1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright IBM Corp. 2006, 2021 4 * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com> 5 * Martin Schwidefsky <schwidefsky@de.ibm.com> 6 * Ralph Wuerthner <rwuerthn@de.ibm.com> 7 * Felix Beck <felix.beck@de.ibm.com> 8 * Holger Dengler <hd@linux.vnet.ibm.com> 9 * Harald Freudenberger <freude@linux.ibm.com> 10 * 11 * Adjunct processor bus. 12 */ 13 14 #define KMSG_COMPONENT "ap" 15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 16 17 #include <linux/kernel_stat.h> 18 #include <linux/moduleparam.h> 19 #include <linux/init.h> 20 #include <linux/delay.h> 21 #include <linux/err.h> 22 #include <linux/freezer.h> 23 #include <linux/interrupt.h> 24 #include <linux/workqueue.h> 25 #include <linux/slab.h> 26 #include <linux/notifier.h> 27 #include <linux/kthread.h> 28 #include <linux/mutex.h> 29 #include <asm/airq.h> 30 #include <linux/atomic.h> 31 #include <asm/isc.h> 32 #include <linux/hrtimer.h> 33 #include <linux/ktime.h> 34 #include <asm/facility.h> 35 #include <linux/crypto.h> 36 #include <linux/mod_devicetable.h> 37 #include <linux/debugfs.h> 38 #include <linux/ctype.h> 39 40 #include "ap_bus.h" 41 #include "ap_debug.h" 42 43 /* 44 * Module parameters; note though this file itself isn't modular. 45 */ 46 int ap_domain_index = -1; /* Adjunct Processor Domain Index */ 47 static DEFINE_SPINLOCK(ap_domain_lock); 48 module_param_named(domain, ap_domain_index, int, 0440); 49 MODULE_PARM_DESC(domain, "domain index for ap devices"); 50 EXPORT_SYMBOL(ap_domain_index); 51 52 static int ap_thread_flag; 53 module_param_named(poll_thread, ap_thread_flag, int, 0440); 54 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off)."); 55 56 static char *apm_str; 57 module_param_named(apmask, apm_str, charp, 0440); 58 MODULE_PARM_DESC(apmask, "AP bus adapter mask."); 59 60 static char *aqm_str; 61 module_param_named(aqmask, aqm_str, charp, 0440); 62 MODULE_PARM_DESC(aqmask, "AP bus domain mask."); 63 64 static int ap_useirq = 1; 65 module_param_named(useirq, ap_useirq, int, 0440); 66 MODULE_PARM_DESC(useirq, "Use interrupt if available, default is 1 (on)."); 67 68 atomic_t ap_max_msg_size = ATOMIC_INIT(AP_DEFAULT_MAX_MSG_SIZE); 69 EXPORT_SYMBOL(ap_max_msg_size); 70 71 static struct device *ap_root_device; 72 73 /* Hashtable of all queue devices on the AP bus */ 74 DEFINE_HASHTABLE(ap_queues, 8); 75 /* lock used for the ap_queues hashtable */ 76 DEFINE_SPINLOCK(ap_queues_lock); 77 78 /* Default permissions (ioctl, card and domain masking) */ 79 struct ap_perms ap_perms; 80 EXPORT_SYMBOL(ap_perms); 81 DEFINE_MUTEX(ap_perms_mutex); 82 EXPORT_SYMBOL(ap_perms_mutex); 83 84 /* # of bus scans since init */ 85 static atomic64_t ap_scan_bus_count; 86 87 /* # of bindings complete since init */ 88 static atomic64_t ap_bindings_complete_count = ATOMIC64_INIT(0); 89 90 /* completion for initial APQN bindings complete */ 91 static DECLARE_COMPLETION(ap_init_apqn_bindings_complete); 92 93 static struct ap_config_info *ap_qci_info; 94 95 /* 96 * AP bus related debug feature things. 97 */ 98 debug_info_t *ap_dbf_info; 99 100 /* 101 * Workqueue timer for bus rescan. 102 */ 103 static struct timer_list ap_config_timer; 104 static int ap_config_time = AP_CONFIG_TIME; 105 static void ap_scan_bus(struct work_struct *); 106 static DECLARE_WORK(ap_scan_work, ap_scan_bus); 107 108 /* 109 * Tasklet & timer for AP request polling and interrupts 110 */ 111 static void ap_tasklet_fn(unsigned long); 112 static DECLARE_TASKLET_OLD(ap_tasklet, ap_tasklet_fn); 113 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait); 114 static struct task_struct *ap_poll_kthread; 115 static DEFINE_MUTEX(ap_poll_thread_mutex); 116 static DEFINE_SPINLOCK(ap_poll_timer_lock); 117 static struct hrtimer ap_poll_timer; 118 /* 119 * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds. 120 * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling. 121 */ 122 static unsigned long long poll_timeout = 250000; 123 124 /* Maximum domain id, if not given via qci */ 125 static int ap_max_domain_id = 15; 126 /* Maximum adapter id, if not given via qci */ 127 static int ap_max_adapter_id = 63; 128 129 static struct bus_type ap_bus_type; 130 131 /* Adapter interrupt definitions */ 132 static void ap_interrupt_handler(struct airq_struct *airq, bool floating); 133 134 static bool ap_irq_flag; 135 136 static struct airq_struct ap_airq = { 137 .handler = ap_interrupt_handler, 138 .isc = AP_ISC, 139 }; 140 141 /** 142 * ap_airq_ptr() - Get the address of the adapter interrupt indicator 143 * 144 * Returns the address of the local-summary-indicator of the adapter 145 * interrupt handler for AP, or NULL if adapter interrupts are not 146 * available. 147 */ 148 void *ap_airq_ptr(void) 149 { 150 if (ap_irq_flag) 151 return ap_airq.lsi_ptr; 152 return NULL; 153 } 154 155 /** 156 * ap_interrupts_available(): Test if AP interrupts are available. 157 * 158 * Returns 1 if AP interrupts are available. 159 */ 160 static int ap_interrupts_available(void) 161 { 162 return test_facility(65); 163 } 164 165 /** 166 * ap_qci_available(): Test if AP configuration 167 * information can be queried via QCI subfunction. 168 * 169 * Returns 1 if subfunction PQAP(QCI) is available. 170 */ 171 static int ap_qci_available(void) 172 { 173 return test_facility(12); 174 } 175 176 /** 177 * ap_apft_available(): Test if AP facilities test (APFT) 178 * facility is available. 179 * 180 * Returns 1 if APFT is is available. 181 */ 182 static int ap_apft_available(void) 183 { 184 return test_facility(15); 185 } 186 187 /* 188 * ap_qact_available(): Test if the PQAP(QACT) subfunction is available. 189 * 190 * Returns 1 if the QACT subfunction is available. 191 */ 192 static inline int ap_qact_available(void) 193 { 194 if (ap_qci_info) 195 return ap_qci_info->qact; 196 return 0; 197 } 198 199 /* 200 * ap_fetch_qci_info(): Fetch cryptographic config info 201 * 202 * Returns the ap configuration info fetched via PQAP(QCI). 203 * On success 0 is returned, on failure a negative errno 204 * is returned, e.g. if the PQAP(QCI) instruction is not 205 * available, the return value will be -EOPNOTSUPP. 206 */ 207 static inline int ap_fetch_qci_info(struct ap_config_info *info) 208 { 209 if (!ap_qci_available()) 210 return -EOPNOTSUPP; 211 if (!info) 212 return -EINVAL; 213 return ap_qci(info); 214 } 215 216 /** 217 * ap_init_qci_info(): Allocate and query qci config info. 218 * Does also update the static variables ap_max_domain_id 219 * and ap_max_adapter_id if this info is available. 220 */ 221 static void __init ap_init_qci_info(void) 222 { 223 if (!ap_qci_available()) { 224 AP_DBF_INFO("%s QCI not supported\n", __func__); 225 return; 226 } 227 228 ap_qci_info = kzalloc(sizeof(*ap_qci_info), GFP_KERNEL); 229 if (!ap_qci_info) 230 return; 231 if (ap_fetch_qci_info(ap_qci_info) != 0) { 232 kfree(ap_qci_info); 233 ap_qci_info = NULL; 234 return; 235 } 236 AP_DBF_INFO("%s successful fetched initial qci info\n", __func__); 237 238 if (ap_qci_info->apxa) { 239 if (ap_qci_info->Na) { 240 ap_max_adapter_id = ap_qci_info->Na; 241 AP_DBF_INFO("%s new ap_max_adapter_id is %d\n", 242 __func__, ap_max_adapter_id); 243 } 244 if (ap_qci_info->Nd) { 245 ap_max_domain_id = ap_qci_info->Nd; 246 AP_DBF_INFO("%s new ap_max_domain_id is %d\n", 247 __func__, ap_max_domain_id); 248 } 249 } 250 } 251 252 /* 253 * ap_test_config(): helper function to extract the nrth bit 254 * within the unsigned int array field. 