1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright IBM Corp. 2006, 2012 4 * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com> 5 * Martin Schwidefsky <schwidefsky@de.ibm.com> 6 * Ralph Wuerthner <rwuerthn@de.ibm.com> 7 * Felix Beck <felix.beck@de.ibm.com> 8 * Holger Dengler <hd@linux.vnet.ibm.com> 9 * 10 * Adjunct processor bus. 11 */ 12 13 #define KMSG_COMPONENT "ap" 14 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 15 16 #include <linux/kernel_stat.h> 17 #include <linux/moduleparam.h> 18 #include <linux/init.h> 19 #include <linux/delay.h> 20 #include <linux/err.h> 21 #include <linux/interrupt.h> 22 #include <linux/workqueue.h> 23 #include <linux/slab.h> 24 #include <linux/notifier.h> 25 #include <linux/kthread.h> 26 #include <linux/mutex.h> 27 #include <linux/suspend.h> 28 #include <asm/airq.h> 29 #include <linux/atomic.h> 30 #include <asm/isc.h> 31 #include <linux/hrtimer.h> 32 #include <linux/ktime.h> 33 #include <asm/facility.h> 34 #include <linux/crypto.h> 35 #include <linux/mod_devicetable.h> 36 #include <linux/debugfs.h> 37 #include <linux/ctype.h> 38 39 #include "ap_bus.h" 40 #include "ap_debug.h" 41 42 /* 43 * Module parameters; note though this file itself isn't modular. 44 */ 45 int ap_domain_index = -1; /* Adjunct Processor Domain Index */ 46 static DEFINE_SPINLOCK(ap_domain_lock); 47 module_param_named(domain, ap_domain_index, int, 0440); 48 MODULE_PARM_DESC(domain, "domain index for ap devices"); 49 EXPORT_SYMBOL(ap_domain_index); 50 51 static int ap_thread_flag; 52 module_param_named(poll_thread, ap_thread_flag, int, 0440); 53 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off)."); 54 55 static char *apm_str; 56 module_param_named(apmask, apm_str, charp, 0440); 57 MODULE_PARM_DESC(apmask, "AP bus adapter mask."); 58 59 static char *aqm_str; 60 module_param_named(aqmask, aqm_str, charp, 0440); 61 MODULE_PARM_DESC(aqmask, "AP bus domain mask."); 62 63 static struct device *ap_root_device; 64 65 DEFINE_SPINLOCK(ap_list_lock); 66 LIST_HEAD(ap_card_list); 67 68 /* Default permissions (ioctl, card and domain masking) */ 69 struct ap_perms ap_perms; 70 EXPORT_SYMBOL(ap_perms); 71 DEFINE_MUTEX(ap_perms_mutex); 72 EXPORT_SYMBOL(ap_perms_mutex); 73 74 static struct ap_config_info *ap_configuration; 75 static bool initialised; 76 77 /* 78 * AP bus related debug feature things. 79 */ 80 debug_info_t *ap_dbf_info; 81 82 /* 83 * Workqueue timer for bus rescan. 84 */ 85 static struct timer_list ap_config_timer; 86 static int ap_config_time = AP_CONFIG_TIME; 87 static void ap_scan_bus(struct work_struct *); 88 static DECLARE_WORK(ap_scan_work, ap_scan_bus); 89 90 /* 91 * Tasklet & timer for AP request polling and interrupts 92 */ 93 static void ap_tasklet_fn(unsigned long); 94 static DECLARE_TASKLET(ap_tasklet, ap_tasklet_fn, 0); 95 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait); 96 static struct task_struct *ap_poll_kthread; 97 static DEFINE_MUTEX(ap_poll_thread_mutex); 98 static DEFINE_SPINLOCK(ap_poll_timer_lock); 99 static struct hrtimer ap_poll_timer; 100 /* 101 * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds. 102 * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling. 103 */ 104 static unsigned long long poll_timeout = 250000; 105 106 /* Suspend flag */ 107 static int ap_suspend_flag; 108 /* Maximum domain id */ 109 static int ap_max_domain_id; 110 /* 111 * Flag to check if domain was set through module parameter domain=. This is 112 * important when supsend and resume is done in a z/VM environment where the 113 * domain might change. 114 */ 115 static int user_set_domain; 116 static struct bus_type ap_bus_type; 117 118 /* Adapter interrupt definitions */ 119 static void ap_interrupt_handler(struct airq_struct *airq); 120 121 static int ap_airq_flag; 122 123 static struct airq_struct ap_airq = { 124 .handler = ap_interrupt_handler, 125 .isc = AP_ISC, 126 }; 127 128 /** 129 * ap_using_interrupts() - Returns non-zero if interrupt support is 130 * available. 131 */ 132 static inline int ap_using_interrupts(void) 133 { 134 return ap_airq_flag; 135 } 136 137 /** 138 * ap_airq_ptr() - Get the address of the adapter interrupt indicator 139 * 140 * Returns the address of the local-summary-indicator of the adapter 141 * interrupt handler for AP, or NULL if adapter interrupts are not 142 * available. 143 */ 144 void *ap_airq_ptr(void) 145 { 146 if (ap_using_interrupts()) 147 return ap_airq.lsi_ptr; 148 return NULL; 149 } 150 151 /** 152 * ap_interrupts_available(): Test if AP interrupts are available. 153 * 154 * Returns 1 if AP interrupts are available. 155 */ 156 static int ap_interrupts_available(void) 157 { 158 return test_facility(65); 159 } 160 161 /** 162 * ap_configuration_available(): Test if AP configuration 163 * information is available. 164 * 165 * Returns 1 if AP configuration information is available. 166 */ 167 static int ap_configuration_available(void) 168 { 169 return test_facility(12); 170 } 171 172 /** 173 * ap_apft_available(): Test if AP facilities test (APFT) 174 * facility is available. 175 * 176 * Returns 1 if APFT is is available. 177 */ 178 static int ap_apft_available(void) 179 { 180 return test_facility(15); 181 } 182 183 /* 184 * ap_qact_available(): Test if the PQAP(QACT) subfunction is available. 185 * 186 * Returns 1 if the QACT subfunction is available. 187 */ 188 static inline int ap_qact_available(void) 189 { 190 if (ap_configuration) 191 return ap_configuration->qact; 192 return 0; 193 } 194 195 /* 196 * ap_query_configuration(): Fetch cryptographic config info 197 * 198 * Returns the ap configuration info fetched via PQAP(QCI). 199 * On success 0 is returned, on failure a negative errno 200 * is returned, e.g. if the PQAP(QCI) instruction is not 201 * available, the return value will be -EOPNOTSUPP. 