1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright IBM Corp. 2006, 2021 4 * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com> 5 * Martin Schwidefsky <schwidefsky@de.ibm.com> 6 * Ralph Wuerthner <rwuerthn@de.ibm.com> 7 * Felix Beck <felix.beck@de.ibm.com> 8 * Holger Dengler <hd@linux.vnet.ibm.com> 9 * Harald Freudenberger <freude@linux.ibm.com> 10 * 11 * Adjunct processor bus. 12 */ 13 14 #define KMSG_COMPONENT "ap" 15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 16 17 #include <linux/kernel_stat.h> 18 #include <linux/moduleparam.h> 19 #include <linux/init.h> 20 #include <linux/delay.h> 21 #include <linux/err.h> 22 #include <linux/freezer.h> 23 #include <linux/interrupt.h> 24 #include <linux/workqueue.h> 25 #include <linux/slab.h> 26 #include <linux/notifier.h> 27 #include <linux/kthread.h> 28 #include <linux/mutex.h> 29 #include <asm/airq.h> 30 #include <asm/tpi.h> 31 #include <linux/atomic.h> 32 #include <asm/isc.h> 33 #include <linux/hrtimer.h> 34 #include <linux/ktime.h> 35 #include <asm/facility.h> 36 #include <linux/crypto.h> 37 #include <linux/mod_devicetable.h> 38 #include <linux/debugfs.h> 39 #include <linux/ctype.h> 40 #include <linux/module.h> 41 42 #include "ap_bus.h" 43 #include "ap_debug.h" 44 45 /* 46 * Module parameters; note though this file itself isn't modular. 47 */ 48 int ap_domain_index = -1; /* Adjunct Processor Domain Index */ 49 static DEFINE_SPINLOCK(ap_domain_lock); 50 module_param_named(domain, ap_domain_index, int, 0440); 51 MODULE_PARM_DESC(domain, "domain index for ap devices"); 52 EXPORT_SYMBOL(ap_domain_index); 53 54 static int ap_thread_flag; 55 module_param_named(poll_thread, ap_thread_flag, int, 0440); 56 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off)."); 57 58 static char *apm_str; 59 module_param_named(apmask, apm_str, charp, 0440); 60 MODULE_PARM_DESC(apmask, "AP bus adapter mask."); 61 62 static char *aqm_str; 63 module_param_named(aqmask, aqm_str, charp, 0440); 64 MODULE_PARM_DESC(aqmask, "AP bus domain mask."); 65 66 static int ap_useirq = 1; 67 module_param_named(useirq, ap_useirq, int, 0440); 68 MODULE_PARM_DESC(useirq, "Use interrupt if available, default is 1 (on)."); 69 70 atomic_t ap_max_msg_size = ATOMIC_INIT(AP_DEFAULT_MAX_MSG_SIZE); 71 EXPORT_SYMBOL(ap_max_msg_size); 72 73 static struct device *ap_root_device; 74 75 /* Hashtable of all queue devices on the AP bus */ 76 DEFINE_HASHTABLE(ap_queues, 8); 77 /* lock used for the ap_queues hashtable */ 78 DEFINE_SPINLOCK(ap_queues_lock); 79 80 /* Default permissions (ioctl, card and domain masking) */ 81 struct ap_perms ap_perms; 82 EXPORT_SYMBOL(ap_perms); 83 DEFINE_MUTEX(ap_perms_mutex); 84 EXPORT_SYMBOL(ap_perms_mutex); 85 86 /* # of bus scans since init */ 87 static atomic64_t ap_scan_bus_count; 88 89 /* # of bindings complete since init */ 90 static atomic64_t ap_bindings_complete_count = ATOMIC64_INIT(0); 91 92 /* completion for initial APQN bindings complete */ 93 static DECLARE_COMPLETION(ap_init_apqn_bindings_complete); 94 95 static struct ap_config_info *ap_qci_info; 96 static struct ap_config_info *ap_qci_info_old; 97 98 /* 99 * AP bus related debug feature things. 100 */ 101 debug_info_t *ap_dbf_info; 102 103 /* 104 * Workqueue timer for bus rescan. 105 */ 106 static struct timer_list ap_config_timer; 107 static int ap_config_time = AP_CONFIG_TIME; 108 static void ap_scan_bus(struct work_struct *); 109 static DECLARE_WORK(ap_scan_work, ap_scan_bus); 110 111 /* 112 * Tasklet & timer for AP request polling and interrupts 113 */ 114 static void ap_tasklet_fn(unsigned long); 115 static DECLARE_TASKLET_OLD(ap_tasklet, ap_tasklet_fn); 116 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait); 117 static struct task_struct *ap_poll_kthread; 118 static DEFINE_MUTEX(ap_poll_thread_mutex); 119 static DEFINE_SPINLOCK(ap_poll_timer_lock); 120 static struct hrtimer ap_poll_timer; 121 /* 122 * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds. 123 * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling. 124 */ 125 static unsigned long long poll_timeout = 250000; 126 127 /* Maximum domain id, if not given via qci */ 128 static int ap_max_domain_id = 15; 129 /* Maximum adapter id, if not given via qci */ 130 static int ap_max_adapter_id = 63; 131 132 static struct bus_type ap_bus_type; 133 134 /* Adapter interrupt definitions */ 135 static void ap_interrupt_handler(struct airq_struct *airq, 136 struct tpi_info *tpi_info); 137 138 static bool ap_irq_flag; 139 140 static struct airq_struct ap_airq = { 141 .handler = ap_interrupt_handler, 142 .isc = AP_ISC, 143 }; 144 145 /** 146 * ap_airq_ptr() - Get the address of the adapter interrupt indicator 147 * 148 * Returns the address of the local-summary-indicator of the adapter 149 * interrupt handler for AP, or NULL if adapter interrupts are not 150 * available. 151 */ 152 void *ap_airq_ptr(void) 153 { 154 if (ap_irq_flag) 155 return ap_airq.lsi_ptr; 156 return NULL; 157 } 158 159 /** 160 * ap_interrupts_available(): Test if AP interrupts are available. 161 * 162 * Returns 1 if AP interrupts are available. 163 */ 164 static int ap_interrupts_available(void) 165 { 166 return test_facility(65); 167 } 168 169 /** 170 * ap_qci_available(): Test if AP configuration 171 * information can be queried via QCI subfunction. 172 * 173 * Returns 1 if subfunction PQAP(QCI) is available. 174 */ 175 static int ap_qci_available(void) 176 { 177 return test_facility(12); 178 } 179 180 /** 181 * ap_apft_available(): Test if AP facilities test (APFT) 182 * facility is available. 183 * 184 * Returns 1 if APFT is available. 185 */ 186 static int ap_apft_available(void) 187 { 188 return test_facility(15); 189 } 190 191 /* 192 * ap_qact_available(): Test if the PQAP(QACT) subfunction is available. 193 * 194 * Returns 1 if the QACT subfunction is available. 195 */ 196 static inline int ap_qact_available(void) 197 { 198 if (ap_qci_info) 199 return ap_qci_info->qact; 200 return 0; 201 } 202 203 /* 204 * ap_fetch_qci_info(): Fetch cryptographic config info 205 * 206 * Returns the ap configuration info fetched via PQAP(QCI). 207 * On success 0 is returned, on failure a negative errno 208 * is returned, e.g. if the PQAP(QCI) instruction is not 209 * available, the return value will be -EOPNOTSUPP. 210 */ 211 static inline int ap_fetch_qci_info(struct ap_config_info *info) 212 { 213 if (!ap_qci_available()) 214 return -EOPNOTSUPP; 215 if (!info) 216 return -EINVAL; 217 return ap_qci(info); 218 } 219 220 /** 221 * ap_init_qci_info(): Allocate and query qci config info. 222 * Does also update the static variables ap_max_domain_id 223 * and ap_max_adapter_id if this info is available. 224 */ 225 static void __init ap_init_qci_info(void) 226 { 227 if (!ap_qci_available()) { 228 AP_DBF_INFO("%s QCI not supported\n", __func__); 229 return; 230 } 231 232 ap_qci_info = kzalloc(sizeof(*ap_qci_info), GFP_KERNEL); 233 if (!ap_qci_info) 234 return; 235 ap_qci_info_old = kzalloc(sizeof(*ap_qci_info_old), GFP_KERNEL); 236 if (!ap_qci_info_old) { 237 kfree(ap_qci_info); 238 ap_qci_info = NULL; 239 return; 240 } 241 if (ap_fetch_qci_info(ap_qci_info) != 0) { 242 kfree(ap_qci_info); 243 kfree(ap_qci_info_old); 244 ap_qci_info = NULL; 245 ap_qci_info_old = NULL; 246 return; 247 } 248 AP_DBF_INFO("%s successful fetched initial qci info\n", __func__); 249 250 if (ap_qci_info->apxa) { 251 if (ap_qci_info->Na) { 252 ap_max_adapter_id = ap_qci_info->Na; 253 AP_DBF_INFO("%s new ap_max_adapter_id is %d\n", 254 __func__, ap_max_adapter_id); 255 } 256 if (ap_qci_info->Nd) { 257 ap_max_domain_id = ap_qci_info->Nd; 258 AP_DBF_INFO("%s new ap_max_domain_id is %d\n", 259 __func__, ap_max_domain_id); 260 } 261 } 262 263 memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info)); 264 } 265 266 /* 267 * ap_test_config(): helper function to extract the nrth bit 268 * within the unsigned int array field. 269 */ 270 static inline int ap_test_config(unsigned int *field, unsigned int nr) 271 { 272 return ap_test_bit((field + (nr >> 5)), (nr & 0x1f)); 273 } 274 275 /* 276 * ap_test_config_card_id(): Test, whether an AP card ID is configured. 