apm)) 1350 continue; 1351 status = ap_test_queue(AP_MKQID(card, dom), 1352 ap_apft_available(), 1353 NULL); 1354 if (status.response_code == AP_RESPONSE_NORMAL) 1355 break; 1356 } 1357 if (card <= ap_max_adapter_id) 1358 break; 1359 } 1360 if (dom <= ap_max_domain_id) { 1361 ap_domain_index = dom; 1362 AP_DBF_INFO("%s new default domain is %d\n", 1363 __func__, ap_domain_index); 1364 } 1365 out: 1366 spin_unlock_bh(&ap_domain_lock); 1367 } 1368 1369 /* 1370 * This function checks the type and returns either 0 for not 1371 * supported or the highest compatible type value (which may 1372 * include the input type value). 1373 */ 1374 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func) 1375 { 1376 int comp_type = 0; 1377 1378 /* < CEX2A is not supported */ 1379 if (rawtype < AP_DEVICE_TYPE_CEX2A) { 1380 AP_DBF_WARN("get_comp_type queue=%02x.%04x unsupported type %d\n", 1381 AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype); 1382 return 0; 1383 } 1384 /* up to CEX7 known and fully supported */ 1385 if (rawtype <= AP_DEVICE_TYPE_CEX7) 1386 return rawtype; 1387 /* 1388 * unknown new type > CEX7, check for compatibility 1389 * to the highest known and supported type which is 1390 * currently CEX7 with the help of the QACT function. 1391 */ 1392 if (ap_qact_available()) { 1393 struct ap_queue_status status; 1394 union ap_qact_ap_info apinfo = {0}; 1395 1396 apinfo.mode = (func >> 26) & 0x07; 1397 apinfo.cat = AP_DEVICE_TYPE_CEX7; 1398 status = ap_qact(qid, 0, &apinfo); 1399 if (status.response_code == AP_RESPONSE_NORMAL 1400 && apinfo.cat >= AP_DEVICE_TYPE_CEX2A 1401 && apinfo.cat <= AP_DEVICE_TYPE_CEX7) 1402 comp_type = apinfo.cat; 1403 } 1404 if (!comp_type) 1405 AP_DBF_WARN("get_comp_type queue=%02x.%04x unable to map type %d\n", 1406 AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype); 1407 else if (comp_type != rawtype) 1408 AP_DBF_INFO("get_comp_type queue=%02x.%04x map type %d to %d\n", 1409 AP_QID_CARD(qid), AP_QID_QUEUE(qid), 1410 rawtype, comp_type); 1411 return comp_type; 1412 } 1413 1414 /* 1415 * Helper function to be used with bus_find_dev 1416 * matches for the card device with the given id 1417 */ 1418 static int __match_card_device_with_id(struct device *dev, const void *data) 1419 { 1420 return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *) data; 1421 } 1422 1423 /* 1424 * Helper function to be used with bus_find_dev 1425 * matches for the queue device with a given qid 1426 */ 1427 static int __match_queue_device_with_qid(struct device *dev, const void *data) 1428 { 1429 return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long) data; 1430 } 1431 1432 /* 1433 * Helper function to be used with bus_find_dev 1434 * matches any queue device with given queue id 1435 */ 1436 static int __match_queue_device_with_queue_id(struct device *dev, const void *data) 1437 { 1438 return is_queue_dev(dev) 1439 && AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long) data; 1440 } 1441 1442 /* 1443 * Helper function for ap_scan_bus(). 1444 * Remove card device and associated queue devices. 