255 */ 256 static inline int ap_test_config(unsigned int *field, unsigned int nr) 257 { 258 return ap_test_bit((field + (nr >> 5)), (nr & 0x1f)); 259 } 260 261 /* 262 * ap_test_config_card_id(): Test, whether an AP card ID is configured. 263 * 264 * Returns 0 if the card is not configured 265 * 1 if the card is configured or 266 * if the configuration information is not available 267 */ 268 static inline int ap_test_config_card_id(unsigned int id) 269 { 270 if (id > ap_max_adapter_id) 271 return 0; 272 if (ap_qci_info) 273 return ap_test_config(ap_qci_info->apm, id); 274 return 1; 275 } 276 277 /* 278 * ap_test_config_usage_domain(): Test, whether an AP usage domain 279 * is configured. 280 * 281 * Returns 0 if the usage domain is not configured 282 * 1 if the usage domain is configured or 283 * if the configuration information is not available 284 */ 285 int ap_test_config_usage_domain(unsigned int domain) 286 { 287 if (domain > ap_max_domain_id) 288 return 0; 289 if (ap_qci_info) 290 return ap_test_config(ap_qci_info->aqm, domain); 291 return 1; 292 } 293 EXPORT_SYMBOL(ap_test_config_usage_domain); 294 295 /* 296 * ap_test_config_ctrl_domain(): Test, whether an AP control domain 297 * is configured. 298 * @domain AP control domain ID 299 * 300 * Returns 1 if the control domain is configured 301 * 0 in all other cases 302 */ 303 int ap_test_config_ctrl_domain(unsigned int domain) 304 { 305 if (!ap_qci_info || domain > ap_max_domain_id) 306 return 0; 307 return ap_test_config(ap_qci_info->adm, domain); 308 } 309 EXPORT_SYMBOL(ap_test_config_ctrl_domain); 310 311 /* 312 * ap_queue_info(): Check and get AP queue info. 313 * Returns true if TAPQ succeeded and the info is filled or 314 * false otherwise. 315 */ 316 static bool ap_queue_info(ap_qid_t qid, int *q_type, unsigned int *q_fac, 317 int *q_depth, int *q_ml, bool *q_decfg) 318 { 319 struct ap_queue_status status; 320 union { 321 unsigned long value; 322 struct { 323 unsigned int fac : 32; /* facility bits */ 324 unsigned int at : 8; /* ap type */ 325 unsigned int _res1 : 8; 326 unsigned int _res2 : 4; 327 unsigned int ml : 4; /* apxl ml */ 328 unsigned int _res3 : 4; 329 unsigned int qd : 4; /* queue depth */ 330 } tapq_gr2; 331 } tapq_info; 332 333 tapq_info.value = 0; 334 335 /* make sure we don't run into a specifiation exception */ 336 if (AP_QID_CARD(qid) > ap_max_adapter_id || 337 AP_QID_QUEUE(qid) > ap_max_domain_id) 338 return false; 339 340 /* call TAPQ on this APQN */ 341 status = ap_test_queue(qid, ap_apft_available(), &tapq_info.value); 342 switch (status.response_code) { 343 case AP_RESPONSE_NORMAL: 344 case AP_RESPONSE_RESET_IN_PROGRESS: 345 case AP_RESPONSE_DECONFIGURED: 346 case AP_RESPONSE_CHECKSTOPPED: 347 case AP_RESPONSE_BUSY: 348 /* 349 * According to the architecture in all these cases the 350 * info should be filled. All bits 0 is not possible as 351 * there is at least one of the mode bits set. 352 */ 353 if (WARN_ON_ONCE(!tapq_info.value)) 354 return false; 355 *q_type = tapq_info.tapq_gr2.at; 356 *q_fac = tapq_info.tapq_gr2.fac; 357 *q_depth = tapq_info.tapq_gr2.qd; 358 *q_ml = tapq_info.tapq_gr2.ml; 359 *q_decfg = status.response_code == AP_RESPONSE_DECONFIGURED; 360 switch (*q_type) { 361 /* For CEX2 and CEX3 the available functions 362 * are not reflected by the facilities bits. 363 * Instead it is coded into the type. So here 364 * modify the function bits based on the type. 365 */ 366 case AP_DEVICE_TYPE_CEX2A: 367 case AP_DEVICE_TYPE_CEX3A: 368 *q_fac |= 0x08000000; 369 break; 370 case AP_DEVICE_TYPE_CEX2C: 371 case AP_DEVICE_TYPE_CEX3C: 372 *q_fac |= 0x10000000; 373 break; 374 default: 375 break; 376 } 377 return true; 378 default: 379 /* 380 * A response code which indicates, there is no info available. 381 */ 382 return false; 383 } 384 } 385 386 void ap_wait(enum ap_sm_wait wait) 387 { 388 ktime_t hr_time; 389 390 switch (wait) { 391 case AP_SM_WAIT_AGAIN: 392 case AP_SM_WAIT_INTERRUPT: 393 if (ap_irq_flag) 394 break; 395 if (ap_poll_kthread) { 396 wake_up(&ap_poll_wait); 397 break; 398 } 399 fallthrough; 400 case AP_SM_WAIT_TIMEOUT: 401 spin_lock_bh(&ap_poll_timer_lock); 402 if (!hrtimer_is_queued(&ap_poll_timer)) { 403 hr_time = poll_timeout; 404 hrtimer_forward_now(&ap_poll_timer, hr_time); 405 hrtimer_restart(&ap_poll_timer); 406 } 407 spin_unlock_bh(&ap_poll_timer_lock); 408 break; 409 case AP_SM_WAIT_NONE: 410 default: 411 break; 412 } 413 } 414 415 /** 416 * ap_request_timeout(): Handling of request timeouts 417 * @t: timer making this callback 418 * 419 * Handles request timeouts. 420 */ 421 void ap_request_timeout(struct timer_list *t) 422 { 423 struct ap_queue *aq = from_timer(aq, t, timeout); 424 425 spin_lock_bh(&aq->lock); 426 ap_wait(ap_sm_event(aq, AP_SM_EVENT_TIMEOUT)); 427 spin_unlock_bh(&aq->lock); 428 } 429 430 /** 431 * ap_poll_timeout(): AP receive polling for finished AP requests. 432 * @unused: Unused pointer. 433 * 434 * Schedules the AP tasklet using a high resolution timer. 435 */ 436 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused) 437 { 438 tasklet_schedule(&ap_tasklet); 439 return HRTIMER_NORESTART; 440 } 441 442 /** 443 * ap_interrupt_handler() - Schedule ap_tasklet on interrupt 444 * @airq: pointer to adapter interrupt descriptor 445 * @floating: ignored 446 */ 447 static void ap_interrupt_handler(struct airq_struct *airq, bool floating) 448 { 449 inc_irq_stat(IRQIO_APB); 450 tasklet_schedule(&ap_tasklet); 451 } 452 453 /** 454 * ap_tasklet_fn(): Tasklet to poll all AP devices. 455 * @dummy: Unused variable 456 * 457 * Poll all AP devices on the bus. 458 */ 459 static void ap_tasklet_fn(unsigned long dummy) 460 { 461 int bkt; 462 struct ap_queue *aq; 463 enum ap_sm_wait wait = AP_SM_WAIT_NONE; 464 465 /* Reset the indicator if interrupts are used. Thus new interrupts can 466 * be received. Doing it in the beginning of the tasklet is therefor 467 * important that no requests on any AP get lost. 468 */ 469 if (ap_irq_flag) 470 xchg(ap_airq.lsi_ptr, 0); 471 472 spin_lock_bh(&ap_queues_lock); 473 hash_for_each(ap_queues, bkt, aq, hnode) { 474 spin_lock_bh(&aq->lock); 475 wait = min(wait, ap_sm_event_loop(aq, AP_SM_EVENT_POLL)); 476 spin_unlock_bh(&aq->lock); 477 } 478 spin_unlock_bh(&ap_queues_lock); 479 480 ap_wait(wait); 481 } 482 483 static int ap_pending_requests(void) 484 { 485 int bkt; 486 struct ap_queue *aq; 487 488 spin_lock_bh(&ap_queues_lock); 489 hash_for_each(ap_queues, bkt, aq, hnode) { 490 if (aq->queue_count == 0) 491 continue; 492 spin_unlock_bh(&ap_queues_lock); 493 return 1; 494 } 495 spin_unlock_bh(&ap_queues_lock); 496 return 0; 497 } 498 499 /** 500 * ap_poll_thread(): Thread that polls for finished requests. 