xref: /openbmc/linux/drivers/s390/crypto/ap_bus.c (revision 8e774e02)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright IBM Corp. 2006, 2012
4  * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
5  *	      Martin Schwidefsky <schwidefsky@de.ibm.com>
6  *	      Ralph Wuerthner <rwuerthn@de.ibm.com>
7  *	      Felix Beck <felix.beck@de.ibm.com>
8  *	      Holger Dengler <hd@linux.vnet.ibm.com>
9  *
10  * Adjunct processor bus.
11  */
12 
13 #define KMSG_COMPONENT "ap"
14 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
15 
16 #include <linux/kernel_stat.h>
17 #include <linux/moduleparam.h>
18 #include <linux/init.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/interrupt.h>
22 #include <linux/workqueue.h>
23 #include <linux/slab.h>
24 #include <linux/notifier.h>
25 #include <linux/kthread.h>
26 #include <linux/mutex.h>
27 #include <linux/suspend.h>
28 #include <asm/airq.h>
29 #include <linux/atomic.h>
30 #include <asm/isc.h>
31 #include <linux/hrtimer.h>
32 #include <linux/ktime.h>
33 #include <asm/facility.h>
34 #include <linux/crypto.h>
35 #include <linux/mod_devicetable.h>
36 #include <linux/debugfs.h>
37 #include <linux/ctype.h>
38 
39 #include "ap_bus.h"
40 #include "ap_debug.h"
41 
42 /*
43  * Module parameters; note though this file itself isn't modular.
44  */
45 int ap_domain_index = -1;	/* Adjunct Processor Domain Index */
46 static DEFINE_SPINLOCK(ap_domain_lock);
47 module_param_named(domain, ap_domain_index, int, 0440);
48 MODULE_PARM_DESC(domain, "domain index for ap devices");
49 EXPORT_SYMBOL(ap_domain_index);
50 
51 static int ap_thread_flag;
52 module_param_named(poll_thread, ap_thread_flag, int, 0440);
53 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
54 
55 static char *apm_str;
56 module_param_named(apmask, apm_str, charp, 0440);
57 MODULE_PARM_DESC(apmask, "AP bus adapter mask.");
58 
59 static char *aqm_str;
60 module_param_named(aqmask, aqm_str, charp, 0440);
61 MODULE_PARM_DESC(aqmask, "AP bus domain mask.");
62 
63 static struct device *ap_root_device;
64 
65 DEFINE_SPINLOCK(ap_list_lock);
66 LIST_HEAD(ap_card_list);
67 
68 /* Default permissions (ioctl, card and domain masking) */
69 struct ap_perms ap_perms;
70 EXPORT_SYMBOL(ap_perms);
71 DEFINE_MUTEX(ap_perms_mutex);
72 EXPORT_SYMBOL(ap_perms_mutex);
73 
74 static struct ap_config_info *ap_configuration;
75 static bool initialised;
76 
77 /*
78  * AP bus related debug feature things.
79  */
80 debug_info_t *ap_dbf_info;
81 
82 /*
83  * Workqueue timer for bus rescan.
84  */
85 static struct timer_list ap_config_timer;
86 static int ap_config_time = AP_CONFIG_TIME;
87 static void ap_scan_bus(struct work_struct *);
88 static DECLARE_WORK(ap_scan_work, ap_scan_bus);
89 
90 /*
91  * Tasklet & timer for AP request polling and interrupts
92  */
93 static void ap_tasklet_fn(unsigned long);
94 static DECLARE_TASKLET(ap_tasklet, ap_tasklet_fn, 0);
95 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
96 static struct task_struct *ap_poll_kthread;
97 static DEFINE_MUTEX(ap_poll_thread_mutex);
98 static DEFINE_SPINLOCK(ap_poll_timer_lock);
99 static struct hrtimer ap_poll_timer;
100 /*
101  * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
102  * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.
