1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright IBM Corp. 2006, 2012 4 * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com> 5 * Martin Schwidefsky <schwidefsky@de.ibm.com> 6 * Ralph Wuerthner <rwuerthn@de.ibm.com> 7 * Felix Beck <felix.beck@de.ibm.com> 8 * Holger Dengler <hd@linux.vnet.ibm.com> 9 * 10 * Adjunct processor bus. 11 */ 12 13 #define KMSG_COMPONENT "ap" 14 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 15 16 #include <linux/kernel_stat.h> 17 #include <linux/moduleparam.h> 18 #include <linux/init.h> 19 #include <linux/delay.h> 20 #include <linux/err.h> 21 #include <linux/interrupt.h> 22 #include <linux/workqueue.h> 23 #include <linux/slab.h> 24 #include <linux/notifier.h> 25 #include <linux/kthread.h> 26 #include <linux/mutex.h> 27 #include <linux/suspend.h> 28 #include <asm/airq.h> 29 #include <linux/atomic.h> 30 #include <asm/isc.h> 31 #include <linux/hrtimer.h> 32 #include <linux/ktime.h> 33 #include <asm/facility.h> 34 #include <linux/crypto.h> 35 #include <linux/mod_devicetable.h> 36 #include <linux/debugfs.h> 37 #include <linux/ctype.h> 38 39 #include "ap_bus.h" 40 #include "ap_debug.h" 41 42 /* 43 * Module parameters; note though this file itself isn't modular. 44 */ 45 int ap_domain_index = -1; /* Adjunct Processor Domain Index */ 46 static DEFINE_SPINLOCK(ap_domain_lock); 47 module_param_named(domain, ap_domain_index, int, 0440); 48 MODULE_PARM_DESC(domain, "domain index for ap devices"); 49 EXPORT_SYMBOL(ap_domain_index); 50 51 static int ap_thread_flag; 52 module_param_named(poll_thread, ap_thread_flag, int, 0440); 53 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off)."); 54 55 static char *apm_str; 56 module_param_named(apmask, apm_str, charp, 0440); 57 MODULE_PARM_DESC(apmask, "AP bus adapter mask."); 58 59 static char *aqm_str; 60 module_param_named(aqmask, aqm_str, charp, 0440); 61 MODULE_PARM_DESC(aqmask, "AP bus domain mask."); 62 63 static struct device *ap_root_device; 64 65 DEFINE_SPINLOCK(ap_list_lock); 66 LIST_HEAD(ap_card_list); 67 68 /* Default permissions (ioctl, card and domain masking) */ 69 struct ap_perms ap_perms; 70 EXPORT_SYMBOL(ap_perms); 71 DEFINE_MUTEX(ap_perms_mutex); 72 EXPORT_SYMBOL(ap_perms_mutex); 73 74 static struct ap_config_info *ap_configuration; 75 static bool initialised; 76 77 /* 78 * AP bus related debug feature things. 79 */ 80 debug_info_t *ap_dbf_info; 81 82 /* 83 * Workqueue timer for bus rescan. 84 */ 85 static struct timer_list ap_config_timer; 86 static int ap_config_time = AP_CONFIG_TIME; 87 static void ap_scan_bus(struct work_struct *); 88 static DECLARE_WORK(ap_scan_work, ap_scan_bus); 89 90 /* 91 * Tasklet & timer for AP request polling and interrupts 92 */ 93 static void ap_tasklet_fn(unsigned long); 94 static DECLARE_TASKLET(ap_tasklet, ap_tasklet_fn, 0); 95 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait); 96 static struct task_struct *ap_poll_kthread; 97 static DEFINE_MUTEX(ap_poll_thread_mutex); 98 static DEFINE_SPINLOCK(ap_poll_timer_lock); 99 static struct hrtimer ap_poll_timer; 100 /* 101 * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds. 102 * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling. 103 */ 104 static unsigned long long poll_timeout = 250000; 105 106 /* Suspend flag */ 107 static int ap_suspend_flag; 108 /* Maximum domain id */ 109 static int ap_max_domain_id; 110 /* 111 * Flag to check if domain was set through module parameter domain=. This is 112 * important when supsend and resume is done in a z/VM environment where the 113 * domain might change. 114 */ 115 static int user_set_domain; 116 static struct bus_type ap_bus_type; 117 118 /* Adapter interrupt definitions */ 119 static void ap_interrupt_handler(struct airq_struct *airq, bool floating); 120 121 static int ap_airq_flag; 122 123 static struct airq_struct ap_airq = { 124 .handler = ap_interrupt_handler, 125 .isc = AP_ISC, 126 }; 127 128 /** 129 * ap_using_interrupts() - Returns non-zero if interrupt support is 130 * available. 131 */ 132 static inline int ap_using_interrupts(void) 133 { 134 return ap_airq_flag; 135 } 136 137 /** 138 * ap_airq_ptr() - Get the address of the adapter interrupt indicator 139 * 140 * Returns the address of the local-summary-indicator of the adapter 141 * interrupt handler for AP, or NULL if adapter interrupts are not 142 * available. 143 */ 144 void *ap_airq_ptr(void) 145 { 146 if (ap_using_interrupts()) 147 return ap_airq.lsi_ptr; 148 return NULL; 149 } 150 151 /** 152 * ap_interrupts_available(): Test if AP interrupts are available. 153 * 154 * Returns 1 if AP interrupts are available. 155 */ 156 static int ap_interrupts_available(void) 157 { 158 return test_facility(65); 159 } 160 161 /** 162 * ap_configuration_available(): Test if AP configuration 163 * information is available. 164 * 165 * Returns 1 if AP configuration information is available. 166 */ 167 static int ap_configuration_available(void) 168 { 169 return test_facility(12); 170 } 171 172 /** 173 * ap_apft_available(): Test if AP facilities test (APFT) 174 * facility is available. 175 * 176 * Returns 1 if APFT is is available. 177 */ 178 static int ap_apft_available(void) 179 { 180 return test_facility(15); 181 } 182 183 /* 184 * ap_qact_available(): Test if the PQAP(QACT) subfunction is available. 185 * 186 * Returns 1 if the QACT subfunction is available. 187 */ 188 static inline int ap_qact_available(void) 189 { 190 if (ap_configuration) 191 return ap_configuration->qact; 192 return 0; 193 } 194 195 /* 196 * ap_query_configuration(): Fetch cryptographic config info 197 * 198 * Returns the ap configuration info fetched via PQAP(QCI). 199 * On success 0 is returned, on failure a negative errno 200 * is returned, e.g. if the PQAP(QCI) instruction is not 201 * available, the return value will be -EOPNOTSUPP. 202 */ 203 static inline int ap_query_configuration(struct ap_config_info *info) 204 { 205 if (!ap_configuration_available()) 206 return -EOPNOTSUPP; 207 if (!info) 208 return -EINVAL; 209 return ap_qci(info); 210 } 211 EXPORT_SYMBOL(ap_query_configuration); 212 213 /** 214 * ap_init_configuration(): Allocate and query configuration array. 