501 * @data: Unused pointer 502 * 503 * AP bus poll thread. The purpose of this thread is to poll for 504 * finished requests in a loop if there is a "free" cpu - that is 505 * a cpu that doesn't have anything better to do. The polling stops 506 * as soon as there is another task or if all messages have been 507 * delivered. 508 */ 509 static int ap_poll_thread(void *data) 510 { 511 DECLARE_WAITQUEUE(wait, current); 512 513 set_user_nice(current, MAX_NICE); 514 set_freezable(); 515 while (!kthread_should_stop()) { 516 add_wait_queue(&ap_poll_wait, &wait); 517 set_current_state(TASK_INTERRUPTIBLE); 518 if (!ap_pending_requests()) { 519 schedule(); 520 try_to_freeze(); 521 } 522 set_current_state(TASK_RUNNING); 523 remove_wait_queue(&ap_poll_wait, &wait); 524 if (need_resched()) { 525 schedule(); 526 try_to_freeze(); 527 continue; 528 } 529 ap_tasklet_fn(0); 530 } 531 532 return 0; 533 } 534 535 static int ap_poll_thread_start(void) 536 { 537 int rc; 538 539 if (ap_irq_flag || ap_poll_kthread) 540 return 0; 541 mutex_lock(&ap_poll_thread_mutex); 542 ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll"); 543 rc = PTR_ERR_OR_ZERO(ap_poll_kthread); 544 if (rc) 545 ap_poll_kthread = NULL; 546 mutex_unlock(&ap_poll_thread_mutex); 547 return rc; 548 } 549 550 static void ap_poll_thread_stop(void) 551 { 552 if (!ap_poll_kthread) 553 return; 554 mutex_lock(&ap_poll_thread_mutex); 555 kthread_stop(ap_poll_kthread); 556 ap_poll_kthread = NULL; 557 mutex_unlock(&ap_poll_thread_mutex); 558 } 559 560 #define is_card_dev(x) ((x)->parent == ap_root_device) 561 #define is_queue_dev(x) ((x)->parent != ap_root_device) 562 563 /** 564 * ap_bus_match() 565 * @dev: Pointer to device 566 * @drv: Pointer to device_driver 567 * 568 * AP bus driver registration/unregistration. 569 */ 570 static int ap_bus_match(struct device *dev, struct device_driver *drv) 571 { 572 struct ap_driver *ap_drv = to_ap_drv(drv); 573 struct ap_device_id *id; 574 575 /* 576 * Compare device type of the device with the list of 577 * supported types of the device_driver. 578 */ 579 for (id = ap_drv->ids; id->match_flags; id++) { 580 if (is_card_dev(dev) && 581 id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE && 582 id->dev_type == to_ap_dev(dev)->device_type) 583 return 1; 584 if (is_queue_dev(dev) && 585 id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE && 586 id->dev_type == to_ap_dev(dev)->device_type) 587 return 1; 588 } 589 return 0; 590 } 591 592 /** 593 * ap_uevent(): Uevent function for AP devices. 594 * @dev: Pointer to device 595 * @env: Pointer to kobj_uevent_env 596 * 597 * It sets up a single environment variable DEV_TYPE which contains the 598 * hardware device type. 599 */ 600 static int ap_uevent(struct device *dev, struct kobj_uevent_env *env) 601 { 602 int rc = 0; 603 struct ap_device *ap_dev = to_ap_dev(dev); 604 605 /* Uevents from ap bus core don't need extensions to the env */ 606 if (dev == ap_root_device) 607 return 0; 608 609 if (is_card_dev(dev)) { 610 struct ap_card *ac = to_ap_card(&ap_dev->device); 611 612 /* Set up DEV_TYPE environment variable. */ 613 rc = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type); 614 if (rc) 615 return rc; 616 /* Add MODALIAS= */ 617 rc = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type); 618 if (rc) 619 return rc; 620 621 /* Add MODE=<accel|cca|ep11> */ 622 if (ap_test_bit(&ac->functions, AP_FUNC_ACCEL)) 623 rc = add_uevent_var(env, "MODE=accel"); 624 else if (ap_test_bit(&ac->functions, AP_FUNC_COPRO)) 625 rc = add_uevent_var(env, "MODE=cca"); 626 else if (ap_test_bit(&ac->functions, AP_FUNC_EP11)) 627 rc = add_uevent_var(env, "MODE=ep11"); 628 if (rc) 629 return rc; 630 } else { 631 struct ap_queue *aq = to_ap_queue(&ap_dev->device); 632 633 /* Add MODE=<accel|cca|ep11> */ 634 if (ap_test_bit(&aq->card->functions, AP_FUNC_ACCEL)) 635 rc = add_uevent_var(env, "MODE=accel"); 636 else if (ap_test_bit(&aq->card->functions, AP_FUNC_COPRO)) 637 rc = add_uevent_var(env, "MODE=cca"); 638 else if (ap_test_bit(&aq->card->functions, AP_FUNC_EP11)) 639 rc = add_uevent_var(env, "MODE=ep11"); 640 if (rc) 641 return rc; 642 } 643 644 return 0; 645 } 646 647 static void ap_send_init_scan_done_uevent(void) 648 { 649 char *envp[] = { "INITSCAN=done", NULL }; 650 651 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp); 652 } 653 654 static void ap_send_bindings_complete_uevent(void) 655 { 656 char buf[32]; 657 char *envp[] = { "BINDINGS=complete", buf, NULL }; 658 659 snprintf(buf, sizeof(buf), "COMPLETECOUNT=%llu", 660 atomic64_inc_return(&ap_bindings_complete_count)); 661 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp); 662 } 663 664 void ap_send_config_uevent(struct ap_device *ap_dev, bool cfg) 665 { 666 char buf[16]; 667 char *envp[] = { buf, NULL }; 668 669 snprintf(buf, sizeof(buf), "CONFIG=%d", cfg ? 1 : 0); 670 671 kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp); 672 } 673 EXPORT_SYMBOL(ap_send_config_uevent); 674 675 void ap_send_online_uevent(struct ap_device *ap_dev, int online) 676 { 677 char buf[16]; 678 char *envp[] = { buf, NULL }; 679 680 snprintf(buf, sizeof(buf), "ONLINE=%d", online ? 1 : 0); 681 682 kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp); 683 } 684 EXPORT_SYMBOL(ap_send_online_uevent); 685 686 /* 687 * calc # of bound APQNs 688 */ 689 690 struct __ap_calc_ctrs { 691 unsigned int apqns; 692 unsigned int bound; 693 }; 694 695 static int __ap_calc_helper(struct device *dev, void *arg) 696 { 697 struct __ap_calc_ctrs *pctrs = (struct __ap_calc_ctrs *) arg; 698 699 if (is_queue_dev(dev)) { 700 pctrs->apqns++; 701 if (dev->driver) 702 pctrs->bound++; 703 } 704 705 return 0; 706 } 707 708 static void ap_calc_bound_apqns(unsigned int *apqns, unsigned int *bound) 709 { 710 struct __ap_calc_ctrs ctrs; 711 712 memset(&ctrs, 0, sizeof(ctrs)); 713 bus_for_each_dev(&ap_bus_type, NULL, (void *) &ctrs, __ap_calc_helper); 714 715 *apqns = ctrs.apqns; 716 *bound = ctrs.bound; 717 } 718 719 /* 720 * After initial ap bus scan do check if all existing APQNs are 721 * bound to device drivers. 722 */ 723 static void ap_check_bindings_complete(void) 724 { 725 unsigned int apqns, bound; 726 727 if (atomic64_read(&ap_scan_bus_count) >= 1) { 728 ap_calc_bound_apqns(&apqns, &bound); 729 if (bound == apqns) { 730 if (!completion_done(&ap_init_apqn_bindings_complete)) { 731 complete_all(&ap_init_apqn_bindings_complete); 732 AP_DBF_INFO("%s complete\n", __func__); 733 } 734 ap_send_bindings_complete_uevent(); 735 } 736 } 737 } 738 739 /* 740 * Interface to wait for the AP bus to have done one initial ap bus 741 * scan and all detected APQNs have been bound to device drivers. 742 * If these both conditions are not fulfilled, this function blocks 743 * on a condition with wait_for_completion_interruptible_timeout(). 