103  */
104 static unsigned long long poll_timeout = 250000;
105 
106 /* Suspend flag */
107 static int ap_suspend_flag;
108 /* Maximum domain id */
109 static int ap_max_domain_id;
110 /*
111  * Flag to check if domain was set through module parameter domain=. This is
112  * important when supsend and resume is done in a z/VM environment where the
113  * domain might change.
114  */
115 static int user_set_domain;
116 static struct bus_type ap_bus_type;
117 
118 /* Adapter interrupt definitions */
119 static void ap_interrupt_handler(struct airq_struct *airq, bool floating);
120 
121 static int ap_airq_flag;
122 
123 static struct airq_struct ap_airq = {
124 	.handler = ap_interrupt_handler,
125 	.isc = AP_ISC,
126 };
127 
128 /**
129  * ap_using_interrupts() - Returns non-zero if interrupt support is
130  * available.
131  */
132 static inline int ap_using_interrupts(void)
133 {
134 	return ap_airq_flag;
135 }
136 
137 /**
138  * ap_airq_ptr() - Get the address of the adapter interrupt indicator
139  *
140  * Returns the address of the local-summary-indicator of the adapter
141  * interrupt handler for AP, or NULL if adapter interrupts are not
142  * available.
143  */
144 void *ap_airq_ptr(void)
145 {
146 	if (ap_using_interrupts())
147 		return ap_airq.lsi_ptr;
148 	return NULL;
149 }
150 
151 /**
152  * ap_interrupts_available(): Test if AP interrupts are available.
153  *
154  * Returns 1 if AP interrupts are available.
155  */
156 static int ap_interrupts_available(void)
157 {
158 	return test_facility(65);
159 }
160 
161 /**
162  * ap_configuration_available(): Test if AP configuration
163  * information is available.
164  *
165  * Returns 1 if AP configuration information is available.
166  */
167 static int ap_configuration_available(void)
168 {
169 	return test_facility(12);
170 }
171 
172 /**
173  * ap_apft_available(): Test if AP facilities test (APFT)
174  * facility is available.
175  *
176  * Returns 1 if APFT is is available.
177  */
178 static int ap_apft_available(void)
179 {
180 	return test_facility(15);
181 }
182 
183 /*
184  * ap_qact_available(): Test if the PQAP(QACT) subfunction is available.
185  *
186  * Returns 1 if the QACT subfunction is available.
187  */
188 static inline int ap_qact_available(void)
189 {
190 	if (ap_configuration)
191 		return ap_configuration->qact;
192 	return 0;
193 }
194 
195 /*
196  * ap_query_configuration(): Fetch cryptographic config info
197  *
198  * Returns the ap configuration info fetched via PQAP(QCI).
199  * On success 0 is returned, on failure a negative errno
200  * is returned, e.g. if the PQAP(QCI) instruction is not
201  * available, the return value will be -EOPNOTSUPP.
202  */
203 static inline int ap_query_configuration(struct ap_config_info *info)
204 {
205 	if (!ap_configuration_available())
206 		return -EOPNOTSUPP;
207 	if (!info)
208 		return -EINVAL;
209 	return ap_qci(info);
210 }
211 
212 /**
213  * ap_init_configuration(): Allocate and query configuration array.
214  */
215 static void ap_init_configuration(void)
216 {
217 	if (!ap_configuration_available())
218 		return;
219 
220 	ap_configuration = kzalloc(sizeof(*ap_configuration), GFP_KERNEL);
221 	if (!ap_configuration)
222 		return;
223 	if (ap_query_configuration(ap_configuration) != 0) {
224 		kfree(ap_configuration);
225 		ap_configuration = NULL;
226 		return;
227 	}
228 }
229 
230 /*
231  * ap_test_config(): helper function to extract the nrth bit
232  *		     within the unsigned int array field.
233  */
234 static inline int ap_test_config(unsigned int *field, unsigned int nr)
235 {
236 	return ap_test_bit((field + (nr >> 5)), (nr & 0x1f));
237 }
238 
239 /*
240  * ap_test_config_card_id(): Test, whether an AP card ID is configured.