215 */ 216 static void ap_init_configuration(void) 217 { 218 if (!ap_configuration_available()) 219 return; 220 221 ap_configuration = kzalloc(sizeof(*ap_configuration), GFP_KERNEL); 222 if (!ap_configuration) 223 return; 224 if (ap_query_configuration(ap_configuration) != 0) { 225 kfree(ap_configuration); 226 ap_configuration = NULL; 227 return; 228 } 229 } 230 231 /* 232 * ap_test_config(): helper function to extract the nrth bit 233 * within the unsigned int array field. 234 */ 235 static inline int ap_test_config(unsigned int *field, unsigned int nr) 236 { 237 return ap_test_bit((field + (nr >> 5)), (nr & 0x1f)); 238 } 239 240 /* 241 * ap_test_config_card_id(): Test, whether an AP card ID is configured. 242 * @id AP card ID 243 * 244 * Returns 0 if the card is not configured 245 * 1 if the card is configured or 246 * if the configuration information is not available 247 */ 248 static inline int ap_test_config_card_id(unsigned int id) 249 { 250 if (!ap_configuration) /* QCI not supported */ 251 /* only ids 0...3F may be probed */ 252 return id < 0x40 ? 1 : 0; 253 return ap_test_config(ap_configuration->apm, id); 254 } 255 256 /* 257 * ap_test_config_usage_domain(): Test, whether an AP usage domain 258 * is configured. 259 * @domain AP usage domain ID 260 * 261 * Returns 0 if the usage domain is not configured 262 * 1 if the usage domain is configured or 263 * if the configuration information is not available 264 */ 265 int ap_test_config_usage_domain(unsigned int domain) 266 { 267 if (!ap_configuration) /* QCI not supported */ 268 return domain < 16; 269 return ap_test_config(ap_configuration->aqm, domain); 270 } 271 EXPORT_SYMBOL(ap_test_config_usage_domain); 272 273 /* 274 * ap_test_config_ctrl_domain(): Test, whether an AP control domain 275 * is configured. 276 * @domain AP control domain ID 277 * 278 * Returns 1 if the control domain is configured 279 * 0 in all other cases 280 */ 281 int ap_test_config_ctrl_domain(unsigned int domain) 282 { 283 if (!ap_configuration) /* QCI not supported */ 284 return 0; 285 return ap_test_config(ap_configuration->adm, domain); 286 } 287 EXPORT_SYMBOL(ap_test_config_ctrl_domain); 288 289 /** 290 * ap_query_queue(): Check if an AP queue is available. 291 * @qid: The AP queue number 292 * @queue_depth: Pointer to queue depth value 293 * @device_type: Pointer to device type value 294 * @facilities: Pointer to facility indicator 295 */ 296 static int ap_query_queue(ap_qid_t qid, int *queue_depth, int *device_type, 297 unsigned int *facilities) 298 { 299 struct ap_queue_status status; 300 unsigned long info; 301 int nd; 302 303 if (!ap_test_config_card_id(AP_QID_CARD(qid))) 304 return -ENODEV; 305 306 status = ap_test_queue(qid, ap_apft_available(), &info); 307 switch (status.response_code) { 308 case AP_RESPONSE_NORMAL: 309 *queue_depth = (int)(info & 0xff); 310 *device_type = (int)((info >> 24) & 0xff); 311 *facilities = (unsigned int)(info >> 32); 312 /* Update maximum domain id */ 313 nd = (info >> 16) & 0xff; 314 /* if N bit is available, z13 and newer */ 315 if ((info & (1UL << 57)) && nd > 0) 316 ap_max_domain_id = nd; 317 else /* older machine types */ 318 ap_max_domain_id = 15; 319 switch (*device_type) { 320 /* For CEX2 and CEX3 the available functions 321 * are not reflected by the facilities bits. 322 * Instead it is coded into the type. So here 323 * modify the function bits based on the type. 324 */ 325 case AP_DEVICE_TYPE_CEX2A: 326 case AP_DEVICE_TYPE_CEX3A: 327 *facilities |= 0x08000000; 328 break; 329 case AP_DEVICE_TYPE_CEX2C: 330 case AP_DEVICE_TYPE_CEX3C: 331 *facilities |= 0x10000000; 332 break; 333 default: 334 break; 335 } 336 return 0; 337 case AP_RESPONSE_Q_NOT_AVAIL: 338 case AP_RESPONSE_DECONFIGURED: 339 case AP_RESPONSE_CHECKSTOPPED: 340 case AP_RESPONSE_INVALID_ADDRESS: 341 return -ENODEV; 342 case AP_RESPONSE_RESET_IN_PROGRESS: 343 case AP_RESPONSE_OTHERWISE_CHANGED: 344 case AP_RESPONSE_BUSY: 345 return -EBUSY; 346 default: 347 BUG(); 348 } 349 } 350 351 void ap_wait(enum ap_wait wait) 352 { 353 ktime_t hr_time; 354 355 switch (wait) { 356 case AP_WAIT_AGAIN: 357 case AP_WAIT_INTERRUPT: 358 if (ap_using_interrupts()) 359 break; 360 if (ap_poll_kthread) { 361 wake_up(&ap_poll_wait); 362 break; 363 } 364 /* Fall through */ 365 case AP_WAIT_TIMEOUT: 366 spin_lock_bh(&ap_poll_timer_lock); 367 if (!hrtimer_is_queued(&ap_poll_timer)) { 368 hr_time = poll_timeout; 369 hrtimer_forward_now(&ap_poll_timer, hr_time); 370 hrtimer_restart(&ap_poll_timer); 371 } 372 spin_unlock_bh(&ap_poll_timer_lock); 373 break; 374 case AP_WAIT_NONE: 375 default: 376 break; 377 } 378 } 379 380 /** 381 * ap_request_timeout(): Handling of request timeouts 382 * @t: timer making this callback 383 * 384 * Handles request timeouts. 385 */ 386 void ap_request_timeout(struct timer_list *t) 387 { 388 struct ap_queue *aq = from_timer(aq, t, timeout); 389 390 if (ap_suspend_flag) 391 return; 392 spin_lock_bh(&aq->lock); 393 ap_wait(ap_sm_event(aq, AP_EVENT_TIMEOUT)); 394 spin_unlock_bh(&aq->lock); 395 } 396 397 /** 398 * ap_poll_timeout(): AP receive polling for finished AP requests. 399 * @unused: Unused pointer. 400 * 401 * Schedules the AP tasklet using a high resolution timer. 402 */ 403 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused) 404 { 405 if (!ap_suspend_flag) 406 tasklet_schedule(&ap_tasklet); 407 return HRTIMER_NORESTART; 408 } 409 410 /** 411 * ap_interrupt_handler() - Schedule ap_tasklet on interrupt 412 * @airq: pointer to adapter interrupt descriptor 413 */ 414 static void ap_interrupt_handler(struct airq_struct *airq, bool floating) 415 { 416 inc_irq_stat(IRQIO_APB); 417 if (!ap_suspend_flag) 418 tasklet_schedule(&ap_tasklet); 419 } 420 421 /** 422 * ap_tasklet_fn(): Tasklet to poll all AP devices. 