1 /* 2 * Copyright IBM Corp. 2006, 2012 3 * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com> 4 * Martin Schwidefsky <schwidefsky@de.ibm.com> 5 * Ralph Wuerthner <rwuerthn@de.ibm.com> 6 * Felix Beck <felix.beck@de.ibm.com> 7 * Holger Dengler <hd@linux.vnet.ibm.com> 8 * 9 * Adjunct processor bus. 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * This program is distributed in the hope that it will be useful, 17 * but WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 * GNU General Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program; if not, write to the Free Software 23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 24 */ 25 26 #define KMSG_COMPONENT "ap" 27 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 28 29 #include <linux/kernel_stat.h> 30 #include <linux/module.h> 31 #include <linux/init.h> 32 #include <linux/delay.h> 33 #include <linux/err.h> 34 #include <linux/interrupt.h> 35 #include <linux/workqueue.h> 36 #include <linux/slab.h> 37 #include <linux/notifier.h> 38 #include <linux/kthread.h> 39 #include <linux/mutex.h> 40 #include <linux/suspend.h> 41 #include <asm/reset.h> 42 #include <asm/airq.h> 43 #include <linux/atomic.h> 44 #include <asm/isc.h> 45 #include <linux/hrtimer.h> 46 #include <linux/ktime.h> 47 #include <asm/facility.h> 48 #include <linux/crypto.h> 49 50 #include "ap_bus.h" 51 52 /* 53 * Module description. 54 */ 55 MODULE_AUTHOR("IBM Corporation"); 56 MODULE_DESCRIPTION("Adjunct Processor Bus driver, " \ 57 "Copyright IBM Corp. 2006, 2012"); 58 MODULE_LICENSE("GPL"); 59 MODULE_ALIAS_CRYPTO("z90crypt"); 60 61 /* 62 * Module parameter 63 */ 64 int ap_domain_index = -1; /* Adjunct Processor Domain Index */ 65 module_param_named(domain, ap_domain_index, int, S_IRUSR|S_IRGRP); 66 MODULE_PARM_DESC(domain, "domain index for ap devices"); 67 EXPORT_SYMBOL(ap_domain_index); 68 69 static int ap_thread_flag = 0; 70 module_param_named(poll_thread, ap_thread_flag, int, S_IRUSR|S_IRGRP); 71 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off)."); 72 73 static struct device *ap_root_device = NULL; 74 static struct ap_config_info *ap_configuration; 75 static DEFINE_SPINLOCK(ap_device_list_lock); 76 static LIST_HEAD(ap_device_list); 77 static bool initialised; 78 79 /* 80 * Workqueue timer for bus rescan. 81 */ 82 static struct timer_list ap_config_timer; 83 static int ap_config_time = AP_CONFIG_TIME; 84 static void ap_scan_bus(struct work_struct *); 85 static DECLARE_WORK(ap_scan_work, ap_scan_bus); 86 87 /* 88 * Tasklet & timer for AP request polling and interrupts 89 */ 90 static void ap_tasklet_fn(unsigned long); 91 static DECLARE_TASKLET(ap_tasklet, ap_tasklet_fn, 0); 92 static atomic_t ap_poll_requests = ATOMIC_INIT(0); 93 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait); 94 static struct task_struct *ap_poll_kthread = NULL; 95 static DEFINE_MUTEX(ap_poll_thread_mutex); 96 static DEFINE_SPINLOCK(ap_poll_timer_lock); 97 static struct hrtimer ap_poll_timer; 98 /* In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds. 99 * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.*/ 100 static unsigned long long poll_timeout = 250000; 101 102 /* Suspend flag */ 103 static int ap_suspend_flag; 104 /* Maximum domain id */ 105 static int ap_max_domain_id; 106 /* Flag to check if domain was set through module parameter domain=. This is 107 * important when supsend and resume is done in a z/VM environment where the 108 * domain might change. */ 109 static int user_set_domain = 0; 110 static struct bus_type ap_bus_type; 111 112 /* Adapter interrupt definitions */ 113 static void ap_interrupt_handler(struct airq_struct *airq); 114 115 static int ap_airq_flag; 116 117 static struct airq_struct ap_airq = { 118 .handler = ap_interrupt_handler, 119 .isc = AP_ISC, 120 }; 121 122 /** 123 * ap_using_interrupts() - Returns non-zero if interrupt support is 124 * available. 125 */ 126 static inline int ap_using_interrupts(void) 127 { 128 return ap_airq_flag; 129 } 130 131 /** 132 * ap_intructions_available() - Test if AP instructions are available. 133 * 134 * Returns 0 if the AP instructions are installed. 135 */ 136 static inline int ap_instructions_available(void) 137 { 138 register unsigned long reg0 asm ("0") = AP_MKQID(0,0); 139 register unsigned long reg1 asm ("1") = -ENODEV; 140 register unsigned long reg2 asm ("2") = 0UL; 141 142 asm volatile( 143 " .long 0xb2af0000\n" /* PQAP(TAPQ) */ 144 "0: la %1,0\n" 145 "1:\n" 146 EX_TABLE(0b, 1b) 147 : "+d" (reg0), "+d" (reg1), "+d" (reg2) : : "cc" ); 148 return reg1; 149 } 150 151 /** 152 * ap_interrupts_available(): Test if AP interrupts are available. 153 * 154 * Returns 1 if AP interrupts are available. 155 */ 156 static int ap_interrupts_available(void) 157 { 158 return test_facility(65); 159 } 160 161 /** 162 * ap_configuration_available(): Test if AP configuration 163 * information is available. 164 * 165 * Returns 1 if AP configuration information is available. 166 */ 167 static int ap_configuration_available(void) 168 { 169 return test_facility(12); 170 } 171 172 static inline struct ap_queue_status 173 __pqap_tapq(ap_qid_t qid, unsigned long *info) 174 { 175 register unsigned long reg0 asm ("0") = qid; 176 register struct ap_queue_status reg1 asm ("1"); 177 register unsigned long reg2 asm ("2") = 0UL; 178 179 asm volatile(".long 0xb2af0000" /* PQAP(TAPQ) */ 180 : "+d" (reg0), "=d" (reg1), "+d" (reg2) : : "cc"); 181 *info = reg2; 182 return reg1; 183 } 184 185 /** 186 * ap_test_queue(): Test adjunct processor queue. 187 * @qid: The AP queue number 188 * @info: Pointer to queue descriptor 189 * 190 * Returns AP queue status structure. 191 */ 192 static inline struct ap_queue_status 193 ap_test_queue(ap_qid_t qid, unsigned long *info) 194 { 195 struct ap_queue_status aqs; 196 unsigned long _info; 197 198 if (test_facility(15)) 199 qid |= 1UL << 23; /* set APFT T bit*/ 200 aqs = __pqap_tapq(qid, &_info); 201 if (info) 202 *info = _info; 203 return aqs; 204 } 205 206 /** 207 * ap_reset_queue(): Reset adjunct processor queue. 208 * @qid: The AP queue number 209 * 210 * Returns AP queue status structure. 211 */ 212 static inline struct ap_queue_status ap_reset_queue(ap_qid_t qid) 213 { 214 register unsigned long reg0 asm ("0") = qid | 0x01000000UL; 215 register struct ap_queue_status reg1 asm ("1"); 216 register unsigned long reg2 asm ("2") = 0UL; 217 218 asm volatile( 219 ".long 0xb2af0000" /* PQAP(RAPQ) */ 220 : "+d" (reg0), "=d" (reg1), "+d" (reg2) : : "cc"); 221 return reg1; 222 } 223 224 /** 225 * ap_queue_interruption_control(): Enable interruption for a specific AP. 226 * @qid: The AP queue number 227 * @ind: The notification indicator byte 228 * 229 * Returns AP queue status. 230 */ 231 static inline struct ap_queue_status 232 ap_queue_interruption_control(ap_qid_t qid, void *ind) 233 { 234 register unsigned long reg0 asm ("0") = qid | 0x03000000UL; 235 register unsigned long reg1_in asm ("1") = 0x0000800000000000UL | AP_ISC; 236 register struct ap_queue_status reg1_out asm ("1"); 237 register void *reg2 asm ("2") = ind; 238 asm volatile( 239 ".long 0xb2af0000" /* PQAP(AQIC) */ 240 : "+d" (reg0), "+d" (reg1_in), "=d" (reg1_out), "+d" (reg2) 241 : 242 : "cc" ); 243 return reg1_out; 244 } 245 246 /** 247 * ap_query_configuration(): Get AP configuration data 248 * 249 * Returns 0 on success, or -EOPNOTSUPP. 