1445 */ 1446 static inline void ap_scan_rm_card_dev_and_queue_devs(struct ap_card *ac) 1447 { 1448 bus_for_each_dev(&ap_bus_type, NULL, 1449 (void *)(long) ac->id, 1450 __ap_queue_devices_with_id_unregister); 1451 device_unregister(&ac->ap_dev.device); 1452 } 1453 1454 /* 1455 * Helper function for ap_scan_bus(). 1456 * Does the scan bus job for all the domains within 1457 * a valid adapter given by an ap_card ptr. 1458 */ 1459 static inline void ap_scan_domains(struct ap_card *ac) 1460 { 1461 bool decfg; 1462 ap_qid_t qid; 1463 unsigned int func; 1464 struct device *dev; 1465 struct ap_queue *aq; 1466 int rc, dom, depth, type; 1467 1468 /* 1469 * Go through the configuration for the domains and compare them 1470 * to the existing queue devices. Also take care of the config 1471 * and error state for the queue devices. 1472 */ 1473 1474 for (dom = 0; dom <= ap_max_domain_id; dom++) { 1475 qid = AP_MKQID(ac->id, dom); 1476 dev = bus_find_device(&ap_bus_type, NULL, 1477 (void *)(long) qid, 1478 __match_queue_device_with_qid); 1479 aq = dev ? to_ap_queue(dev) : NULL; 1480 if (!ap_test_config_usage_domain(dom)) { 1481 if (dev) { 1482 AP_DBF_INFO("%s(%d,%d) not in config any more, rm queue device\n", 1483 __func__, ac->id, dom); 1484 device_unregister(dev); 1485 put_device(dev); 1486 } 1487 continue; 1488 } 1489 /* domain is valid, get info from this APQN */ 1490 if (!ap_queue_info(qid, &type, &func, &depth, &decfg)) { 1491 if (aq) { 1492 AP_DBF_INFO( 1493 "%s(%d,%d) ap_queue_info() not successful, rm queue device\n", 1494 __func__, ac->id, dom); 1495 device_unregister(dev); 1496 put_device(dev); 1497 } 1498 continue; 1499 } 1500 /* if no queue device exists, create a new one */ 1501 if (!aq) { 1502 aq = ap_queue_create(qid, ac->ap_dev.device_type); 1503 if (!aq) { 1504 AP_DBF_WARN("%s(%d,%d) ap_queue_create() failed\n", 1505 __func__, ac->id, dom); 1506 continue; 1507 } 1508 aq->card = ac; 1509 aq->config = !decfg; 1510 dev = &aq->ap_dev.device; 1511 dev->bus = &ap_bus_type; 1512 dev->parent = &ac->ap_dev.device; 1513 dev_set_name(dev, "%02x.%04x", ac->id, dom); 1514 /* register queue device */ 1515 rc = device_register(dev); 1516 if (rc) { 1517 AP_DBF_WARN("%s(%d,%d) device_register() failed\n", 1518 __func__, ac->id, dom); 1519 goto put_dev_and_continue; 1520 } 1521 /* get it and thus adjust reference counter */ 1522 get_device(dev); 1523 if (decfg) 1524 AP_DBF_INFO("%s(%d,%d) new (decfg) queue device created\n", 1525 __func__, ac->id, dom); 1526 else 1527 AP_DBF_INFO("%s(%d,%d) new queue device created\n", 1528 __func__, ac->id, dom); 1529 goto put_dev_and_continue; 1530 } 1531 /* Check config state on the already existing queue device */ 1532 spin_lock_bh(&aq->lock); 1533 if (decfg && aq->config) { 1534 /* config off this queue device */ 1535 aq->config = false; 1536 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) { 1537 aq->dev_state = AP_DEV_STATE_ERROR; 1538 aq->last_err_rc = AP_RESPONSE_DECONFIGURED; 1539 } 1540 spin_unlock_bh(&aq->lock); 1541 AP_DBF_INFO("%s(%d,%d) queue device config off\n", 1542 __func__, ac->id, dom); 1543 /* 'receive' pending messages with -EAGAIN */ 1544 ap_flush_queue(aq); 1545 goto put_dev_and_continue; 1546 } 1547 if (!decfg && !aq->config) { 1548 /* config on this queue device */ 1549 aq->config = true; 1550 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) { 1551 