202 */ 203 static inline int ap_query_configuration(struct ap_config_info *info) 204 { 205 if (!ap_configuration_available()) 206 return -EOPNOTSUPP; 207 if (!info) 208 return -EINVAL; 209 return ap_qci(info); 210 } 211 EXPORT_SYMBOL(ap_query_configuration); 212 213 /** 214 * ap_init_configuration(): Allocate and query configuration array. 215 */ 216 static void ap_init_configuration(void) 217 { 218 if (!ap_configuration_available()) 219 return; 220 221 ap_configuration = kzalloc(sizeof(*ap_configuration), GFP_KERNEL); 222 if (!ap_configuration) 223 return; 224 if (ap_query_configuration(ap_configuration) != 0) { 225 kfree(ap_configuration); 226 ap_configuration = NULL; 227 return; 228 } 229 } 230 231 /* 232 * ap_test_config(): helper function to extract the nrth bit 233 * within the unsigned int array field. 234 */ 235 static inline int ap_test_config(unsigned int *field, unsigned int nr) 236 { 237 return ap_test_bit((field + (nr >> 5)), (nr & 0x1f)); 238 } 239 240 /* 241 * ap_test_config_card_id(): Test, whether an AP card ID is configured. 242 * @id AP card ID 243 * 244 * Returns 0 if the card is not configured 245 * 1 if the card is configured or 246 * if the configuration information is not available 247 */ 248 static inline int ap_test_config_card_id(unsigned int id) 249 { 250 if (!ap_configuration) /* QCI not supported */ 251 return 1; 252 return ap_test_config(ap_configuration->apm, id); 253 } 254 255 /* 256 * ap_test_config_domain(): Test, whether an AP usage domain is configured. 257 * @domain AP usage domain ID 258 * 259 * Returns 0 if the usage domain is not configured 260 * 1 if the usage domain is configured or 261 * if the configuration information is not available 262 */ 263 static inline int ap_test_config_domain(unsigned int domain) 264 { 265 if (!ap_configuration) /* QCI not supported */ 266 return domain < 16; 267 return ap_test_config(ap_configuration->aqm, domain); 268 } 269 270 /** 271 * ap_query_queue(): Check if an AP queue is available. 272 * @qid: The AP queue number 273 * @queue_depth: Pointer to queue depth value 274 * @device_type: Pointer to device type value 275 * @facilities: Pointer to facility indicator 276 */ 277 static int ap_query_queue(ap_qid_t qid, int *queue_depth, int *device_type, 278 unsigned int *facilities) 279 { 280 struct ap_queue_status status; 281 unsigned long info; 282 int nd; 283 284 if (!ap_test_config_card_id(AP_QID_CARD(qid))) 285 return -ENODEV; 286 287 status = ap_test_queue(qid, ap_apft_available(), &info); 288 switch (status.response_code) { 289 case AP_RESPONSE_NORMAL: 290 *queue_depth = (int)(info & 0xff); 291 *device_type = (int)((info >> 24) & 0xff); 292 *facilities = (unsigned int)(info >> 32); 293 /* Update maximum domain id */ 294 nd = (info >> 16) & 0xff; 295 /* if N bit is available, z13 and newer */ 296 if ((info & (1UL << 57)) && nd > 0) 297 ap_max_domain_id = nd; 298 else /* older machine types */ 299 ap_max_domain_id = 15; 300 switch (*device_type) { 301 /* For CEX2 and CEX3 the available functions 302 * are not reflected by the facilities bits. 303 * Instead it is coded into the type. So here 304 * modify the function bits based on the type. 305 */ 306 case AP_DEVICE_TYPE_CEX2A: 307 case AP_DEVICE_TYPE_CEX3A: 308 *facilities |= 0x08000000; 309 break; 310 case AP_DEVICE_TYPE_CEX2C: 311 case AP_DEVICE_TYPE_CEX3C: 312 *facilities |= 0x10000000; 313 break; 314 default: 315 break; 316 } 317 return 0; 318 case AP_RESPONSE_Q_NOT_AVAIL: 319 case AP_RESPONSE_DECONFIGURED: 320 case AP_RESPONSE_CHECKSTOPPED: 321 case AP_RESPONSE_INVALID_ADDRESS: 322 return -ENODEV; 323 case AP_RESPONSE_RESET_IN_PROGRESS: 324 case AP_RESPONSE_OTHERWISE_CHANGED: 325 case AP_RESPONSE_BUSY: 326 return -EBUSY; 327 default: 328 BUG(); 329 } 330 } 331 332 void ap_wait(enum ap_wait wait) 333 { 334 ktime_t hr_time; 335 336 switch (wait) { 337 case AP_WAIT_AGAIN: 338 case AP_WAIT_INTERRUPT: 339 if (ap_using_interrupts()) 340 break; 341 if (ap_poll_kthread) { 342 wake_up(&ap_poll_wait); 343 break; 344 } 345 /* Fall through */ 346 case AP_WAIT_TIMEOUT: 347 spin_lock_bh(&ap_poll_timer_lock); 348 if (!hrtimer_is_queued(&ap_poll_timer)) { 349 hr_time = poll_timeout; 350 hrtimer_forward_now(&ap_poll_timer, hr_time); 351 hrtimer_restart(&ap_poll_timer); 352 } 353 spin_unlock_bh(&ap_poll_timer_lock); 354 break; 355 case AP_WAIT_NONE: 356 default: 357 break; 358 } 359 } 360 361 /** 362 * ap_request_timeout(): Handling of request timeouts 363 * @t: timer making this callback 364 * 365 * Handles request timeouts. 366 */ 367 void ap_request_timeout(struct timer_list *t) 368 { 369 struct ap_queue *aq = from_timer(aq, t, timeout); 370 371 if (ap_suspend_flag) 372 return; 373 spin_lock_bh(&aq->lock); 374 ap_wait(ap_sm_event(aq, AP_EVENT_TIMEOUT)); 375 spin_unlock_bh(&aq->lock); 376 } 377 378 /** 379 * ap_poll_timeout(): AP receive polling for finished AP requests. 380 * @unused: Unused pointer. 381 * 382 * Schedules the AP tasklet using a high resolution timer. 383 */ 384 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused) 385 { 386 if (!ap_suspend_flag) 387 tasklet_schedule(&ap_tasklet); 388 return HRTIMER_NORESTART; 389 } 390 391 /** 392 * ap_interrupt_handler() - Schedule ap_tasklet on interrupt 393 * @airq: pointer to adapter interrupt descriptor 394 */ 395 static void ap_interrupt_handler(struct airq_struct *airq) 396 { 397 inc_irq_stat(IRQIO_APB); 398 if (!ap_suspend_flag) 399 tasklet_schedule(&ap_tasklet); 400 } 401 402 /** 403 * ap_tasklet_fn(): Tasklet to poll all AP devices. 