241  * @id AP card ID
242  *
243  * Returns 0 if the card is not configured
244  *	   1 if the card is configured or
245  *	     if the configuration information is not available
246  */
247 static inline int ap_test_config_card_id(unsigned int id)
248 {
249 	if (!ap_configuration)	/* QCI not supported */
250 		/* only ids 0...3F may be probed */
251 		return id < 0x40 ? 1 : 0;
252 	return ap_test_config(ap_configuration->apm, id);
253 }
254 
255 /*
256  * ap_test_config_usage_domain(): Test, whether an AP usage domain
257  * is configured.
258  * @domain AP usage domain ID
259  *
260  * Returns 0 if the usage domain is not configured
261  *	   1 if the usage domain is configured or
262  *	     if the configuration information is not available
263  */
264 int ap_test_config_usage_domain(unsigned int domain)
265 {
266 	if (!ap_configuration)	/* QCI not supported */
267 		return domain < 16;
268 	return ap_test_config(ap_configuration->aqm, domain);
269 }
270 EXPORT_SYMBOL(ap_test_config_usage_domain);
271 
272 /*
273  * ap_test_config_ctrl_domain(): Test, whether an AP control domain
274  * is configured.
275  * @domain AP control domain ID
276  *
277  * Returns 1 if the control domain is configured
278  *	   0 in all other cases
279  */
280 int ap_test_config_ctrl_domain(unsigned int domain)
281 {
282 	if (!ap_configuration)	/* QCI not supported */
283 		return 0;
284 	return ap_test_config(ap_configuration->adm, domain);
285 }
286 EXPORT_SYMBOL(ap_test_config_ctrl_domain);
287 
288 /**
289  * ap_query_queue(): Check if an AP queue is available.
290  * @qid: The AP queue number
291  * @queue_depth: Pointer to queue depth value
292  * @device_type: Pointer to device type value
293  * @facilities: Pointer to facility indicator
294  */
295 static int ap_query_queue(ap_qid_t qid, int *queue_depth, int *device_type,
296 			  unsigned int *facilities)
297 {
298 	struct ap_queue_status status;
299 	unsigned long info;
300 	int nd;
301 
302 	if (!ap_test_config_card_id(AP_QID_CARD(qid)))
303 		return -ENODEV;
304 
305 	status = ap_test_queue(qid, ap_apft_available(), &info);
306 	switch (status.response_code) {
307 	case AP_RESPONSE_NORMAL:
308 		*queue_depth = (int)(info & 0xff);
309 		*device_type = (int)((info >> 24) & 0xff);
310 		*facilities = (unsigned int)(info >> 32);
311 		/* Update maximum domain id */
312 		nd = (info >> 16) & 0xff;
313 		/* if N bit is available, z13 and newer */
314 		if ((info & (1UL << 57)) && nd > 0)
315 			ap_max_domain_id = nd;
316 		else /* older machine types */
317 			ap_max_domain_id = 15;
318 		switch (*device_type) {
319 			/* For CEX2 and CEX3 the available functions
320 			 * are not reflected by the facilities bits.
321 			 * Instead it is coded into the type. So here
322 			 * modify the function bits based on the type.