423 * @dummy: Unused variable 424 * 425 * Poll all AP devices on the bus. 426 */ 427 static void ap_tasklet_fn(unsigned long dummy) 428 { 429 struct ap_card *ac; 430 struct ap_queue *aq; 431 enum ap_wait wait = AP_WAIT_NONE; 432 433 /* Reset the indicator if interrupts are used. Thus new interrupts can 434 * be received. Doing it in the beginning of the tasklet is therefor 435 * important that no requests on any AP get lost. 436 */ 437 if (ap_using_interrupts()) 438 xchg(ap_airq.lsi_ptr, 0); 439 440 spin_lock_bh(&ap_list_lock); 441 for_each_ap_card(ac) { 442 for_each_ap_queue(aq, ac) { 443 spin_lock_bh(&aq->lock); 444 wait = min(wait, ap_sm_event_loop(aq, AP_EVENT_POLL)); 445 spin_unlock_bh(&aq->lock); 446 } 447 } 448 spin_unlock_bh(&ap_list_lock); 449 450 ap_wait(wait); 451 } 452 453 static int ap_pending_requests(void) 454 { 455 struct ap_card *ac; 456 struct ap_queue *aq; 457 458 spin_lock_bh(&ap_list_lock); 459 for_each_ap_card(ac) { 460 for_each_ap_queue(aq, ac) { 461 if (aq->queue_count == 0) 462 continue; 463 spin_unlock_bh(&ap_list_lock); 464 return 1; 465 } 466 } 467 spin_unlock_bh(&ap_list_lock); 468 return 0; 469 } 470 471 /** 472 * ap_poll_thread(): Thread that polls for finished requests. 473 * @data: Unused pointer 474 * 475 * AP bus poll thread. The purpose of this thread is to poll for 476 * finished requests in a loop if there is a "free" cpu - that is 477 * a cpu that doesn't have anything better to do. The polling stops 478 * as soon as there is another task or if all messages have been 479 * delivered. 480 */ 481 static int ap_poll_thread(void *data) 482 { 483 DECLARE_WAITQUEUE(wait, current); 484 485 set_user_nice(current, MAX_NICE); 486 set_freezable(); 487 while (!kthread_should_stop()) { 488 add_wait_queue(&ap_poll_wait, &wait); 489 set_current_state(TASK_INTERRUPTIBLE); 490 if (ap_suspend_flag || !ap_pending_requests()) { 491 schedule(); 492 try_to_freeze(); 493 } 494 set_current_state(TASK_RUNNING); 495 remove_wait_queue(&ap_poll_wait, &wait); 496 if (need_resched()) { 497 schedule(); 498 try_to_freeze(); 499 continue; 500 } 501 ap_tasklet_fn(0); 502 } 503 504 return 0; 505 } 506 507 static int ap_poll_thread_start(void) 508 { 509 int rc; 510 511 if (ap_using_interrupts() || ap_poll_kthread) 512 return 0; 513 mutex_lock(&ap_poll_thread_mutex); 514 ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll"); 515 rc = PTR_ERR_OR_ZERO(ap_poll_kthread); 516 if (rc) 517 ap_poll_kthread = NULL; 518 mutex_unlock(&ap_poll_thread_mutex); 519 return rc; 520 } 521 522 static void ap_poll_thread_stop(void) 523 { 524 if (!ap_poll_kthread) 525 return; 526 mutex_lock(&ap_poll_thread_mutex); 527 kthread_stop(ap_poll_kthread); 528 ap_poll_kthread = NULL; 529 mutex_unlock(&ap_poll_thread_mutex); 530 } 531 532 #define is_card_dev(x) ((x)->parent == ap_root_device) 533 #define is_queue_dev(x) ((x)->parent != ap_root_device) 534 535 /** 536 * ap_bus_match() 537 * @dev: Pointer to device 538 * @drv: Pointer to device_driver 539 * 540 * AP bus driver registration/unregistration. 541 */ 542 static int ap_bus_match(struct device *dev, struct device_driver *drv) 543 { 544 struct ap_driver *ap_drv = to_ap_drv(drv); 545 struct ap_device_id *id; 546 547 /* 548 * Compare device type of the device with the list of 549 * supported types of the device_driver. 550 */ 551 for (id = ap_drv->ids; id->match_flags; id++) { 552 if (is_card_dev(dev) && 553 id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE && 554 id->dev_type == to_ap_dev(dev)->device_type) 555 return 1; 556 if (is_queue_dev(dev) && 557 id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE && 558 id->dev_type == to_ap_dev(dev)->device_type) 559 return 1; 560 } 561 return 0; 562 } 563 564 /** 565 * ap_uevent(): Uevent function for AP devices. 566 * @dev: Pointer to device 567 * @env: Pointer to kobj_uevent_env 568 * 569 * It sets up a single environment variable DEV_TYPE which contains the 570 * hardware device type. 571 */ 572 static int ap_uevent(struct device *dev, struct kobj_uevent_env *env) 573 { 574 struct ap_device *ap_dev = to_ap_dev(dev); 575 int retval = 0; 576 577 if (!ap_dev) 578 return -ENODEV; 579 580 /* Set up DEV_TYPE environment variable. */ 581 retval = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type); 582 if (retval) 583 return retval; 584 585 /* Add MODALIAS= */ 586 retval = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type); 587 588 return retval; 589 } 590 591 static int ap_dev_suspend(struct device *dev) 592 { 593 struct ap_device *ap_dev = to_ap_dev(dev); 594 595 if (ap_dev->drv && ap_dev->drv->suspend) 596 ap_dev->drv->suspend(ap_dev); 597 return 0; 598 } 599 600 static int ap_dev_resume(struct device *dev) 601 { 602 struct ap_device *ap_dev = to_ap_dev(dev); 603 604 if (ap_dev->drv && ap_dev->drv->resume) 605 ap_dev->drv->resume(ap_dev); 606 return 0; 607 } 608 609 static void ap_bus_suspend(void) 610 { 611 AP_DBF(DBF_DEBUG, "%s running\n", __func__); 612 613 ap_suspend_flag = 1; 614 /* 615 * Disable scanning for devices, thus we do not want to scan 616 * for them after removing. 617 */ 618 flush_work(&ap_scan_work); 619 tasklet_disable(&ap_tasklet); 620 } 621 622 static int __ap_card_devices_unregister(struct device *dev, void *dummy) 623 { 624 if (is_card_dev(dev)) 625 device_unregister(dev); 626 return 0; 627 } 628 629 static int __ap_queue_devices_unregister(struct device *dev, void *dummy) 630 { 631 if (is_queue_dev(dev)) 632 device_unregister(dev); 633 return 0; 634 } 635 636 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data) 637 { 638 if (is_queue_dev(dev) && 639 AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long) data) 640 device_unregister(dev); 641 return 0; 642 } 643 644 static void ap_bus_resume(void) 645 { 646 int rc; 647 648 AP_DBF(DBF_DEBUG, "%s running\n", __func__); 649 650 /* remove all queue devices */ 651 bus_for_each_dev(&ap_bus_type, NULL, NULL, 652 __ap_queue_devices_unregister); 653 /* remove all card devices */ 654 bus_for_each_dev(&ap_bus_type, NULL, NULL, 655 __ap_card_devices_unregister); 656 657 /* Reset thin interrupt setting */ 658 if (ap_interrupts_available() && !ap_using_interrupts()) { 659 rc = register_adapter_interrupt(&ap_airq); 660 ap_airq_flag = (rc == 0); 661 } 662 if (!ap_interrupts_available() && ap_using_interrupts()) { 663 unregister_adapter_interrupt(&ap_airq); 664 ap_airq_flag = 0; 665 } 666 /* Reset domain */ 667 if (!user_set_domain) 668 ap_domain_index = -1; 669 /* Get things going again */ 670 ap_suspend_flag = 0; 671 if (ap_airq_flag) 672 xchg(ap_airq.lsi_ptr, 0); 673 tasklet_enable(&ap_tasklet); 674 queue_work(system_long_wq, &ap_scan_work); 675 } 676 677 static int ap_power_event(struct notifier_block *this, unsigned long event, 678 void *ptr) 679 { 680 switch (event) { 681 case PM_HIBERNATION_PREPARE: 682 case PM_SUSPEND_PREPARE: 683 ap_bus_suspend(); 684 break; 685 case PM_POST_HIBERNATION: 686 case PM_POST_SUSPEND: 687 ap_bus_resume(); 688 break; 689 default: 690 break; 691 } 692 return NOTIFY_DONE; 693 } 694 static struct notifier_block ap_power_notifier = { 695 .notifier_call = ap_power_event, 696 }; 697 698 static SIMPLE_DEV_PM_OPS(ap_bus_pm_ops, ap_dev_suspend, ap_dev_resume); 699 700 static struct bus_type ap_bus_type = { 701 .name = "ap", 702 .match = &ap_bus_match, 703 .uevent = &ap_uevent, 704 .pm = &ap_bus_pm_ops, 705 }; 706 707 static int __ap_revise_reserved(struct device *dev, void *dummy) 708 { 709 int rc, card, queue, devres, drvres; 710 711 if (is_queue_dev(dev)) { 712 card = AP_QID_CARD(to_ap_queue(dev)->qid); 713 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid); 714 mutex_lock(&ap_perms_mutex); 715 devres = test_bit_inv(card, ap_perms.apm) 716 && test_bit_inv(queue, ap_perms.aqm); 717 mutex_unlock(&ap_perms_mutex); 718 drvres = to_ap_drv(dev->driver)->flags 719 & AP_DRIVER_FLAG_DEFAULT; 720 if (!!devres != !!drvres) { 721 AP_DBF(DBF_DEBUG, "reprobing queue=%02x.%04x\n", 722 card, queue); 723 rc = device_reprobe(dev); 724 } 725 } 726 727 return 0; 728 } 729 730 static void ap_bus_revise_bindings(void) 731 { 732 bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved); 733 } 734 735 int ap_owned_by_def_drv(int card, int queue) 736 { 737 int rc = 0; 738 739 if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS) 740 return -EINVAL; 741 742 mutex_lock(&ap_perms_mutex); 743 744 if (test_bit_inv(card, ap_perms.apm) 745 && test_bit_inv(queue, ap_perms.aqm)) 746 rc = 1; 747 748 mutex_unlock(&ap_perms_mutex); 749 750 return rc; 751 } 752 EXPORT_SYMBOL(ap_owned_by_def_drv); 753 754 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm, 755 unsigned long *aqm) 756 { 757 int card, queue, rc = 0; 758 759 mutex_lock(&ap_perms_mutex); 760 761 for (card = 0; !rc && card < AP_DEVICES; card++) 762 if (test_bit_inv(card, apm) && 763 test_bit_inv(card, ap_perms.apm)) 764 for (queue = 0; !rc && queue < AP_DOMAINS; queue++) 765 if (test_bit_inv(queue, aqm) && 766 test_bit_inv(queue, ap_perms.aqm)) 767 rc = 1; 768 769 mutex_unlock(&ap_perms_mutex); 770 771 return rc; 772 } 773 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv); 774 775 static int ap_device_probe(struct device *dev) 776 { 777 struct ap_device *ap_dev = to_ap_dev(dev); 778 struct ap_driver *ap_drv = to_ap_drv(dev->driver); 779 int card, queue, devres, drvres, rc; 780 781 if (is_queue_dev(dev)) { 782 /* 783 * If the apqn is marked as reserved/used by ap bus and 784 * default drivers, only probe with drivers with the default 785 * flag set. If it is not marked, only probe with drivers 786 * with the default flag not set. 787 */ 788 card = AP_QID_CARD(to_ap_queue(dev)->qid); 789 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid); 790 mutex_lock(&ap_perms_mutex); 791 devres = test_bit_inv(card, ap_perms.apm) 792 && test_bit_inv(queue, ap_perms.aqm); 793 mutex_unlock(&ap_perms_mutex); 794 drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT; 795 if (!!devres != !!drvres) 796 return -ENODEV; 797 /* (re-)init queue's state machine */ 798 ap_queue_reinit_state(to_ap_queue(dev)); 799 } 800 801 /* Add queue/card to list of active queues/cards */ 802 spin_lock_bh(&ap_list_lock); 803 if (is_card_dev(dev)) 804 list_add(&to_ap_card(dev)->list, &ap_card_list); 805 else 806 list_add(&to_ap_queue(dev)->list, 807 &to_ap_queue(dev)->card->queues); 808 spin_unlock_bh(&ap_list_lock); 809 810 ap_dev->drv = ap_drv; 811 rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV; 812 813 if (rc) { 814 spin_lock_bh(&ap_list_lock); 815 if (is_card_dev(dev)) 816 list_del_init(&to_ap_card(dev)->list); 817 else 818 list_del_init(&to_ap_queue(dev)->list); 819 spin_unlock_bh(&ap_list_lock); 820 ap_dev->drv = NULL; 821 } 822 823 return rc; 824 } 825 826 static int ap_device_remove(struct device *dev) 827 { 828 struct ap_device *ap_dev = to_ap_dev(dev); 829 struct ap_driver *ap_drv = ap_dev->drv; 830 831 /* prepare ap queue device removal */ 832 if (is_queue_dev(dev)) 833 ap_queue_prepare_remove(to_ap_queue(dev)); 834 835 /* driver's chance to clean up gracefully */ 836 if (ap_drv->remove) 837 ap_drv->remove(ap_dev); 838 839 /* now do the ap queue device remove */ 840 if (is_queue_dev(dev)) 841 ap_queue_remove(to_ap_queue(dev)); 842 843 /* Remove queue/card from list of active queues/cards */ 844 spin_lock_bh(&ap_list_lock); 845 if (is_card_dev(dev)) 846 list_del_init(&to_ap_card(dev)->list); 847 else 848 list_del_init(&to_ap_queue(dev)->list); 849 spin_unlock_bh(&ap_list_lock); 850 851 return 0; 852 } 853 854 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner, 855 char *name) 856 { 857 struct device_driver *drv = &ap_drv->driver; 858 859 if (!initialised) 860 return -ENODEV; 861 862 drv->bus = &ap_bus_type; 863 drv->probe = ap_device_probe; 864 drv->remove = ap_device_remove; 865 drv->owner = owner; 866 drv->name = name; 867 return driver_register(drv); 868 } 869 EXPORT_SYMBOL(ap_driver_register); 870 871 void ap_driver_unregister(struct ap_driver *ap_drv) 872 { 873 driver_unregister(&ap_drv->driver); 874 } 875 EXPORT_SYMBOL(ap_driver_unregister); 876 877 void ap_bus_force_rescan(void) 878 { 879 if (ap_suspend_flag) 880 return; 881 /* processing a asynchronous bus rescan */ 882 del_timer(&ap_config_timer); 883 queue_work(system_long_wq, &ap_scan_work); 884 flush_work(&ap_scan_work); 885 } 886 EXPORT_SYMBOL(ap_bus_force_rescan); 887 888 /* 889 * A config change has happened, force an ap bus rescan. 