404 * @dummy: Unused variable 405 * 406 * Poll all AP devices on the bus. 407 */ 408 static void ap_tasklet_fn(unsigned long dummy) 409 { 410 struct ap_card *ac; 411 struct ap_queue *aq; 412 enum ap_wait wait = AP_WAIT_NONE; 413 414 /* Reset the indicator if interrupts are used. Thus new interrupts can 415 * be received. Doing it in the beginning of the tasklet is therefor 416 * important that no requests on any AP get lost. 417 */ 418 if (ap_using_interrupts()) 419 xchg(ap_airq.lsi_ptr, 0); 420 421 spin_lock_bh(&ap_list_lock); 422 for_each_ap_card(ac) { 423 for_each_ap_queue(aq, ac) { 424 spin_lock_bh(&aq->lock); 425 wait = min(wait, ap_sm_event_loop(aq, AP_EVENT_POLL)); 426 spin_unlock_bh(&aq->lock); 427 } 428 } 429 spin_unlock_bh(&ap_list_lock); 430 431 ap_wait(wait); 432 } 433 434 static int ap_pending_requests(void) 435 { 436 struct ap_card *ac; 437 struct ap_queue *aq; 438 439 spin_lock_bh(&ap_list_lock); 440 for_each_ap_card(ac) { 441 for_each_ap_queue(aq, ac) { 442 if (aq->queue_count == 0) 443 continue; 444 spin_unlock_bh(&ap_list_lock); 445 return 1; 446 } 447 } 448 spin_unlock_bh(&ap_list_lock); 449 return 0; 450 } 451 452 /** 453 * ap_poll_thread(): Thread that polls for finished requests. 454 * @data: Unused pointer 455 * 456 * AP bus poll thread. The purpose of this thread is to poll for 457 * finished requests in a loop if there is a "free" cpu - that is 458 * a cpu that doesn't have anything better to do. The polling stops 459 * as soon as there is another task or if all messages have been 460 * delivered. 461 */ 462 static int ap_poll_thread(void *data) 463 { 464 DECLARE_WAITQUEUE(wait, current); 465 466 set_user_nice(current, MAX_NICE); 467 set_freezable(); 468 while (!kthread_should_stop()) { 469 add_wait_queue(&ap_poll_wait, &wait); 470 set_current_state(TASK_INTERRUPTIBLE); 471 if (ap_suspend_flag || !ap_pending_requests()) { 472 schedule(); 473 try_to_freeze(); 474 } 475 set_current_state(TASK_RUNNING); 476 remove_wait_queue(&ap_poll_wait, &wait); 477 if (need_resched()) { 478 schedule(); 479 try_to_freeze(); 480 continue; 481 } 482 ap_tasklet_fn(0); 483 } 484 485 return 0; 486 } 487 488 static int ap_poll_thread_start(void) 489 { 490 int rc; 491 492 if (ap_using_interrupts() || ap_poll_kthread) 493 return 0; 494 mutex_lock(&ap_poll_thread_mutex); 495 ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll"); 496 rc = PTR_ERR_OR_ZERO(ap_poll_kthread); 497 if (rc) 498 ap_poll_kthread = NULL; 499 mutex_unlock(&ap_poll_thread_mutex); 500 return rc; 501 } 502 503 static void ap_poll_thread_stop(void) 504 { 505 if (!ap_poll_kthread) 506 return; 507 mutex_lock(&ap_poll_thread_mutex); 508 kthread_stop(ap_poll_kthread); 509 ap_poll_kthread = NULL; 510 mutex_unlock(&ap_poll_thread_mutex); 511 } 512 513 #define is_card_dev(x) ((x)->parent == ap_root_device) 514 #define is_queue_dev(x) ((x)->parent != ap_root_device) 515 516 /** 517 * ap_bus_match() 518 * @dev: Pointer to device 519 * @drv: Pointer to device_driver 520 * 521 * AP bus driver registration/unregistration. 522 */ 523 static int ap_bus_match(struct device *dev, struct device_driver *drv) 524 { 525 struct ap_driver *ap_drv = to_ap_drv(drv); 526 struct ap_device_id *id; 527 528 /* 529 * Compare device type of the device with the list of 530 * supported types of the device_driver. 531 */ 532 for (id = ap_drv->ids; id->match_flags; id++) { 533 if (is_card_dev(dev) && 534 id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE && 535 id->dev_type == to_ap_dev(dev)->device_type) 536 return 1; 537 if (is_queue_dev(dev) && 538 id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE && 539 id->dev_type == to_ap_dev(dev)->device_type) 540 return 1; 541 } 542 return 0; 543 } 544 545 /** 546 * ap_uevent(): Uevent function for AP devices. 547 * @dev: Pointer to device 548 * @env: Pointer to kobj_uevent_env 549 * 550 * It sets up a single environment variable DEV_TYPE which contains the 551 * hardware device type. 552 */ 553 static int ap_uevent(struct device *dev, struct kobj_uevent_env *env) 554 { 555 struct ap_device *ap_dev = to_ap_dev(dev); 556 int retval = 0; 557 558 if (!ap_dev) 559 return -ENODEV; 560 561 /* Set up DEV_TYPE environment variable. */ 562 retval = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type); 563 if (retval) 564 return retval; 565 566 /* Add MODALIAS= */ 567 retval = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type); 568 569 return retval; 570 } 571 572 static int ap_dev_suspend(struct device *dev) 573 { 574 struct ap_device *ap_dev = to_ap_dev(dev); 575 576 if (ap_dev->drv && ap_dev->drv->suspend) 577 ap_dev->drv->suspend(ap_dev); 578 return 0; 579 } 580 581 static int ap_dev_resume(struct device *dev) 582 { 583 struct ap_device *ap_dev = to_ap_dev(dev); 584 585 if (ap_dev->drv && ap_dev->drv->resume) 586 ap_dev->drv->resume(ap_dev); 587 return 0; 588 } 589 590 static void ap_bus_suspend(void) 591 { 592 AP_DBF(DBF_DEBUG, "%s running\n", __func__); 593 594 ap_suspend_flag = 1; 595 /* 596 * Disable scanning for devices, thus we do not want to scan 597 * for them after removing. 598 */ 599 flush_work(&ap_scan_work); 600 tasklet_disable(&ap_tasklet); 601 } 602 603 static int __ap_card_devices_unregister(struct device *dev, void *dummy) 604 { 605 if (is_card_dev(dev)) 606 device_unregister(dev); 607 return 0; 608 } 609 610 static int __ap_queue_devices_unregister(struct device *dev, void *dummy) 611 { 612 if (is_queue_dev(dev)) 613 device_unregister(dev); 614 return 0; 615 } 616 617 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data) 618 { 619 if (is_queue_dev(dev) && 620 AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long) data) 621 device_unregister(dev); 622 return 0; 623 } 624 625 static void ap_bus_resume(void) 626 { 627 int rc; 628 629 AP_DBF(DBF_DEBUG, "%s running\n", __func__); 630 631 /* remove all queue devices */ 632 bus_for_each_dev(&ap_bus_type, NULL, NULL, 633 __ap_queue_devices_unregister); 634 /* remove all card devices */ 635 bus_for_each_dev(&ap_bus_type, NULL, NULL, 636 __ap_card_devices_unregister); 637 638 /* Reset thin interrupt setting */ 639 if (ap_interrupts_available() && !ap_using_interrupts()) { 640 rc = register_adapter_interrupt(&ap_airq); 641 ap_airq_flag = (rc == 0); 642 } 643 if (!ap_interrupts_available() && ap_using_interrupts()) { 644 unregister_adapter_interrupt(&ap_airq); 645 ap_airq_flag = 0; 646 } 647 /* Reset domain */ 648 if (!user_set_domain) 649 ap_domain_index = -1; 650 /* Get things going again */ 651 ap_suspend_flag = 0; 652 if (ap_airq_flag) 653 xchg(ap_airq.lsi_ptr, 0); 654 tasklet_enable(&ap_tasklet); 655 queue_work(system_long_wq, &ap_scan_work); 656 } 657 658 static int ap_power_event(struct notifier_block *this, unsigned long event, 659 void *ptr) 660 { 661 switch (event) { 662 case PM_HIBERNATION_PREPARE: 663 case PM_SUSPEND_PREPARE: 664 ap_bus_suspend(); 665 break; 666 case PM_POST_HIBERNATION: 667 case PM_POST_SUSPEND: 668 ap_bus_resume(); 669 break; 670 default: 671 break; 672 } 673 return NOTIFY_DONE; 674 } 675 static struct notifier_block ap_power_notifier = { 676 .notifier_call = ap_power_event, 677 }; 678 679 static SIMPLE_DEV_PM_OPS(ap_bus_pm_ops, ap_dev_suspend, ap_dev_resume); 680 681 static struct bus_type ap_bus_type = { 682 .name = "ap", 683 .match = &ap_bus_match, 684 .uevent = &ap_uevent, 685 .pm = &ap_bus_pm_ops, 686 }; 687 688 static int __ap_revise_reserved(struct device *dev, void *dummy) 689 { 690 int rc, card, queue, devres, drvres; 691 692 if (is_queue_dev(dev)) { 693 card = AP_QID_CARD(to_ap_queue(dev)->qid); 694 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid); 695 mutex_lock(&ap_perms_mutex); 696 devres = test_bit_inv(card, ap_perms.apm) 697 && test_bit_inv(queue, ap_perms.aqm); 698 mutex_unlock(&ap_perms_mutex); 699 drvres = to_ap_drv(dev->driver)->flags 700 & AP_DRIVER_FLAG_DEFAULT; 701 if (!!devres != !!drvres) { 702 AP_DBF(DBF_DEBUG, "reprobing queue=%02x.%04x\n", 703 card, queue); 704 rc = device_reprobe(dev); 705 } 706 } 707 708 return 0; 709 } 710 711 static void ap_bus_revise_bindings(void) 712 { 713 bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved); 714 } 715 716 int ap_owned_by_def_drv(int card, int queue) 717 { 718 int rc = 0; 719 720 if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS) 721 return -EINVAL; 722 723 mutex_lock(&ap_perms_mutex); 724 725 if (test_bit_inv(card, ap_perms.apm) 726 && test_bit_inv(queue, ap_perms.aqm)) 727 rc = 1; 728 729 mutex_unlock(&ap_perms_mutex); 730 731 return rc; 732 } 733 EXPORT_SYMBOL(ap_owned_by_def_drv); 734 735 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm, 736 unsigned long *aqm) 737 { 738 int card, queue, rc = 0; 739 740 mutex_lock(&ap_perms_mutex); 741 742 for (card = 0; !rc && card < AP_DEVICES; card++) 743 if (test_bit_inv(card, apm) && 744 test_bit_inv(card, ap_perms.apm)) 745 for (queue = 0; !rc && queue < AP_DOMAINS; queue++) 746 if (test_bit_inv(queue, aqm) && 747 test_bit_inv(queue, ap_perms.aqm)) 748 rc = 1; 749 750 mutex_unlock(&ap_perms_mutex); 751 752 return rc; 753 } 754 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv); 755 756 static int ap_device_probe(struct device *dev) 757 { 758 struct ap_device *ap_dev = to_ap_dev(dev); 759 struct ap_driver *ap_drv = to_ap_drv(dev->driver); 760 int card, queue, devres, drvres, rc; 761 762 if (is_queue_dev(dev)) { 763 /* 764 * If the apqn is marked as reserved/used by ap bus and 765 * default drivers, only probe with drivers with the default 766 * flag set. If it is not marked, only probe with drivers 767 * with the default flag not set. 768 */ 769 card = AP_QID_CARD(to_ap_queue(dev)->qid); 770 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid); 771 mutex_lock(&ap_perms_mutex); 772 devres = test_bit_inv(card, ap_perms.apm) 773 && test_bit_inv(queue, ap_perms.aqm); 774 mutex_unlock(&ap_perms_mutex); 775 drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT; 776 if (!!devres != !!drvres) 777 return -ENODEV; 778 /* (re-)init queue's state machine */ 779 ap_queue_reinit_state(to_ap_queue(dev)); 780 } 781 782 /* Add queue/card to list of active queues/cards */ 783 spin_lock_bh(&ap_list_lock); 784 if (is_card_dev(dev)) 785 list_add(&to_ap_card(dev)->list, &ap_card_list); 786 else 787 list_add(&to_ap_queue(dev)->list, 788 &to_ap_queue(dev)->card->queues); 789 spin_unlock_bh(&ap_list_lock); 790 791 ap_dev->drv = ap_drv; 792 rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV; 793 794 if (rc) { 795 spin_lock_bh(&ap_list_lock); 796 if (is_card_dev(dev)) 797 list_del_init(&to_ap_card(dev)->list); 798 else 799 list_del_init(&to_ap_queue(dev)->list); 800 spin_unlock_bh(&ap_list_lock); 801 ap_dev->drv = NULL; 802 } 803 804 return rc; 805 } 806 807 static int ap_device_remove(struct device *dev) 808 { 809 struct ap_device *ap_dev = to_ap_dev(dev); 810 struct ap_driver *ap_drv = ap_dev->drv; 811 812 if (is_queue_dev(dev)) 813 ap_queue_remove(to_ap_queue(dev)); 814 if (ap_drv->remove) 815 ap_drv->remove(ap_dev); 816 817 /* Remove queue/card from list of active queues/cards */ 818 spin_lock_bh(&ap_list_lock); 819 if (is_card_dev(dev)) 820 list_del_init(&to_ap_card(dev)->list); 821 else 822 list_del_init(&to_ap_queue(dev)->list); 823 spin_unlock_bh(&ap_list_lock); 824 825 return 0; 826 } 827 828 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner, 829 char *name) 830 { 831 struct device_driver *drv = &ap_drv->driver; 832 833 if (!initialised) 834 return -ENODEV; 835 836 drv->bus = &ap_bus_type; 837 drv->probe = ap_device_probe; 838 drv->remove = ap_device_remove; 839 drv->owner = owner; 840 drv->name = name; 841 return driver_register(drv); 842 } 843 EXPORT_SYMBOL(ap_driver_register); 844 845 void ap_driver_unregister(struct ap_driver *ap_drv) 846 { 847 driver_unregister(&ap_drv->driver); 848 } 849 EXPORT_SYMBOL(ap_driver_unregister); 850 851 void ap_bus_force_rescan(void) 852 { 853 if (ap_suspend_flag) 854 return; 855 /* processing a asynchronous bus rescan */ 856 del_timer(&ap_config_timer); 857 queue_work(system_long_wq, &ap_scan_work); 858 flush_work(&ap_scan_work); 859 } 860 EXPORT_SYMBOL(ap_bus_force_rescan); 861 862 /* 863 * hex2bitmap() - parse hex mask string and set bitmap. 