323 			 */
324 		case AP_DEVICE_TYPE_CEX2A:
325 		case AP_DEVICE_TYPE_CEX3A:
326 			*facilities |= 0x08000000;
327 			break;
328 		case AP_DEVICE_TYPE_CEX2C:
329 		case AP_DEVICE_TYPE_CEX3C:
330 			*facilities |= 0x10000000;
331 			break;
332 		default:
333 			break;
334 		}
335 		return 0;
336 	case AP_RESPONSE_Q_NOT_AVAIL:
337 	case AP_RESPONSE_DECONFIGURED:
338 	case AP_RESPONSE_CHECKSTOPPED:
339 	case AP_RESPONSE_INVALID_ADDRESS:
340 		return -ENODEV;
341 	case AP_RESPONSE_RESET_IN_PROGRESS:
342 	case AP_RESPONSE_OTHERWISE_CHANGED:
343 	case AP_RESPONSE_BUSY:
344 		return -EBUSY;
345 	default:
346 		BUG();
347 	}
348 }
349 
350 void ap_wait(enum ap_wait wait)
351 {
352 	ktime_t hr_time;
353 
354 	switch (wait) {
355 	case AP_WAIT_AGAIN:
356 	case AP_WAIT_INTERRUPT:
357 		if (ap_using_interrupts())
358 			break;
359 		if (ap_poll_kthread) {
360 			wake_up(&ap_poll_wait);
361 			break;
362 		}
363 		/* Fall through */
364 	case AP_WAIT_TIMEOUT:
365 		spin_lock_bh(&ap_poll_timer_lock);
366 		if (!hrtimer_is_queued(&ap_poll_timer)) {
367 			hr_time = poll_timeout;
368 			hrtimer_forward_now(&ap_poll_timer, hr_time);
369 			hrtimer_restart(&ap_poll_timer);
370 		}
371 		spin_unlock_bh(&ap_poll_timer_lock);
372 		break;
373 	case AP_WAIT_NONE:
374 	default:
375 		break;
376 	}
377 }
378 
379 /**
380  * ap_request_timeout(): Handling of request timeouts
381  * @t: timer making this callback
382  *
383  * Handles request timeouts.
384  */
385 void ap_request_timeout(struct timer_list *t)
386 {
387 	struct ap_queue *aq = from_timer(aq, t, timeout);
388 
389 	if (ap_suspend_flag)
390 		return;
391 	spin_lock_bh(&aq->lock);
392 	ap_wait(ap_sm_event(aq, AP_EVENT_TIMEOUT));
393 	spin_unlock_bh(&aq->lock);
394 }
395 
396 /**
397  * ap_poll_timeout(): AP receive polling for finished AP requests.
398  * @unused: Unused pointer.
399  *
400  * Schedules the AP tasklet using a high resolution timer.
401  */
402 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
403 {
404 	if (!ap_suspend_flag)
405 		tasklet_schedule(&ap_tasklet);
406 	return HRTIMER_NORESTART;
407 }
408 
409 /**
410  * ap_interrupt_handler() - Schedule ap_tasklet on interrupt
411  * @airq: pointer to adapter interrupt descriptor
412  */
413 static void ap_interrupt_handler(struct airq_struct *airq, bool floating)
414 {
415 	inc_irq_stat(IRQIO_APB);
416 	if (!ap_suspend_flag)
417 		tasklet_schedule(&ap_tasklet);
418 }
419 
420 /**
421  * ap_tasklet_fn(): Tasklet to poll all AP devices.
422  * @dummy: Unused variable
423  *
424  * Poll all AP devices on the bus.
425  */
426 static void ap_tasklet_fn(unsigned long dummy)
427 {
428 	struct ap_card *ac;
429 	struct ap_queue *aq;
430 	enum ap_wait wait = AP_WAIT_NONE;
431 
432 	/* Reset the indicator if interrupts are used. Thus new interrupts can
433 	 * be received. Doing it in the beginning of the tasklet is therefor
434 	 * important that no requests on any AP get lost.
435 	 */
436 	if (ap_using_interrupts())
437 		xchg(ap_airq.lsi_ptr, 0);
438 
439 	spin_lock_bh(&ap_list_lock);
440 	for_each_ap_card(ac) {
441 		for_each_ap_queue(aq, ac) {
442 			spin_lock_bh(&aq->lock);
443 			wait = min(wait, ap_sm_event_loop(aq, AP_EVENT_POLL));
444 			spin_unlock_bh(&aq->lock);
445 		}
446 	}
447 	spin_unlock_bh(&ap_list_lock);
448 
449 	ap_wait(wait);
450 }
451 
452 static int ap_pending_requests(void)
453 {
454 	struct ap_card *ac;
455 	struct ap_queue *aq;
456 
457 	spin_lock_bh(&ap_list_lock);
458 	for_each_ap_card(ac) {
459 		for_each_ap_queue(aq, ac) {
460 			if (aq->queue_count == 0)
461 				continue;
462 			spin_unlock_bh(&ap_list_lock);
463 			return 1;
464 		}
465 	}
466 	spin_unlock_bh(&ap_list_lock);
467 	return 0;
468 }
469 
470 /**
471  * ap_poll_thread(): Thread that polls for finished requests.