aq->dev_state = AP_DEV_STATE_OPERATING; 1552 aq->sm_state = AP_SM_STATE_RESET_START; 1553 } 1554 spin_unlock_bh(&aq->lock); 1555 AP_DBF_INFO("%s(%d,%d) queue device config on\n", 1556 __func__, ac->id, dom); 1557 goto put_dev_and_continue; 1558 } 1559 /* handle other error states */ 1560 if (!decfg && aq->dev_state == AP_DEV_STATE_ERROR) { 1561 spin_unlock_bh(&aq->lock); 1562 /* 'receive' pending messages with -EAGAIN */ 1563 ap_flush_queue(aq); 1564 /* re-init (with reset) the queue device */ 1565 ap_queue_init_state(aq); 1566 AP_DBF_INFO("%s(%d,%d) queue device reinit enforced\n", 1567 __func__, ac->id, dom); 1568 goto put_dev_and_continue; 1569 } 1570 spin_unlock_bh(&aq->lock); 1571 put_dev_and_continue: 1572 put_device(dev); 1573 } 1574 } 1575 1576 /* 1577 * Helper function for ap_scan_bus(). 1578 * Does the scan bus job for the given adapter id. 1579 */ 1580 static inline void ap_scan_adapter(int ap) 1581 { 1582 bool decfg; 1583 ap_qid_t qid; 1584 unsigned int func; 1585 struct device *dev; 1586 struct ap_card *ac; 1587 int rc, dom, depth, type, comp_type; 1588 1589 /* Is there currently a card device for this adapter ? */ 1590 dev = bus_find_device(&ap_bus_type, NULL, 1591 (void *)(long) ap, 1592 __match_card_device_with_id); 1593 ac = dev ? to_ap_card(dev) : NULL; 1594 1595 /* Adapter not in configuration ? */ 1596 if (!ap_test_config_card_id(ap)) { 1597 if (ac) { 1598 AP_DBF_INFO("%s(%d) ap not in config any more, rm card and queue devices\n", 1599 __func__, ap); 1600 ap_scan_rm_card_dev_and_queue_devs(ac); 1601 put_device(dev); 1602 } 1603 return; 1604 } 1605 1606 /* 1607 * Adapter ap is valid in the current configuration. So do some checks: 1608 * If no card device exists, build one. If a card device exists, check 1609 * for type and functions changed. For all this we need to find a valid 1610 * APQN first. 1611 */ 1612 1613 for (dom = 0; dom <= ap_max_domain_id; dom++) 1614 if (ap_test_config_usage_domain(dom)) { 1615 qid = AP_MKQID(ap, dom); 1616 if (ap_queue_info(qid, &type, &func, &depth, &decfg)) 1617 break; 1618 } 1619 if (dom > ap_max_domain_id) { 1620 /* Could not find a valid APQN for this adapter */ 1621 if (ac) { 1622 AP_DBF_INFO( 1623 "%s(%d) no type info (no APQN found), rm card and queue devices\n", 1624 __func__, ap); 1625 ap_scan_rm_card_dev_and_queue_devs(ac); 1626 put_device(dev); 1627 } else { 1628 AP_DBF_DBG("%s(%d) no type info (no APQN found), ignored\n", 1629 __func__, ap); 1630 } 1631 return; 1632 } 1633 if (!type) { 1634 /* No apdater type info available, an unusable adapter */ 1635 if (ac) { 1636 AP_DBF_INFO("%s(%d) no valid type (0) info, rm card and queue devices\n", 1637 __func__, ap); 1638 ap_scan_rm_card_dev_and_queue_devs(ac); 1639 put_device(dev); 1640 } else { 1641 AP_DBF_DBG("%s(%d) no valid type (0) info, ignored\n", 1642 __func__, ap); 1643 } 1644 return; 1645 } 1646 1647 if (ac) { 1648 /* Check APQN against existing card device for changes */ 1649 if (ac->raw_hwtype != type) { 1650 AP_DBF_INFO("%s(%d) hwtype %d changed, rm card and queue devices\n", 1651 __func__, ap, type); 1652 ap_scan_rm_card_dev_and_queue_devs(ac); 1653 put_device(dev); 1654 ac = NULL; 1655 } else if (ac->functions != func) { 1656 AP_DBF_INFO("%s(%d) functions 