864 * Valid strings are "0x012345678" with at least one valid hex number. 865 * Rest of the bitmap to the right is padded with 0. No spaces allowed 866 * within the string, the leading 0x may be omitted. 867 * Returns the bitmask with exactly the bits set as given by the hex 868 * string (both in big endian order). 869 */ 870 static int hex2bitmap(const char *str, unsigned long *bitmap, int bits) 871 { 872 int i, n, b; 873 874 /* bits needs to be a multiple of 8 */ 875 if (bits & 0x07) 876 return -EINVAL; 877 878 if (str[0] == '0' && str[1] == 'x') 879 str++; 880 if (*str == 'x') 881 str++; 882 883 for (i = 0; isxdigit(*str) && i < bits; str++) { 884 b = hex_to_bin(*str); 885 for (n = 0; n < 4; n++) 886 if (b & (0x08 >> n)) 887 set_bit_inv(i + n, bitmap); 888 i += 4; 889 } 890 891 if (*str == '\n') 892 str++; 893 if (*str) 894 return -EINVAL; 895 return 0; 896 } 897 898 /* 899 * modify_bitmap() - parse bitmask argument and modify an existing 900 * bit mask accordingly. A concatenation (done with ',') of these 901 * terms is recognized: 902 * +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>] 903 * <bitnr> may be any valid number (hex, decimal or octal) in the range 904 * 0...bits-1; the leading + or - is required. Here are some examples: 905 * +0-15,+32,-128,-0xFF 906 * -0-255,+1-16,+0x128 907 * +1,+2,+3,+4,-5,-7-10 908 * Returns the new bitmap after all changes have been applied. Every 909 * positive value in the string will set a bit and every negative value 910 * in the string will clear a bit. As a bit may be touched more than once, 911 * the last 'operation' wins: 912 * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be 913 * cleared again. All other bits are unmodified. 914 */ 915 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits) 916 { 917 int a, i, z; 918 char *np, sign; 919 920 /* bits needs to be a multiple of 8 */ 921 if (bits & 0x07) 922 return -EINVAL; 923 924 while (*str) { 925 sign = *str++; 926 if (sign != '+' && sign != '-') 927 return -EINVAL; 928 a = z = simple_strtoul(str, &np, 0); 929 if (str == np || a >= bits) 930 return -EINVAL; 931 str = np; 932 if (*str == '-') { 933 z = simple_strtoul(++str, &np, 0); 934 if (str == np || a > z || z >= bits) 935 return -EINVAL; 936 str = np; 937 } 938 for (i = a; i <= z; i++) 939 if (sign == '+') 940 set_bit_inv(i, bitmap); 941 else 942 clear_bit_inv(i, bitmap); 943 while (*str == ',' || *str == '\n') 944 str++; 945 } 946 947 return 0; 948 } 949 950 int ap_parse_mask_str(const char *str, 951 unsigned long *bitmap, int bits, 952 struct mutex *lock) 953 { 954 unsigned long *newmap, size; 955 int rc; 956 957 /* bits needs to be a multiple of 8 */ 958 if (bits & 0x07) 959 return -EINVAL; 960 961 size = BITS_TO_LONGS(bits)*sizeof(unsigned long); 962 newmap = kmalloc(size, GFP_KERNEL); 963 if (!newmap) 964 return -ENOMEM; 965 if (mutex_lock_interruptible(lock)) { 966 kfree(newmap); 967 return -ERESTARTSYS; 968 } 969 970 if (*str == '+' || *str == '-') { 971 memcpy(newmap, bitmap, size); 972 rc = modify_bitmap(str, newmap, bits); 973 } else { 974 memset(newmap, 0, size); 975 rc = hex2bitmap(str, newmap, bits); 976 } 977 if (rc == 0) 978 memcpy(bitmap, newmap, size); 979 mutex_unlock(lock); 980 kfree(newmap); 981 return rc; 982 } 983 EXPORT_SYMBOL(ap_parse_mask_str); 984 985 /* 986 * AP bus attributes. 987 */ 988 989 static ssize_t ap_domain_show(struct bus_type *bus, char *buf) 990 { 991 return snprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index); 992 } 993 994 static ssize_t ap_domain_store(struct bus_type *bus, 995 const char *buf, size_t count) 996 { 997 int domain; 998 999 if (sscanf(buf, "%i\n", &domain) != 1 || 1000 domain < 0 || domain > ap_max_domain_id || 1001 !test_bit_inv(domain, ap_perms.aqm)) 1002 return -EINVAL; 1003 spin_lock_bh(&ap_domain_lock); 1004 ap_domain_index = domain; 1005 spin_unlock_bh(&ap_domain_lock); 1006 1007 AP_DBF(DBF_DEBUG, "stored new default domain=%d\n", domain); 1008 1009 return count; 1010 } 1011 1012 static BUS_ATTR_RW(ap_domain); 1013 1014 static ssize_t ap_control_domain_mask_show(struct bus_type *bus, char *buf) 1015 { 1016 if (!ap_configuration) /* QCI not supported */ 1017 return snprintf(buf, PAGE_SIZE, "not supported\n"); 1018 1019 return snprintf(buf, PAGE_SIZE, 1020 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1021 ap_configuration->adm[0], ap_configuration->adm[1], 1022 ap_configuration->adm[2], ap_configuration->adm[3], 1023 ap_configuration->adm[4], ap_configuration->adm[5], 1024 ap_configuration->adm[6], ap_configuration->adm[7]); 1025 } 1026 1027 static BUS_ATTR_RO(ap_control_domain_mask); 1028 1029 static ssize_t ap_usage_domain_mask_show(struct bus_type *bus, char *buf) 1030 { 1031 if (!ap_configuration) /* QCI not supported */ 1032 return snprintf(buf, PAGE_SIZE, "not supported\n"); 1033 1034 return snprintf(buf, PAGE_SIZE, 1035 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1036 ap_configuration->aqm[0], ap_configuration->aqm[1], 1037 ap_configuration->aqm[2], ap_configuration->aqm[3], 1038 ap_configuration->aqm[4], ap_configuration->aqm[5], 1039 ap_configuration->aqm[6], ap_configuration->aqm[7]); 1040 } 1041 1042 static BUS_ATTR_RO(ap_usage_domain_mask); 1043 1044 static ssize_t ap_adapter_mask_show(struct bus_type *bus, char *buf) 1045 { 1046 if (!ap_configuration) /* QCI not supported */ 1047 return snprintf(buf, PAGE_SIZE, "not supported\n"); 1048 1049 return snprintf(buf, PAGE_SIZE, 1050 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1051 ap_configuration->apm[0], ap_configuration->apm[1], 1052 ap_configuration->apm[2], ap_configuration->apm[3], 1053 ap_configuration->apm[4], ap_configuration->apm[5], 1054 ap_configuration->apm[6], ap_configuration->apm[7]); 1055 } 1056 1057 static BUS_ATTR_RO(ap_adapter_mask); 1058 1059 static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf) 1060 { 1061 return snprintf(buf, PAGE_SIZE, "%d\n", 1062 ap_using_interrupts() ? 