277 * 278 * Returns 0 if the card is not configured 279 * 1 if the card is configured or 280 * if the configuration information is not available 281 */ 282 static inline int ap_test_config_card_id(unsigned int id) 283 { 284 if (id > ap_max_adapter_id) 285 return 0; 286 if (ap_qci_info) 287 return ap_test_config(ap_qci_info->apm, id); 288 return 1; 289 } 290 291 /* 292 * ap_test_config_usage_domain(): Test, whether an AP usage domain 293 * is configured. 294 * 295 * Returns 0 if the usage domain is not configured 296 * 1 if the usage domain is configured or 297 * if the configuration information is not available 298 */ 299 int ap_test_config_usage_domain(unsigned int domain) 300 { 301 if (domain > ap_max_domain_id) 302 return 0; 303 if (ap_qci_info) 304 return ap_test_config(ap_qci_info->aqm, domain); 305 return 1; 306 } 307 EXPORT_SYMBOL(ap_test_config_usage_domain); 308 309 /* 310 * ap_test_config_ctrl_domain(): Test, whether an AP control domain 311 * is configured. 312 * @domain AP control domain ID 313 * 314 * Returns 1 if the control domain is configured 315 * 0 in all other cases 316 */ 317 int ap_test_config_ctrl_domain(unsigned int domain) 318 { 319 if (!ap_qci_info || domain > ap_max_domain_id) 320 return 0; 321 return ap_test_config(ap_qci_info->adm, domain); 322 } 323 EXPORT_SYMBOL(ap_test_config_ctrl_domain); 324 325 /* 326 * ap_queue_info(): Check and get AP queue info. 327 * Returns true if TAPQ succeeded and the info is filled or 328 * false otherwise. 329 */ 330 static bool ap_queue_info(ap_qid_t qid, int *q_type, unsigned int *q_fac, 331 int *q_depth, int *q_ml, bool *q_decfg, bool *q_cstop) 332 { 333 struct ap_queue_status status; 334 union { 335 unsigned long value; 336 struct { 337 unsigned int fac : 32; /* facility bits */ 338 unsigned int at : 8; /* ap type */ 339 unsigned int _res1 : 8; 340 unsigned int _res2 : 4; 341 unsigned int ml : 4; /* apxl ml */ 342 unsigned int _res3 : 4; 343 unsigned int qd : 4; /* queue depth */ 344 } tapq_gr2; 345 } tapq_info; 346 347 tapq_info.value = 0; 348 349 /* make sure we don't run into a specifiation exception */ 350 if (AP_QID_CARD(qid) > ap_max_adapter_id || 351 AP_QID_QUEUE(qid) > ap_max_domain_id) 352 return false; 353 354 /* call TAPQ on this APQN */ 355 status = ap_test_queue(qid, ap_apft_available(), &tapq_info.value); 356 switch (status.response_code) { 357 case AP_RESPONSE_NORMAL: 358 case AP_RESPONSE_RESET_IN_PROGRESS: 359 case AP_RESPONSE_DECONFIGURED: 360 case AP_RESPONSE_CHECKSTOPPED: 361 case AP_RESPONSE_BUSY: 362 /* 363 * According to the architecture in all these cases the 364 * info should be filled. All bits 0 is not possible as 365 * there is at least one of the mode bits set. 366 */ 367 if (WARN_ON_ONCE(!tapq_info.value)) 368 return false; 369 *q_type = tapq_info.tapq_gr2.at; 370 *q_fac = tapq_info.tapq_gr2.fac; 371 *q_depth = tapq_info.tapq_gr2.qd; 372 *q_ml = tapq_info.tapq_gr2.ml; 373 *q_decfg = status.response_code == AP_RESPONSE_DECONFIGURED; 374 *q_cstop = status.response_code == AP_RESPONSE_CHECKSTOPPED; 375 switch (*q_type) { 376 /* For CEX2 and CEX3 the available functions 377 * are not reflected by the facilities bits. 378 * Instead it is coded into the type. So here 379 * modify the function bits based on the type. 380 */ 381 case AP_DEVICE_TYPE_CEX2A: 382 case AP_DEVICE_TYPE_CEX3A: 383 *q_fac |= 0x08000000; 384 break; 385 case AP_DEVICE_TYPE_CEX2C: 386 case AP_DEVICE_TYPE_CEX3C: 387 *q_fac |= 0x10000000; 388 break; 389 default: 390 break; 391 } 392 return true; 393 default: 394 /* 395 * A response code which indicates, there is no info available. 396 */ 397 return false; 398 } 399 } 400 401 void ap_wait(enum ap_sm_wait wait) 402 { 403 ktime_t hr_time; 404 405 switch (wait) { 406 case AP_SM_WAIT_AGAIN: 407 case AP_SM_WAIT_INTERRUPT: 408 if (ap_irq_flag) 409 break; 410 if (ap_poll_kthread) { 411 wake_up(&ap_poll_wait); 412 break; 413 } 414 fallthrough; 415 case AP_SM_WAIT_TIMEOUT: 416 spin_lock_bh(&ap_poll_timer_lock); 417 if (!hrtimer_is_queued(&ap_poll_timer)) { 418 hr_time = poll_timeout; 419 hrtimer_forward_now(&ap_poll_timer, hr_time); 420 hrtimer_restart(&ap_poll_timer); 421 } 422 spin_unlock_bh(&ap_poll_timer_lock); 423 break; 424 case AP_SM_WAIT_NONE: 425 default: 426 break; 427 } 428 } 429 430 /** 431 * ap_request_timeout(): Handling of request timeouts 432 * @t: timer making this callback 433 * 434 * Handles request timeouts. 435 */ 436 void ap_request_timeout(struct timer_list *t) 437 { 438 struct ap_queue *aq = from_timer(aq, t, timeout); 439 440 spin_lock_bh(&aq->lock); 441 ap_wait(ap_sm_event(aq, AP_SM_EVENT_TIMEOUT)); 442 spin_unlock_bh(&aq->lock); 443 } 444 445 /** 446 * ap_poll_timeout(): AP receive polling for finished AP requests. 447 * @unused: Unused pointer. 448 * 449 * Schedules the AP tasklet using a high resolution timer. 450 */ 451 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused) 452 { 453 tasklet_schedule(&ap_tasklet); 454 return HRTIMER_NORESTART; 455 } 456 457 /** 458 * ap_interrupt_handler() - Schedule ap_tasklet on interrupt 459 * @airq: pointer to adapter interrupt descriptor 460 * @tpi_info: ignored 461 */ 462 static void ap_interrupt_handler(struct airq_struct *airq, 463 struct tpi_info *tpi_info) 464 { 465 inc_irq_stat(IRQIO_APB); 466 tasklet_schedule(&ap_tasklet); 467 } 468 469 /** 470 * ap_tasklet_fn(): Tasklet to poll all AP devices. 471 * @dummy: Unused variable 472 * 473 * Poll all AP devices on the bus. 474 */ 475 static void ap_tasklet_fn(unsigned long dummy) 476 { 477 int bkt; 478 struct ap_queue *aq; 479 enum ap_sm_wait wait = AP_SM_WAIT_NONE; 480 481 /* Reset the indicator if interrupts are used. Thus new interrupts can 482 * be received. Doing it in the beginning of the tasklet is therefor 483 * important that no requests on any AP get lost. 484 */ 485 if (ap_irq_flag) 486 xchg(ap_airq.lsi_ptr, 0); 487 488 spin_lock_bh(&ap_queues_lock); 489 hash_for_each(ap_queues, bkt, aq, hnode) { 490 spin_lock_bh(&aq->lock); 491 wait = min(wait, ap_sm_event_loop(aq, AP_SM_EVENT_POLL)); 492 spin_unlock_bh(&aq->lock); 493 } 494 spin_unlock_bh(&ap_queues_lock); 495 496 ap_wait(wait); 497 } 498 499 static int ap_pending_requests(void) 500 { 501 int bkt; 502 struct ap_queue *aq; 503 504 spin_lock_bh(&ap_queues_lock); 505 hash_for_each(ap_queues, bkt, aq, hnode) { 506 if (aq->queue_count == 0) 507 continue; 508 spin_unlock_bh(&ap_queues_lock); 509 return 1; 510 } 511 spin_unlock_bh(&ap_queues_lock); 512 return 0; 513 } 514 515 /** 516 * ap_poll_thread(): Thread that polls for finished requests. 517 * @data: Unused pointer 518 * 519 * AP bus poll thread. The purpose of this thread is to poll for 520 * finished requests in a loop if there is a "free" cpu - that is 521 * a cpu that doesn't have anything better to do. The polling stops 522 * as soon as there is another task or if all messages have been 523 * delivered. 524 */ 525 static int ap_poll_thread(void *data) 526 { 527 DECLARE_WAITQUEUE(wait, current); 528 529 set_user_nice(current, MAX_NICE); 530 set_freezable(); 531 while (!kthread_should_stop()) { 532 add_wait_queue(&ap_poll_wait, &wait); 533 set_current_state(TASK_INTERRUPTIBLE); 534 if (!ap_pending_requests()) { 535 schedule(); 536 try_to_freeze(); 537 } 538 set_current_state(TASK_RUNNING); 539 remove_wait_queue(&ap_poll_wait, &wait); 540 if (need_resched()) { 541 schedule(); 542 try_to_freeze(); 543 continue; 544 } 545 ap_tasklet_fn(0); 546 } 547 548 return 0; 549 } 550 551 static int ap_poll_thread_start(void) 552 { 553 int rc; 554 555 if (ap_irq_flag || ap_poll_kthread) 556 return 0; 557 mutex_lock(&ap_poll_thread_mutex); 558 ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll"); 559 rc = PTR_ERR_OR_ZERO(ap_poll_kthread); 560 if (rc) 561 ap_poll_kthread = NULL; 562 mutex_unlock(&ap_poll_thread_mutex); 563 return rc; 564 } 565 566 static void ap_poll_thread_stop(void) 567 { 568 if (!ap_poll_kthread) 569 return; 570 mutex_lock(&ap_poll_thread_mutex); 571 kthread_stop(ap_poll_kthread); 572 ap_poll_kthread = NULL; 573 mutex_unlock(&ap_poll_thread_mutex); 574 } 575 576 #define is_card_dev(x) ((x)->parent == ap_root_device) 577 #define is_queue_dev(x) ((x)->parent != ap_root_device) 578 579 /** 580 * ap_bus_match() 581 * @dev: Pointer to device 582 * @drv: Pointer to device_driver 583 * 584 * AP bus driver registration/unregistration. 