744 * If these both conditions are fulfilled (before the timeout hits) 745 * the return value is 0. If the timeout (in jiffies) hits instead 746 * -ETIME is returned. On failures negative return values are 747 * returned to the caller. 748 */ 749 int ap_wait_init_apqn_bindings_complete(unsigned long timeout) 750 { 751 long l; 752 753 if (completion_done(&ap_init_apqn_bindings_complete)) 754 return 0; 755 756 if (timeout) 757 l = wait_for_completion_interruptible_timeout( 758 &ap_init_apqn_bindings_complete, timeout); 759 else 760 l = wait_for_completion_interruptible( 761 &ap_init_apqn_bindings_complete); 762 if (l < 0) 763 return l == -ERESTARTSYS ? -EINTR : l; 764 else if (l == 0 && timeout) 765 return -ETIME; 766 767 return 0; 768 } 769 EXPORT_SYMBOL(ap_wait_init_apqn_bindings_complete); 770 771 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data) 772 { 773 if (is_queue_dev(dev) && 774 AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long) data) 775 device_unregister(dev); 776 return 0; 777 } 778 779 static int __ap_revise_reserved(struct device *dev, void *dummy) 780 { 781 int rc, card, queue, devres, drvres; 782 783 if (is_queue_dev(dev)) { 784 card = AP_QID_CARD(to_ap_queue(dev)->qid); 785 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid); 786 mutex_lock(&ap_perms_mutex); 787 devres = test_bit_inv(card, ap_perms.apm) 788 && test_bit_inv(queue, ap_perms.aqm); 789 mutex_unlock(&ap_perms_mutex); 790 drvres = to_ap_drv(dev->driver)->flags 791 & AP_DRIVER_FLAG_DEFAULT; 792 if (!!devres != !!drvres) { 793 AP_DBF_DBG("%s reprobing queue=%02x.%04x\n", 794 __func__, card, queue); 795 rc = device_reprobe(dev); 796 if (rc) 797 AP_DBF_WARN("%s reprobing queue=%02x.%04x failed\n", 798 __func__, card, queue); 799 } 800 } 801 802 return 0; 803 } 804 805 static void ap_bus_revise_bindings(void) 806 { 807 bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved); 808 } 809 810 int ap_owned_by_def_drv(int card, int queue) 811 { 812 int rc = 0; 813 814 if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS) 815 return -EINVAL; 816 817 mutex_lock(&ap_perms_mutex); 818 819 if (test_bit_inv(card, ap_perms.apm) 820 && test_bit_inv(queue, ap_perms.aqm)) 821 rc = 1; 822 823 mutex_unlock(&ap_perms_mutex); 824 825 return rc; 826 } 827 EXPORT_SYMBOL(ap_owned_by_def_drv); 828 829 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm, 830 unsigned long *aqm) 831 { 832 int card, queue, rc = 0; 833 834 mutex_lock(&ap_perms_mutex); 835 836 for (card = 0; !rc && card < AP_DEVICES; card++) 837 if (test_bit_inv(card, apm) && 838 test_bit_inv(card, ap_perms.apm)) 839 for (queue = 0; !rc && queue < AP_DOMAINS; queue++) 840 if (test_bit_inv(queue, aqm) && 841 test_bit_inv(queue, ap_perms.aqm)) 842 rc = 1; 843 844 mutex_unlock(&ap_perms_mutex); 845 846 return rc; 847 } 848 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv); 849 850 static int ap_device_probe(struct device *dev) 851 { 852 struct ap_device *ap_dev = to_ap_dev(dev); 853 struct ap_driver *ap_drv = to_ap_drv(dev->driver); 854 int card, queue, devres, drvres, rc = -ENODEV; 855 856 if (!get_device(dev)) 857 return rc; 858 859 if (is_queue_dev(dev)) { 860 /* 861 * If the apqn is marked as reserved/used by ap bus and 862 * default drivers, only probe with drivers with the default 863 * flag set. If it is not marked, only probe with drivers 864 * with the default flag not set. 865 */ 866 card = AP_QID_CARD(to_ap_queue(dev)->qid); 867 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid); 868 mutex_lock(&ap_perms_mutex); 869 devres = test_bit_inv(card, ap_perms.apm) 870 && test_bit_inv(queue, ap_perms.aqm); 871 mutex_unlock(&ap_perms_mutex); 872 drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT; 873 if (!!devres != !!drvres) 874 goto out; 875 } 876 877 /* Add queue/card to list of active queues/cards */ 878 spin_lock_bh(&ap_queues_lock); 879 if (is_queue_dev(dev)) 880 hash_add(ap_queues, &to_ap_queue(dev)->hnode, 881 to_ap_queue(dev)->qid); 882 spin_unlock_bh(&ap_queues_lock); 883 884 rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV; 885 886 if (rc) { 887 spin_lock_bh(&ap_queues_lock); 888 if (is_queue_dev(dev)) 889 hash_del(&to_ap_queue(dev)->hnode); 890 spin_unlock_bh(&ap_queues_lock); 891 } else 892 ap_check_bindings_complete(); 893 894 out: 895 if (rc) 896 put_device(dev); 897 return rc; 898 } 899 900 static void ap_device_remove(struct device *dev) 901 { 902 struct ap_device *ap_dev = to_ap_dev(dev); 903 struct ap_driver *ap_drv = to_ap_drv(dev->driver); 904 905 /* prepare ap queue device removal */ 906 if (is_queue_dev(dev)) 907 ap_queue_prepare_remove(to_ap_queue(dev)); 908 909 /* driver's chance to clean up gracefully */ 910 if (ap_drv->remove) 911 ap_drv->remove(ap_dev); 912 913 /* now do the ap queue device remove */ 914 if (is_queue_dev(dev)) 915 ap_queue_remove(to_ap_queue(dev)); 916 917 /* Remove queue/card from list of active queues/cards */ 918 spin_lock_bh(&ap_queues_lock); 919 if (is_queue_dev(dev)) 920 hash_del(&to_ap_queue(dev)->hnode); 921 spin_unlock_bh(&ap_queues_lock); 922 923 put_device(dev); 924 } 925 926 struct ap_queue *ap_get_qdev(ap_qid_t qid) 927 { 928 int bkt; 929 struct ap_queue *aq; 930 931 spin_lock_bh(&ap_queues_lock); 932 hash_for_each(ap_queues, bkt, aq, hnode) { 933 if (aq->qid == qid) { 934 get_device(&aq->ap_dev.device); 935 spin_unlock_bh(&ap_queues_lock); 936 return aq; 937 } 938 } 939 spin_unlock_bh(&ap_queues_lock); 940 941 return NULL; 942 } 943 EXPORT_SYMBOL(ap_get_qdev); 944 945 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner, 946 char *name) 947 { 948 struct device_driver *drv = &ap_drv->driver; 949 950 drv->bus = &ap_bus_type; 951 drv->owner = owner; 952 drv->name = name; 953 return driver_register(drv); 954 } 955 EXPORT_SYMBOL(ap_driver_register); 956 957 void ap_driver_unregister(struct ap_driver *ap_drv) 958 { 959 driver_unregister(&ap_drv->driver); 960 } 961 EXPORT_SYMBOL(ap_driver_unregister); 962 963 void ap_bus_force_rescan(void) 964 { 965 /* processing a asynchronous bus rescan */ 966 del_timer(&ap_config_timer); 967 queue_work(system_long_wq, &ap_scan_work); 968 flush_work(&ap_scan_work); 969 } 970 EXPORT_SYMBOL(ap_bus_force_rescan); 971 972 /* 973 * A config change has happened, force an ap bus rescan. 974 */ 975 void ap_bus_cfg_chg(void) 976 { 977 AP_DBF_DBG("%s config change, forcing bus rescan\n", __func__); 978 979 ap_bus_force_rescan(); 980 } 981 982 /* 983 * hex2bitmap() - parse hex mask string and set bitmap. 984 * Valid strings are "0x012345678" with at least one valid hex number. 985 * Rest of the bitmap to the right is padded with 0. No spaces allowed 986 * within the string, the leading 0x may be omitted. 987 * Returns the bitmask with exactly the bits set as given by the hex 988 * string (both in big endian order). 