1 : 0); 1063 } 1064 1065 static BUS_ATTR_RO(ap_interrupts); 1066 1067 static ssize_t config_time_show(struct bus_type *bus, char *buf) 1068 { 1069 return snprintf(buf, PAGE_SIZE, "%d\n", ap_config_time); 1070 } 1071 1072 static ssize_t config_time_store(struct bus_type *bus, 1073 const char *buf, size_t count) 1074 { 1075 int time; 1076 1077 if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120) 1078 return -EINVAL; 1079 ap_config_time = time; 1080 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ); 1081 return count; 1082 } 1083 1084 static BUS_ATTR_RW(config_time); 1085 1086 static ssize_t poll_thread_show(struct bus_type *bus, char *buf) 1087 { 1088 return snprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0); 1089 } 1090 1091 static ssize_t poll_thread_store(struct bus_type *bus, 1092 const char *buf, size_t count) 1093 { 1094 int flag, rc; 1095 1096 if (sscanf(buf, "%d\n", &flag) != 1) 1097 return -EINVAL; 1098 if (flag) { 1099 rc = ap_poll_thread_start(); 1100 if (rc) 1101 count = rc; 1102 } else 1103 ap_poll_thread_stop(); 1104 return count; 1105 } 1106 1107 static BUS_ATTR_RW(poll_thread); 1108 1109 static ssize_t poll_timeout_show(struct bus_type *bus, char *buf) 1110 { 1111 return snprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout); 1112 } 1113 1114 static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf, 1115 size_t count) 1116 { 1117 unsigned long long time; 1118 ktime_t hr_time; 1119 1120 /* 120 seconds = maximum poll interval */ 1121 if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 || 1122 time > 120000000000ULL) 1123 return -EINVAL; 1124 poll_timeout = time; 1125 hr_time = poll_timeout; 1126 1127 spin_lock_bh(&ap_poll_timer_lock); 1128 hrtimer_cancel(&ap_poll_timer); 1129 hrtimer_set_expires(&ap_poll_timer, hr_time); 1130 hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS); 1131 spin_unlock_bh(&ap_poll_timer_lock); 1132 1133 return count; 1134 } 1135 1136 static BUS_ATTR_RW(poll_timeout); 1137 1138 static ssize_t ap_max_domain_id_show(struct bus_type *bus, char *buf) 1139 { 1140 int max_domain_id; 1141 1142 if (ap_configuration) 1143 max_domain_id = ap_max_domain_id ? : -1; 1144 else 1145 max_domain_id = 15; 1146 return snprintf(buf, PAGE_SIZE, "%d\n", max_domain_id); 1147 } 1148 1149 static BUS_ATTR_RO(ap_max_domain_id); 1150 1151 static ssize_t apmask_show(struct bus_type *bus, char *buf) 1152 { 1153 int rc; 1154 1155 if (mutex_lock_interruptible(&ap_perms_mutex)) 1156 return -ERESTARTSYS; 1157 rc = snprintf(buf, PAGE_SIZE, 1158 "0x%016lx%016lx%016lx%016lx\n", 1159 ap_perms.apm[0], ap_perms.apm[1], 1160 ap_perms.apm[2], ap_perms.apm[3]); 1161 mutex_unlock(&ap_perms_mutex); 1162 1163 return rc; 1164 } 1165 1166 static ssize_t apmask_store(struct bus_type *bus, const char *buf, 1167 size_t count) 1168 { 1169 int rc; 1170 1171 rc = ap_parse_mask_str(buf, ap_perms.apm, AP_DEVICES, &ap_perms_mutex); 1172 if (rc) 1173 return rc; 1174 1175 ap_bus_revise_bindings(); 1176 1177 return count; 1178 } 1179 1180 static BUS_ATTR_RW(apmask); 1181 1182 static ssize_t aqmask_show(struct bus_type *bus, char *buf) 1183 { 1184 int rc; 1185 1186 if (mutex_lock_interruptible(&ap_perms_mutex)) 1187 return -ERESTARTSYS; 1188 rc = snprintf(buf, PAGE_SIZE, 1189 "0x%016lx%016lx%016lx%016lx\n", 1190 ap_perms.aqm[0], ap_perms.aqm[1], 1191 ap_perms.aqm[2], ap_perms.aqm[3]); 1192 mutex_unlock(&ap_perms_mutex); 1193 1194 return rc; 1195 } 1196 1197 static ssize_t aqmask_store(struct bus_type *bus, const char *buf, 1198 size_t count) 1199 { 1200 int rc; 1201 1202 rc = ap_parse_mask_str(buf, ap_perms.aqm, AP_DOMAINS, &ap_perms_mutex); 1203 if (rc) 1204 return rc; 1205 1206 ap_bus_revise_bindings(); 1207 1208 return count; 1209 } 1210 1211 static BUS_ATTR_RW(aqmask); 1212 1213 static struct bus_attribute *const ap_bus_attrs[] = { 1214 &bus_attr_ap_domain, 1215 &bus_attr_ap_control_domain_mask, 1216 &bus_attr_ap_usage_domain_mask, 1217 &bus_attr_ap_adapter_mask, 1218 &bus_attr_config_time, 1219 &bus_attr_poll_thread, 1220 &bus_attr_ap_interrupts, 1221 &bus_attr_poll_timeout, 1222 &bus_attr_ap_max_domain_id, 1223 &bus_attr_apmask, 1224 &bus_attr_aqmask, 1225 NULL, 1226 }; 1227 1228 /** 1229 * ap_select_domain(): Select an AP domain if possible and we haven't 1230 * already done so before. 1231 */ 1232 static void ap_select_domain(void) 1233 { 1234 int count, max_count, best_domain; 1235 struct ap_queue_status status; 1236 int i, j; 1237 1238 /* 1239 * We want to use a single domain. Either the one specified with 1240 * the "domain=" parameter or the domain with the maximum number 1241 * of devices. 1242 */ 1243 spin_lock_bh(&ap_domain_lock); 1244 if (ap_domain_index >= 0) { 1245 /* Domain has already been selected. */ 1246 spin_unlock_bh(&ap_domain_lock); 1247 return; 1248 } 1249 best_domain = -1; 1250 max_count = 0; 1251 for (i = 0; i < AP_DOMAINS; i++) { 1252 if (!ap_test_config_domain(i) || 1253 !test_bit_inv(i, ap_perms.aqm)) 1254 continue; 1255 count = 0; 1256 for (j = 0; j < AP_DEVICES; j++) { 1257 if (!ap_test_config_card_id(j)) 1258 continue; 1259 status = ap_test_queue(AP_MKQID(j, i), 1260 ap_apft_available(), 1261 NULL); 1262 if (status.response_code != AP_RESPONSE_NORMAL) 1263 continue; 1264 count++; 1265 } 1266 if (count > max_count) { 1267 max_count = count; 1268 best_domain = i; 1269 } 1270 } 1271 if (best_domain >= 0) { 1272 ap_domain_index = best_domain; 1273 AP_DBF(DBF_DEBUG, "new ap_domain_index=%d\n", ap_domain_index); 1274 } 1275 spin_unlock_bh(&ap_domain_lock); 1276 } 1277 1278 /* 1279 * This function checks the type and returns either 0 for not 1280 * supported or the highest compatible type value (which may 1281 * include the input type value). 