585 */ 586 static int ap_bus_match(struct device *dev, struct device_driver *drv) 587 { 588 struct ap_driver *ap_drv = to_ap_drv(drv); 589 struct ap_device_id *id; 590 591 /* 592 * Compare device type of the device with the list of 593 * supported types of the device_driver. 594 */ 595 for (id = ap_drv->ids; id->match_flags; id++) { 596 if (is_card_dev(dev) && 597 id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE && 598 id->dev_type == to_ap_dev(dev)->device_type) 599 return 1; 600 if (is_queue_dev(dev) && 601 id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE && 602 id->dev_type == to_ap_dev(dev)->device_type) 603 return 1; 604 } 605 return 0; 606 } 607 608 /** 609 * ap_uevent(): Uevent function for AP devices. 610 * @dev: Pointer to device 611 * @env: Pointer to kobj_uevent_env 612 * 613 * It sets up a single environment variable DEV_TYPE which contains the 614 * hardware device type. 615 */ 616 static int ap_uevent(struct device *dev, struct kobj_uevent_env *env) 617 { 618 int rc = 0; 619 struct ap_device *ap_dev = to_ap_dev(dev); 620 621 /* Uevents from ap bus core don't need extensions to the env */ 622 if (dev == ap_root_device) 623 return 0; 624 625 if (is_card_dev(dev)) { 626 struct ap_card *ac = to_ap_card(&ap_dev->device); 627 628 /* Set up DEV_TYPE environment variable. */ 629 rc = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type); 630 if (rc) 631 return rc; 632 /* Add MODALIAS= */ 633 rc = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type); 634 if (rc) 635 return rc; 636 637 /* Add MODE=<accel|cca|ep11> */ 638 if (ap_test_bit(&ac->functions, AP_FUNC_ACCEL)) 639 rc = add_uevent_var(env, "MODE=accel"); 640 else if (ap_test_bit(&ac->functions, AP_FUNC_COPRO)) 641 rc = add_uevent_var(env, "MODE=cca"); 642 else if (ap_test_bit(&ac->functions, AP_FUNC_EP11)) 643 rc = add_uevent_var(env, "MODE=ep11"); 644 if (rc) 645 return rc; 646 } else { 647 struct ap_queue *aq = to_ap_queue(&ap_dev->device); 648 649 /* Add MODE=<accel|cca|ep11> */ 650 if (ap_test_bit(&aq->card->functions, AP_FUNC_ACCEL)) 651 rc = add_uevent_var(env, "MODE=accel"); 652 else if (ap_test_bit(&aq->card->functions, AP_FUNC_COPRO)) 653 rc = add_uevent_var(env, "MODE=cca"); 654 else if (ap_test_bit(&aq->card->functions, AP_FUNC_EP11)) 655 rc = add_uevent_var(env, "MODE=ep11"); 656 if (rc) 657 return rc; 658 } 659 660 return 0; 661 } 662 663 static void ap_send_init_scan_done_uevent(void) 664 { 665 char *envp[] = { "INITSCAN=done", NULL }; 666 667 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp); 668 } 669 670 static void ap_send_bindings_complete_uevent(void) 671 { 672 char buf[32]; 673 char *envp[] = { "BINDINGS=complete", buf, NULL }; 674 675 snprintf(buf, sizeof(buf), "COMPLETECOUNT=%llu", 676 atomic64_inc_return(&ap_bindings_complete_count)); 677 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp); 678 } 679 680 void ap_send_config_uevent(struct ap_device *ap_dev, bool cfg) 681 { 682 char buf[16]; 683 char *envp[] = { buf, NULL }; 684 685 snprintf(buf, sizeof(buf), "CONFIG=%d", cfg ? 1 : 0); 686 687 kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp); 688 } 689 EXPORT_SYMBOL(ap_send_config_uevent); 690 691 void ap_send_online_uevent(struct ap_device *ap_dev, int online) 692 { 693 char buf[16]; 694 char *envp[] = { buf, NULL }; 695 696 snprintf(buf, sizeof(buf), "ONLINE=%d", online ? 1 : 0); 697 698 kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp); 699 } 700 EXPORT_SYMBOL(ap_send_online_uevent); 701 702 static void ap_send_mask_changed_uevent(unsigned long *newapm, 703 unsigned long *newaqm) 704 { 705 char buf[100]; 706 char *envp[] = { buf, NULL }; 707 708 if (newapm) 709 snprintf(buf, sizeof(buf), 710 "APMASK=0x%016lx%016lx%016lx%016lx\n", 711 newapm[0], newapm[1], newapm[2], newapm[3]); 712 else 713 snprintf(buf, sizeof(buf), 714 "AQMASK=0x%016lx%016lx%016lx%016lx\n", 715 newaqm[0], newaqm[1], newaqm[2], newaqm[3]); 716 717 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp); 718 } 719 720 /* 721 * calc # of bound APQNs 722 */ 723 724 struct __ap_calc_ctrs { 725 unsigned int apqns; 726 unsigned int bound; 727 }; 728 729 static int __ap_calc_helper(struct device *dev, void *arg) 730 { 731 struct __ap_calc_ctrs *pctrs = (struct __ap_calc_ctrs *)arg; 732 733 if (is_queue_dev(dev)) { 734 pctrs->apqns++; 735 if (dev->driver) 736 pctrs->bound++; 737 } 738 739 return 0; 740 } 741 742 static void ap_calc_bound_apqns(unsigned int *apqns, unsigned int *bound) 743 { 744 struct __ap_calc_ctrs ctrs; 745 746 memset(&ctrs, 0, sizeof(ctrs)); 747 bus_for_each_dev(&ap_bus_type, NULL, (void *)&ctrs, __ap_calc_helper); 748 749 *apqns = ctrs.apqns; 750 *bound = ctrs.bound; 751 } 752 753 /* 754 * After initial ap bus scan do check if all existing APQNs are 755 * bound to device drivers. 756 */ 757 static void ap_check_bindings_complete(void) 758 { 759 unsigned int apqns, bound; 760 761 if (atomic64_read(&ap_scan_bus_count) >= 1) { 762 ap_calc_bound_apqns(&apqns, &bound); 763 if (bound == apqns) { 764 if (!completion_done(&ap_init_apqn_bindings_complete)) { 765 complete_all(&ap_init_apqn_bindings_complete); 766 AP_DBF_INFO("%s complete\n", __func__); 767 } 768 ap_send_bindings_complete_uevent(); 769 } 770 } 771 } 772 773 /* 774 * Interface to wait for the AP bus to have done one initial ap bus 775 * scan and all detected APQNs have been bound to device drivers. 776 * If these both conditions are not fulfilled, this function blocks 777 * on a condition with wait_for_completion_interruptible_timeout(). 778 * If these both conditions are fulfilled (before the timeout hits) 779 * the return value is 0. If the timeout (in jiffies) hits instead 780 * -ETIME is returned. On failures negative return values are 781 * returned to the caller. 782 */ 783 int ap_wait_init_apqn_bindings_complete(unsigned long timeout) 784 { 785 long l; 786 787 if (completion_done(&ap_init_apqn_bindings_complete)) 788 return 0; 789 790 if (timeout) 791 l = wait_for_completion_interruptible_timeout( 792 &ap_init_apqn_bindings_complete, timeout); 793 else 794 l = wait_for_completion_interruptible( 795 &ap_init_apqn_bindings_complete); 796 if (l < 0) 797 return l == -ERESTARTSYS ? -EINTR : l; 798 else if (l == 0 && timeout) 799 return -ETIME; 800 801 return 0; 802 } 803 EXPORT_SYMBOL(ap_wait_init_apqn_bindings_complete); 804 805 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data) 806 { 807 if (is_queue_dev(dev) && 808 AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long)data) 809 device_unregister(dev); 810 return 0; 811 } 812 813 static int __ap_revise_reserved(struct device *dev, void *dummy) 814 { 815 int rc, card, queue, devres, drvres; 816 817 if (is_queue_dev(dev)) { 818 card = AP_QID_CARD(to_ap_queue(dev)->qid); 819 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid); 820 mutex_lock(&ap_perms_mutex); 821 devres = test_bit_inv(card, ap_perms.apm) && 822 test_bit_inv(queue, ap_perms.aqm); 823 mutex_unlock(&ap_perms_mutex); 824 drvres = to_ap_drv(dev->driver)->flags 825 & AP_DRIVER_FLAG_DEFAULT; 826 if (!!devres != !!drvres) { 827 AP_DBF_DBG("%s reprobing queue=%02x.%04x\n", 828 __func__, card, queue); 829 rc = device_reprobe(dev); 830 if (rc) 831 AP_DBF_WARN("%s reprobing queue=%02x.%04x failed\n", 832 __func__, card, queue); 833 } 834 } 835 836 return 0; 837 } 838 839 static void ap_bus_revise_bindings(void) 840 { 841 bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved); 842 } 843 844 /** 845 * ap_owned_by_def_drv: indicates whether an AP adapter is reserved for the 846 * default host driver or not. 847 * @card: the APID of the adapter card to check 848 * @queue: the APQI of the queue to check 849 * 850 * Note: the ap_perms_mutex must be locked by the caller of this function. 851 * 852 * Return: an int specifying whether the AP adapter is reserved for the host (1) 853 * or not (0). 