250 */ 251 static inline int __ap_query_configuration(void) 252 { 253 register unsigned long reg0 asm ("0") = 0x04000000UL; 254 register unsigned long reg1 asm ("1") = -EINVAL; 255 register void *reg2 asm ("2") = (void *) ap_configuration; 256 257 asm volatile( 258 ".long 0xb2af0000\n" /* PQAP(QCI) */ 259 "0: la %1,0\n" 260 "1:\n" 261 EX_TABLE(0b, 1b) 262 : "+d" (reg0), "+d" (reg1), "+d" (reg2) 263 : 264 : "cc"); 265 266 return reg1; 267 } 268 269 static inline int ap_query_configuration(void) 270 { 271 if (!ap_configuration) 272 return -EOPNOTSUPP; 273 return __ap_query_configuration(); 274 } 275 276 /** 277 * ap_init_configuration(): Allocate and query configuration array. 278 */ 279 static void ap_init_configuration(void) 280 { 281 if (!ap_configuration_available()) 282 return; 283 284 ap_configuration = kzalloc(sizeof(*ap_configuration), GFP_KERNEL); 285 if (!ap_configuration) 286 return; 287 if (ap_query_configuration() != 0) { 288 kfree(ap_configuration); 289 ap_configuration = NULL; 290 return; 291 } 292 } 293 294 /* 295 * ap_test_config(): helper function to extract the nrth bit 296 * within the unsigned int array field. 297 */ 298 static inline int ap_test_config(unsigned int *field, unsigned int nr) 299 { 300 return ap_test_bit((field + (nr >> 5)), (nr & 0x1f)); 301 } 302 303 /* 304 * ap_test_config_card_id(): Test, whether an AP card ID is configured. 305 * @id AP card ID 306 * 307 * Returns 0 if the card is not configured 308 * 1 if the card is configured or 309 * if the configuration information is not available 310 */ 311 static inline int ap_test_config_card_id(unsigned int id) 312 { 313 if (!ap_configuration) /* QCI not supported */ 314 return 1; 315 return ap_test_config(ap_configuration->apm, id); 316 } 317 318 /* 319 * ap_test_config_domain(): Test, whether an AP usage domain is configured. 320 * @domain AP usage domain ID 321 * 322 * Returns 0 if the usage domain is not configured 323 * 1 if the usage domain is configured or 324 * if the configuration information is not available 325 */ 326 static inline int ap_test_config_domain(unsigned int domain) 327 { 328 if (!ap_configuration) /* QCI not supported */ 329 return domain < 16; 330 return ap_test_config(ap_configuration->aqm, domain); 331 } 332 333 /** 334 * ap_queue_enable_interruption(): Enable interruption on an AP. 335 * @qid: The AP queue number 336 * @ind: the notification indicator byte 337 * 338 * Enables interruption on AP queue via ap_queue_interruption_control(). Based 339 * on the return value it waits a while and tests the AP queue if interrupts 340 * have been switched on using ap_test_queue(). 341 */ 342 static int ap_queue_enable_interruption(struct ap_device *ap_dev, void *ind) 343 { 344 struct ap_queue_status status; 345 346 status = ap_queue_interruption_control(ap_dev->qid, ind); 347 switch (status.response_code) { 348 case AP_RESPONSE_NORMAL: 349 case AP_RESPONSE_OTHERWISE_CHANGED: 350 return 0; 351 case AP_RESPONSE_Q_NOT_AVAIL: 352 case AP_RESPONSE_DECONFIGURED: 353 case AP_RESPONSE_CHECKSTOPPED: 354 case AP_RESPONSE_INVALID_ADDRESS: 355 pr_err("Registering adapter interrupts for AP %d failed\n", 356 AP_QID_DEVICE(ap_dev->qid)); 357 return -EOPNOTSUPP; 358 case AP_RESPONSE_RESET_IN_PROGRESS: 359 case AP_RESPONSE_BUSY: 360 default: 361 return -EBUSY; 362 } 363 } 364 365 static inline struct ap_queue_status 366 __nqap(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length) 367 { 368 typedef struct { char _[length]; } msgblock; 369 register unsigned long reg0 asm ("0") = qid | 0x40000000UL; 370 register struct ap_queue_status reg1 asm ("1"); 371 register unsigned long reg2 asm ("2") = (unsigned long) msg; 372 register unsigned long reg3 asm ("3") = (unsigned long) length; 373 register unsigned long reg4 asm ("4") = (unsigned int) (psmid >> 32); 374 register unsigned long reg5 asm ("5") = psmid & 0xffffffff; 375 376 asm volatile ( 377 "0: .long 0xb2ad0042\n" /* NQAP */ 378 " brc 2,0b" 379 : "+d" (reg0), "=d" (reg1), "+d" (reg2), "+d" (reg3) 380 : "d" (reg4), "d" (reg5), "m" (*(msgblock *) msg) 381 : "cc"); 382 return reg1; 383 } 384 385 /** 386 * __ap_send(): Send message to adjunct processor queue. 387 * @qid: The AP queue number 388 * @psmid: The program supplied message identifier 389 * @msg: The message text 390 * @length: The message length 391 * @special: Special Bit 392 * 393 * Returns AP queue status structure. 394 * Condition code 1 on NQAP can't happen because the L bit is 1. 395 * Condition code 2 on NQAP also means the send is incomplete, 396 * because a segment boundary was reached. The NQAP is repeated. 397 */ 398 static inline struct ap_queue_status 399 __ap_send(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length, 400 unsigned int special) 401 { 402 if (special == 1) 403 qid |= 0x400000UL; 404 return __nqap(qid, psmid, msg, length); 405 } 406 407 int ap_send(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length) 408 { 409 struct ap_queue_status status; 410 411 status = __ap_send(qid, psmid, msg, length, 0); 412 switch (status.response_code) { 413 case AP_RESPONSE_NORMAL: 414 return 0; 415 case AP_RESPONSE_Q_FULL: 416 case AP_RESPONSE_RESET_IN_PROGRESS: 417 return -EBUSY; 418 case AP_RESPONSE_REQ_FAC_NOT_INST: 419 return -EINVAL; 420 default: /* Device is gone. */ 421 return -ENODEV; 422 } 423 } 424 EXPORT_SYMBOL(ap_send); 425 426 /** 427 * __ap_recv(): Receive message from adjunct processor queue. 428 * @qid: The AP queue number 429 * @psmid: Pointer to program supplied message identifier 430 * @msg: The message text 431 * @length: The message length 432 * 433 * Returns AP queue status structure. 434 * Condition code 1 on DQAP means the receive has taken place 435 * but only partially. The response is incomplete, hence the 436 * DQAP is repeated. 437 * Condition code 2 on DQAP also means the receive is incomplete, 438 * this time because a segment boundary was reached. Again, the 439 * DQAP is repeated. 440 * Note that gpr2 is used by the DQAP instruction to keep track of 441 * any 'residual' length, in case the instruction gets interrupted. 442 * Hence it gets zeroed before the instruction. 