890 */ 891 void ap_bus_cfg_chg(void) 892 { 893 AP_DBF(DBF_INFO, "%s config change, forcing bus rescan\n", __func__); 894 895 ap_bus_force_rescan(); 896 } 897 898 /* 899 * hex2bitmap() - parse hex mask string and set bitmap. 900 * Valid strings are "0x012345678" with at least one valid hex number. 901 * Rest of the bitmap to the right is padded with 0. No spaces allowed 902 * within the string, the leading 0x may be omitted. 903 * Returns the bitmask with exactly the bits set as given by the hex 904 * string (both in big endian order). 905 */ 906 static int hex2bitmap(const char *str, unsigned long *bitmap, int bits) 907 { 908 int i, n, b; 909 910 /* bits needs to be a multiple of 8 */ 911 if (bits & 0x07) 912 return -EINVAL; 913 914 if (str[0] == '0' && str[1] == 'x') 915 str++; 916 if (*str == 'x') 917 str++; 918 919 for (i = 0; isxdigit(*str) && i < bits; str++) { 920 b = hex_to_bin(*str); 921 for (n = 0; n < 4; n++) 922 if (b & (0x08 >> n)) 923 set_bit_inv(i + n, bitmap); 924 i += 4; 925 } 926 927 if (*str == '\n') 928 str++; 929 if (*str) 930 return -EINVAL; 931 return 0; 932 } 933 934 /* 935 * modify_bitmap() - parse bitmask argument and modify an existing 936 * bit mask accordingly. A concatenation (done with ',') of these 937 * terms is recognized: 938 * +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>] 939 * <bitnr> may be any valid number (hex, decimal or octal) in the range 940 * 0...bits-1; the leading + or - is required. Here are some examples: 941 * +0-15,+32,-128,-0xFF 942 * -0-255,+1-16,+0x128 943 * +1,+2,+3,+4,-5,-7-10 944 * Returns the new bitmap after all changes have been applied. Every 945 * positive value in the string will set a bit and every negative value 946 * in the string will clear a bit. As a bit may be touched more than once, 947 * the last 'operation' wins: 948 * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be 949 * cleared again. All other bits are unmodified. 950 */ 951 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits) 952 { 953 int a, i, z; 954 char *np, sign; 955 956 /* bits needs to be a multiple of 8 */ 957 if (bits & 0x07) 958 return -EINVAL; 959 960 while (*str) { 961 sign = *str++; 962 if (sign != '+' && sign != '-') 963 return -EINVAL; 964 a = z = simple_strtoul(str, &np, 0); 965 if (str == np || a >= bits) 966 return -EINVAL; 967 str = np; 968 if (*str == '-') { 969 z = simple_strtoul(++str, &np, 0); 970 if (str == np || a > z || z >= bits) 971 return -EINVAL; 972 str = np; 973 } 974 for (i = a; i <= z; i++) 975 if (sign == '+') 976 set_bit_inv(i, bitmap); 977 else 978 clear_bit_inv(i, bitmap); 979 while (*str == ',' || *str == '\n') 980 str++; 981 } 982 983 return 0; 984 } 985 986 int ap_parse_mask_str(const char *str, 987 unsigned long *bitmap, int bits, 988 struct mutex *lock) 989 { 990 unsigned long *newmap, size; 991 int rc; 992 993 /* bits needs to be a multiple of 8 */ 994 if (bits & 0x07) 995 return -EINVAL; 996 997 size = BITS_TO_LONGS(bits)*sizeof(unsigned long); 998 newmap = kmalloc(size, GFP_KERNEL); 999 if (!newmap) 1000 return -ENOMEM; 1001 if (mutex_lock_interruptible(lock)) { 1002 kfree(newmap); 1003 return -ERESTARTSYS; 1004 } 1005 1006 if (*str == '+' || *str == '-') { 1007 memcpy(newmap, bitmap, size); 1008 rc = modify_bitmap(str, newmap, bits); 1009 } else { 1010 memset(newmap, 0, size); 1011 rc = hex2bitmap(str, newmap, bits); 1012 } 1013 if (rc == 0) 1014 memcpy(bitmap, newmap, size); 1015 mutex_unlock(lock); 1016 kfree(newmap); 1017 return rc; 1018 } 1019 EXPORT_SYMBOL(ap_parse_mask_str); 1020 1021 /* 1022 * AP bus attributes. 1023 */ 1024 1025 static ssize_t ap_domain_show(struct bus_type *bus, char *buf) 1026 { 1027 return snprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index); 1028 } 1029 1030 static ssize_t ap_domain_store(struct bus_type *bus, 1031 const char *buf, size_t count) 1032 { 1033 int domain; 1034 1035 if (sscanf(buf, "%i\n", &domain) != 1 || 1036 domain < 0 || domain > ap_max_domain_id || 1037 !test_bit_inv(domain, ap_perms.aqm)) 1038 return -EINVAL; 1039 spin_lock_bh(&ap_domain_lock); 1040 ap_domain_index = domain; 1041 spin_unlock_bh(&ap_domain_lock); 1042 1043 AP_DBF(DBF_DEBUG, "stored new default domain=%d\n", domain); 1044 1045 return count; 1046 } 1047 1048 static BUS_ATTR_RW(ap_domain); 1049 1050 static ssize_t ap_control_domain_mask_show(struct bus_type *bus, char *buf) 1051 { 1052 if (!ap_configuration) /* QCI not supported */ 1053 return snprintf(buf, PAGE_SIZE, "not supported\n"); 1054 1055 return snprintf(buf, PAGE_SIZE, 1056 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1057 ap_configuration->adm[0], ap_configuration->adm[1], 1058 ap_configuration->adm[2], ap_configuration->adm[3], 1059 ap_configuration->adm[4], ap_configuration->adm[5], 1060 ap_configuration->adm[6], ap_configuration->adm[7]); 1061 } 1062 1063 static BUS_ATTR_RO(ap_control_domain_mask); 1064 1065 static ssize_t ap_usage_domain_mask_show(struct bus_type *bus, char *buf) 1066 { 1067 if (!ap_configuration) /* QCI not supported */ 1068 return snprintf(buf, PAGE_SIZE, "not supported\n"); 1069 1070 return snprintf(buf, PAGE_SIZE, 1071 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1072 ap_configuration->aqm[0], ap_configuration->aqm[1], 1073 ap_configuration->aqm[2], ap_configuration->aqm[3], 1074 ap_configuration->aqm[4], ap_configuration->aqm[5], 1075 ap_configuration->aqm[6], ap_configuration->aqm[7]); 1076 } 1077 1078 static BUS_ATTR_RO(ap_usage_domain_mask); 1079 1080 static ssize_t ap_adapter_mask_show(struct bus_type *bus, char *buf) 1081 { 1082 if (!ap_configuration) /* QCI not supported */ 1083 return snprintf(buf, PAGE_SIZE, "not supported\n"); 1084 1085 return snprintf(buf, PAGE_SIZE, 1086 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1087 ap_configuration->apm[0], ap_configuration->apm[1], 1088 ap_configuration->apm[2], ap_configuration->apm[3], 1089 ap_configuration->apm[4], ap_configuration->apm[5], 1090 ap_configuration->apm[6], ap_configuration->apm[7]); 1091 } 1092 1093 static BUS_ATTR_RO(ap_adapter_mask); 1094 1095 static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf) 1096 { 1097 return snprintf(buf, PAGE_SIZE, "%d\n", 1098 ap_using_interrupts() ? 