854 */ 855 int ap_owned_by_def_drv(int card, int queue) 856 { 857 int rc = 0; 858 859 if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS) 860 return -EINVAL; 861 862 if (test_bit_inv(card, ap_perms.apm) && 863 test_bit_inv(queue, ap_perms.aqm)) 864 rc = 1; 865 866 return rc; 867 } 868 EXPORT_SYMBOL(ap_owned_by_def_drv); 869 870 /** 871 * ap_apqn_in_matrix_owned_by_def_drv: indicates whether every APQN contained in 872 * a set is reserved for the host drivers 873 * or not. 874 * @apm: a bitmap specifying a set of APIDs comprising the APQNs to check 875 * @aqm: a bitmap specifying a set of APQIs comprising the APQNs to check 876 * 877 * Note: the ap_perms_mutex must be locked by the caller of this function. 878 * 879 * Return: an int specifying whether each APQN is reserved for the host (1) or 880 * not (0) 881 */ 882 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm, 883 unsigned long *aqm) 884 { 885 int card, queue, rc = 0; 886 887 for (card = 0; !rc && card < AP_DEVICES; card++) 888 if (test_bit_inv(card, apm) && 889 test_bit_inv(card, ap_perms.apm)) 890 for (queue = 0; !rc && queue < AP_DOMAINS; queue++) 891 if (test_bit_inv(queue, aqm) && 892 test_bit_inv(queue, ap_perms.aqm)) 893 rc = 1; 894 895 return rc; 896 } 897 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv); 898 899 static int ap_device_probe(struct device *dev) 900 { 901 struct ap_device *ap_dev = to_ap_dev(dev); 902 struct ap_driver *ap_drv = to_ap_drv(dev->driver); 903 int card, queue, devres, drvres, rc = -ENODEV; 904 905 if (!get_device(dev)) 906 return rc; 907 908 if (is_queue_dev(dev)) { 909 /* 910 * If the apqn is marked as reserved/used by ap bus and 911 * default drivers, only probe with drivers with the default 912 * flag set. If it is not marked, only probe with drivers 913 * with the default flag not set. 914 */ 915 card = AP_QID_CARD(to_ap_queue(dev)->qid); 916 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid); 917 mutex_lock(&ap_perms_mutex); 918 devres = test_bit_inv(card, ap_perms.apm) && 919 test_bit_inv(queue, ap_perms.aqm); 920 mutex_unlock(&ap_perms_mutex); 921 drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT; 922 if (!!devres != !!drvres) 923 goto out; 924 } 925 926 /* Add queue/card to list of active queues/cards */ 927 spin_lock_bh(&ap_queues_lock); 928 if (is_queue_dev(dev)) 929 hash_add(ap_queues, &to_ap_queue(dev)->hnode, 930 to_ap_queue(dev)->qid); 931 spin_unlock_bh(&ap_queues_lock); 932 933 rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV; 934 935 if (rc) { 936 spin_lock_bh(&ap_queues_lock); 937 if (is_queue_dev(dev)) 938 hash_del(&to_ap_queue(dev)->hnode); 939 spin_unlock_bh(&ap_queues_lock); 940 } else { 941 ap_check_bindings_complete(); 942 } 943 944 out: 945 if (rc) 946 put_device(dev); 947 return rc; 948 } 949 950 static void ap_device_remove(struct device *dev) 951 { 952 struct ap_device *ap_dev = to_ap_dev(dev); 953 struct ap_driver *ap_drv = to_ap_drv(dev->driver); 954 955 /* prepare ap queue device removal */ 956 if (is_queue_dev(dev)) 957 ap_queue_prepare_remove(to_ap_queue(dev)); 958 959 /* driver's chance to clean up gracefully */ 960 if (ap_drv->remove) 961 ap_drv->remove(ap_dev); 962 963 /* now do the ap queue device remove */ 964 if (is_queue_dev(dev)) 965 ap_queue_remove(to_ap_queue(dev)); 966 967 /* Remove queue/card from list of active queues/cards */ 968 spin_lock_bh(&ap_queues_lock); 969 if (is_queue_dev(dev)) 970 hash_del(&to_ap_queue(dev)->hnode); 971 spin_unlock_bh(&ap_queues_lock); 972 973 put_device(dev); 974 } 975 976 struct ap_queue *ap_get_qdev(ap_qid_t qid) 977 { 978 int bkt; 979 struct ap_queue *aq; 980 981 spin_lock_bh(&ap_queues_lock); 982 hash_for_each(ap_queues, bkt, aq, hnode) { 983 if (aq->qid == qid) { 984 get_device(&aq->ap_dev.device); 985 spin_unlock_bh(&ap_queues_lock); 986 return aq; 987 } 988 } 989 spin_unlock_bh(&ap_queues_lock); 990 991 return NULL; 992 } 993 EXPORT_SYMBOL(ap_get_qdev); 994 995 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner, 996 char *name) 997 { 998 struct device_driver *drv = &ap_drv->driver; 999 1000 drv->bus = &ap_bus_type; 1001 drv->owner = owner; 1002 drv->name = name; 1003 return driver_register(drv); 1004 } 1005 EXPORT_SYMBOL(ap_driver_register); 1006 1007 void ap_driver_unregister(struct ap_driver *ap_drv) 1008 { 1009 driver_unregister(&ap_drv->driver); 1010 } 1011 EXPORT_SYMBOL(ap_driver_unregister); 1012 1013 void ap_bus_force_rescan(void) 1014 { 1015 /* processing a asynchronous bus rescan */ 1016 del_timer(&ap_config_timer); 1017 queue_work(system_long_wq, &ap_scan_work); 1018 flush_work(&ap_scan_work); 1019 } 1020 EXPORT_SYMBOL(ap_bus_force_rescan); 1021 1022 /* 1023 * A config change has happened, force an ap bus rescan. 1024 */ 1025 void ap_bus_cfg_chg(void) 1026 { 1027 AP_DBF_DBG("%s config change, forcing bus rescan\n", __func__); 1028 1029 ap_bus_force_rescan(); 1030 } 1031 1032 /* 1033 * hex2bitmap() - parse hex mask string and set bitmap. 1034 * Valid strings are "0x012345678" with at least one valid hex number. 1035 * Rest of the bitmap to the right is padded with 0. No spaces allowed 1036 * within the string, the leading 0x may be omitted. 1037 * Returns the bitmask with exactly the bits set as given by the hex 1038 * string (both in big endian order). 1039 */ 1040 static int hex2bitmap(const char *str, unsigned long *bitmap, int bits) 1041 { 1042 int i, n, b; 1043 1044 /* bits needs to be a multiple of 8 */ 1045 if (bits & 0x07) 1046 return -EINVAL; 1047 1048 if (str[0] == '0' && str[1] == 'x') 1049 str++; 1050 if (*str == 'x') 1051 str++; 1052 1053 for (i = 0; isxdigit(*str) && i < bits; str++) { 1054 b = hex_to_bin(*str); 1055 for (n = 0; n < 4; n++) 1056 if (b & (0x08 >> n)) 1057 set_bit_inv(i + n, bitmap); 1058 i += 4; 1059 } 1060 1061 if (*str == '\n') 1062 str++; 1063 if (*str) 1064 return -EINVAL; 1065 return 0; 1066 } 1067 1068 /* 1069 * modify_bitmap() - parse bitmask argument and modify an existing 1070 * bit mask accordingly. A concatenation (done with ',') of these 1071 * terms is recognized: 1072 * +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>] 1073 * <bitnr> may be any valid number (hex, decimal or octal) in the range 1074 * 0...bits-1; the leading + or - is required. Here are some examples: 1075 * +0-15,+32,-128,-0xFF 1076 * -0-255,+1-16,+0x128 1077 * +1,+2,+3,+4,-5,-7-10 1078 * Returns the new bitmap after all changes have been applied. Every 1079 * positive value in the string will set a bit and every negative value 1080 * in the string will clear a bit. As a bit may be touched more than once, 1081 * the last 'operation' wins: 1082 * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be 1083 * cleared again. All other bits are unmodified. 1084 */ 1085 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits) 1086 { 1087 int a, i, z; 1088 char *np, sign; 1089 1090 /* bits needs to be a multiple of 8 */ 1091 if (bits & 0x07) 1092 return -EINVAL; 1093 1094 while (*str) { 1095 sign = *str++; 1096 if (sign != '+' && sign != '-') 1097 return -EINVAL; 1098 a = z = simple_strtoul(str, &np, 0); 1099 if (str == np || a >= bits) 1100 return -EINVAL; 1101 str = np; 1102 if (*str == '-') { 1103 z = simple_strtoul(++str, &np, 0); 1104 if (str == np || a > z || z >= bits) 1105 return -EINVAL; 1106 str = np; 1107 } 1108 for (i = a; i <= z; i++) 1109 if (sign == '+') 1110 set_bit_inv(i, bitmap); 1111 else 1112 clear_bit_inv(i, bitmap); 1113 while (*str == ',' || *str == '\n') 1114 str++; 1115 } 1116 1117 return 0; 1118 } 1119 1120 static int ap_parse_bitmap_str(const char *str, unsigned long *bitmap, int bits, 1121 unsigned long *newmap) 1122 { 1123 unsigned long size; 1124 int rc; 1125 1126 size = BITS_TO_LONGS(bits) * sizeof(unsigned long); 1127 if (*str == '+' || *str == '-') { 1128 memcpy(newmap, bitmap, size); 1129 rc = modify_bitmap(str, newmap, bits); 1130 } else { 1131 memset(newmap, 0, size); 1132 rc = hex2bitmap(str, newmap, bits); 1133 } 1134 return rc; 1135 } 1136 1137 int ap_parse_mask_str(const char *str, 1138 unsigned long *bitmap, int bits, 1139 struct mutex *lock) 1140 { 1141 unsigned long *newmap, size; 1142 int rc; 1143 1144 /* bits needs to be a multiple of 8 */ 1145 if (bits & 0x07) 1146 return -EINVAL; 1147 1148 size = BITS_TO_LONGS(bits) * sizeof(unsigned long); 1149 newmap = kmalloc(size, GFP_KERNEL); 1150 if (!newmap) 1151 return -ENOMEM; 1152 if (mutex_lock_interruptible(lock)) { 1153 kfree(newmap); 1154 return -ERESTARTSYS; 1155 } 1156 rc = ap_parse_bitmap_str(str, bitmap, bits, newmap); 1157 if (rc == 0) 1158 memcpy(bitmap, newmap, size); 1159 mutex_unlock(lock); 1160 kfree(newmap); 1161 return rc; 1162 } 1163 EXPORT_SYMBOL(ap_parse_mask_str); 1164 1165 /* 1166 * AP bus attributes. 