443 */ 444 static inline struct ap_queue_status 445 __ap_recv(ap_qid_t qid, unsigned long long *psmid, void *msg, size_t length) 446 { 447 typedef struct { char _[length]; } msgblock; 448 register unsigned long reg0 asm("0") = qid | 0x80000000UL; 449 register struct ap_queue_status reg1 asm ("1"); 450 register unsigned long reg2 asm("2") = 0UL; 451 register unsigned long reg4 asm("4") = (unsigned long) msg; 452 register unsigned long reg5 asm("5") = (unsigned long) length; 453 register unsigned long reg6 asm("6") = 0UL; 454 register unsigned long reg7 asm("7") = 0UL; 455 456 457 asm volatile( 458 "0: .long 0xb2ae0064\n" /* DQAP */ 459 " brc 6,0b\n" 460 : "+d" (reg0), "=d" (reg1), "+d" (reg2), 461 "+d" (reg4), "+d" (reg5), "+d" (reg6), "+d" (reg7), 462 "=m" (*(msgblock *) msg) : : "cc" ); 463 *psmid = (((unsigned long long) reg6) << 32) + reg7; 464 return reg1; 465 } 466 467 int ap_recv(ap_qid_t qid, unsigned long long *psmid, void *msg, size_t length) 468 { 469 struct ap_queue_status status; 470 471 if (msg == NULL) 472 return -EINVAL; 473 status = __ap_recv(qid, psmid, msg, length); 474 switch (status.response_code) { 475 case AP_RESPONSE_NORMAL: 476 return 0; 477 case AP_RESPONSE_NO_PENDING_REPLY: 478 if (status.queue_empty) 479 return -ENOENT; 480 return -EBUSY; 481 case AP_RESPONSE_RESET_IN_PROGRESS: 482 return -EBUSY; 483 default: 484 return -ENODEV; 485 } 486 } 487 EXPORT_SYMBOL(ap_recv); 488 489 /** 490 * ap_query_queue(): Check if an AP queue is available. 491 * @qid: The AP queue number 492 * @queue_depth: Pointer to queue depth value 493 * @device_type: Pointer to device type value 494 * @facilities: Pointer to facility indicator 495 */ 496 static int ap_query_queue(ap_qid_t qid, int *queue_depth, int *device_type, 497 unsigned int *facilities) 498 { 499 struct ap_queue_status status; 500 unsigned long info; 501 int nd; 502 503 if (!ap_test_config_card_id(AP_QID_DEVICE(qid))) 504 return -ENODEV; 505 506 status = ap_test_queue(qid, &info); 507 switch (status.response_code) { 508 case AP_RESPONSE_NORMAL: 509 *queue_depth = (int)(info & 0xff); 510 *device_type = (int)((info >> 24) & 0xff); 511 *facilities = (unsigned int)(info >> 32); 512 /* Update maximum domain id */ 513 nd = (info >> 16) & 0xff; 514 if ((info & (1UL << 57)) && nd > 0) 515 ap_max_domain_id = nd; 516 return 0; 517 case AP_RESPONSE_Q_NOT_AVAIL: 518 case AP_RESPONSE_DECONFIGURED: 519 case AP_RESPONSE_CHECKSTOPPED: 520 case AP_RESPONSE_INVALID_ADDRESS: 521 return -ENODEV; 522 case AP_RESPONSE_RESET_IN_PROGRESS: 523 case AP_RESPONSE_OTHERWISE_CHANGED: 524 case AP_RESPONSE_BUSY: 525 return -EBUSY; 526 default: 527 BUG(); 528 } 529 } 530 531 /* State machine definitions and helpers */ 532 533 static void ap_sm_wait(enum ap_wait wait) 534 { 535 ktime_t hr_time; 536 537 switch (wait) { 538 case AP_WAIT_AGAIN: 539 case AP_WAIT_INTERRUPT: 540 if (ap_using_interrupts()) 541 break; 542 if (ap_poll_kthread) { 543 wake_up(&ap_poll_wait); 544 break; 545 } 546 /* Fall through */ 547 case AP_WAIT_TIMEOUT: 548 spin_lock_bh(&ap_poll_timer_lock); 549 if (!hrtimer_is_queued(&ap_poll_timer)) { 550 hr_time = ktime_set(0, poll_timeout); 551 hrtimer_forward_now(&ap_poll_timer, hr_time); 552 hrtimer_restart(&ap_poll_timer); 553 } 554 spin_unlock_bh(&ap_poll_timer_lock); 555 break; 556 case AP_WAIT_NONE: 557 default: 558 break; 559 } 560 } 561 562 static enum ap_wait ap_sm_nop(struct ap_device *ap_dev) 563 { 564 return AP_WAIT_NONE; 565 } 566 567 /** 568 * ap_sm_recv(): Receive pending reply messages from an AP device but do 569 * not change the state of the device. 570 * @ap_dev: pointer to the AP device 571 * 572 * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT 573 */ 574 static struct ap_queue_status ap_sm_recv(struct ap_device *ap_dev) 575 { 576 struct ap_queue_status status; 577 struct ap_message *ap_msg; 578 579 status = __ap_recv(ap_dev->qid, &ap_dev->reply->psmid, 580 ap_dev->reply->message, ap_dev->reply->length); 581 switch (status.response_code) { 582 case AP_RESPONSE_NORMAL: 583 atomic_dec(&ap_poll_requests); 584 ap_dev->queue_count--; 585 if (ap_dev->queue_count > 0) 586 mod_timer(&ap_dev->timeout, 587 jiffies + ap_dev->drv->request_timeout); 588 list_for_each_entry(ap_msg, &ap_dev->pendingq, list) { 589 if (ap_msg->psmid != ap_dev->reply->psmid) 590 continue; 591 list_del_init(&ap_msg->list); 592 ap_dev->pendingq_count--; 593 ap_msg->receive(ap_dev, ap_msg, ap_dev->reply); 594 break; 595 } 596 case AP_RESPONSE_NO_PENDING_REPLY: 597 if (!status.queue_empty || ap_dev->queue_count <= 0) 598 break; 599 /* The card shouldn't forget requests but who knows. */ 600 atomic_sub(ap_dev->queue_count, &ap_poll_requests); 601 ap_dev->queue_count = 0; 602 list_splice_init(&ap_dev->pendingq, &ap_dev->requestq); 603 ap_dev->requestq_count += ap_dev->pendingq_count; 604 ap_dev->pendingq_count = 0; 605 break; 606 default: 607 break; 608 } 609 return status; 610 } 611 612 /** 613 * ap_sm_read(): Receive pending reply messages from an AP device. 614 * @ap_dev: pointer to the AP device 615 * 616 * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT 617 */ 618 static enum ap_wait ap_sm_read(struct ap_device *ap_dev) 619 { 620 struct ap_queue_status status; 621 622 if (!ap_dev->reply) 623 return AP_WAIT_NONE; 624 status = ap_sm_recv(ap_dev); 625 switch (status.response_code) { 626 case AP_RESPONSE_NORMAL: 627 if (ap_dev->queue_count > 0) { 628 ap_dev->state = AP_STATE_WORKING; 629 return AP_WAIT_AGAIN; 630 } 631 ap_dev->state = AP_STATE_IDLE; 632 return AP_WAIT_NONE; 633 case AP_RESPONSE_NO_PENDING_REPLY: 634 if (ap_dev->queue_count > 0) 635 return AP_WAIT_INTERRUPT; 636 ap_dev->state = AP_STATE_IDLE; 637 return AP_WAIT_NONE; 638 default: 639 ap_dev->state = AP_STATE_BORKED; 640 return AP_WAIT_NONE; 641 } 642 } 643 644 /** 645 * ap_sm_suspend_read(): Receive pending reply messages from an AP device 646 * without changing the device state in between. In suspend mode we don't 647 * allow sending new requests, therefore just fetch pending replies. 648 * @ap_dev: pointer to the AP device 649 * 650 * Returns AP_WAIT_NONE or AP_WAIT_AGAIN 651 */ 652 static enum ap_wait ap_sm_suspend_read(struct ap_device *ap_dev) 653 { 654 struct ap_queue_status status; 655 656 if (!ap_dev->reply) 657 return AP_WAIT_NONE; 658 status = ap_sm_recv(ap_dev); 659 switch (status.response_code) { 660 case AP_RESPONSE_NORMAL: 661 if (ap_dev->queue_count > 0) 662 return AP_WAIT_AGAIN; 663 /* fall through */ 664 default: 665 return AP_WAIT_NONE; 666 } 667 } 668 669 /** 670 * ap_sm_write(): Send messages from the request queue to an AP device. 671 * @ap_dev: pointer to the AP device 672 * 673 * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT 674 */ 675 static enum ap_wait ap_sm_write(struct ap_device *ap_dev) 676 { 677 struct ap_queue_status status; 678 struct ap_message *ap_msg; 679 680 if (ap_dev->requestq_count <= 0) 681 return AP_WAIT_NONE; 682 /* Start the next request on the queue. */ 683 ap_msg = list_entry(ap_dev->requestq.next, struct ap_message, list); 684 status = __ap_send(ap_dev->qid, ap_msg->psmid, 685 ap_msg->message, ap_msg->length, ap_msg->special); 686 switch (status.response_code) { 687 case AP_RESPONSE_NORMAL: 688 atomic_inc(&ap_poll_requests); 689 ap_dev->queue_count++; 690 if (ap_dev->queue_count == 1) 691 mod_timer(&ap_dev->timeout, 692 jiffies + ap_dev->drv->request_timeout); 693 list_move_tail(&ap_msg->list, &ap_dev->pendingq); 694 ap_dev->requestq_count--; 695 ap_dev->pendingq_count++; 696 if (ap_dev->queue_count < ap_dev->queue_depth) { 697 ap_dev->state = AP_STATE_WORKING; 698 return AP_WAIT_AGAIN; 699 } 700 /* fall through */ 701 case AP_RESPONSE_Q_FULL: 702 ap_dev->state = AP_STATE_QUEUE_FULL; 703 return AP_WAIT_INTERRUPT; 704 case AP_RESPONSE_RESET_IN_PROGRESS: 705 ap_dev->state = AP_STATE_RESET_WAIT; 706 return AP_WAIT_TIMEOUT; 707 case AP_RESPONSE_MESSAGE_TOO_BIG: 708 case AP_RESPONSE_REQ_FAC_NOT_INST: 709 list_del_init(&ap_msg->list); 710 ap_dev->requestq_count--; 711 ap_msg->rc = -EINVAL; 712 ap_msg->receive(ap_dev, ap_msg, NULL); 713 return AP_WAIT_AGAIN; 714 default: 715 ap_dev->state = AP_STATE_BORKED; 716 return AP_WAIT_NONE; 717 } 718 } 719 720 /** 721 * ap_sm_read_write(): Send and receive messages to/from an AP device. 