1 : 0); 1099 } 1100 1101 static BUS_ATTR_RO(ap_interrupts); 1102 1103 static ssize_t config_time_show(struct bus_type *bus, char *buf) 1104 { 1105 return snprintf(buf, PAGE_SIZE, "%d\n", ap_config_time); 1106 } 1107 1108 static ssize_t config_time_store(struct bus_type *bus, 1109 const char *buf, size_t count) 1110 { 1111 int time; 1112 1113 if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120) 1114 return -EINVAL; 1115 ap_config_time = time; 1116 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ); 1117 return count; 1118 } 1119 1120 static BUS_ATTR_RW(config_time); 1121 1122 static ssize_t poll_thread_show(struct bus_type *bus, char *buf) 1123 { 1124 return snprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0); 1125 } 1126 1127 static ssize_t poll_thread_store(struct bus_type *bus, 1128 const char *buf, size_t count) 1129 { 1130 int flag, rc; 1131 1132 if (sscanf(buf, "%d\n", &flag) != 1) 1133 return -EINVAL; 1134 if (flag) { 1135 rc = ap_poll_thread_start(); 1136 if (rc) 1137 count = rc; 1138 } else 1139 ap_poll_thread_stop(); 1140 return count; 1141 } 1142 1143 static BUS_ATTR_RW(poll_thread); 1144 1145 static ssize_t poll_timeout_show(struct bus_type *bus, char *buf) 1146 { 1147 return snprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout); 1148 } 1149 1150 static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf, 1151 size_t count) 1152 { 1153 unsigned long long time; 1154 ktime_t hr_time; 1155 1156 /* 120 seconds = maximum poll interval */ 1157 if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 || 1158 time > 120000000000ULL) 1159 return -EINVAL; 1160 poll_timeout = time; 1161 hr_time = poll_timeout; 1162 1163 spin_lock_bh(&ap_poll_timer_lock); 1164 hrtimer_cancel(&ap_poll_timer); 1165 hrtimer_set_expires(&ap_poll_timer, hr_time); 1166 hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS); 1167 spin_unlock_bh(&ap_poll_timer_lock); 1168 1169 return count; 1170 } 1171 1172 static BUS_ATTR_RW(poll_timeout); 1173 1174 static ssize_t ap_max_domain_id_show(struct bus_type *bus, char *buf) 1175 { 1176 int max_domain_id; 1177 1178 if (ap_configuration) 1179 max_domain_id = ap_max_domain_id ? : -1; 1180 else 1181 max_domain_id = 15; 1182 return snprintf(buf, PAGE_SIZE, "%d\n", max_domain_id); 1183 } 1184 1185 static BUS_ATTR_RO(ap_max_domain_id); 1186 1187 static ssize_t apmask_show(struct bus_type *bus, char *buf) 1188 { 1189 int rc; 1190 1191 if (mutex_lock_interruptible(&ap_perms_mutex)) 1192 return -ERESTARTSYS; 1193 rc = snprintf(buf, PAGE_SIZE, 1194 "0x%016lx%016lx%016lx%016lx\n", 1195 ap_perms.apm[0], ap_perms.apm[1], 1196 ap_perms.apm[2], ap_perms.apm[3]); 1197 mutex_unlock(&ap_perms_mutex); 1198 1199 return rc; 1200 } 1201 1202 static ssize_t apmask_store(struct bus_type *bus, const char *buf, 1203 size_t count) 1204 { 1205 int rc; 1206 1207 rc = ap_parse_mask_str(buf, ap_perms.apm, AP_DEVICES, &ap_perms_mutex); 1208 if (rc) 1209 return rc; 1210 1211 ap_bus_revise_bindings(); 1212 1213 return count; 1214 } 1215 1216 static BUS_ATTR_RW(apmask); 1217 1218 static ssize_t aqmask_show(struct bus_type *bus, char *buf) 1219 { 1220 int rc; 1221 1222 if (mutex_lock_interruptible(&ap_perms_mutex)) 1223 return -ERESTARTSYS; 1224 rc = snprintf(buf, PAGE_SIZE, 1225 "0x%016lx%016lx%016lx%016lx\n", 1226 ap_perms.aqm[0], ap_perms.aqm[1], 1227 ap_perms.aqm[2], ap_perms.aqm[3]); 1228 mutex_unlock(&ap_perms_mutex); 1229 1230 return rc; 1231 } 1232 1233 static ssize_t aqmask_store(struct bus_type *bus, const char *buf, 1234 size_t count) 1235 { 1236 int rc; 1237 1238 rc = ap_parse_mask_str(buf, ap_perms.aqm, AP_DOMAINS, &ap_perms_mutex); 1239 if (rc) 1240 return rc; 1241 1242 ap_bus_revise_bindings(); 1243 1244 return count; 1245 } 1246 1247 static BUS_ATTR_RW(aqmask); 1248 1249 static struct bus_attribute *const ap_bus_attrs[] = { 1250 &bus_attr_ap_domain, 1251 &bus_attr_ap_control_domain_mask, 1252 &bus_attr_ap_usage_domain_mask, 1253 &bus_attr_ap_adapter_mask, 1254 &bus_attr_config_time, 1255 &bus_attr_poll_thread, 1256 &bus_attr_ap_interrupts, 1257 &bus_attr_poll_timeout, 1258 &bus_attr_ap_max_domain_id, 1259 &bus_attr_apmask, 1260 &bus_attr_aqmask, 1261 NULL, 1262 }; 1263 1264 /** 1265 * ap_select_domain(): Select an AP domain if possible and we haven't 1266 * already done so before. 1267 */ 1268 static void ap_select_domain(void) 1269 { 1270 int count, max_count, best_domain; 1271 struct ap_queue_status status; 1272 int i, j; 1273 1274 /* 1275 * We want to use a single domain. Either the one specified with 1276 * the "domain=" parameter or the domain with the maximum number 1277 * of devices. 1278 */ 1279 spin_lock_bh(&ap_domain_lock); 1280 if (ap_domain_index >= 0) { 1281 /* Domain has already been selected. */ 1282 spin_unlock_bh(&ap_domain_lock); 1283 return; 1284 } 1285 best_domain = -1; 1286 max_count = 0; 1287 for (i = 0; i < AP_DOMAINS; i++) { 1288 if (!ap_test_config_usage_domain(i) || 1289 !test_bit_inv(i, ap_perms.aqm)) 1290 continue; 1291 count = 0; 1292 for (j = 0; j < AP_DEVICES; j++) { 1293 if (!ap_test_config_card_id(j)) 1294 continue; 1295 status = ap_test_queue(AP_MKQID(j, i), 1296 ap_apft_available(), 1297 NULL); 1298 if (status.response_code != AP_RESPONSE_NORMAL) 1299 continue; 1300 count++; 1301 } 1302 if (count > max_count) { 1303 max_count = count; 1304 best_domain = i; 1305 } 1306 } 1307 if (best_domain >= 0) { 1308 ap_domain_index = best_domain; 1309 AP_DBF(DBF_DEBUG, "new ap_domain_index=%d\n", ap_domain_index); 1310 } 1311 spin_unlock_bh(&ap_domain_lock); 1312 } 1313 1314 /* 1315 * This function checks the type and returns either 0 for not 1316 * supported or the highest compatible type value (which may 1317 * include the input type value). 