0x%08x changed, rm card and queue devices\n", 1657 __func__, ap, type); 1658 ap_scan_rm_card_dev_and_queue_devs(ac); 1659 put_device(dev); 1660 ac = NULL; 1661 } else { 1662 if (decfg && ac->config) { 1663 ac->config = false; 1664 AP_DBF_INFO("%s(%d) card device config off\n", 1665 __func__, ap); 1666 1667 } 1668 if (!decfg && !ac->config) { 1669 ac->config = true; 1670 AP_DBF_INFO("%s(%d) card device config on\n", 1671 __func__, ap); 1672 } 1673 } 1674 } 1675 1676 if (!ac) { 1677 /* Build a new card device */ 1678 comp_type = ap_get_compatible_type(qid, type, func); 1679 if (!comp_type) { 1680 AP_DBF_WARN("%s(%d) type %d, can't get compatibility type\n", 1681 __func__, ap, type); 1682 return; 1683 } 1684 ac = ap_card_create(ap, depth, type, comp_type, func); 1685 if (!ac) { 1686 AP_DBF_WARN("%s(%d) ap_card_create() failed\n", 1687 __func__, ap); 1688 return; 1689 } 1690 ac->config = !decfg; 1691 dev = &ac->ap_dev.device; 1692 dev->bus = &ap_bus_type; 1693 dev->parent = ap_root_device; 1694 dev_set_name(dev, "card%02x", ap); 1695 /* Register the new card device with AP bus */ 1696 rc = device_register(dev); 1697 if (rc) { 1698 AP_DBF_WARN("%s(%d) device_register() failed\n", 1699 __func__, ap); 1700 put_device(dev); 1701 return; 1702 } 1703 /* get it and thus adjust reference counter */ 1704 get_device(dev); 1705 if (decfg) 1706 AP_DBF_INFO("%s(%d) new (decfg) card device type=%d func=0x%08x created\n", 1707 __func__, ap, type, func); 1708 else 1709 AP_DBF_INFO("%s(%d) new card device type=%d func=0x%08x created\n", 1710 __func__, ap, type, func); 1711 } 1712 1713 /* Verify the domains and the queue devices for this card */ 1714 ap_scan_domains(ac); 1715 1716 /* release the card device */ 1717 put_device(&ac->ap_dev.device); 1718 } 1719 1720 /** 1721 * ap_scan_bus(): Scan the AP bus for new devices 1722 * Runs periodically, workqueue timer (ap_config_time) 1723 */ 1724 static void ap_scan_bus(struct work_struct *unused) 1725 { 1726 int ap; 1727 1728 ap_fetch_qci_info(ap_qci_info); 1729 ap_select_domain(); 1730 1731 AP_DBF_DBG("%s running\n", __func__); 1732 1733 /* loop over all possible adapters */ 1734 for (ap = 0; ap <= ap_max_adapter_id; ap++) 1735 ap_scan_adapter(ap); 1736 1737 /* check if there is at least one queue available with default domain */ 1738 if (ap_domain_index >= 0) { 1739 struct device *dev = 1740 bus_find_device(&ap_bus_type, NULL, 1741 (void *)(long) ap_domain_index, 1742 __match_queue_device_with_queue_id); 1743 if (dev) 1744 put_device(dev); 1745 else 1746 AP_DBF_INFO("no queue device with default domain %d available\n", 1747 ap_domain_index); 1748 } 1749 1750 if (atomic64_inc_return(&ap_scan_bus_count) == 1) { 1751 AP_DBF(DBF_DEBUG, "%s init scan complete\n", __func__); 1752 ap_send_init_scan_done_uevent(); 1753 ap_check_bindings_complete(); 1754 } 1755 1756 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ); 1757 } 1758 1759 static void ap_config_timeout(struct timer_list *unused) 1760 { 1761 queue_work(system_long_wq, &ap_scan_work); 1762 } 1763 1764 static int __init ap_debug_init(void) 1765 { 1766 ap_dbf_info = debug_register("ap", 1, 1, 1767 DBF_MAX_SPRINTF_ARGS * sizeof(long)); 1768 debug_register_view(ap_dbf_info, &debug_sprintf_view); 