722 * @ap_dev: pointer to the AP device 723 * 724 * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT 725 */ 726 static enum ap_wait ap_sm_read_write(struct ap_device *ap_dev) 727 { 728 return min(ap_sm_read(ap_dev), ap_sm_write(ap_dev)); 729 } 730 731 /** 732 * ap_sm_reset(): Reset an AP queue. 733 * @qid: The AP queue number 734 * 735 * Submit the Reset command to an AP queue. 736 */ 737 static enum ap_wait ap_sm_reset(struct ap_device *ap_dev) 738 { 739 struct ap_queue_status status; 740 741 status = ap_reset_queue(ap_dev->qid); 742 switch (status.response_code) { 743 case AP_RESPONSE_NORMAL: 744 case AP_RESPONSE_RESET_IN_PROGRESS: 745 ap_dev->state = AP_STATE_RESET_WAIT; 746 ap_dev->interrupt = AP_INTR_DISABLED; 747 return AP_WAIT_TIMEOUT; 748 case AP_RESPONSE_BUSY: 749 return AP_WAIT_TIMEOUT; 750 case AP_RESPONSE_Q_NOT_AVAIL: 751 case AP_RESPONSE_DECONFIGURED: 752 case AP_RESPONSE_CHECKSTOPPED: 753 default: 754 ap_dev->state = AP_STATE_BORKED; 755 return AP_WAIT_NONE; 756 } 757 } 758 759 /** 760 * ap_sm_reset_wait(): Test queue for completion of the reset operation 761 * @ap_dev: pointer to the AP device 762 * 763 * Returns AP_POLL_IMMEDIATELY, AP_POLL_AFTER_TIMEROUT or 0. 764 */ 765 static enum ap_wait ap_sm_reset_wait(struct ap_device *ap_dev) 766 { 767 struct ap_queue_status status; 768 unsigned long info; 769 770 if (ap_dev->queue_count > 0 && ap_dev->reply) 771 /* Try to read a completed message and get the status */ 772 status = ap_sm_recv(ap_dev); 773 else 774 /* Get the status with TAPQ */ 775 status = ap_test_queue(ap_dev->qid, &info); 776 777 switch (status.response_code) { 778 case AP_RESPONSE_NORMAL: 779 if (ap_using_interrupts() && 780 ap_queue_enable_interruption(ap_dev, 781 ap_airq.lsi_ptr) == 0) 782 ap_dev->state = AP_STATE_SETIRQ_WAIT; 783 else 784 ap_dev->state = (ap_dev->queue_count > 0) ? 785 AP_STATE_WORKING : AP_STATE_IDLE; 786 return AP_WAIT_AGAIN; 787 case AP_RESPONSE_BUSY: 788 case AP_RESPONSE_RESET_IN_PROGRESS: 789 return AP_WAIT_TIMEOUT; 790 case AP_RESPONSE_Q_NOT_AVAIL: 791 case AP_RESPONSE_DECONFIGURED: 792 case AP_RESPONSE_CHECKSTOPPED: 793 default: 794 ap_dev->state = AP_STATE_BORKED; 795 return AP_WAIT_NONE; 796 } 797 } 798 799 /** 800 * ap_sm_setirq_wait(): Test queue for completion of the irq enablement 801 * @ap_dev: pointer to the AP device 802 * 803 * Returns AP_POLL_IMMEDIATELY, AP_POLL_AFTER_TIMEROUT or 0. 804 */ 805 static enum ap_wait ap_sm_setirq_wait(struct ap_device *ap_dev) 806 { 807 struct ap_queue_status status; 808 unsigned long info; 809 810 if (ap_dev->queue_count > 0 && ap_dev->reply) 811 /* Try to read a completed message and get the status */ 812 status = ap_sm_recv(ap_dev); 813 else 814 /* Get the status with TAPQ */ 815 status = ap_test_queue(ap_dev->qid, &info); 816 817 if (status.int_enabled == 1) { 818 /* Irqs are now enabled */ 819 ap_dev->interrupt = AP_INTR_ENABLED; 820 ap_dev->state = (ap_dev->queue_count > 0) ? 821 AP_STATE_WORKING : AP_STATE_IDLE; 822 } 823 824 switch (status.response_code) { 825 case AP_RESPONSE_NORMAL: 826 if (ap_dev->queue_count > 0) 827 return AP_WAIT_AGAIN; 828 /* fallthrough */ 829 case AP_RESPONSE_NO_PENDING_REPLY: 830 return AP_WAIT_TIMEOUT; 831 default: 832 ap_dev->state = AP_STATE_BORKED; 833 return AP_WAIT_NONE; 834 } 835 } 836 837 /* 838 * AP state machine jump table 839 */ 840 static ap_func_t *ap_jumptable[NR_AP_STATES][NR_AP_EVENTS] = { 841 [AP_STATE_RESET_START] = { 842 [AP_EVENT_POLL] = ap_sm_reset, 843 [AP_EVENT_TIMEOUT] = ap_sm_nop, 844 }, 845 [AP_STATE_RESET_WAIT] = { 846 [AP_EVENT_POLL] = ap_sm_reset_wait, 847 [AP_EVENT_TIMEOUT] = ap_sm_nop, 848 }, 849 [AP_STATE_SETIRQ_WAIT] = { 850 [AP_EVENT_POLL] = ap_sm_setirq_wait, 851 [AP_EVENT_TIMEOUT] = ap_sm_nop, 852 }, 853 [AP_STATE_IDLE] = { 854 [AP_EVENT_POLL] = ap_sm_write, 855 [AP_EVENT_TIMEOUT] = ap_sm_nop, 856 }, 857 [AP_STATE_WORKING] = { 858 [AP_EVENT_POLL] = ap_sm_read_write, 859 [AP_EVENT_TIMEOUT] = ap_sm_reset, 860 }, 861 [AP_STATE_QUEUE_FULL] = { 862 [AP_EVENT_POLL] = ap_sm_read, 863 [AP_EVENT_TIMEOUT] = ap_sm_reset, 864 }, 865 [AP_STATE_SUSPEND_WAIT] = { 866 [AP_EVENT_POLL] = ap_sm_suspend_read, 867 [AP_EVENT_TIMEOUT] = ap_sm_nop, 868 }, 869 [AP_STATE_BORKED] = { 870 [AP_EVENT_POLL] = ap_sm_nop, 871 [AP_EVENT_TIMEOUT] = ap_sm_nop, 872 }, 873 }; 874 875 static inline enum ap_wait ap_sm_event(struct ap_device *ap_dev, 876 enum ap_event event) 877 { 878 return ap_jumptable[ap_dev->state][event](ap_dev); 879 } 880 881 static inline enum ap_wait ap_sm_event_loop(struct ap_device *ap_dev, 882 enum ap_event event) 883 { 884 enum ap_wait wait; 885 886 while ((wait = ap_sm_event(ap_dev, event)) == AP_WAIT_AGAIN) 887 ; 888 return wait; 889 } 890 891 /** 892 * ap_request_timeout(): Handling of request timeouts 893 * @data: Holds the AP device. 894 * 895 * Handles request timeouts. 896 */ 897 static void ap_request_timeout(unsigned long data) 898 { 899 struct ap_device *ap_dev = (struct ap_device *) data; 900 901 if (ap_suspend_flag) 902 return; 903 spin_lock_bh(&ap_dev->lock); 904 ap_sm_wait(ap_sm_event(ap_dev, AP_EVENT_TIMEOUT)); 905 spin_unlock_bh(&ap_dev->lock); 906 } 907 908 /** 909 * ap_poll_timeout(): AP receive polling for finished AP requests. 910 * @unused: Unused pointer. 911 * 912 * Schedules the AP tasklet using a high resolution timer. 913 */ 914 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused) 915 { 916 if (!ap_suspend_flag) 917 tasklet_schedule(&ap_tasklet); 918 return HRTIMER_NORESTART; 919 } 920 921 /** 922 * ap_interrupt_handler() - Schedule ap_tasklet on interrupt 923 * @airq: pointer to adapter interrupt descriptor 924 */ 925 static void ap_interrupt_handler(struct airq_struct *airq) 926 { 927 inc_irq_stat(IRQIO_APB); 928 if (!ap_suspend_flag) 929 tasklet_schedule(&ap_tasklet); 930 } 931 932 /** 933 * ap_tasklet_fn(): Tasklet to poll all AP devices. 934 * @dummy: Unused variable 935 * 936 * Poll all AP devices on the bus. 937 */ 938 static void ap_tasklet_fn(unsigned long dummy) 939 { 940 struct ap_device *ap_dev; 941 enum ap_wait wait = AP_WAIT_NONE; 942 943 /* Reset the indicator if interrupts are used. Thus new interrupts can 944 * be received. Doing it in the beginning of the tasklet is therefor 945 * important that no requests on any AP get lost. 946 */ 947 if (ap_using_interrupts()) 948 xchg(ap_airq.lsi_ptr, 0); 949 950 spin_lock(&ap_device_list_lock); 951 list_for_each_entry(ap_dev, &ap_device_list, list) { 952 spin_lock_bh(&ap_dev->lock); 953 wait = min(wait, ap_sm_event_loop(ap_dev, AP_EVENT_POLL)); 954 spin_unlock_bh(&ap_dev->lock); 955 } 956 spin_unlock(&ap_device_list_lock); 957 ap_sm_wait(wait); 958 } 959 960 /** 961 * ap_poll_thread(): Thread that polls for finished requests. 