1318 */ 1319 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func) 1320 { 1321 int comp_type = 0; 1322 1323 /* < CEX2A is not supported */ 1324 if (rawtype < AP_DEVICE_TYPE_CEX2A) 1325 return 0; 1326 /* up to CEX6 known and fully supported */ 1327 if (rawtype <= AP_DEVICE_TYPE_CEX6) 1328 return rawtype; 1329 /* 1330 * unknown new type > CEX6, check for compatibility 1331 * to the highest known and supported type which is 1332 * currently CEX6 with the help of the QACT function. 1333 */ 1334 if (ap_qact_available()) { 1335 struct ap_queue_status status; 1336 union ap_qact_ap_info apinfo = {0}; 1337 1338 apinfo.mode = (func >> 26) & 0x07; 1339 apinfo.cat = AP_DEVICE_TYPE_CEX6; 1340 status = ap_qact(qid, 0, &apinfo); 1341 if (status.response_code == AP_RESPONSE_NORMAL 1342 && apinfo.cat >= AP_DEVICE_TYPE_CEX2A 1343 && apinfo.cat <= AP_DEVICE_TYPE_CEX6) 1344 comp_type = apinfo.cat; 1345 } 1346 if (!comp_type) 1347 AP_DBF(DBF_WARN, "queue=%02x.%04x unable to map type %d\n", 1348 AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype); 1349 else if (comp_type != rawtype) 1350 AP_DBF(DBF_INFO, "queue=%02x.%04x map type %d to %d\n", 1351 AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype, comp_type); 1352 return comp_type; 1353 } 1354 1355 /* 1356 * Helper function to be used with bus_find_dev 1357 * matches for the card device with the given id 1358 */ 1359 static int __match_card_device_with_id(struct device *dev, void *data) 1360 { 1361 return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long) data; 1362 } 1363 1364 /* 1365 * Helper function to be used with bus_find_dev 1366 * matches for the queue device with a given qid 1367 */ 1368 static int __match_queue_device_with_qid(struct device *dev, void *data) 1369 { 1370 return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long) data; 1371 } 1372 1373 /* 1374 * Helper function to be used with bus_find_dev 1375 * matches any queue device with given queue id 1376 */ 1377 static int __match_queue_device_with_queue_id(struct device *dev, void *data) 1378 { 1379 return is_queue_dev(dev) 1380 && AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long) data; 1381 } 1382 1383 /* 1384 * Helper function for ap_scan_bus(). 1385 * Does the scan bus job for the given adapter id. 1386 */ 1387 static void _ap_scan_bus_adapter(int id) 1388 { 1389 ap_qid_t qid; 1390 unsigned int func; 1391 struct ap_card *ac; 1392 struct device *dev; 1393 struct ap_queue *aq; 1394 int rc, dom, depth, type, comp_type, borked; 1395 1396 /* check if there is a card device registered with this id */ 1397 dev = bus_find_device(&ap_bus_type, NULL, 1398 (void *)(long) id, 1399 __match_card_device_with_id); 1400 ac = dev ? to_ap_card(dev) : NULL; 1401 if (!ap_test_config_card_id(id)) { 1402 if (dev) { 1403 /* Card device has been removed from configuration */ 1404 bus_for_each_dev(&ap_bus_type, NULL, 1405 (void *)(long) id, 1406 __ap_queue_devices_with_id_unregister); 1407 device_unregister(dev); 1408 put_device(dev); 1409 } 1410 return; 1411 } 1412 1413 /* 1414 * This card id is enabled in the configuration. If we already have 1415 * a card device with this id, check if type and functions are still 1416 * the very same. Also verify that at least one queue is available. 1417 */ 1418 if (ac) { 1419 /* find the first valid queue */ 1420 for (dom = 0; dom < AP_DOMAINS; dom++) { 1421 qid = AP_MKQID(id, dom); 1422 if (ap_query_queue(qid, &depth, &type, &func) == 0) 1423 break; 1424 } 1425 borked = 0; 1426 if (dom >= AP_DOMAINS) { 1427 /* no accessible queue on this card */ 1428 borked = 1; 1429 } else if (ac->raw_hwtype != type) { 1430 /* card type has changed */ 1431 AP_DBF(DBF_INFO, "card=%02x type changed.\n", id); 1432 borked = 1; 1433 } else if (ac->functions != func) { 1434 /* card functions have changed */ 1435 AP_DBF(DBF_INFO, "card=%02x functions changed.\n", id); 1436 borked = 1; 1437 } 1438 if (borked) { 1439 /* unregister card device and associated queues */ 1440 bus_for_each_dev(&ap_bus_type, NULL, 1441 (void *)(long) id, 1442 __ap_queue_devices_with_id_unregister); 1443 device_unregister(dev); 1444 put_device(dev); 1445 /* go back if there is no valid queue on this card */ 1446 if (dom >= AP_DOMAINS) 1447 return; 1448 ac = NULL; 1449 } 1450 } 1451 1452 /* 1453 * Go through all possible queue ids. Check and maybe create or release 1454 * queue devices for this card. If there exists no card device yet, 1455 * create a card device also. 1456 */ 1457 for (dom = 0; dom < AP_DOMAINS; dom++) { 1458 qid = AP_MKQID(id, dom); 1459 dev = bus_find_device(&ap_bus_type, NULL, 1460 (void *)(long) qid, 1461 __match_queue_device_with_qid); 1462 aq = dev ? to_ap_queue(dev) : NULL; 1463 if (!ap_test_config_usage_domain(dom)) { 1464 if (dev) { 1465 /* Queue device exists but has been 1466 * removed from configuration. 1467 */ 1468 device_unregister(dev); 1469 put_device(dev); 1470 } 1471 continue; 1472 } 1473 /* try to fetch infos about this queue */ 1474 rc = ap_query_queue(qid, &depth, &type, &func); 1475 if (dev) { 1476 if (rc == -ENODEV) 1477 borked = 1; 1478 else { 1479 spin_lock_bh(&aq->lock); 1480 borked = aq->state == AP_STATE_BORKED; 1481 spin_unlock_bh(&aq->lock); 1482 } 1483 if (borked) { 1484 /* Remove broken device */ 1485 AP_DBF(DBF_DEBUG, 1486 "removing broken queue=%02x.