1167 */ 1168 1169 static ssize_t ap_domain_show(struct bus_type *bus, char *buf) 1170 { 1171 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index); 1172 } 1173 1174 static ssize_t ap_domain_store(struct bus_type *bus, 1175 const char *buf, size_t count) 1176 { 1177 int domain; 1178 1179 if (sscanf(buf, "%i\n", &domain) != 1 || 1180 domain < 0 || domain > ap_max_domain_id || 1181 !test_bit_inv(domain, ap_perms.aqm)) 1182 return -EINVAL; 1183 1184 spin_lock_bh(&ap_domain_lock); 1185 ap_domain_index = domain; 1186 spin_unlock_bh(&ap_domain_lock); 1187 1188 AP_DBF_INFO("%s stored new default domain=%d\n", 1189 __func__, domain); 1190 1191 return count; 1192 } 1193 1194 static BUS_ATTR_RW(ap_domain); 1195 1196 static ssize_t ap_control_domain_mask_show(struct bus_type *bus, char *buf) 1197 { 1198 if (!ap_qci_info) /* QCI not supported */ 1199 return scnprintf(buf, PAGE_SIZE, "not supported\n"); 1200 1201 return scnprintf(buf, PAGE_SIZE, 1202 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1203 ap_qci_info->adm[0], ap_qci_info->adm[1], 1204 ap_qci_info->adm[2], ap_qci_info->adm[3], 1205 ap_qci_info->adm[4], ap_qci_info->adm[5], 1206 ap_qci_info->adm[6], ap_qci_info->adm[7]); 1207 } 1208 1209 static BUS_ATTR_RO(ap_control_domain_mask); 1210 1211 static ssize_t ap_usage_domain_mask_show(struct bus_type *bus, char *buf) 1212 { 1213 if (!ap_qci_info) /* QCI not supported */ 1214 return scnprintf(buf, PAGE_SIZE, "not supported\n"); 1215 1216 return scnprintf(buf, PAGE_SIZE, 1217 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1218 ap_qci_info->aqm[0], ap_qci_info->aqm[1], 1219 ap_qci_info->aqm[2], ap_qci_info->aqm[3], 1220 ap_qci_info->aqm[4], ap_qci_info->aqm[5], 1221 ap_qci_info->aqm[6], ap_qci_info->aqm[7]); 1222 } 1223 1224 static BUS_ATTR_RO(ap_usage_domain_mask); 1225 1226 static ssize_t ap_adapter_mask_show(struct bus_type *bus, char *buf) 1227 { 1228 if (!ap_qci_info) /* QCI not supported */ 1229 return scnprintf(buf, PAGE_SIZE, "not supported\n"); 1230 1231 return scnprintf(buf, PAGE_SIZE, 1232 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1233 ap_qci_info->apm[0], ap_qci_info->apm[1], 1234 ap_qci_info->apm[2], ap_qci_info->apm[3], 1235 ap_qci_info->apm[4], ap_qci_info->apm[5], 1236 ap_qci_info->apm[6], ap_qci_info->apm[7]); 1237 } 1238 1239 static BUS_ATTR_RO(ap_adapter_mask); 1240 1241 static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf) 1242 { 1243 return scnprintf(buf, PAGE_SIZE, "%d\n", 1244 ap_irq_flag ? 1 : 0); 1245 } 1246 1247 static BUS_ATTR_RO(ap_interrupts); 1248 1249 static ssize_t config_time_show(struct bus_type *bus, char *buf) 1250 { 1251 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_config_time); 1252 } 1253 1254 static ssize_t config_time_store(struct bus_type *bus, 1255 const char *buf, size_t count) 1256 { 1257 int time; 1258 1259 if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120) 1260 return -EINVAL; 1261 ap_config_time = time; 1262 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ); 1263 return count; 1264 } 1265 1266 static BUS_ATTR_RW(config_time); 1267 1268 static ssize_t poll_thread_show(struct bus_type *bus, char *buf) 1269 { 1270 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0); 1271 } 1272 1273 static ssize_t poll_thread_store(struct bus_type *bus, 1274 const char *buf, size_t count) 1275 { 1276 int flag, rc; 1277 1278 if (sscanf(buf, "%d\n", &flag) != 1) 1279 return -EINVAL; 1280 if (flag) { 1281 rc = ap_poll_thread_start(); 1282 if (rc) 1283 count = rc; 1284 } else { 1285 ap_poll_thread_stop(); 1286 } 1287 return count; 1288 } 1289 1290 static BUS_ATTR_RW(poll_thread); 1291 1292 static ssize_t poll_timeout_show(struct bus_type *bus, char *buf) 1293 { 1294 return scnprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout); 1295 } 1296 1297 static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf, 1298 size_t count) 1299 { 1300 unsigned long long time; 1301 ktime_t hr_time; 1302 1303 /* 120 seconds = maximum poll interval */ 1304 if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 || 1305 time > 120000000000ULL) 1306 return -EINVAL; 1307 poll_timeout = time; 1308 hr_time = poll_timeout; 1309 1310 spin_lock_bh(&ap_poll_timer_lock); 1311 hrtimer_cancel(&ap_poll_timer); 1312 hrtimer_set_expires(&ap_poll_timer, hr_time); 1313 hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS); 1314 spin_unlock_bh(&ap_poll_timer_lock); 1315 1316 return count; 1317 } 1318 1319 static BUS_ATTR_RW(poll_timeout); 1320 1321 static ssize_t ap_max_domain_id_show(struct bus_type *bus, char *buf) 1322 { 1323 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_max_domain_id); 1324 } 1325 1326 static BUS_ATTR_RO(ap_max_domain_id); 1327 1328 static ssize_t ap_max_adapter_id_show(struct bus_type *bus, char *buf) 1329 { 1330 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_max_adapter_id); 1331 } 1332 1333 static BUS_ATTR_RO(ap_max_adapter_id); 1334 1335 static ssize_t apmask_show(struct bus_type *bus, char *buf) 1336 { 1337 int rc; 1338 1339 if (mutex_lock_interruptible(&ap_perms_mutex)) 1340 return -ERESTARTSYS; 1341 rc = scnprintf(buf, PAGE_SIZE, 1342 "0x%016lx%016lx%016lx%016lx\n", 1343 ap_perms.apm[0], ap_perms.apm[1], 1344 ap_perms.apm[2], ap_perms.apm[3]); 1345 mutex_unlock(&ap_perms_mutex); 1346 1347 return rc; 1348 } 1349 1350 static int __verify_card_reservations(struct device_driver *drv, void *data) 1351 { 1352 int rc = 0; 1353 struct ap_driver *ap_drv = to_ap_drv(drv); 1354 unsigned long *newapm = (unsigned long *)data; 1355 1356 /* 1357 * increase the driver's module refcounter to be sure it is not 1358 * going away when we invoke the callback function. 1359 */ 1360 if (!try_module_get(drv->owner)) 1361 return 0; 1362 1363 if (ap_drv->in_use) { 1364 rc = ap_drv->in_use(newapm, ap_perms.aqm); 1365 if (rc) 1366 rc = -EBUSY; 1367 } 1368 1369 /* release the driver's module */ 1370 module_put(drv->owner); 1371 1372 return rc; 1373 } 1374 1375 static int apmask_commit(unsigned long *newapm) 1376 { 1377 int rc; 1378 unsigned long reserved[BITS_TO_LONGS(AP_DEVICES)]; 1379 1380 /* 1381 * Check if any bits in the apmask have been set which will 1382 * result in queues being removed from non-default drivers 1383 */ 1384 if (bitmap_andnot(reserved, newapm, ap_perms.apm, AP_DEVICES)) { 1385 rc = bus_for_each_drv(&ap_bus_type, NULL, reserved, 1386 __verify_card_reservations); 1387 if (rc) 1388 return rc; 1389 } 1390 1391 memcpy(ap_perms.apm, newapm, APMASKSIZE); 1392 1393 return 0; 1394 } 1395 1396 static ssize_t apmask_store(struct bus_type *bus, const char *buf, 1397 size_t count) 1398 { 1399 int rc, changes = 0; 1400 DECLARE_BITMAP(newapm, AP_DEVICES); 1401 1402 if (mutex_lock_interruptible(&ap_perms_mutex)) 1403 return -ERESTARTSYS; 1404 1405 rc = ap_parse_bitmap_str(buf, ap_perms.apm, AP_DEVICES, newapm); 1406 if (rc) 1407 goto done; 1408 1409 changes = memcmp(ap_perms.apm, newapm, APMASKSIZE); 1410 if (changes) 1411 rc = apmask_commit(newapm); 1412 1413 done: 1414 mutex_unlock(&ap_perms_mutex); 1415 if (rc) 1416 return rc; 1417 1418 if (changes) { 1419 ap_bus_revise_bindings(); 1420 ap_send_mask_changed_uevent(newapm, NULL); 1421 } 1422 1423 return count; 1424 } 1425 1426 static BUS_ATTR_RW(apmask); 1427 1428 static ssize_t aqmask_show(struct bus_type *bus, char *buf) 1429 { 1430 int rc; 1431 1432 if (mutex_lock_interruptible(&ap_perms_mutex)) 1433 return -ERESTARTSYS; 1434 rc = scnprintf(buf, PAGE_SIZE, 1435 "0x%016lx%016lx%016lx%016lx\n", 1436 ap_perms.aqm[0], ap_perms.aqm[1], 1437 ap_perms.aqm[2], ap_perms.aqm[3]); 1438 mutex_unlock(&ap_perms_mutex); 1439 1440 return rc; 1441 } 1442 1443 static int __verify_queue_reservations(struct device_driver *drv, void *data) 1444 { 1445 int rc = 0; 1446 struct ap_driver *ap_drv = to_ap_drv(drv); 1447 unsigned long *newaqm = (unsigned long *)data; 1448 1449 /* 1450 * increase the driver's module refcounter to be sure it is not 1451 * going away when we invoke the callback function. 