962 * @data: Unused pointer 963 * 964 * AP bus poll thread. The purpose of this thread is to poll for 965 * finished requests in a loop if there is a "free" cpu - that is 966 * a cpu that doesn't have anything better to do. The polling stops 967 * as soon as there is another task or if all messages have been 968 * delivered. 969 */ 970 static int ap_poll_thread(void *data) 971 { 972 DECLARE_WAITQUEUE(wait, current); 973 974 set_user_nice(current, MAX_NICE); 975 set_freezable(); 976 while (!kthread_should_stop()) { 977 add_wait_queue(&ap_poll_wait, &wait); 978 set_current_state(TASK_INTERRUPTIBLE); 979 if (ap_suspend_flag || 980 atomic_read(&ap_poll_requests) <= 0) { 981 schedule(); 982 try_to_freeze(); 983 } 984 set_current_state(TASK_RUNNING); 985 remove_wait_queue(&ap_poll_wait, &wait); 986 if (need_resched()) { 987 schedule(); 988 try_to_freeze(); 989 continue; 990 } 991 ap_tasklet_fn(0); 992 } while (!kthread_should_stop()); 993 return 0; 994 } 995 996 static int ap_poll_thread_start(void) 997 { 998 int rc; 999 1000 if (ap_using_interrupts() || ap_poll_kthread) 1001 return 0; 1002 mutex_lock(&ap_poll_thread_mutex); 1003 ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll"); 1004 rc = PTR_RET(ap_poll_kthread); 1005 if (rc) 1006 ap_poll_kthread = NULL; 1007 mutex_unlock(&ap_poll_thread_mutex); 1008 return rc; 1009 } 1010 1011 static void ap_poll_thread_stop(void) 1012 { 1013 if (!ap_poll_kthread) 1014 return; 1015 mutex_lock(&ap_poll_thread_mutex); 1016 kthread_stop(ap_poll_kthread); 1017 ap_poll_kthread = NULL; 1018 mutex_unlock(&ap_poll_thread_mutex); 1019 } 1020 1021 /** 1022 * ap_queue_message(): Queue a request to an AP device. 1023 * @ap_dev: The AP device to queue the message to 1024 * @ap_msg: The message that is to be added 1025 */ 1026 void ap_queue_message(struct ap_device *ap_dev, struct ap_message *ap_msg) 1027 { 1028 /* For asynchronous message handling a valid receive-callback 1029 * is required. */ 1030 BUG_ON(!ap_msg->receive); 1031 1032 spin_lock_bh(&ap_dev->lock); 1033 /* Queue the message. */ 1034 list_add_tail(&ap_msg->list, &ap_dev->requestq); 1035 ap_dev->requestq_count++; 1036 ap_dev->total_request_count++; 1037 /* Send/receive as many request from the queue as possible. */ 1038 ap_sm_wait(ap_sm_event_loop(ap_dev, AP_EVENT_POLL)); 1039 spin_unlock_bh(&ap_dev->lock); 1040 } 1041 EXPORT_SYMBOL(ap_queue_message); 1042 1043 /** 1044 * ap_cancel_message(): Cancel a crypto request. 1045 * @ap_dev: The AP device that has the message queued 1046 * @ap_msg: The message that is to be removed 1047 * 1048 * Cancel a crypto request. This is done by removing the request 1049 * from the device pending or request queue. Note that the 1050 * request stays on the AP queue. When it finishes the message 1051 * reply will be discarded because the psmid can't be found. 1052 */ 1053 void ap_cancel_message(struct ap_device *ap_dev, struct ap_message *ap_msg) 1054 { 1055 struct ap_message *tmp; 1056 1057 spin_lock_bh(&ap_dev->lock); 1058 if (!list_empty(&ap_msg->list)) { 1059 list_for_each_entry(tmp, &ap_dev->pendingq, list) 1060 if (tmp->psmid == ap_msg->psmid) { 1061 ap_dev->pendingq_count--; 1062 goto found; 1063 } 1064 ap_dev->requestq_count--; 1065 found: 1066 list_del_init(&ap_msg->list); 1067 } 1068 spin_unlock_bh(&ap_dev->lock); 1069 } 1070 EXPORT_SYMBOL(ap_cancel_message); 1071 1072 /* 1073 * AP device related attributes. 1074 */ 1075 static ssize_t ap_hwtype_show(struct device *dev, 1076 struct device_attribute *attr, char *buf) 1077 { 1078 struct ap_device *ap_dev = to_ap_dev(dev); 1079 return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->device_type); 1080 } 1081 1082 static DEVICE_ATTR(hwtype, 0444, ap_hwtype_show, NULL); 1083 1084 static ssize_t ap_raw_hwtype_show(struct device *dev, 1085 struct device_attribute *attr, char *buf) 1086 { 1087 struct ap_device *ap_dev = to_ap_dev(dev); 1088 1089 return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->raw_hwtype); 1090 } 1091 1092 static DEVICE_ATTR(raw_hwtype, 0444, ap_raw_hwtype_show, NULL); 1093 1094 static ssize_t ap_depth_show(struct device *dev, struct device_attribute *attr, 1095 char *buf) 1096 { 1097 struct ap_device *ap_dev = to_ap_dev(dev); 1098 return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->queue_depth); 1099 } 1100 1101 static DEVICE_ATTR(depth, 0444, ap_depth_show, NULL); 1102 static ssize_t ap_request_count_show(struct device *dev, 1103 struct device_attribute *attr, 1104 char *buf) 1105 { 1106 struct ap_device *ap_dev = to_ap_dev(dev); 1107 int rc; 1108 1109 spin_lock_bh(&ap_dev->lock); 1110 rc = snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->total_request_count); 1111 spin_unlock_bh(&ap_dev->lock); 1112 return rc; 1113 } 1114 1115 static DEVICE_ATTR(request_count, 0444, ap_request_count_show, NULL); 1116 1117 static ssize_t ap_requestq_count_show(struct device *dev, 1118 struct device_attribute *attr, char *buf) 1119 { 1120 struct ap_device *ap_dev = to_ap_dev(dev); 1121 int rc; 1122 1123 spin_lock_bh(&ap_dev->lock); 1124 rc = snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->requestq_count); 1125 spin_unlock_bh(&ap_dev->lock); 1126 return rc; 1127 } 1128 1129 static DEVICE_ATTR(requestq_count, 0444, ap_requestq_count_show, NULL); 1130 1131 static ssize_t ap_pendingq_count_show(struct device *dev, 1132 struct device_attribute *attr, char *buf) 1133 { 1134 struct ap_device *ap_dev = to_ap_dev(dev); 1135 int rc; 1136 1137 spin_lock_bh(&ap_dev->lock); 1138 rc = snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->pendingq_count); 1139 spin_unlock_bh(&ap_dev->lock); 1140 return rc; 1141 } 1142 1143 static DEVICE_ATTR(pendingq_count, 0444, ap_pendingq_count_show, NULL); 1144 1145 static ssize_t ap_reset_show(struct device *dev, 1146 struct device_attribute *attr, char *buf) 1147 { 1148 struct ap_device *ap_dev = to_ap_dev(dev); 1149 int rc = 0; 1150 1151 spin_lock_bh(&ap_dev->lock); 1152 switch (ap_dev->state) { 1153 case AP_STATE_RESET_START: 1154 case AP_STATE_RESET_WAIT: 1155 rc = snprintf(buf, PAGE_SIZE, "Reset in progress.\n"); 1156 break; 1157 case AP_STATE_WORKING: 1158 case AP_STATE_QUEUE_FULL: 1159 rc = snprintf(buf, PAGE_SIZE, "Reset Timer armed.\n"); 1160 break; 1161 default: 1162 rc = snprintf(buf, PAGE_SIZE, "No Reset Timer set.\n"); 1163 } 1164 spin_unlock_bh(&ap_dev->lock); 1165 return rc; 1166 } 1167 1168 static DEVICE_ATTR(reset, 0444, ap_reset_show, NULL); 1169 1170 static ssize_t ap_interrupt_show(struct device *dev, 1171 struct device_attribute *attr, char *buf) 1172 { 1173 struct ap_device *ap_dev = to_ap_dev(dev); 1174 int rc = 0; 1175 1176 spin_lock_bh(&ap_dev->lock); 1177 if (ap_dev->state == AP_STATE_SETIRQ_WAIT) 1178 rc = snprintf(buf, PAGE_SIZE, "Enable Interrupt pending.