989 */ 990 static int hex2bitmap(const char *str, unsigned long *bitmap, int bits) 991 { 992 int i, n, b; 993 994 /* bits needs to be a multiple of 8 */ 995 if (bits & 0x07) 996 return -EINVAL; 997 998 if (str[0] == '0' && str[1] == 'x') 999 str++; 1000 if (*str == 'x') 1001 str++; 1002 1003 for (i = 0; isxdigit(*str) && i < bits; str++) { 1004 b = hex_to_bin(*str); 1005 for (n = 0; n < 4; n++) 1006 if (b & (0x08 >> n)) 1007 set_bit_inv(i + n, bitmap); 1008 i += 4; 1009 } 1010 1011 if (*str == '\n') 1012 str++; 1013 if (*str) 1014 return -EINVAL; 1015 return 0; 1016 } 1017 1018 /* 1019 * modify_bitmap() - parse bitmask argument and modify an existing 1020 * bit mask accordingly. A concatenation (done with ',') of these 1021 * terms is recognized: 1022 * +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>] 1023 * <bitnr> may be any valid number (hex, decimal or octal) in the range 1024 * 0...bits-1; the leading + or - is required. Here are some examples: 1025 * +0-15,+32,-128,-0xFF 1026 * -0-255,+1-16,+0x128 1027 * +1,+2,+3,+4,-5,-7-10 1028 * Returns the new bitmap after all changes have been applied. Every 1029 * positive value in the string will set a bit and every negative value 1030 * in the string will clear a bit. As a bit may be touched more than once, 1031 * the last 'operation' wins: 1032 * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be 1033 * cleared again. All other bits are unmodified. 1034 */ 1035 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits) 1036 { 1037 int a, i, z; 1038 char *np, sign; 1039 1040 /* bits needs to be a multiple of 8 */ 1041 if (bits & 0x07) 1042 return -EINVAL; 1043 1044 while (*str) { 1045 sign = *str++; 1046 if (sign != '+' && sign != '-') 1047 return -EINVAL; 1048 a = z = simple_strtoul(str, &np, 0); 1049 if (str == np || a >= bits) 1050 return -EINVAL; 1051 str = np; 1052 if (*str == '-') { 1053 z = simple_strtoul(++str, &np, 0); 1054 if (str == np || a > z || z >= bits) 1055 return -EINVAL; 1056 str = np; 1057 } 1058 for (i = a; i <= z; i++) 1059 if (sign == '+') 1060 set_bit_inv(i, bitmap); 1061 else 1062 clear_bit_inv(i, bitmap); 1063 while (*str == ',' || *str == '\n') 1064 str++; 1065 } 1066 1067 return 0; 1068 } 1069 1070 int ap_parse_mask_str(const char *str, 1071 unsigned long *bitmap, int bits, 1072 struct mutex *lock) 1073 { 1074 unsigned long *newmap, size; 1075 int rc; 1076 1077 /* bits needs to be a multiple of 8 */ 1078 if (bits & 0x07) 1079 return -EINVAL; 1080 1081 size = BITS_TO_LONGS(bits)*sizeof(unsigned long); 1082 newmap = kmalloc(size, GFP_KERNEL); 1083 if (!newmap) 1084 return -ENOMEM; 1085 if (mutex_lock_interruptible(lock)) { 1086 kfree(newmap); 1087 return -ERESTARTSYS; 1088 } 1089 1090 if (*str == '+' || *str == '-') { 1091 memcpy(newmap, bitmap, size); 1092 rc = modify_bitmap(str, newmap, bits); 1093 } else { 1094 memset(newmap, 0, size); 1095 rc = hex2bitmap(str, newmap, bits); 1096 } 1097 if (rc == 0) 1098 memcpy(bitmap, newmap, size); 1099 mutex_unlock(lock); 1100 kfree(newmap); 1101 return rc; 1102 } 1103 EXPORT_SYMBOL(ap_parse_mask_str); 1104 1105 /* 1106 * AP bus attributes. 1107 */ 1108 1109 static ssize_t ap_domain_show(struct bus_type *bus, char *buf) 1110 { 1111 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index); 1112 } 1113 1114 static ssize_t ap_domain_store(struct bus_type *bus, 1115 const char *buf, size_t count) 1116 { 1117 int domain; 1118 1119 if (sscanf(buf, "%i\n", &domain) != 1 || 1120 domain < 0 || domain > ap_max_domain_id || 1121 !test_bit_inv(domain, ap_perms.aqm)) 1122 return -EINVAL; 1123 1124 spin_lock_bh(&ap_domain_lock); 1125 ap_domain_index = domain; 1126 spin_unlock_bh(&ap_domain_lock); 1127 1128 AP_DBF_INFO("%s stored new default domain=%d\n", 1129 __func__, domain); 1130 1131 return count; 1132 } 1133 1134 static BUS_ATTR_RW(ap_domain); 1135 1136 static ssize_t ap_control_domain_mask_show(struct bus_type *bus, char *buf) 1137 { 1138 if (!ap_qci_info) /* QCI not supported */ 1139 return scnprintf(buf, PAGE_SIZE, "not supported\n"); 1140 1141 return scnprintf(buf, PAGE_SIZE, 1142 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1143 ap_qci_info->adm[0], ap_qci_info->adm[1], 1144 ap_qci_info->adm[2], ap_qci_info->adm[3], 1145 ap_qci_info->adm[4], ap_qci_info->adm[5], 1146 ap_qci_info->adm[6], ap_qci_info->adm[7]); 1147 } 1148 1149 static BUS_ATTR_RO(ap_control_domain_mask); 1150 1151 static ssize_t ap_usage_domain_mask_show(struct bus_type *bus, char *buf) 1152 { 1153 if (!ap_qci_info) /* QCI not supported */ 1154 return scnprintf(buf, PAGE_SIZE, "not supported\n"); 1155 1156 return scnprintf(buf, PAGE_SIZE, 1157 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1158 ap_qci_info->aqm[0], ap_qci_info->aqm[1], 1159 ap_qci_info->aqm[2], ap_qci_info->aqm[3], 1160 ap_qci_info->aqm[4], ap_qci_info->aqm[5], 1161 ap_qci_info->aqm[6], ap_qci_info->aqm[7]); 1162 } 1163 1164 static BUS_ATTR_RO(ap_usage_domain_mask); 1165 1166 static ssize_t ap_adapter_mask_show(struct bus_type *bus, char *buf) 1167 { 1168 if (!ap_qci_info) /* QCI not supported */ 1169 return scnprintf(buf, PAGE_SIZE, "not supported\n"); 1170 1171 return scnprintf(buf, PAGE_SIZE, 1172 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1173 ap_qci_info->apm[0], ap_qci_info->apm[1], 1174 ap_qci_info->apm[2], ap_qci_info->apm[3], 1175 ap_qci_info->apm[4], ap_qci_info->apm[5], 1176 ap_qci_info->apm[6], ap_qci_info->apm[7]); 1177 } 1178 1179 static BUS_ATTR_RO(ap_adapter_mask); 1180 1181 static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf) 1182 { 1183 return scnprintf(buf, PAGE_SIZE, "%d\n", 1184 ap_irq_flag ? 1 : 0); 1185 } 1186 1187 static BUS_ATTR_RO(ap_interrupts); 1188 1189 static ssize_t config_time_show(struct bus_type *bus, char *buf) 1190 { 1191 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_config_time); 1192 } 1193 1194 static ssize_t config_time_store(struct bus_type *bus, 1195 const char *buf, size_t count) 1196 { 1197 int time; 1198 1199 if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120) 1200 return -EINVAL; 1201 ap_config_time = time; 1202 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ); 1203 return count; 1204 } 1205 1206 static BUS_ATTR_RW(config_time); 1207 1208 static ssize_t poll_thread_show(struct bus_type *bus, char *buf) 1209 { 1210 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0); 1211 } 1212 1213 static ssize_t poll_thread_store(struct bus_type *bus, 1214 const char *buf, size_t count) 1215 { 1216 int flag, rc; 1217 1218 if (sscanf(buf, "%d\n", &flag) != 1) 1219 return -EINVAL; 1220 if (flag) { 1221 rc = ap_poll_thread_start(); 1222 if (rc) 1223 count = rc; 1224 } else 1225 ap_poll_thread_stop(); 1226 return count; 1227 } 1228 1229 static BUS_ATTR_RW(poll_thread); 1230 1231 static ssize_t poll_timeout_show(struct bus_type *bus, char *buf) 1232 { 1233 return scnprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout); 1234 } 1235 1236 static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf, 1237 size_t count) 1238 { 1239 unsigned long long time; 1240 ktime_t hr_time; 1241 1242 /* 120 seconds = maximum poll interval */ 1243 if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 || 1244 time > 120000000000ULL) 1245 return -EINVAL; 1246 poll_timeout = time; 1247 hr_time = poll_timeout; 1248 1249 spin_lock_bh(&ap_poll_timer_lock); 