1452 */ 1453 if (!try_module_get(drv->owner)) 1454 return 0; 1455 1456 if (ap_drv->in_use) { 1457 rc = ap_drv->in_use(ap_perms.apm, newaqm); 1458 if (rc) 1459 rc = -EBUSY; 1460 } 1461 1462 /* release the driver's module */ 1463 module_put(drv->owner); 1464 1465 return rc; 1466 } 1467 1468 static int aqmask_commit(unsigned long *newaqm) 1469 { 1470 int rc; 1471 unsigned long reserved[BITS_TO_LONGS(AP_DOMAINS)]; 1472 1473 /* 1474 * Check if any bits in the aqmask have been set which will 1475 * result in queues being removed from non-default drivers 1476 */ 1477 if (bitmap_andnot(reserved, newaqm, ap_perms.aqm, AP_DOMAINS)) { 1478 rc = bus_for_each_drv(&ap_bus_type, NULL, reserved, 1479 __verify_queue_reservations); 1480 if (rc) 1481 return rc; 1482 } 1483 1484 memcpy(ap_perms.aqm, newaqm, AQMASKSIZE); 1485 1486 return 0; 1487 } 1488 1489 static ssize_t aqmask_store(struct bus_type *bus, const char *buf, 1490 size_t count) 1491 { 1492 int rc, changes = 0; 1493 DECLARE_BITMAP(newaqm, AP_DOMAINS); 1494 1495 if (mutex_lock_interruptible(&ap_perms_mutex)) 1496 return -ERESTARTSYS; 1497 1498 rc = ap_parse_bitmap_str(buf, ap_perms.aqm, AP_DOMAINS, newaqm); 1499 if (rc) 1500 goto done; 1501 1502 changes = memcmp(ap_perms.aqm, newaqm, APMASKSIZE); 1503 if (changes) 1504 rc = aqmask_commit(newaqm); 1505 1506 done: 1507 mutex_unlock(&ap_perms_mutex); 1508 if (rc) 1509 return rc; 1510 1511 if (changes) { 1512 ap_bus_revise_bindings(); 1513 ap_send_mask_changed_uevent(NULL, newaqm); 1514 } 1515 1516 return count; 1517 } 1518 1519 static BUS_ATTR_RW(aqmask); 1520 1521 static ssize_t scans_show(struct bus_type *bus, char *buf) 1522 { 1523 return scnprintf(buf, PAGE_SIZE, "%llu\n", 1524 atomic64_read(&ap_scan_bus_count)); 1525 } 1526 1527 static ssize_t scans_store(struct bus_type *bus, const char *buf, 1528 size_t count) 1529 { 1530 AP_DBF_INFO("%s force AP bus rescan\n", __func__); 1531 1532 ap_bus_force_rescan(); 1533 1534 return count; 1535 } 1536 1537 static BUS_ATTR_RW(scans); 1538 1539 static ssize_t bindings_show(struct bus_type *bus, char *buf) 1540 { 1541 int rc; 1542 unsigned int apqns, n; 1543 1544 ap_calc_bound_apqns(&apqns, &n); 1545 if (atomic64_read(&ap_scan_bus_count) >= 1 && n == apqns) 1546 rc = scnprintf(buf, PAGE_SIZE, "%u/%u (complete)\n", n, apqns); 1547 else 1548 rc = scnprintf(buf, PAGE_SIZE, "%u/%u\n", n, apqns); 1549 1550 return rc; 1551 } 1552 1553 static BUS_ATTR_RO(bindings); 1554 1555 static struct attribute *ap_bus_attrs[] = { 1556 &bus_attr_ap_domain.attr, 1557 &bus_attr_ap_control_domain_mask.attr, 1558 &bus_attr_ap_usage_domain_mask.attr, 1559 &bus_attr_ap_adapter_mask.attr, 1560 &bus_attr_config_time.attr, 1561 &bus_attr_poll_thread.attr, 1562 &bus_attr_ap_interrupts.attr, 1563 &bus_attr_poll_timeout.attr, 1564 &bus_attr_ap_max_domain_id.attr, 1565 &bus_attr_ap_max_adapter_id.attr, 1566 &bus_attr_apmask.attr, 1567 &bus_attr_aqmask.attr, 1568 &bus_attr_scans.attr, 1569 &bus_attr_bindings.attr, 1570 NULL, 1571 }; 1572 ATTRIBUTE_GROUPS(ap_bus); 1573 1574 static struct bus_type ap_bus_type = { 1575 .name = "ap", 1576 .bus_groups = ap_bus_groups, 1577 .match = &ap_bus_match, 1578 .uevent = &ap_uevent, 1579 .probe = ap_device_probe, 1580 .remove = ap_device_remove, 1581 }; 1582 1583 /** 1584 * ap_select_domain(): Select an AP domain if possible and we haven't 1585 * already done so before. 1586 */ 1587 static void ap_select_domain(void) 1588 { 1589 struct ap_queue_status status; 1590 int card, dom; 1591 1592 /* 1593 * Choose the default domain. Either the one specified with 1594 * the "domain=" parameter or the first domain with at least 1595 * one valid APQN. 1596 */ 1597 spin_lock_bh(&ap_domain_lock); 1598 if (ap_domain_index >= 0) { 1599 /* Domain has already been selected. */ 1600 goto out; 1601 } 1602 for (dom = 0; dom <= ap_max_domain_id; dom++) { 1603 if (!ap_test_config_usage_domain(dom) || 1604 !test_bit_inv(dom, ap_perms.aqm)) 1605 continue; 1606 for (card = 0; card <= ap_max_adapter_id; card++) { 1607 if (!ap_test_config_card_id(card) || 1608 !test_bit_inv(card, ap_perms.apm)) 1609 continue; 1610 status = ap_test_queue(AP_MKQID(card, dom), 1611 ap_apft_available(), 1612 NULL); 1613 if (status.response_code == AP_RESPONSE_NORMAL) 1614 break; 1615 } 1616 if (card <= ap_max_adapter_id) 1617 break; 1618 } 1619 if (dom <= ap_max_domain_id) { 1620 ap_domain_index = dom; 1621 AP_DBF_INFO("%s new default domain is %d\n", 1622 __func__, ap_domain_index); 1623 } 1624 out: 1625 spin_unlock_bh(&ap_domain_lock); 1626 } 1627 1628 /* 1629 * This function checks the type and returns either 0 for not 1630 * supported or the highest compatible type value (which may 1631 * include the input type value). 1632 */ 1633 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func) 1634 { 1635 int comp_type = 0; 1636 1637 /* < CEX2A is not supported */ 1638 if (rawtype < AP_DEVICE_TYPE_CEX2A) { 1639 AP_DBF_WARN("%s queue=%02x.%04x unsupported type %d\n", 1640 __func__, AP_QID_CARD(qid), 1641 AP_QID_QUEUE(qid), rawtype); 1642 return 0; 1643 } 1644 /* up to CEX8 known and fully supported */ 1645 if (rawtype <= AP_DEVICE_TYPE_CEX8) 1646 return rawtype; 1647 /* 1648 * unknown new type > CEX8, check for compatibility 1649 * to the highest known and supported type which is 1650 * currently CEX8 with the help of the QACT function. 1651 */ 1652 if (ap_qact_available()) { 1653 struct ap_queue_status status; 1654 union ap_qact_ap_info apinfo = {0}; 1655 1656 apinfo.mode = (func >> 26) & 0x07; 1657 apinfo.cat = AP_DEVICE_TYPE_CEX8; 1658 status = ap_qact(qid, 0, &apinfo); 1659 if (status.response_code == AP_RESPONSE_NORMAL && 1660 apinfo.cat >= AP_DEVICE_TYPE_CEX2A && 1661 apinfo.cat <= AP_DEVICE_TYPE_CEX8) 1662 comp_type = apinfo.cat; 1663 } 1664 if (!comp_type) 1665 AP_DBF_WARN("%s queue=%02x.%04x unable to map type %d\n", 1666 __func__, AP_QID_CARD(qid), 1667 AP_QID_QUEUE(qid), rawtype); 1668 else if (comp_type != rawtype) 1669 AP_DBF_INFO("%s queue=%02x.%04x map type %d to %d\n", 1670 __func__, AP_QID_CARD(qid), AP_QID_QUEUE(qid), 1671 rawtype, comp_type); 1672 return comp_type; 1673 } 1674 1675 /* 1676 * Helper function to be used with bus_find_dev 1677 * matches for the card device with the given id 1678 */ 1679 static int __match_card_device_with_id(struct device *dev, const void *data) 1680 { 1681 return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *)data; 1682 } 1683 1684 /* 1685 * Helper function to be used with bus_find_dev 1686 * matches for the queue device with a given qid 1687 */ 1688 static int __match_queue_device_with_qid(struct device *dev, const void *data) 1689 { 1690 return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long)data; 1691 } 1692 1693 /* 1694 * Helper function to be used with bus_find_dev 1695 * matches any queue device with given queue id 1696 */ 1697 static int __match_queue_device_with_queue_id(struct device *dev, const void *data) 1698 { 1699 return is_queue_dev(dev) && 1700 AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long)data; 1701 } 1702 1703 /* Helper function for notify_config_changed */ 1704 static int __drv_notify_config_changed(struct device_driver *drv, void *data) 1705 { 1706 struct ap_driver *ap_drv = to_ap_drv(drv); 1707 1708 if (try_module_get(drv->owner)) { 1709 if (ap_drv->on_config_changed) 1710 ap_drv->on_config_changed(ap_qci_info, ap_qci_info_old); 1711 module_put(drv->owner); 1712 } 1713 1714 return 0; 1715 } 1716 1717 /* Notify all drivers about an qci config change */ 1718 static inline void notify_config_changed(void) 1719 { 1720 bus_for_each_drv(&ap_bus_type, NULL, NULL, 1721 __drv_notify_config_changed); 1722 } 1723 1724 /* Helper function for notify_scan_complete */ 1725 static int __drv_notify_scan_complete(struct device_driver *drv, void *data) 1726 { 1727 struct ap_driver *ap_drv = to_ap_drv(drv); 1728 1729 if (try_module_get(drv->owner)) { 1730 if (ap_drv->on_scan_complete) 1731 ap_drv->on_scan_complete(ap_qci_info, 1732 ap_qci_info_old); 1733 module_put(drv->owner); 1734 } 1735 1736 return 0; 1737 } 1738 1739 /* Notify all drivers about bus scan complete */ 1740 static inline void notify_scan_complete(void) 1741 { 1742 bus_for_each_drv(&ap_bus_type, NULL, NULL, 1743 __drv_notify_scan_complete); 1744 } 1745 1746 /* 1747 * Helper function for ap_scan_bus(). 