\n"); 1179 else if (ap_dev->interrupt == AP_INTR_ENABLED) 1180 rc = snprintf(buf, PAGE_SIZE, "Interrupts enabled.\n"); 1181 else 1182 rc = snprintf(buf, PAGE_SIZE, "Interrupts disabled.\n"); 1183 spin_unlock_bh(&ap_dev->lock); 1184 return rc; 1185 } 1186 1187 static DEVICE_ATTR(interrupt, 0444, ap_interrupt_show, NULL); 1188 1189 static ssize_t ap_modalias_show(struct device *dev, 1190 struct device_attribute *attr, char *buf) 1191 { 1192 return sprintf(buf, "ap:t%02X\n", to_ap_dev(dev)->device_type); 1193 } 1194 1195 static DEVICE_ATTR(modalias, 0444, ap_modalias_show, NULL); 1196 1197 static ssize_t ap_functions_show(struct device *dev, 1198 struct device_attribute *attr, char *buf) 1199 { 1200 struct ap_device *ap_dev = to_ap_dev(dev); 1201 return snprintf(buf, PAGE_SIZE, "0x%08X\n", ap_dev->functions); 1202 } 1203 1204 static DEVICE_ATTR(ap_functions, 0444, ap_functions_show, NULL); 1205 1206 static struct attribute *ap_dev_attrs[] = { 1207 &dev_attr_hwtype.attr, 1208 &dev_attr_raw_hwtype.attr, 1209 &dev_attr_depth.attr, 1210 &dev_attr_request_count.attr, 1211 &dev_attr_requestq_count.attr, 1212 &dev_attr_pendingq_count.attr, 1213 &dev_attr_reset.attr, 1214 &dev_attr_interrupt.attr, 1215 &dev_attr_modalias.attr, 1216 &dev_attr_ap_functions.attr, 1217 NULL 1218 }; 1219 static struct attribute_group ap_dev_attr_group = { 1220 .attrs = ap_dev_attrs 1221 }; 1222 1223 /** 1224 * ap_bus_match() 1225 * @dev: Pointer to device 1226 * @drv: Pointer to device_driver 1227 * 1228 * AP bus driver registration/unregistration. 1229 */ 1230 static int ap_bus_match(struct device *dev, struct device_driver *drv) 1231 { 1232 struct ap_device *ap_dev = to_ap_dev(dev); 1233 struct ap_driver *ap_drv = to_ap_drv(drv); 1234 struct ap_device_id *id; 1235 1236 /* 1237 * Compare device type of the device with the list of 1238 * supported types of the device_driver. 1239 */ 1240 for (id = ap_drv->ids; id->match_flags; id++) { 1241 if ((id->match_flags & AP_DEVICE_ID_MATCH_DEVICE_TYPE) && 1242 (id->dev_type != ap_dev->device_type)) 1243 continue; 1244 return 1; 1245 } 1246 return 0; 1247 } 1248 1249 /** 1250 * ap_uevent(): Uevent function for AP devices. 1251 * @dev: Pointer to device 1252 * @env: Pointer to kobj_uevent_env 1253 * 1254 * It sets up a single environment variable DEV_TYPE which contains the 1255 * hardware device type. 1256 */ 1257 static int ap_uevent (struct device *dev, struct kobj_uevent_env *env) 1258 { 1259 struct ap_device *ap_dev = to_ap_dev(dev); 1260 int retval = 0; 1261 1262 if (!ap_dev) 1263 return -ENODEV; 1264 1265 /* Set up DEV_TYPE environment variable. */ 1266 retval = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type); 1267 if (retval) 1268 return retval; 1269 1270 /* Add MODALIAS= */ 1271 retval = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type); 1272 1273 return retval; 1274 } 1275 1276 static int ap_dev_suspend(struct device *dev, pm_message_t state) 1277 { 1278 struct ap_device *ap_dev = to_ap_dev(dev); 1279 1280 /* Poll on the device until all requests are finished. */ 1281 spin_lock_bh(&ap_dev->lock); 1282 ap_dev->state = AP_STATE_SUSPEND_WAIT; 1283 while (ap_sm_event(ap_dev, AP_EVENT_POLL) != AP_WAIT_NONE) 1284 ; 1285 ap_dev->state = AP_STATE_BORKED; 1286 spin_unlock_bh(&ap_dev->lock); 1287 return 0; 1288 } 1289 1290 static int ap_dev_resume(struct device *dev) 1291 { 1292 return 0; 1293 } 1294 1295 static void ap_bus_suspend(void) 1296 { 1297 ap_suspend_flag = 1; 1298 /* 1299 * Disable scanning for devices, thus we do not want to scan 1300 * for them after removing. 1301 */ 1302 flush_work(&ap_scan_work); 1303 tasklet_disable(&ap_tasklet); 1304 } 1305 1306 static int __ap_devices_unregister(struct device *dev, void *dummy) 1307 { 1308 device_unregister(dev); 1309 return 0; 1310 } 1311 1312 static void ap_bus_resume(void) 1313 { 1314 int rc; 1315 1316 /* Unconditionally remove all AP devices */ 1317 bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_devices_unregister); 1318 /* Reset thin interrupt setting */ 1319 if (ap_interrupts_available() && !ap_using_interrupts()) { 1320 rc = register_adapter_interrupt(&ap_airq); 1321 ap_airq_flag = (rc == 0); 1322 } 1323 if (!ap_interrupts_available() && ap_using_interrupts()) { 1324 unregister_adapter_interrupt(&ap_airq); 1325 ap_airq_flag = 0; 1326 } 1327 /* Reset domain */ 1328 if (!user_set_domain) 1329 ap_domain_index = -1; 1330 /* Get things going again */ 1331 ap_suspend_flag = 0; 1332 if (ap_airq_flag) 1333 xchg(ap_airq.lsi_ptr, 0); 1334 tasklet_enable(&ap_tasklet); 1335 queue_work(system_long_wq, &ap_scan_work); 1336 } 1337 1338 static int ap_power_event(struct notifier_block *this, unsigned long event, 1339 void *ptr) 1340 { 1341 switch (event) { 1342 case PM_HIBERNATION_PREPARE: 1343 case PM_SUSPEND_PREPARE: 1344 ap_bus_suspend(); 1345 break; 1346 case PM_POST_HIBERNATION: 1347 case PM_POST_SUSPEND: 1348 ap_bus_resume(); 1349 break; 1350 default: 1351 break; 1352 } 1353 return NOTIFY_DONE; 1354 } 1355 static struct notifier_block ap_power_notifier = { 1356 .notifier_call = ap_power_event, 1357 }; 1358 1359 static struct bus_type ap_bus_type = { 1360 .name = "ap", 1361 .match = &ap_bus_match, 1362 .uevent = &ap_uevent, 1363 .suspend = ap_dev_suspend, 1364 .resume = ap_dev_resume, 1365 }; 1366 1367 void ap_device_init_reply(struct ap_device *ap_dev, 1368 struct ap_message *reply) 1369 { 1370 ap_dev->reply = reply; 1371 1372 spin_lock_bh(&ap_dev->lock); 1373 ap_sm_wait(ap_sm_event(ap_dev, AP_EVENT_POLL)); 1374 spin_unlock_bh(&ap_dev->lock); 1375 } 1376 EXPORT_SYMBOL(ap_device_init_reply); 1377 1378 static int ap_device_probe(struct device *dev) 1379 { 1380 struct ap_device *ap_dev = to_ap_dev(dev); 1381 struct ap_driver *ap_drv = to_ap_drv(dev->driver); 1382 int rc; 1383 1384 ap_dev->drv = ap_drv; 1385 rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV; 1386 if (rc) 1387 ap_dev->drv = NULL; 1388 return rc; 1389 } 1390 1391 /** 1392 * __ap_flush_queue(): Flush requests. 1393 * @ap_dev: Pointer to the AP device 1394 * 1395 * Flush all requests from the request/pending queue of an AP device. 