1282 */ 1283 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func) 1284 { 1285 int comp_type = 0; 1286 1287 /* < CEX2A is not supported */ 1288 if (rawtype < AP_DEVICE_TYPE_CEX2A) 1289 return 0; 1290 /* up to CEX6 known and fully supported */ 1291 if (rawtype <= AP_DEVICE_TYPE_CEX6) 1292 return rawtype; 1293 /* 1294 * unknown new type > CEX6, check for compatibility 1295 * to the highest known and supported type which is 1296 * currently CEX6 with the help of the QACT function. 1297 */ 1298 if (ap_qact_available()) { 1299 struct ap_queue_status status; 1300 union ap_qact_ap_info apinfo = {0}; 1301 1302 apinfo.mode = (func >> 26) & 0x07; 1303 apinfo.cat = AP_DEVICE_TYPE_CEX6; 1304 status = ap_qact(qid, 0, &apinfo); 1305 if (status.response_code == AP_RESPONSE_NORMAL 1306 && apinfo.cat >= AP_DEVICE_TYPE_CEX2A 1307 && apinfo.cat <= AP_DEVICE_TYPE_CEX6) 1308 comp_type = apinfo.cat; 1309 } 1310 if (!comp_type) 1311 AP_DBF(DBF_WARN, "queue=%02x.%04x unable to map type %d\n", 1312 AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype); 1313 else if (comp_type != rawtype) 1314 AP_DBF(DBF_INFO, "queue=%02x.%04x map type %d to %d\n", 1315 AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype, comp_type); 1316 return comp_type; 1317 } 1318 1319 /* 1320 * Helper function to be used with bus_find_dev 1321 * matches for the card device with the given id 1322 */ 1323 static int __match_card_device_with_id(struct device *dev, void *data) 1324 { 1325 return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long) data; 1326 } 1327 1328 /* 1329 * Helper function to be used with bus_find_dev 1330 * matches for the queue device with a given qid 1331 */ 1332 static int __match_queue_device_with_qid(struct device *dev, void *data) 1333 { 1334 return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long) data; 1335 } 1336 1337 /* 1338 * Helper function for ap_scan_bus(). 1339 * Does the scan bus job for the given adapter id. 1340 */ 1341 static void _ap_scan_bus_adapter(int id) 1342 { 1343 ap_qid_t qid; 1344 unsigned int func; 1345 struct ap_card *ac; 1346 struct device *dev; 1347 struct ap_queue *aq; 1348 int rc, dom, depth, type, comp_type, borked; 1349 1350 /* check if there is a card device registered with this id */ 1351 dev = bus_find_device(&ap_bus_type, NULL, 1352 (void *)(long) id, 1353 __match_card_device_with_id); 1354 ac = dev ? to_ap_card(dev) : NULL; 1355 if (!ap_test_config_card_id(id)) { 1356 if (dev) { 1357 /* Card device has been removed from configuration */ 1358 bus_for_each_dev(&ap_bus_type, NULL, 1359 (void *)(long) id, 1360 __ap_queue_devices_with_id_unregister); 1361 device_unregister(dev); 1362 put_device(dev); 1363 } 1364 return; 1365 } 1366 1367 /* 1368 * This card id is enabled in the configuration. If we already have 1369 * a card device with this id, check if type and functions are still 1370 * the very same. Also verify that at least one queue is available. 1371 */ 1372 if (ac) { 1373 /* find the first valid queue */ 1374 for (dom = 0; dom < AP_DOMAINS; dom++) { 1375 qid = AP_MKQID(id, dom); 1376 if (ap_query_queue(qid, &depth, &type, &func) == 0) 1377 break; 1378 } 1379 borked = 0; 1380 if (dom >= AP_DOMAINS) { 1381 /* no accessible queue on this card */ 1382 borked = 1; 1383 } else if (ac->raw_hwtype != type) { 1384 /* card type has changed */ 1385 AP_DBF(DBF_INFO, "card=%02x type changed.\n", id); 1386 borked = 1; 1387 } else if (ac->functions != func) { 1388 /* card functions have changed */ 1389 AP_DBF(DBF_INFO, "card=%02x functions changed.\n", id); 1390 borked = 1; 1391 } 1392 if (borked) { 1393 /* unregister card device and associated queues */ 1394 bus_for_each_dev(&ap_bus_type, NULL, 1395 (void *)(long) id, 1396 __ap_queue_devices_with_id_unregister); 1397 device_unregister(dev); 1398 put_device(dev); 1399 /* go back if there is no valid queue on this card */ 1400 if (dom >= AP_DOMAINS) 1401 return; 1402 ac = NULL; 1403 } 1404 } 1405 1406 /* 1407 * Go through all possible queue ids. Check and maybe create or release 1408 * queue devices for this card. If there exists no card device yet, 1409 * create a card device also. 1410 */ 1411 for (dom = 0; dom < AP_DOMAINS; dom++) { 1412 qid = AP_MKQID(id, dom); 1413 dev = bus_find_device(&ap_bus_type, NULL, 1414 (void *)(long) qid, 1415 __match_queue_device_with_qid); 1416 aq = dev ? to_ap_queue(dev) : NULL; 1417 if (!ap_test_config_domain(dom)) { 1418 if (dev) { 1419 /* Queue device exists but has been 1420 * removed from configuration. 1421 */ 1422 device_unregister(dev); 1423 put_device(dev); 1424 } 1425 continue; 1426 } 1427 /* try to fetch infos about this queue */ 1428 rc = ap_query_queue(qid, &depth, &type, &func); 1429 if (dev) { 1430 if (rc == -ENODEV) 1431 borked = 1; 1432 else { 1433 spin_lock_bh(&aq->lock); 1434 borked = aq->state == AP_STATE_BORKED; 1435 spin_unlock_bh(&aq->lock); 1436 } 1437 if (borked) /* Remove broken device */ 1438 device_unregister(dev); 1439 put_device(dev); 1440 continue; 1441 } 1442 if (rc) 1443 continue; 1444 /* a new queue device is needed, check out comp type */ 1445 comp_type = ap_get_compatible_type(qid, type, func); 1446 if (!comp_type) 1447 continue; 1448 /* maybe a card device needs to be created first */ 1449 if (!ac) { 1450 ac = ap_card_create(id, depth, type, comp_type, func); 1451 if (!ac) 1452 continue; 1453 ac->ap_dev.device.bus = &ap_bus_type; 1454 ac->ap_dev.device.parent = ap_root_device; 1455 dev_set_name(&ac->ap_dev.device, "card%02x", id); 1456 /* Register card device with AP bus */ 1457 rc = device_register(&ac->ap_dev.device); 1458 if (rc) { 1459 put_device(&ac->ap_dev.device); 1460 ac = NULL; 1461 break; 1462 } 1463 /* get it and thus adjust reference counter */ 1464 get_device(&ac->ap_dev.device); 1465 } 1466 /* now create the new queue device */ 1467 aq = ap_queue_create(qid, comp_type); 1468 if (!aq) 1469 continue; 1470 aq->card = ac; 1471 aq->ap_dev.device.bus = &ap_bus_type; 1472 aq->ap_dev.device.parent = &ac->ap_dev.device; 1473 dev_set_name(&aq->ap_dev.device, "%02x.