1250 hrtimer_cancel(&ap_poll_timer); 1251 hrtimer_set_expires(&ap_poll_timer, hr_time); 1252 hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS); 1253 spin_unlock_bh(&ap_poll_timer_lock); 1254 1255 return count; 1256 } 1257 1258 static BUS_ATTR_RW(poll_timeout); 1259 1260 static ssize_t ap_max_domain_id_show(struct bus_type *bus, char *buf) 1261 { 1262 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_max_domain_id); 1263 } 1264 1265 static BUS_ATTR_RO(ap_max_domain_id); 1266 1267 static ssize_t ap_max_adapter_id_show(struct bus_type *bus, char *buf) 1268 { 1269 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_max_adapter_id); 1270 } 1271 1272 static BUS_ATTR_RO(ap_max_adapter_id); 1273 1274 static ssize_t apmask_show(struct bus_type *bus, char *buf) 1275 { 1276 int rc; 1277 1278 if (mutex_lock_interruptible(&ap_perms_mutex)) 1279 return -ERESTARTSYS; 1280 rc = scnprintf(buf, PAGE_SIZE, 1281 "0x%016lx%016lx%016lx%016lx\n", 1282 ap_perms.apm[0], ap_perms.apm[1], 1283 ap_perms.apm[2], ap_perms.apm[3]); 1284 mutex_unlock(&ap_perms_mutex); 1285 1286 return rc; 1287 } 1288 1289 static ssize_t apmask_store(struct bus_type *bus, const char *buf, 1290 size_t count) 1291 { 1292 int rc; 1293 1294 rc = ap_parse_mask_str(buf, ap_perms.apm, AP_DEVICES, &ap_perms_mutex); 1295 if (rc) 1296 return rc; 1297 1298 ap_bus_revise_bindings(); 1299 1300 return count; 1301 } 1302 1303 static BUS_ATTR_RW(apmask); 1304 1305 static ssize_t aqmask_show(struct bus_type *bus, char *buf) 1306 { 1307 int rc; 1308 1309 if (mutex_lock_interruptible(&ap_perms_mutex)) 1310 return -ERESTARTSYS; 1311 rc = scnprintf(buf, PAGE_SIZE, 1312 "0x%016lx%016lx%016lx%016lx\n", 1313 ap_perms.aqm[0], ap_perms.aqm[1], 1314 ap_perms.aqm[2], ap_perms.aqm[3]); 1315 mutex_unlock(&ap_perms_mutex); 1316 1317 return rc; 1318 } 1319 1320 static ssize_t aqmask_store(struct bus_type *bus, const char *buf, 1321 size_t count) 1322 { 1323 int rc; 1324 1325 rc = ap_parse_mask_str(buf, ap_perms.aqm, AP_DOMAINS, &ap_perms_mutex); 1326 if (rc) 1327 return rc; 1328 1329 ap_bus_revise_bindings(); 1330 1331 return count; 1332 } 1333 1334 static BUS_ATTR_RW(aqmask); 1335 1336 static ssize_t scans_show(struct bus_type *bus, char *buf) 1337 { 1338 return scnprintf(buf, PAGE_SIZE, "%llu\n", 1339 atomic64_read(&ap_scan_bus_count)); 1340 } 1341 1342 static BUS_ATTR_RO(scans); 1343 1344 static ssize_t bindings_show(struct bus_type *bus, char *buf) 1345 { 1346 int rc; 1347 unsigned int apqns, n; 1348 1349 ap_calc_bound_apqns(&apqns, &n); 1350 if (atomic64_read(&ap_scan_bus_count) >= 1 && n == apqns) 1351 rc = scnprintf(buf, PAGE_SIZE, "%u/%u (complete)\n", n, apqns); 1352 else 1353 rc = scnprintf(buf, PAGE_SIZE, "%u/%u\n", n, apqns); 1354 1355 return rc; 1356 } 1357 1358 static BUS_ATTR_RO(bindings); 1359 1360 static struct attribute *ap_bus_attrs[] = { 1361 &bus_attr_ap_domain.attr, 1362 &bus_attr_ap_control_domain_mask.attr, 1363 &bus_attr_ap_usage_domain_mask.attr, 1364 &bus_attr_ap_adapter_mask.attr, 1365 &bus_attr_config_time.attr, 1366 &bus_attr_poll_thread.attr, 1367 &bus_attr_ap_interrupts.attr, 1368 &bus_attr_poll_timeout.attr, 1369 &bus_attr_ap_max_domain_id.attr, 1370 &bus_attr_ap_max_adapter_id.attr, 1371 &bus_attr_apmask.attr, 1372 &bus_attr_aqmask.attr, 1373 &bus_attr_scans.attr, 1374 &bus_attr_bindings.attr, 1375 NULL, 1376 }; 1377 ATTRIBUTE_GROUPS(ap_bus); 1378 1379 static struct bus_type ap_bus_type = { 1380 .name = "ap", 1381 .bus_groups = ap_bus_groups, 1382 .match = &ap_bus_match, 1383 .uevent = &ap_uevent, 1384 .probe = ap_device_probe, 1385 .remove = ap_device_remove, 1386 }; 1387 1388 /** 1389 * ap_select_domain(): Select an AP domain if possible and we haven't 1390 * already done so before. 1391 */ 1392 static void ap_select_domain(void) 1393 { 1394 struct ap_queue_status status; 1395 int card, dom; 1396 1397 /* 1398 * Choose the default domain. Either the one specified with 1399 * the "domain=" parameter or the first domain with at least 1400 * one valid APQN. 1401 */ 1402 spin_lock_bh(&ap_domain_lock); 1403 if (ap_domain_index >= 0) { 1404 /* Domain has already been selected. */ 1405 goto out; 1406 } 1407 for (dom = 0; dom <= ap_max_domain_id; dom++) { 1408 if (!ap_test_config_usage_domain(dom) || 1409 !test_bit_inv(dom, ap_perms.aqm)) 1410 continue; 1411 for (card = 0; card <= ap_max_adapter_id; card++) { 1412 if (!ap_test_config_card_id(card) || 1413 !test_bit_inv(card, ap_perms.apm)) 1414 continue; 1415 status = ap_test_queue(AP_MKQID(card, dom), 1416 ap_apft_available(), 1417 NULL); 1418 if (status.response_code == AP_RESPONSE_NORMAL) 1419 break; 1420 } 1421 if (card <= ap_max_adapter_id) 1422 break; 1423 } 1424 if (dom <= ap_max_domain_id) { 1425 ap_domain_index = dom; 1426 AP_DBF_INFO("%s new default domain is %d\n", 1427 __func__, ap_domain_index); 1428 } 1429 out: 1430 spin_unlock_bh(&ap_domain_lock); 1431 } 1432 1433 /* 1434 * This function checks the type and returns either 0 for not 1435 * supported or the highest compatible type value (which may 1436 * include the input type value). 1437 */ 1438 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func) 1439 { 1440 int comp_type = 0; 1441 1442 /* < CEX2A is not supported */ 1443 if (rawtype < AP_DEVICE_TYPE_CEX2A) { 1444 AP_DBF_WARN("%s queue=%02x.%04x unsupported type %d\n", 1445 __func__, AP_QID_CARD(qid), 1446 AP_QID_QUEUE(qid), rawtype); 1447 return 0; 1448 } 1449 /* up to CEX7 known and fully supported */ 1450 if (rawtype <= AP_DEVICE_TYPE_CEX7) 1451 return rawtype; 1452 /* 1453 * unknown new type > CEX7, check for compatibility 1454 * to the highest known and supported type which is 1455 * currently CEX7 with the help of the QACT function. 1456 */ 1457 if (ap_qact_available()) { 1458 struct ap_queue_status status; 1459 union ap_qact_ap_info apinfo = {0}; 1460 1461 apinfo.mode = (func >> 26) & 0x07; 1462 apinfo.cat = AP_DEVICE_TYPE_CEX7; 1463 status = ap_qact(qid, 0, &apinfo); 1464 if (status.response_code == AP_RESPONSE_NORMAL 1465 && apinfo.cat >= AP_DEVICE_TYPE_CEX2A 1466 && apinfo.cat <= AP_DEVICE_TYPE_CEX7) 1467 comp_type = apinfo.cat; 1468 } 1469 if (!comp_type) 1470 AP_DBF_WARN("%s queue=%02x.%04x unable to map type %d\n", 1471 __func__, AP_QID_CARD(qid), 1472 AP_QID_QUEUE(qid), rawtype); 1473 else if (comp_type != rawtype) 1474 AP_DBF_INFO("%s queue=%02x.%04x map type %d to %d\n", 1475 __func__, AP_QID_CARD(qid), AP_QID_QUEUE(qid), 1476 rawtype, comp_type); 1477 return comp_type; 1478 } 1479 1480 /* 1481 * Helper function to be used with bus_find_dev 1482 * matches for the card device with the given id 1483 */ 1484 static int __match_card_device_with_id(struct device *dev, const void *data) 1485 { 1486 return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *) data; 1487 } 1488 1489 /* 1490 * Helper function to be used with bus_find_dev 1491 * matches for the queue device with a given qid 1492 */ 1493 static int __match_queue_device_with_qid(struct device *dev, const void *data) 1494 { 1495 return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long) data; 1496 } 1497 1498 /* 1499 * Helper function to be used with bus_find_dev 1500 * matches any queue device with given queue id 1501 */ 1502 static int __match_queue_device_with_queue_id(struct device *dev, const void *data) 1503 { 1504 return is_queue_dev(dev) 1505 && AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long) data; 1506 } 1507 1508 /* 1509 * Helper function for ap_scan_bus(). 