1396 */ 1397 static void __ap_flush_queue(struct ap_device *ap_dev) 1398 { 1399 struct ap_message *ap_msg, *next; 1400 1401 list_for_each_entry_safe(ap_msg, next, &ap_dev->pendingq, list) { 1402 list_del_init(&ap_msg->list); 1403 ap_dev->pendingq_count--; 1404 ap_msg->rc = -EAGAIN; 1405 ap_msg->receive(ap_dev, ap_msg, NULL); 1406 } 1407 list_for_each_entry_safe(ap_msg, next, &ap_dev->requestq, list) { 1408 list_del_init(&ap_msg->list); 1409 ap_dev->requestq_count--; 1410 ap_msg->rc = -EAGAIN; 1411 ap_msg->receive(ap_dev, ap_msg, NULL); 1412 } 1413 } 1414 1415 void ap_flush_queue(struct ap_device *ap_dev) 1416 { 1417 spin_lock_bh(&ap_dev->lock); 1418 __ap_flush_queue(ap_dev); 1419 spin_unlock_bh(&ap_dev->lock); 1420 } 1421 EXPORT_SYMBOL(ap_flush_queue); 1422 1423 static int ap_device_remove(struct device *dev) 1424 { 1425 struct ap_device *ap_dev = to_ap_dev(dev); 1426 struct ap_driver *ap_drv = ap_dev->drv; 1427 1428 ap_flush_queue(ap_dev); 1429 del_timer_sync(&ap_dev->timeout); 1430 spin_lock_bh(&ap_device_list_lock); 1431 list_del_init(&ap_dev->list); 1432 spin_unlock_bh(&ap_device_list_lock); 1433 if (ap_drv->remove) 1434 ap_drv->remove(ap_dev); 1435 spin_lock_bh(&ap_dev->lock); 1436 atomic_sub(ap_dev->queue_count, &ap_poll_requests); 1437 spin_unlock_bh(&ap_dev->lock); 1438 return 0; 1439 } 1440 1441 static void ap_device_release(struct device *dev) 1442 { 1443 kfree(to_ap_dev(dev)); 1444 } 1445 1446 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner, 1447 char *name) 1448 { 1449 struct device_driver *drv = &ap_drv->driver; 1450 1451 if (!initialised) 1452 return -ENODEV; 1453 1454 drv->bus = &ap_bus_type; 1455 drv->probe = ap_device_probe; 1456 drv->remove = ap_device_remove; 1457 drv->owner = owner; 1458 drv->name = name; 1459 return driver_register(drv); 1460 } 1461 EXPORT_SYMBOL(ap_driver_register); 1462 1463 void ap_driver_unregister(struct ap_driver *ap_drv) 1464 { 1465 driver_unregister(&ap_drv->driver); 1466 } 1467 EXPORT_SYMBOL(ap_driver_unregister); 1468 1469 void ap_bus_force_rescan(void) 1470 { 1471 if (ap_suspend_flag) 1472 return; 1473 /* processing a asynchronous bus rescan */ 1474 del_timer(&ap_config_timer); 1475 queue_work(system_long_wq, &ap_scan_work); 1476 flush_work(&ap_scan_work); 1477 } 1478 EXPORT_SYMBOL(ap_bus_force_rescan); 1479 1480 /* 1481 * AP bus attributes. 1482 */ 1483 static ssize_t ap_domain_show(struct bus_type *bus, char *buf) 1484 { 1485 return snprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index); 1486 } 1487 1488 static BUS_ATTR(ap_domain, 0444, ap_domain_show, NULL); 1489 1490 static ssize_t ap_control_domain_mask_show(struct bus_type *bus, char *buf) 1491 { 1492 if (!ap_configuration) /* QCI not supported */ 1493 return snprintf(buf, PAGE_SIZE, "not supported\n"); 1494 if (!test_facility(76)) 1495 /* format 0 - 16 bit domain field */ 1496 return snprintf(buf, PAGE_SIZE, "%08x%08x\n", 1497 ap_configuration->adm[0], 1498 ap_configuration->adm[1]); 1499 /* format 1 - 256 bit domain field */ 1500 return snprintf(buf, PAGE_SIZE, 1501 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1502 ap_configuration->adm[0], ap_configuration->adm[1], 1503 ap_configuration->adm[2], ap_configuration->adm[3], 1504 ap_configuration->adm[4], ap_configuration->adm[5], 1505 ap_configuration->adm[6], ap_configuration->adm[7]); 1506 } 1507 1508 static BUS_ATTR(ap_control_domain_mask, 0444, 1509 ap_control_domain_mask_show, NULL); 1510 1511 static ssize_t ap_config_time_show(struct bus_type *bus, char *buf) 1512 { 1513 return snprintf(buf, PAGE_SIZE, "%d\n", ap_config_time); 1514 } 1515 1516 static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf) 1517 { 1518 return snprintf(buf, PAGE_SIZE, "%d\n", 1519 ap_using_interrupts() ? 1 : 0); 1520 } 1521 1522 static BUS_ATTR(ap_interrupts, 0444, ap_interrupts_show, NULL); 1523 1524 static ssize_t ap_config_time_store(struct bus_type *bus, 1525 const char *buf, size_t count) 1526 { 1527 int time; 1528 1529 if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120) 1530 return -EINVAL; 1531 ap_config_time = time; 1532 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ); 1533 return count; 1534 } 1535 1536 static BUS_ATTR(config_time, 0644, ap_config_time_show, ap_config_time_store); 1537 1538 static ssize_t ap_poll_thread_show(struct bus_type *bus, char *buf) 1539 { 1540 return snprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0); 1541 } 1542 1543 static ssize_t ap_poll_thread_store(struct bus_type *bus, 1544 const char *buf, size_t count) 1545 { 1546 int flag, rc; 1547 1548 if (sscanf(buf, "%d\n", &flag) != 1) 1549 return -EINVAL; 1550 if (flag) { 1551 rc = ap_poll_thread_start(); 1552 if (rc) 1553 count = rc; 1554 } else 1555 ap_poll_thread_stop(); 1556 return count; 1557 } 1558 1559 static BUS_ATTR(poll_thread, 0644, ap_poll_thread_show, ap_poll_thread_store); 1560 1561 static ssize_t poll_timeout_show(struct bus_type *bus, char *buf) 1562 { 1563 return snprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout); 1564 } 1565 1566 static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf, 1567 size_t count) 1568 { 1569 unsigned long long time; 1570 ktime_t hr_time; 1571 1572 /* 120 seconds = maximum poll interval */ 1573 if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 || 1574 time > 120000000000ULL) 1575 return -EINVAL; 1576 poll_timeout = time; 1577 hr_time = ktime_set(0, poll_timeout); 1578 1579 spin_lock_bh(&ap_poll_timer_lock); 1580 hrtimer_cancel(&ap_poll_timer); 1581 hrtimer_set_expires(&ap_poll_timer, hr_time); 1582 hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS); 1583 spin_unlock_bh(&ap_poll_timer_lock); 1584 1585 return count; 1586 } 1587 1588 static BUS_ATTR(poll_timeout, 0644, poll_timeout_show, poll_timeout_store); 1589 1590 static ssize_t ap_max_domain_id_show(struct bus_type *bus, char *buf) 1591 { 1592 int max_domain_id; 1593 1594 if (ap_configuration) 1595 max_domain_id = ap_max_domain_id ? : -1; 1596 else 1597 max_domain_id = 15; 1598 return snprintf(buf, PAGE_SIZE, "%d\n", max_domain_id); 1599 } 1600 1601 static BUS_ATTR(ap_max_domain_id, 0444, ap_max_domain_id_show, NULL); 1602 1603 static struct bus_attribute *const ap_bus_attrs[] = { 1604 &bus_attr_ap_domain, 1605 &bus_attr_ap_control_domain_mask, 1606 &bus_attr_config_time, 1607 &bus_attr_poll_thread, 1608 &bus_attr_ap_interrupts, 1609 &bus_attr_poll_timeout, 1610 &bus_attr_ap_max_domain_id, 1611 NULL, 1612 }; 1613 1614 /** 1615 * ap_select_domain(): Select an AP domain. 1616 * 1617 * Pick one of the 16 AP domains. 1618 */ 1619 static int ap_select_domain(void) 1620 { 1621 int count, max_count, best_domain; 1622 struct ap_queue_status status; 1623 int i, j; 1624 1625 /* 1626 * We want to use a single domain. Either the one specified with 1627 * the "domain=" parameter or the domain with the maximum number 1628 * of devices. 1629 */ 1630 if (ap_domain_index >= 0) 1631 /* Domain has already been selected. */ 1632 return 0; 1633 best_domain = -1; 1634 max_count = 0; 1635 for (i = 0; i < AP_DOMAINS; i++) { 1636 if (!ap_test_config_domain(i)) 1637 continue; 1638 count = 0; 1639 for (j = 0; j < AP_DEVICES; j++) { 1640 if (!ap_test_config_card_id(j)) 1641 continue; 1642 status = ap_test_queue(AP_MKQID(j, i), NULL); 1643 if (status.response_code != AP_RESPONSE_NORMAL) 1644 continue; 1645 count++; 1646 } 1647 if (count > max_count) { 1648 max_count = count; 1649 best_domain = i; 1650 } 1651 } 1652 if (best_domain >= 0){ 1653 ap_domain_index = best_domain; 1654 return 0; 1655 } 1656 return -ENODEV; 1657 } 1658 1659 /** 1660 * __ap_scan_bus(): Scan the AP bus. 1661 * @dev: Pointer to device 1662 * @data: Pointer to data 1663 * 1664 * Scan the AP bus for new devices. 