%04x", id, dom); 1474 /* Register queue device */ 1475 rc = device_register(&aq->ap_dev.device); 1476 if (rc) { 1477 put_device(&aq->ap_dev.device); 1478 continue; 1479 } 1480 } /* end domain loop */ 1481 1482 if (ac) 1483 put_device(&ac->ap_dev.device); 1484 } 1485 1486 /** 1487 * ap_scan_bus(): Scan the AP bus for new devices 1488 * Runs periodically, workqueue timer (ap_config_time) 1489 */ 1490 static void ap_scan_bus(struct work_struct *unused) 1491 { 1492 int id; 1493 1494 AP_DBF(DBF_DEBUG, "%s running\n", __func__); 1495 1496 ap_query_configuration(ap_configuration); 1497 ap_select_domain(); 1498 1499 /* loop over all possible adapters */ 1500 for (id = 0; id < AP_DEVICES; id++) 1501 _ap_scan_bus_adapter(id); 1502 1503 /* check if there is at least one queue available with default domain */ 1504 if (ap_domain_index >= 0) { 1505 struct device *dev = 1506 bus_find_device(&ap_bus_type, NULL, 1507 (void *)(long) ap_domain_index, 1508 __match_queue_device_with_qid); 1509 if (dev) 1510 put_device(dev); 1511 else 1512 AP_DBF(DBF_INFO, 1513 "no queue device with default domain %d available\n", 1514 ap_domain_index); 1515 } 1516 1517 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ); 1518 } 1519 1520 static void ap_config_timeout(struct timer_list *unused) 1521 { 1522 if (ap_suspend_flag) 1523 return; 1524 queue_work(system_long_wq, &ap_scan_work); 1525 } 1526 1527 static int __init ap_debug_init(void) 1528 { 1529 ap_dbf_info = debug_register("ap", 1, 1, 1530 DBF_MAX_SPRINTF_ARGS * sizeof(long)); 1531 debug_register_view(ap_dbf_info, &debug_sprintf_view); 1532 debug_set_level(ap_dbf_info, DBF_ERR); 1533 1534 return 0; 1535 } 1536 1537 static void __init ap_perms_init(void) 1538 { 1539 /* all resources useable if no kernel parameter string given */ 1540 memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm)); 1541 memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm)); 1542 memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm)); 1543 1544 /* apm kernel parameter string */ 1545 if (apm_str) { 1546 memset(&ap_perms.apm, 0, sizeof(ap_perms.apm)); 1547 ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES, 1548 &ap_perms_mutex); 1549 } 1550 1551 /* aqm kernel parameter string */ 1552 if (aqm_str) { 1553 memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm)); 1554 ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS, 1555 &ap_perms_mutex); 1556 } 1557 } 1558 1559 /** 1560 * ap_module_init(): The module initialization code. 1561 * 1562 * Initializes the module. 1563 */ 1564 static int __init ap_module_init(void) 1565 { 1566 int max_domain_id; 1567 int rc, i; 1568 1569 rc = ap_debug_init(); 1570 if (rc) 1571 return rc; 1572 1573 if (!ap_instructions_available()) { 1574 pr_warn("The hardware system does not support AP instructions\n"); 1575 return -ENODEV; 1576 } 1577 1578 /* set up the AP permissions (ioctls, ap and aq masks) */ 1579 ap_perms_init(); 1580 1581 /* Get AP configuration data if available */ 1582 ap_init_configuration(); 1583 1584 if (ap_configuration) 1585 max_domain_id = 1586 ap_max_domain_id ? ap_max_domain_id : AP_DOMAINS - 1; 1587 else 1588 max_domain_id = 15; 1589 if (ap_domain_index < -1 || ap_domain_index > max_domain_id || 1590 (ap_domain_index >= 0 && 1591 !test_bit_inv(ap_domain_index, ap_perms.aqm))) { 1592 pr_warn("%d is not a valid cryptographic domain\n", 1593 ap_domain_index); 1594 ap_domain_index = -1; 1595 } 1596 /* In resume callback we need to know if the user had set the domain. 1597 * If so, we can not just reset it. 1598 */ 1599 if (ap_domain_index >= 0) 1600 user_set_domain = 1; 1601 1602 if (ap_interrupts_available()) { 1603 rc = register_adapter_interrupt(&ap_airq); 1604 ap_airq_flag = (rc == 0); 1605 } 1606 1607 /* Create /sys/bus/ap. */ 1608 rc = bus_register(&ap_bus_type); 1609 if (rc) 1610 goto out; 1611 for (i = 0; ap_bus_attrs[i]; i++) { 1612 rc = bus_create_file(&ap_bus_type, ap_bus_attrs[i]); 1613 if (rc) 1614 goto out_bus; 1615 } 1616 1617 /* Create /sys/devices/ap. */ 1618 ap_root_device = root_device_register("ap"); 1619 rc = PTR_ERR_OR_ZERO(ap_root_device); 1620 if (rc) 1621 goto out_bus; 1622 1623 /* Setup the AP bus rescan timer. */ 1624 timer_setup(&ap_config_timer, ap_config_timeout, 0); 1625 1626 /* 1627 * Setup the high resultion poll timer. 1628 * If we are running under z/VM adjust polling to z/VM polling rate. 1629 */ 1630 if (MACHINE_IS_VM) 1631 poll_timeout = 1500000; 1632 spin_lock_init(&ap_poll_timer_lock); 1633 hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1634 ap_poll_timer.function = ap_poll_timeout; 1635 1636 /* Start the low priority AP bus poll thread. */ 1637 if (ap_thread_flag) { 1638 rc = ap_poll_thread_start(); 1639 if (rc) 1640 goto out_work; 1641 } 1642 1643 rc = register_pm_notifier(&ap_power_notifier); 1644 if (rc) 1645 goto out_pm; 1646 1647 queue_work(system_long_wq, &ap_scan_work); 1648 initialised = true; 1649 1650 return 0; 1651 1652 out_pm: 1653 ap_poll_thread_stop(); 1654 out_work: 1655 hrtimer_cancel(&ap_poll_timer); 1656 root_device_unregister(ap_root_device); 1657 out_bus: 1658 while (i--) 1659 bus_remove_file(&ap_bus_type, ap_bus_attrs[i]); 1660 bus_unregister(&ap_bus_type); 1661 out: 1662 if (ap_using_interrupts()) 1663 unregister_adapter_interrupt(&ap_airq); 1664 kfree(ap_configuration); 1665 return rc; 1666 } 1667 device_initcall(ap_module_init); 1668