%04x\n", 1487 id, dom); 1488 device_unregister(dev); 1489 } 1490 put_device(dev); 1491 continue; 1492 } 1493 if (rc) 1494 continue; 1495 /* a new queue device is needed, check out comp type */ 1496 comp_type = ap_get_compatible_type(qid, type, func); 1497 if (!comp_type) 1498 continue; 1499 /* maybe a card device needs to be created first */ 1500 if (!ac) { 1501 ac = ap_card_create(id, depth, type, comp_type, func); 1502 if (!ac) 1503 continue; 1504 ac->ap_dev.device.bus = &ap_bus_type; 1505 ac->ap_dev.device.parent = ap_root_device; 1506 dev_set_name(&ac->ap_dev.device, "card%02x", id); 1507 /* Register card device with AP bus */ 1508 rc = device_register(&ac->ap_dev.device); 1509 if (rc) { 1510 put_device(&ac->ap_dev.device); 1511 ac = NULL; 1512 break; 1513 } 1514 /* get it and thus adjust reference counter */ 1515 get_device(&ac->ap_dev.device); 1516 } 1517 /* now create the new queue device */ 1518 aq = ap_queue_create(qid, comp_type); 1519 if (!aq) 1520 continue; 1521 aq->card = ac; 1522 aq->ap_dev.device.bus = &ap_bus_type; 1523 aq->ap_dev.device.parent = &ac->ap_dev.device; 1524 dev_set_name(&aq->ap_dev.device, "%02x.%04x", id, dom); 1525 /* Register queue device */ 1526 rc = device_register(&aq->ap_dev.device); 1527 if (rc) { 1528 put_device(&aq->ap_dev.device); 1529 continue; 1530 } 1531 } /* end domain loop */ 1532 1533 if (ac) 1534 put_device(&ac->ap_dev.device); 1535 } 1536 1537 /** 1538 * ap_scan_bus(): Scan the AP bus for new devices 1539 * Runs periodically, workqueue timer (ap_config_time) 1540 */ 1541 static void ap_scan_bus(struct work_struct *unused) 1542 { 1543 int id; 1544 1545 AP_DBF(DBF_DEBUG, "%s running\n", __func__); 1546 1547 ap_query_configuration(ap_configuration); 1548 ap_select_domain(); 1549 1550 /* loop over all possible adapters */ 1551 for (id = 0; id < AP_DEVICES; id++) 1552 _ap_scan_bus_adapter(id); 1553 1554 /* check if there is at least one queue available with default domain */ 1555 if (ap_domain_index >= 0) { 1556 struct device *dev = 1557 bus_find_device(&ap_bus_type, NULL, 1558 (void *)(long) ap_domain_index, 1559 __match_queue_device_with_queue_id); 1560 if (dev) 1561 put_device(dev); 1562 else 1563 AP_DBF(DBF_INFO, 1564 "no queue device with default domain %d available\n", 1565 ap_domain_index); 1566 } 1567 1568 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ); 1569 } 1570 1571 static void ap_config_timeout(struct timer_list *unused) 1572 { 1573 if (ap_suspend_flag) 1574 return; 1575 queue_work(system_long_wq, &ap_scan_work); 1576 } 1577 1578 static int __init ap_debug_init(void) 1579 { 1580 ap_dbf_info = debug_register("ap", 1, 1, 1581 DBF_MAX_SPRINTF_ARGS * sizeof(long)); 1582 debug_register_view(ap_dbf_info, &debug_sprintf_view); 1583 debug_set_level(ap_dbf_info, DBF_ERR); 1584 1585 return 0; 1586 } 1587 1588 static void __init ap_perms_init(void) 1589 { 1590 /* all resources useable if no kernel parameter string given */ 1591 memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm)); 1592 memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm)); 1593 memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm)); 1594 1595 /* apm kernel parameter string */ 1596 if (apm_str) { 1597 memset(&ap_perms.apm, 0, sizeof(ap_perms.apm)); 1598 ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES, 1599 &ap_perms_mutex); 1600 } 1601 1602 /* aqm kernel parameter string */ 1603 if (aqm_str) { 1604 memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm)); 1605 ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS, 1606 &ap_perms_mutex); 1607 } 1608 } 1609 1610 /** 1611 * ap_module_init(): The module initialization code. 1612 * 1613 * Initializes the module. 1614 */ 1615 static int __init ap_module_init(void) 1616 { 1617 int max_domain_id; 1618 int rc, i; 1619 1620 rc = ap_debug_init(); 1621 if (rc) 1622 return rc; 1623 1624 if (!ap_instructions_available()) { 1625 pr_warn("The hardware system does not support AP instructions\n"); 1626 return -ENODEV; 1627 } 1628 1629 /* set up the AP permissions (ioctls, ap and aq masks) */ 1630 ap_perms_init(); 1631 1632 /* Get AP configuration data if available */ 1633 ap_init_configuration(); 1634 1635 if (ap_configuration) 1636 max_domain_id = 1637 ap_max_domain_id ? ap_max_domain_id : AP_DOMAINS - 1; 1638 else 1639 max_domain_id = 15; 1640 if (ap_domain_index < -1 || ap_domain_index > max_domain_id || 1641 (ap_domain_index >= 0 && 1642 !test_bit_inv(ap_domain_index, ap_perms.aqm))) { 1643 pr_warn("%d is not a valid cryptographic domain\n", 1644 ap_domain_index); 1645 ap_domain_index = -1; 1646 } 1647 /* In resume callback we need to know if the user had set the domain. 1648 * If so, we can not just reset it. 1649 */ 1650 if (ap_domain_index >= 0) 1651 user_set_domain = 1; 1652 1653 if (ap_interrupts_available()) { 1654 rc = register_adapter_interrupt(&ap_airq); 1655 ap_airq_flag = (rc == 0); 1656 } 1657 1658 /* Create /sys/bus/ap. */ 1659 rc = bus_register(&ap_bus_type); 1660 if (rc) 1661 goto out; 1662 for (i = 0; ap_bus_attrs[i]; i++) { 1663 rc = bus_create_file(&ap_bus_type, ap_bus_attrs[i]); 1664 if (rc) 1665 goto out_bus; 1666 } 1667 1668 /* Create /sys/devices/ap. */ 1669 ap_root_device = root_device_register("ap"); 1670 rc = PTR_ERR_OR_ZERO(ap_root_device); 1671 if (rc) 1672 goto out_bus; 1673 1674 /* Setup the AP bus rescan timer. */ 1675 timer_setup(&ap_config_timer, ap_config_timeout, 0); 1676 1677 /* 1678 * Setup the high resultion poll timer. 1679 * If we are running under z/VM adjust polling to z/VM polling rate. 1680 */ 1681 if (MACHINE_IS_VM) 1682 poll_timeout = 1500000; 1683 spin_lock_init(&ap_poll_timer_lock); 1684 hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1685 ap_poll_timer.function = ap_poll_timeout; 1686 1687 /* Start the low priority AP bus poll thread. */ 1688 if (ap_thread_flag) { 1689 rc = ap_poll_thread_start(); 1690 if (rc) 1691 goto out_work; 1692 } 1693 1694 rc = register_pm_notifier(&ap_power_notifier); 1695 if (rc) 1696 goto out_pm; 1697 1698 queue_work(system_long_wq, &ap_scan_work); 1699 initialised = true; 1700 1701 return 0; 1702 1703 out_pm: 1704 ap_poll_thread_stop(); 1705 out_work: 1706 hrtimer_cancel(&ap_poll_timer); 1707 root_device_unregister(ap_root_device); 1708 out_bus: 1709 while (i--) 1710 bus_remove_file(&ap_bus_type, ap_bus_attrs[i]); 1711 bus_unregister(&ap_bus_type); 1712 out: 1713 if (ap_using_interrupts()) 1714 unregister_adapter_interrupt(&ap_airq); 1715 kfree(ap_configuration); 1716 return rc; 1717 } 1718 device_initcall(ap_module_init); 1719