1665 */ 1666 static int __ap_scan_bus(struct device *dev, void *data) 1667 { 1668 return to_ap_dev(dev)->qid == (ap_qid_t)(unsigned long) data; 1669 } 1670 1671 static void ap_scan_bus(struct work_struct *unused) 1672 { 1673 struct ap_device *ap_dev; 1674 struct device *dev; 1675 ap_qid_t qid; 1676 int queue_depth = 0, device_type = 0; 1677 unsigned int device_functions = 0; 1678 int rc, i, borked; 1679 1680 ap_query_configuration(); 1681 if (ap_select_domain() != 0) 1682 goto out; 1683 1684 for (i = 0; i < AP_DEVICES; i++) { 1685 qid = AP_MKQID(i, ap_domain_index); 1686 dev = bus_find_device(&ap_bus_type, NULL, 1687 (void *)(unsigned long)qid, 1688 __ap_scan_bus); 1689 rc = ap_query_queue(qid, &queue_depth, &device_type, 1690 &device_functions); 1691 if (dev) { 1692 ap_dev = to_ap_dev(dev); 1693 spin_lock_bh(&ap_dev->lock); 1694 if (rc == -ENODEV) 1695 ap_dev->state = AP_STATE_BORKED; 1696 borked = ap_dev->state == AP_STATE_BORKED; 1697 spin_unlock_bh(&ap_dev->lock); 1698 if (borked) /* Remove broken device */ 1699 device_unregister(dev); 1700 put_device(dev); 1701 if (!borked) 1702 continue; 1703 } 1704 if (rc) 1705 continue; 1706 ap_dev = kzalloc(sizeof(*ap_dev), GFP_KERNEL); 1707 if (!ap_dev) 1708 break; 1709 ap_dev->qid = qid; 1710 ap_dev->state = AP_STATE_RESET_START; 1711 ap_dev->interrupt = AP_INTR_DISABLED; 1712 ap_dev->queue_depth = queue_depth; 1713 ap_dev->raw_hwtype = device_type; 1714 ap_dev->device_type = device_type; 1715 ap_dev->functions = device_functions; 1716 spin_lock_init(&ap_dev->lock); 1717 INIT_LIST_HEAD(&ap_dev->pendingq); 1718 INIT_LIST_HEAD(&ap_dev->requestq); 1719 INIT_LIST_HEAD(&ap_dev->list); 1720 setup_timer(&ap_dev->timeout, ap_request_timeout, 1721 (unsigned long) ap_dev); 1722 1723 ap_dev->device.bus = &ap_bus_type; 1724 ap_dev->device.parent = ap_root_device; 1725 rc = dev_set_name(&ap_dev->device, "card%02x", 1726 AP_QID_DEVICE(ap_dev->qid)); 1727 if (rc) { 1728 kfree(ap_dev); 1729 continue; 1730 } 1731 /* Add to list of devices */ 1732 spin_lock_bh(&ap_device_list_lock); 1733 list_add(&ap_dev->list, &ap_device_list); 1734 spin_unlock_bh(&ap_device_list_lock); 1735 /* Start with a device reset */ 1736 spin_lock_bh(&ap_dev->lock); 1737 ap_sm_wait(ap_sm_event(ap_dev, AP_EVENT_POLL)); 1738 spin_unlock_bh(&ap_dev->lock); 1739 /* Register device */ 1740 ap_dev->device.release = ap_device_release; 1741 rc = device_register(&ap_dev->device); 1742 if (rc) { 1743 spin_lock_bh(&ap_dev->lock); 1744 list_del_init(&ap_dev->list); 1745 spin_unlock_bh(&ap_dev->lock); 1746 put_device(&ap_dev->device); 1747 continue; 1748 } 1749 /* Add device attributes. */ 1750 rc = sysfs_create_group(&ap_dev->device.kobj, 1751 &ap_dev_attr_group); 1752 if (rc) { 1753 device_unregister(&ap_dev->device); 1754 continue; 1755 } 1756 } 1757 out: 1758 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ); 1759 } 1760 1761 static void ap_config_timeout(unsigned long ptr) 1762 { 1763 if (ap_suspend_flag) 1764 return; 1765 queue_work(system_long_wq, &ap_scan_work); 1766 } 1767 1768 static void ap_reset_domain(void) 1769 { 1770 int i; 1771 1772 if (ap_domain_index == -1 || !ap_test_config_domain(ap_domain_index)) 1773 return; 1774 for (i = 0; i < AP_DEVICES; i++) 1775 ap_reset_queue(AP_MKQID(i, ap_domain_index)); 1776 } 1777 1778 static void ap_reset_all(void) 1779 { 1780 int i, j; 1781 1782 for (i = 0; i < AP_DOMAINS; i++) { 1783 if (!ap_test_config_domain(i)) 1784 continue; 1785 for (j = 0; j < AP_DEVICES; j++) { 1786 if (!ap_test_config_card_id(j)) 1787 continue; 1788 ap_reset_queue(AP_MKQID(j, i)); 1789 } 1790 } 1791 } 1792 1793 static struct reset_call ap_reset_call = { 1794 .fn = ap_reset_all, 1795 }; 1796 1797 /** 1798 * ap_module_init(): The module initialization code. 1799 * 1800 * Initializes the module. 1801 */ 1802 int __init ap_module_init(void) 1803 { 1804 int max_domain_id; 1805 int rc, i; 1806 1807 if (ap_instructions_available() != 0) { 1808 pr_warn("The hardware system does not support AP instructions\n"); 1809 return -ENODEV; 1810 } 1811 1812 /* Get AP configuration data if available */ 1813 ap_init_configuration(); 1814 1815 if (ap_configuration) 1816 max_domain_id = ap_max_domain_id ? : (AP_DOMAINS - 1); 1817 else 1818 max_domain_id = 15; 1819 if (ap_domain_index < -1 || ap_domain_index > max_domain_id) { 1820 pr_warn("%d is not a valid cryptographic domain\n", 1821 ap_domain_index); 1822 rc = -EINVAL; 1823 goto out_free; 1824 } 1825 /* In resume callback we need to know if the user had set the domain. 1826 * If so, we can not just reset it. 1827 */ 1828 if (ap_domain_index >= 0) 1829 user_set_domain = 1; 1830 1831 if (ap_interrupts_available()) { 1832 rc = register_adapter_interrupt(&ap_airq); 1833 ap_airq_flag = (rc == 0); 1834 } 1835 1836 register_reset_call(&ap_reset_call); 1837 1838 /* Create /sys/bus/ap. */ 1839 rc = bus_register(&ap_bus_type); 1840 if (rc) 1841 goto out; 1842 for (i = 0; ap_bus_attrs[i]; i++) { 1843 rc = bus_create_file(&ap_bus_type, ap_bus_attrs[i]); 1844 if (rc) 1845 goto out_bus; 1846 } 1847 1848 /* Create /sys/devices/ap. */ 1849 ap_root_device = root_device_register("ap"); 1850 rc = PTR_RET(ap_root_device); 1851 if (rc) 1852 goto out_bus; 1853 1854 /* Setup the AP bus rescan timer. */ 1855 setup_timer(&ap_config_timer, ap_config_timeout, 0); 1856 1857 /* 1858 * Setup the high resultion poll timer. 1859 * If we are running under z/VM adjust polling to z/VM polling rate. 1860 */ 1861 if (MACHINE_IS_VM) 1862 poll_timeout = 1500000; 1863 spin_lock_init(&ap_poll_timer_lock); 1864 hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1865 ap_poll_timer.function = ap_poll_timeout; 1866 1867 /* Start the low priority AP bus poll thread. */ 1868 if (ap_thread_flag) { 1869 rc = ap_poll_thread_start(); 1870 if (rc) 1871 goto out_work; 1872 } 1873 1874 rc = register_pm_notifier(&ap_power_notifier); 1875 if (rc) 1876 goto out_pm; 1877 1878 queue_work(system_long_wq, &ap_scan_work); 1879 initialised = true; 1880 1881 return 0; 1882 1883 out_pm: 1884 ap_poll_thread_stop(); 1885 out_work: 1886 hrtimer_cancel(&ap_poll_timer); 1887 root_device_unregister(ap_root_device); 1888 out_bus: 1889 while (i--) 1890 bus_remove_file(&ap_bus_type, ap_bus_attrs[i]); 1891 bus_unregister(&ap_bus_type); 1892 out: 1893 unregister_reset_call(&ap_reset_call); 1894 if (ap_using_interrupts()) 1895 unregister_adapter_interrupt(&ap_airq); 1896 out_free: 1897 kfree(ap_configuration); 1898 return rc; 1899 } 1900 1901 /** 1902 * ap_modules_exit(): The module termination code 1903 * 1904 * Terminates the module. 1905 */ 1906 void ap_module_exit(void) 1907 { 1908 int i; 1909 1910 initialised = false; 1911 ap_reset_domain(); 1912 ap_poll_thread_stop(); 1913 del_timer_sync(&ap_config_timer); 1914 hrtimer_cancel(&ap_poll_timer); 1915 tasklet_kill(&ap_tasklet); 1916 bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_devices_unregister); 1917 for (i = 0; ap_bus_attrs[i]; i++) 1918 bus_remove_file(&ap_bus_type, ap_bus_attrs[i]); 1919 unregister_pm_notifier(&ap_power_notifier); 1920 root_device_unregister(ap_root_device); 1921 bus_unregister(&ap_bus_type); 1922 kfree(ap_configuration); 1923 unregister_reset_call(&ap_reset_call); 1924 if (ap_using_interrupts()) 1925 unregister_adapter_interrupt(&ap_airq); 1926 } 1927 1928 module_init(ap_module_init); 1929 module_exit(ap_module_exit); 1930