1748 * Remove card device and associated queue devices. 1749 */ 1750 static inline void ap_scan_rm_card_dev_and_queue_devs(struct ap_card *ac) 1751 { 1752 bus_for_each_dev(&ap_bus_type, NULL, 1753 (void *)(long)ac->id, 1754 __ap_queue_devices_with_id_unregister); 1755 device_unregister(&ac->ap_dev.device); 1756 } 1757 1758 /* 1759 * Helper function for ap_scan_bus(). 1760 * Does the scan bus job for all the domains within 1761 * a valid adapter given by an ap_card ptr. 1762 */ 1763 static inline void ap_scan_domains(struct ap_card *ac) 1764 { 1765 bool decfg, chkstop; 1766 ap_qid_t qid; 1767 unsigned int func; 1768 struct device *dev; 1769 struct ap_queue *aq; 1770 int rc, dom, depth, type, ml; 1771 1772 /* 1773 * Go through the configuration for the domains and compare them 1774 * to the existing queue devices. Also take care of the config 1775 * and error state for the queue devices. 1776 */ 1777 1778 for (dom = 0; dom <= ap_max_domain_id; dom++) { 1779 qid = AP_MKQID(ac->id, dom); 1780 dev = bus_find_device(&ap_bus_type, NULL, 1781 (void *)(long)qid, 1782 __match_queue_device_with_qid); 1783 aq = dev ? to_ap_queue(dev) : NULL; 1784 if (!ap_test_config_usage_domain(dom)) { 1785 if (dev) { 1786 AP_DBF_INFO("%s(%d,%d) not in config anymore, rm queue dev\n", 1787 __func__, ac->id, dom); 1788 device_unregister(dev); 1789 put_device(dev); 1790 } 1791 continue; 1792 } 1793 /* domain is valid, get info from this APQN */ 1794 if (!ap_queue_info(qid, &type, &func, &depth, 1795 &ml, &decfg, &chkstop)) { 1796 if (aq) { 1797 AP_DBF_INFO("%s(%d,%d) queue_info() failed, rm queue dev\n", 1798 __func__, ac->id, dom); 1799 device_unregister(dev); 1800 put_device(dev); 1801 } 1802 continue; 1803 } 1804 /* if no queue device exists, create a new one */ 1805 if (!aq) { 1806 aq = ap_queue_create(qid, ac->ap_dev.device_type); 1807 if (!aq) { 1808 AP_DBF_WARN("%s(%d,%d) ap_queue_create() failed\n", 1809 __func__, ac->id, dom); 1810 continue; 1811 } 1812 aq->card = ac; 1813 aq->config = !decfg; 1814 aq->chkstop = chkstop; 1815 dev = &aq->ap_dev.device; 1816 dev->bus = &ap_bus_type; 1817 dev->parent = &ac->ap_dev.device; 1818 dev_set_name(dev, "%02x.%04x", ac->id, dom); 1819 /* register queue device */ 1820 rc = device_register(dev); 1821 if (rc) { 1822 AP_DBF_WARN("%s(%d,%d) device_register() failed\n", 1823 __func__, ac->id, dom); 1824 goto put_dev_and_continue; 1825 } 1826 /* get it and thus adjust reference counter */ 1827 get_device(dev); 1828 if (decfg) 1829 AP_DBF_INFO("%s(%d,%d) new (decfg) queue dev created\n", 1830 __func__, ac->id, dom); 1831 else if (chkstop) 1832 AP_DBF_INFO("%s(%d,%d) new (chkstop) queue dev created\n", 1833 __func__, ac->id, dom); 1834 else 1835 AP_DBF_INFO("%s(%d,%d) new queue dev created\n", 1836 __func__, ac->id, dom); 1837 goto put_dev_and_continue; 1838 } 1839 /* handle state changes on already existing queue device */ 1840 spin_lock_bh(&aq->lock); 1841 /* checkstop state */ 1842 if (chkstop && !aq->chkstop) { 1843 /* checkstop on */ 1844 aq->chkstop = true; 1845 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) { 1846 aq->dev_state = AP_DEV_STATE_ERROR; 1847 aq->last_err_rc = AP_RESPONSE_CHECKSTOPPED; 1848 } 1849 spin_unlock_bh(&aq->lock); 1850 AP_DBF_DBG("%s(%d,%d) queue dev checkstop on\n", 1851 __func__, ac->id, dom); 1852 /* 'receive' pending messages with -EAGAIN */ 1853 ap_flush_queue(aq); 1854 goto put_dev_and_continue; 1855 } else if (!chkstop && aq->chkstop) { 1856 /* checkstop off */ 1857 aq->chkstop = false; 1858 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) { 1859 aq->dev_state = AP_DEV_STATE_OPERATING; 1860 aq->sm_state = AP_SM_STATE_RESET_START; 1861 } 1862 spin_unlock_bh(&aq->lock); 1863 AP_DBF_DBG("%s(%d,%d) queue dev checkstop off\n", 1864 __func__, ac->id, dom); 1865 goto put_dev_and_continue; 1866 } 1867 /* config state change */ 1868 if (decfg && aq->config) { 1869 /* config off this queue device */ 1870 aq->config = false; 1871 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) { 1872 aq->dev_state = AP_DEV_STATE_ERROR; 1873 aq->last_err_rc = AP_RESPONSE_DECONFIGURED; 1874 } 1875 spin_unlock_bh(&aq->lock); 1876 AP_DBF_DBG("%s(%d,%d) queue dev config off\n", 1877 __func__, ac->id, dom); 1878 ap_send_config_uevent(&aq->ap_dev, aq->config); 1879 /* 'receive' pending messages with -EAGAIN */ 1880 ap_flush_queue(aq); 1881 goto put_dev_and_continue; 1882 } else if (!decfg && !aq->config) { 1883 /* config on this queue device */ 1884 aq->config = true; 1885 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) { 1886 aq->dev_state = AP_DEV_STATE_OPERATING; 1887 aq->sm_state = AP_SM_STATE_RESET_START; 1888 } 1889 spin_unlock_bh(&aq->lock); 1890 AP_DBF_DBG("%s(%d,%d) queue dev config on\n", 1891 __func__, ac->id, dom); 1892 ap_send_config_uevent(&aq->ap_dev, aq->config); 1893 goto put_dev_and_continue; 1894 } 1895 /* handle other error states */ 1896 if (!decfg && aq->dev_state == AP_DEV_STATE_ERROR) { 1897 spin_unlock_bh(&aq->lock); 1898 /* 'receive' pending messages with -EAGAIN */ 1899 ap_flush_queue(aq); 1900 /* re-init (with reset) the queue device */ 1901 ap_queue_init_state(aq); 1902 AP_DBF_INFO("%s(%d,%d) queue dev reinit enforced\n", 1903 __func__, ac->id, dom); 1904 goto put_dev_and_continue; 1905 } 1906 spin_unlock_bh(&aq->lock); 1907 put_dev_and_continue: 1908 put_device(dev); 1909 } 1910 } 1911 1912 /* 1913 * Helper function for ap_scan_bus(). 1914 * Does the scan bus job for the given adapter id. 1915 */ 1916 static inline void ap_scan_adapter(int ap) 1917 { 1918 bool decfg, chkstop; 1919 ap_qid_t qid; 1920 unsigned int func; 1921 struct device *dev; 1922 struct ap_card *ac; 1923 int rc, dom, depth, type, comp_type, ml; 1924 1925 /* Is there currently a card device for this adapter ? */ 1926 dev = bus_find_device(&ap_bus_type, NULL, 1927 (void *)(long)ap, 1928 __match_card_device_with_id); 1929 ac = dev ? to_ap_card(dev) : NULL; 1930 1931 /* Adapter not in configuration ? */ 1932 if (!ap_test_config_card_id(ap)) { 1933 if (ac) { 1934 AP_DBF_INFO("%s(%d) ap not in config any more, rm card and queue devs\n", 1935 __func__, ap); 1936 ap_scan_rm_card_dev_and_queue_devs(ac); 1937 put_device(dev); 1938 } 1939 return; 1940 } 1941 1942 /* 1943 * Adapter ap is valid in the current configuration. So do some checks: 1944 * If no card device exists, build one. If a card device exists, check 1945 * for type and functions changed. For all this we need to find a valid 1946 * APQN first. 1947 */ 1948 1949 for (dom = 0; dom <= ap_max_domain_id; dom++) 1950 if (ap_test_config_usage_domain(dom)) { 1951 qid = AP_MKQID(ap, dom); 1952 if (ap_queue_info(qid, &type, &func, &depth, 1953 &ml, &decfg, &chkstop)) 1954 break; 1955 } 1956 if (dom > ap_max_domain_id) { 1957 /* Could not find a valid APQN for this adapter */ 1958 if (ac) { 1959 AP_DBF_INFO("%s(%d) no type info (no APQN found), rm card and queue devs\n", 1960 __func__, ap); 1961 ap_scan_rm_card_dev_and_queue_devs(ac); 1962 put_device(dev); 1963 } else { 1964 AP_DBF_DBG("%s(%d) no type info (no APQN found), ignored\n", 1965 __func__, ap); 1966 } 1967 return; 1968 } 1969 if (!type) { 1970 /* No apdater type info available, an unusable adapter */ 1971 if (ac) { 1972 AP_DBF_INFO("%s(%d) no valid type (0) info, rm card and queue devs\n", 1973 __func__, ap); 1974 ap_scan_rm_card_dev_and_queue_devs(ac); 1975 put_device(dev); 1976 } else { 1977 AP_DBF_DBG("%s(%d) no valid type (0) info, ignored\n", 1978 __func__, ap); 1979 } 1980 return; 1981 } 1982 1983 if (ac) { 1984 /* Check APQN against existing card device for changes */ 1985 if (ac->raw_hwtype != type) { 1986 AP_DBF_INFO("%s(%d) hwtype %d changed, rm card and queue devs\n", 1987 __func__, ap, type); 1988 ap_scan_rm_card_dev_and_queue_devs(ac); 1989 put_device(dev); 1990 ac = NULL; 1991 } else if (ac->functions != func) { 1992 AP_DBF_INFO("%s(%d) functions 0x%08x changed, rm card and queue devs\n", 1993 __func__, ap, type); 1994 ap_scan_rm_card_dev_and_queue_devs(ac); 1995 put_device(dev); 1996 ac = NULL; 1997 } else { 1998 /* handle checkstop state change */ 1999 if (chkstop && !ac->chkstop) { 2000 /* checkstop on */ 2001 ac->chkstop = true; 2002 AP_DBF_INFO("%s(%d) card dev checkstop on\n", 2003 __func__, ap); 2004 } else if (!chkstop && ac->chkstop) { 2005 /* checkstop off */ 2006 ac->chkstop = false; 2007 AP_DBF_INFO("%s(%d) card dev checkstop off\n", 2008 __func__, ap); 2009 } 2010 /* handle config state change */ 2011 if (decfg && ac->config) { 2012 ac->config = false; 2013 AP_DBF_INFO("%s(%d) card dev config off\n", 2014 __func__, ap); 2015 ap_send_config_uevent(&ac->ap_dev, ac->config); 2016 } else if (!decfg && !ac->config) { 2017 ac->config = true; 2018 AP_DBF_INFO("%s(%d) card dev config on\n", 2019 __func__, ap); 2020 ap_send_config_uevent(&ac->ap_dev, ac->config); 2021 } 2022 } 2023 } 2024 2025 if (!ac) { 2026 /* Build a new card device */ 2027 comp_type = ap_get_compatible_type(qid, type, func); 2028 if (!comp_type) { 2029 AP_DBF_WARN("%s(%d) type %d, can't get compatibility type\n", 2030 __func__, ap, type); 2031 return; 2032 } 2033 ac = ap_card_create(ap, depth, type, comp_type, func, ml); 2034 if (!ac) { 2035 AP_DBF_WARN("%s(%d) ap_card_create() failed\n", 2036 __func__, ap); 2037 return; 2038 } 2039 ac->config = !decfg; 2040 ac->chkstop = chkstop; 2041 dev = &ac->ap_dev.device; 2042 dev->bus = &ap_bus_type; 2043 dev->parent = ap_root_device; 2044 dev_set_name(dev, "card%02x", ap); 2045 /* maybe enlarge ap_max_msg_size to support this card */ 2046 if (ac->maxmsgsize > atomic_read(&ap_max_msg_size)) { 2047 atomic_set(&ap_max_msg_size, ac->maxmsgsize); 2048 AP_DBF_INFO("%s(%d) ap_max_msg_size update to %d byte\n", 2049 __func__, ap, 2050 atomic_read(&ap_max_msg_size)); 2051 } 2052 /* Register the new card device with AP bus */ 2053 rc = device_register(dev); 2054 if (rc) { 2055 AP_DBF_WARN("%s(%d) device_register() failed\n", 2056 __func__, ap); 2057 put_device(dev); 2058 return; 2059 } 2060 /* get it and thus adjust reference counter */ 2061 get_device(dev); 2062 if (decfg) 2063 AP_DBF_INFO("%s(%d) new (decfg) card dev type=%d func=0x%08x created\n", 2064 __func__, ap, type, func); 2065 else if (chkstop) 2066 AP_DBF_INFO("%s(%d) new (chkstop) card dev type=%d func=0x%08x created\n", 2067 __func__, ap, type, func); 2068 else 2069 AP_DBF_INFO("%s(%d) new card dev type=%d func=0x%08x created\n", 2070 __func__, ap, type, func); 2071 } 2072 2073 /* Verify the domains and the queue devices for this card */ 2074 ap_scan_domains(ac); 2075 2076 /* release the card device */ 2077 put_device(&ac->ap_dev.device); 2078 } 2079 2080 /** 2081 * ap_get_configuration - get the host AP configuration 2082 * 2083 * Stores the host AP configuration information returned from the previous call 2084 * to Query Configuration Information (QCI), then retrieves and stores the 2085 * current AP configuration returned from QCI. 2086 * 2087 * Return: true if the host AP configuration changed between calls to QCI; 2088 * otherwise, return false. 2089 */ 2090 static bool ap_get_configuration(void) 2091 { 2092 if (!ap_qci_info) /* QCI not supported */ 2093 return false; 2094 2095 memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info)); 2096 ap_fetch_qci_info(ap_qci_info); 2097 2098 return memcmp(ap_qci_info, ap_qci_info_old, 2099 sizeof(struct ap_config_info)) != 0; 2100 } 2101 2102 /** 2103 * ap_scan_bus(): Scan the AP bus for new devices 2104 * Runs periodically, workqueue timer (ap_config_time) 2105 * @unused: Unused pointer. 2106 */ 2107 static void ap_scan_bus(struct work_struct *unused) 2108 { 2109 int ap, config_changed = 0; 2110 2111 /* config change notify */ 2112 config_changed = ap_get_configuration(); 2113 if (config_changed) 2114 notify_config_changed(); 2115 ap_select_domain(); 2116 2117 AP_DBF_DBG("%s running\n", __func__); 2118 2119 /* loop over all possible adapters */ 2120 for (ap = 0; ap <= ap_max_adapter_id; ap++) 2121 ap_scan_adapter(ap); 2122 2123 /* scan complete notify */ 2124 if (config_changed) 2125 notify_scan_complete(); 2126 2127 /* check if there is at least one queue available with default domain */ 2128 if (ap_domain_index >= 0) { 2129 struct device *dev = 2130 bus_find_device(&ap_bus_type, NULL, 2131 (void *)(long)ap_domain_index, 2132 __match_queue_device_with_queue_id); 2133 if (dev) 2134 put_device(dev); 2135 else 2136 AP_DBF_INFO("%s no queue device with default domain %d available\n", 2137 __func__, ap_domain_index); 2138 } 2139 2140 if (atomic64_inc_return(&ap_scan_bus_count) == 1) { 2141 AP_DBF_DBG("%s init scan complete\n", __func__); 2142 ap_send_init_scan_done_uevent(); 2143 ap_check_bindings_complete(); 2144 } 2145 2146 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ); 2147 } 2148 2149 static void ap_config_timeout(struct timer_list *unused) 2150 { 2151 queue_work(system_long_wq, &ap_scan_work); 2152 } 2153 2154 static int __init ap_debug_init(void) 2155 { 2156 ap_dbf_info = debug_register("ap", 2, 1, 2157 DBF_MAX_SPRINTF_ARGS * sizeof(long)); 2158 debug_register_view(ap_dbf_info, &debug_sprintf_view); 2159 debug_set_level(ap_dbf_info, DBF_ERR); 2160 2161 return 0; 2162 } 2163 2164 static void __init ap_perms_init(void) 2165 { 2166 /* all resources usable if no kernel parameter string given */ 2167 memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm)); 2168 memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm)); 2169 memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm)); 2170 2171 /* apm kernel parameter string */ 2172 if (apm_str) { 2173 memset(&ap_perms.apm, 0, sizeof(ap_perms.apm)); 2174 ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES, 2175 &ap_perms_mutex); 2176 } 2177 2178 /* aqm kernel parameter string */ 2179 if (aqm_str) { 2180 memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm)); 2181 ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS, 2182 &ap_perms_mutex); 2183 } 2184 } 2185 2186 /** 2187 * ap_module_init(): The module initialization code. 2188 * 2189 * Initializes the module. 2190 */ 2191 static int __init ap_module_init(void) 2192 { 2193 int rc; 2194 2195 rc = ap_debug_init(); 2196 if (rc) 2197 return rc; 2198 2199 if (!ap_instructions_available()) { 2200 pr_warn("The hardware system does not support AP instructions\n"); 2201 return -ENODEV; 2202 } 2203 2204 /* init ap_queue hashtable */ 2205 hash_init(ap_queues); 2206 2207 /* set up the AP permissions (ioctls, ap and aq masks) */ 2208 ap_perms_init(); 2209 2210 /* Get AP configuration data if available */ 2211 ap_init_qci_info(); 2212 2213 /* check default domain setting */ 2214 if (ap_domain_index < -1 || ap_domain_index > ap_max_domain_id || 2215 (ap_domain_index >= 0 && 2216 !test_bit_inv(ap_domain_index, ap_perms.aqm))) { 2217 pr_warn("%d is not a valid cryptographic domain\n", 2218 ap_domain_index); 2219 ap_domain_index = -1; 2220 } 2221 2222 /* enable interrupts if available */ 2223 if (ap_interrupts_available() && ap_useirq) { 2224 rc = register_adapter_interrupt(&ap_airq); 2225 ap_irq_flag = (rc == 0); 2226 } 2227 2228 /* Create /sys/bus/ap. */ 2229 rc = bus_register(&ap_bus_type); 2230 if (rc) 2231 goto out; 2232 2233 /* Create /sys/devices/ap. */ 2234 ap_root_device = root_device_register("ap"); 2235 rc = PTR_ERR_OR_ZERO(ap_root_device); 2236 if (rc) 2237 goto out_bus; 2238 ap_root_device->bus = &ap_bus_type; 2239 2240 /* Setup the AP bus rescan timer. */ 2241 timer_setup(&ap_config_timer, ap_config_timeout, 0); 2242 2243 /* 2244 * Setup the high resultion poll timer. 2245 * If we are running under z/VM adjust polling to z/VM polling rate. 2246 */ 2247 if (MACHINE_IS_VM) 2248 poll_timeout = 1500000; 2249 hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 2250 ap_poll_timer.function = ap_poll_timeout; 2251 2252 /* Start the low priority AP bus poll thread. */ 2253 if (ap_thread_flag) { 2254 rc = ap_poll_thread_start(); 2255 if (rc) 2256 goto out_work; 2257 } 2258 2259 queue_work(system_long_wq, &ap_scan_work); 2260 2261 return 0; 2262 2263 out_work: 2264 hrtimer_cancel(&ap_poll_timer); 2265 root_device_unregister(ap_root_device); 2266 out_bus: 2267 bus_unregister(&ap_bus_type); 2268 out: 2269 if (ap_irq_flag) 2270 unregister_adapter_interrupt(&ap_airq); 2271 kfree(ap_qci_info); 2272 return rc; 2273 } 2274 device_initcall(ap_module_init); 2275