1510 * Remove card device and associated queue devices. 1511 */ 1512 static inline void ap_scan_rm_card_dev_and_queue_devs(struct ap_card *ac) 1513 { 1514 bus_for_each_dev(&ap_bus_type, NULL, 1515 (void *)(long) ac->id, 1516 __ap_queue_devices_with_id_unregister); 1517 device_unregister(&ac->ap_dev.device); 1518 } 1519 1520 /* 1521 * Helper function for ap_scan_bus(). 1522 * Does the scan bus job for all the domains within 1523 * a valid adapter given by an ap_card ptr. 1524 */ 1525 static inline void ap_scan_domains(struct ap_card *ac) 1526 { 1527 bool decfg; 1528 ap_qid_t qid; 1529 unsigned int func; 1530 struct device *dev; 1531 struct ap_queue *aq; 1532 int rc, dom, depth, type, ml; 1533 1534 /* 1535 * Go through the configuration for the domains and compare them 1536 * to the existing queue devices. Also take care of the config 1537 * and error state for the queue devices. 1538 */ 1539 1540 for (dom = 0; dom <= ap_max_domain_id; dom++) { 1541 qid = AP_MKQID(ac->id, dom); 1542 dev = bus_find_device(&ap_bus_type, NULL, 1543 (void *)(long) qid, 1544 __match_queue_device_with_qid); 1545 aq = dev ? to_ap_queue(dev) : NULL; 1546 if (!ap_test_config_usage_domain(dom)) { 1547 if (dev) { 1548 AP_DBF_INFO("%s(%d,%d) not in config anymore, rm queue dev\n", 1549 __func__, ac->id, dom); 1550 device_unregister(dev); 1551 put_device(dev); 1552 } 1553 continue; 1554 } 1555 /* domain is valid, get info from this APQN */ 1556 if (!ap_queue_info(qid, &type, &func, &depth, &ml, &decfg)) { 1557 if (aq) { 1558 AP_DBF_INFO("%s(%d,%d) queue_info() failed, rm queue dev\n", 1559 __func__, ac->id, dom); 1560 device_unregister(dev); 1561 put_device(dev); 1562 } 1563 continue; 1564 } 1565 /* if no queue device exists, create a new one */ 1566 if (!aq) { 1567 aq = ap_queue_create(qid, ac->ap_dev.device_type); 1568 if (!aq) { 1569 AP_DBF_WARN("%s(%d,%d) ap_queue_create() failed\n", 1570 __func__, ac->id, dom); 1571 continue; 1572 } 1573 aq->card = ac; 1574 aq->config = !decfg; 1575 dev = &aq->ap_dev.device; 1576 dev->bus = &ap_bus_type; 1577 dev->parent = &ac->ap_dev.device; 1578 dev_set_name(dev, "%02x.%04x", ac->id, dom); 1579 /* register queue device */ 1580 rc = device_register(dev); 1581 if (rc) { 1582 AP_DBF_WARN("%s(%d,%d) device_register() failed\n", 1583 __func__, ac->id, dom); 1584 goto put_dev_and_continue; 1585 } 1586 /* get it and thus adjust reference counter */ 1587 get_device(dev); 1588 if (decfg) 1589 AP_DBF_INFO("%s(%d,%d) new (decfg) queue dev created\n", 1590 __func__, ac->id, dom); 1591 else 1592 AP_DBF_INFO("%s(%d,%d) new queue dev created\n", 1593 __func__, ac->id, dom); 1594 goto put_dev_and_continue; 1595 } 1596 /* Check config state on the already existing queue device */ 1597 spin_lock_bh(&aq->lock); 1598 if (decfg && aq->config) { 1599 /* config off this queue device */ 1600 aq->config = false; 1601 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) { 1602 aq->dev_state = AP_DEV_STATE_ERROR; 1603 aq->last_err_rc = AP_RESPONSE_DECONFIGURED; 1604 } 1605 spin_unlock_bh(&aq->lock); 1606 AP_DBF_INFO("%s(%d,%d) queue dev config off\n", 1607 __func__, ac->id, dom); 1608 ap_send_config_uevent(&aq->ap_dev, aq->config); 1609 /* 'receive' pending messages with -EAGAIN */ 1610 ap_flush_queue(aq); 1611 goto put_dev_and_continue; 1612 } 1613 if (!decfg && !aq->config) { 1614 /* config on this queue device */ 1615 aq->config = true; 1616 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) { 1617 aq->dev_state = AP_DEV_STATE_OPERATING; 1618 aq->sm_state = AP_SM_STATE_RESET_START; 1619 } 1620 spin_unlock_bh(&aq->lock); 1621 AP_DBF_INFO("%s(%d,%d) queue dev config on\n", 1622 __func__, ac->id, dom); 1623 ap_send_config_uevent(&aq->ap_dev, aq->config); 1624 goto put_dev_and_continue; 1625 } 1626 /* handle other error states */ 1627 if (!decfg && aq->dev_state == AP_DEV_STATE_ERROR) { 1628 spin_unlock_bh(&aq->lock); 1629 /* 'receive' pending messages with -EAGAIN */ 1630 ap_flush_queue(aq); 1631 /* re-init (with reset) the queue device */ 1632 ap_queue_init_state(aq); 1633 AP_DBF_INFO("%s(%d,%d) queue dev reinit enforced\n", 1634 __func__, ac->id, dom); 1635 goto put_dev_and_continue; 1636 } 1637 spin_unlock_bh(&aq->lock); 1638 put_dev_and_continue: 1639 put_device(dev); 1640 } 1641 } 1642 1643 /* 1644 * Helper function for ap_scan_bus(). 1645 * Does the scan bus job for the given adapter id. 1646 */ 1647 static inline void ap_scan_adapter(int ap) 1648 { 1649 bool decfg; 1650 ap_qid_t qid; 1651 unsigned int func; 1652 struct device *dev; 1653 struct ap_card *ac; 1654 int rc, dom, depth, type, comp_type, ml; 1655 1656 /* Is there currently a card device for this adapter ? */ 1657 dev = bus_find_device(&ap_bus_type, NULL, 1658 (void *)(long) ap, 1659 __match_card_device_with_id); 1660 ac = dev ? to_ap_card(dev) : NULL; 1661 1662 /* Adapter not in configuration ? */ 1663 if (!ap_test_config_card_id(ap)) { 1664 if (ac) { 1665 AP_DBF_INFO("%s(%d) ap not in config any more, rm card and queue devs\n", 1666 __func__, ap); 1667 ap_scan_rm_card_dev_and_queue_devs(ac); 1668 put_device(dev); 1669 } 1670 return; 1671 } 1672 1673 /* 1674 * Adapter ap is valid in the current configuration. So do some checks: 1675 * If no card device exists, build one. If a card device exists, check 1676 * for type and functions changed. For all this we need to find a valid 1677 * APQN first. 1678 */ 1679 1680 for (dom = 0; dom <= ap_max_domain_id; dom++) 1681 if (ap_test_config_usage_domain(dom)) { 1682 qid = AP_MKQID(ap, dom); 1683 if (ap_queue_info(qid, &type, &func, 1684 &depth, &ml, &decfg)) 1685 break; 1686 } 1687 if (dom > ap_max_domain_id) { 1688 /* Could not find a valid APQN for this adapter */ 1689 if (ac) { 1690 AP_DBF_INFO("%s(%d) no type info (no APQN found), rm card and queue devs\n", 1691 __func__, ap); 1692 ap_scan_rm_card_dev_and_queue_devs(ac); 1693 put_device(dev); 1694 } else { 1695 AP_DBF_DBG("%s(%d) no type info (no APQN found), ignored\n", 1696 __func__, ap); 1697 } 1698 return; 1699 } 1700 if (!type) { 1701 /* No apdater type info available, an unusable adapter */ 1702 if (ac) { 1703 AP_DBF_INFO("%s(%d) no valid type (0) info, rm card and queue devs\n", 1704 __func__, ap); 1705 ap_scan_rm_card_dev_and_queue_devs(ac); 1706 put_device(dev); 1707 } else { 1708 AP_DBF_DBG("%s(%d) no valid type (0) info, ignored\n", 1709 __func__, ap); 1710 } 1711 return; 1712 } 1713 1714 if (ac) { 1715 /* Check APQN against existing card device for changes */ 1716 if (ac->raw_hwtype != type) { 1717 AP_DBF_INFO("%s(%d) hwtype %d changed, rm card and queue devs\n", 1718 __func__, ap, type); 1719 