1769 debug_set_level(ap_dbf_info, DBF_ERR); 1770 1771 return 0; 1772 } 1773 1774 static void __init ap_perms_init(void) 1775 { 1776 /* all resources useable if no kernel parameter string given */ 1777 memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm)); 1778 memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm)); 1779 memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm)); 1780 1781 /* apm kernel parameter string */ 1782 if (apm_str) { 1783 memset(&ap_perms.apm, 0, sizeof(ap_perms.apm)); 1784 ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES, 1785 &ap_perms_mutex); 1786 } 1787 1788 /* aqm kernel parameter string */ 1789 if (aqm_str) { 1790 memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm)); 1791 ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS, 1792 &ap_perms_mutex); 1793 } 1794 } 1795 1796 /** 1797 * ap_module_init(): The module initialization code. 1798 * 1799 * Initializes the module. 1800 */ 1801 static int __init ap_module_init(void) 1802 { 1803 int rc; 1804 1805 rc = ap_debug_init(); 1806 if (rc) 1807 return rc; 1808 1809 if (!ap_instructions_available()) { 1810 pr_warn("The hardware system does not support AP instructions\n"); 1811 return -ENODEV; 1812 } 1813 1814 /* init ap_queue hashtable */ 1815 hash_init(ap_queues); 1816 1817 /* set up the AP permissions (ioctls, ap and aq masks) */ 1818 ap_perms_init(); 1819 1820 /* Get AP configuration data if available */ 1821 ap_init_qci_info(); 1822 1823 /* check default domain setting */ 1824 if (ap_domain_index < -1 || ap_domain_index > ap_max_domain_id || 1825 (ap_domain_index >= 0 && 1826 !test_bit_inv(ap_domain_index, ap_perms.aqm))) { 1827 pr_warn("%d is not a valid cryptographic domain\n", 1828 ap_domain_index); 1829 ap_domain_index = -1; 1830 } 1831 1832 /* enable interrupts if available */ 1833 if (ap_interrupts_available()) { 1834 rc = register_adapter_interrupt(&ap_airq); 1835 ap_airq_flag = (rc == 0); 1836 } 1837 1838 /* Create /sys/bus/ap. */ 1839 rc = bus_register(&ap_bus_type); 1840 if (rc) 1841 goto out; 1842 1843 /* Create /sys/devices/ap. */ 1844 ap_root_device = root_device_register("ap"); 1845 rc = PTR_ERR_OR_ZERO(ap_root_device); 1846 if (rc) 1847 goto out_bus; 1848 ap_root_device->bus = &ap_bus_type; 1849 1850 /* Setup the AP bus rescan timer. */ 1851 timer_setup(&ap_config_timer, ap_config_timeout, 0); 1852 1853 /* 1854 * Setup the high resultion poll timer. 1855 * If we are running under z/VM adjust polling to z/VM polling rate. 1856 */ 1857 if (MACHINE_IS_VM) 1858 poll_timeout = 1500000; 1859 hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1860 ap_poll_timer.function = ap_poll_timeout; 1861 1862 /* Start the low priority AP bus poll thread. */ 1863 if (ap_thread_flag) { 1864 rc = ap_poll_thread_start(); 1865 if (rc) 1866 goto out_work; 1867 } 1868 1869 queue_work(system_long_wq, &ap_scan_work); 1870 1871 return 0; 1872 1873 out_work: 1874 hrtimer_cancel(&ap_poll_timer); 1875 root_device_unregister(ap_root_device); 1876 out_bus: 1877 bus_unregister(&ap_bus_type); 1878 out: 1879 if (ap_using_interrupts()) 1880 unregister_adapter_interrupt(&ap_airq); 1881 kfree(ap_qci_info); 1882 return rc; 1883 } 1884 device_initcall(ap_module_init); 1885