ap_scan_rm_card_dev_and_queue_devs(ac); 1720 put_device(dev); 1721 ac = NULL; 1722 } else if (ac->functions != func) { 1723 AP_DBF_INFO("%s(%d) functions 0x%08x changed, rm card and queue devs\n", 1724 __func__, ap, type); 1725 ap_scan_rm_card_dev_and_queue_devs(ac); 1726 put_device(dev); 1727 ac = NULL; 1728 } else { 1729 if (decfg && ac->config) { 1730 ac->config = false; 1731 AP_DBF_INFO("%s(%d) card dev config off\n", 1732 __func__, ap); 1733 ap_send_config_uevent(&ac->ap_dev, ac->config); 1734 } 1735 if (!decfg && !ac->config) { 1736 ac->config = true; 1737 AP_DBF_INFO("%s(%d) card dev config on\n", 1738 __func__, ap); 1739 ap_send_config_uevent(&ac->ap_dev, ac->config); 1740 } 1741 } 1742 } 1743 1744 if (!ac) { 1745 /* Build a new card device */ 1746 comp_type = ap_get_compatible_type(qid, type, func); 1747 if (!comp_type) { 1748 AP_DBF_WARN("%s(%d) type %d, can't get compatibility type\n", 1749 __func__, ap, type); 1750 return; 1751 } 1752 ac = ap_card_create(ap, depth, type, comp_type, func, ml); 1753 if (!ac) { 1754 AP_DBF_WARN("%s(%d) ap_card_create() failed\n", 1755 __func__, ap); 1756 return; 1757 } 1758 ac->config = !decfg; 1759 dev = &ac->ap_dev.device; 1760 dev->bus = &ap_bus_type; 1761 dev->parent = ap_root_device; 1762 dev_set_name(dev, "card%02x", ap); 1763 /* maybe enlarge ap_max_msg_size to support this card */ 1764 if (ac->maxmsgsize > atomic_read(&ap_max_msg_size)) { 1765 atomic_set(&ap_max_msg_size, ac->maxmsgsize); 1766 AP_DBF_INFO("%s(%d) ap_max_msg_size update to %d byte\n", 1767 __func__, ap, 1768 atomic_read(&ap_max_msg_size)); 1769 } 1770 /* Register the new card device with AP bus */ 1771 rc = device_register(dev); 1772 if (rc) { 1773 AP_DBF_WARN("%s(%d) device_register() failed\n", 1774 __func__, ap); 1775 put_device(dev); 1776 return; 1777 } 1778 /* get it and thus adjust reference counter */ 1779 get_device(dev); 1780 if (decfg) 1781 AP_DBF_INFO("%s(%d) new (decfg) card dev type=%d func=0x%08x created\n", 1782 __func__, ap, type, func); 1783 else 1784 AP_DBF_INFO("%s(%d) new card dev type=%d func=0x%08x created\n", 1785 __func__, ap, type, func); 1786 } 1787 1788 /* Verify the domains and the queue devices for this card */ 1789 ap_scan_domains(ac); 1790 1791 /* release the card device */ 1792 put_device(&ac->ap_dev.device); 1793 } 1794 1795 /** 1796 * ap_scan_bus(): Scan the AP bus for new devices 1797 * Runs periodically, workqueue timer (ap_config_time) 1798 * @unused: Unused pointer. 1799 */ 1800 static void ap_scan_bus(struct work_struct *unused) 1801 { 1802 int ap; 1803 1804 ap_fetch_qci_info(ap_qci_info); 1805 ap_select_domain(); 1806 1807 AP_DBF_DBG("%s running\n", __func__); 1808 1809 /* loop over all possible adapters */ 1810 for (ap = 0; ap <= ap_max_adapter_id; ap++) 1811 ap_scan_adapter(ap); 1812 1813 /* check if there is at least one queue available with default domain */ 1814 if (ap_domain_index >= 0) { 1815 struct device *dev = 1816 bus_find_device(&ap_bus_type, NULL, 1817 (void *)(long) ap_domain_index, 1818 __match_queue_device_with_queue_id); 1819 if (dev) 1820 put_device(dev); 1821 else 1822 AP_DBF_INFO("%s no queue device with default domain %d available\n", 1823 __func__, ap_domain_index); 1824 } 1825 1826 if (atomic64_inc_return(&ap_scan_bus_count) == 1) { 1827 AP_DBF_DBG("%s init scan complete\n", __func__); 1828 ap_send_init_scan_done_uevent(); 1829 ap_check_bindings_complete(); 1830 } 1831 1832 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ); 1833 } 1834 1835 static void ap_config_timeout(struct timer_list *unused) 1836 { 1837 queue_work(system_long_wq, &ap_scan_work); 1838 } 1839 1840 static int __init ap_debug_init(void) 1841 { 1842 ap_dbf_info = debug_register("ap", 2, 1, 1843 DBF_MAX_SPRINTF_ARGS * sizeof(long)); 1844 debug_register_view(ap_dbf_info, &debug_sprintf_view); 1845 debug_set_level(ap_dbf_info, DBF_ERR); 1846 1847 return 0; 1848 } 1849 1850 static void __init ap_perms_init(void) 1851 { 1852 /* all resources useable if no kernel parameter string given */ 1853 memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm)); 1854 memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm)); 1855 memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm)); 1856 1857 /* apm kernel parameter string */ 1858 if (apm_str) { 1859 memset(&ap_perms.apm, 0, sizeof(ap_perms.apm)); 1860 ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES, 1861 &ap_perms_mutex); 1862 } 1863 1864 /* aqm kernel parameter string */ 1865 if (aqm_str) { 1866 memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm)); 1867 ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS, 1868 &ap_perms_mutex); 1869 } 1870 } 1871 1872 /** 1873 * ap_module_init(): The module initialization code. 1874 * 1875 * Initializes the module. 1876 */ 1877 static int __init ap_module_init(void) 1878 { 1879 int rc; 1880 1881 rc = ap_debug_init(); 1882 if (rc) 1883 return rc; 1884 1885 if (!ap_instructions_available()) { 1886 pr_warn("The hardware system does not support AP instructions\n"); 1887 return -ENODEV; 1888 } 1889 1890 /* init ap_queue hashtable */ 1891 hash_init(ap_queues); 1892 1893 /* set up the AP permissions (ioctls, ap and aq masks) */ 1894 ap_perms_init(); 1895 1896 /* Get AP configuration data if available */ 1897 ap_init_qci_info(); 1898 1899 /* check default domain setting */ 1900 if (ap_domain_index < -1 || ap_domain_index > ap_max_domain_id || 1901 (ap_domain_index >= 0 && 1902 !test_bit_inv(ap_domain_index, ap_perms.aqm))) { 1903 pr_warn("%d is not a valid cryptographic domain\n", 1904 ap_domain_index); 1905 ap_domain_index = -1; 1906 } 1907 1908 /* enable interrupts if available */ 1909 if (ap_interrupts_available() && ap_useirq) { 1910 rc = register_adapter_interrupt(&ap_airq); 1911 ap_irq_flag = (rc == 0); 1912 } 1913 1914 /* Create /sys/bus/ap. */ 1915 rc = bus_register(&ap_bus_type); 1916 if (rc) 1917 goto out; 1918 1919 /* Create /sys/devices/ap. */ 1920 ap_root_device = root_device_register("ap"); 1921 rc = PTR_ERR_OR_ZERO(ap_root_device); 1922 if (rc) 1923 goto out_bus; 1924 ap_root_device->bus = &ap_bus_type; 1925 1926 /* Setup the AP bus rescan timer. */ 1927 timer_setup(&ap_config_timer, ap_config_timeout, 0); 1928 1929 /* 1930 * Setup the high resultion poll timer. 1931 * If we are running under z/VM adjust polling to z/VM polling rate. 1932 */ 1933 if (MACHINE_IS_VM) 1934 poll_timeout = 1500000; 1935 hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1936 ap_poll_timer.function = ap_poll_timeout; 1937 1938 /* Start the low priority AP bus poll thread. */ 1939 if (ap_thread_flag) { 1940 rc = ap_poll_thread_start(); 1941 if (rc) 1942 goto out_work; 1943 } 1944 1945 queue_work(system_long_wq, &ap_scan_work); 1946 1947 return 0; 1948 1949 out_work: 1950 hrtimer_cancel(&ap_poll_timer); 1951 root_device_unregister(ap_root_device); 1952 out_bus: 1953 bus_unregister(&ap_bus_type); 1954 out: 1955 if (ap_irq_flag) 1956 unregister_adapter_interrupt(&ap_airq); 1957 kfree(ap_qci_info); 1958 return rc; 1959 } 1960 device_initcall(ap_module_init); 1961