472  * @data: Unused pointer
473  *
474  * AP bus poll thread. The purpose of this thread is to poll for
475  * finished requests in a loop if there is a "free" cpu - that is
476  * a cpu that doesn't have anything better to do. The polling stops
477  * as soon as there is another task or if all messages have been
478  * delivered.
479  */
480 static int ap_poll_thread(void *data)
481 {
482 	DECLARE_WAITQUEUE(wait, current);
483 
484 	set_user_nice(current, MAX_NICE);
485 	set_freezable();
486 	while (!kthread_should_stop()) {
487 		add_wait_queue(&ap_poll_wait, &wait);
488 		set_current_state(TASK_INTERRUPTIBLE);
489 		if (ap_suspend_flag || !ap_pending_requests()) {
490 			schedule();
491 			try_to_freeze();
492 		}
493 		set_current_state(TASK_RUNNING);
494 		remove_wait_queue(&ap_poll_wait, &wait);
495 		if (need_resched()) {
496 			schedule();
497 			try_to_freeze();
498 			continue;
499 		}
500 		ap_tasklet_fn(0);
501 	}
502 
503 	return 0;
504 }
505 
506 static int ap_poll_thread_start(void)
507 {
508 	int rc;
509 
510 	if (ap_using_interrupts() || ap_poll_kthread)
511 		return 0;
512 	mutex_lock(&ap_poll_thread_mutex);
513 	ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
514 	rc = PTR_ERR_OR_ZERO(ap_poll_kthread);
515 	if (rc)
516 		ap_poll_kthread = NULL;
517 	mutex_unlock(&ap_poll_thread_mutex);
518 	return rc;
519 }
520 
521 static void ap_poll_thread_stop(void)
522 {
523 	if (!ap_poll_kthread)
524 		return;
525 	mutex_lock(&ap_poll_thread_mutex);
526 	kthread_stop(ap_poll_kthread);
527 	ap_poll_kthread = NULL;
528 	mutex_unlock(&ap_poll_thread_mutex);
529 }
530 
531 #define is_card_dev(x) ((x)->parent == ap_root_device)
532 #define is_queue_dev(x) ((x)->parent != ap_root_device)
533 
534 /**
535  * ap_bus_match()
536  * @dev: Pointer to device
537  * @drv: Pointer to device_driver
538  *
539  * AP bus driver registration/unregistration.
540  */
541 static int ap_bus_match(struct device *dev, struct device_driver *drv)
542 {
543 	struct ap_driver *ap_drv = to_ap_drv(drv);
544 	struct ap_device_id *id;
545 
546 	/*
547 	 * Compare device type of the device with the list of
548 	 * supported types of the device_driver.
549 	 */
550 	for (id = ap_drv->ids; id->match_flags; id++) {
551 		if (is_card_dev(dev) &&
552 		    id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE &&
553 		    id->dev_type == to_ap_dev(dev)->device_type)
554 			return 1;
555 		if (is_queue_dev(dev) &&
556 		    id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE &&
557 		    id->dev_type == to_ap_dev(dev)->device_type)
558 			return 1;
559 	}
560 	return 0;
561 }
562 
563 /**
564  * ap_uevent(): Uevent function for AP devices.
565  * @dev: Pointer to device
566  * @env: Pointer to kobj_uevent_env
567  *
568  * It sets up a single environment variable DEV_TYPE which contains the
569  * hardware device type.
570  */
571 static int ap_uevent(struct device *dev, struct kobj_uevent_env *env)
572 {
573 	struct ap_device *ap_dev = to_ap_dev(dev);
574 	int retval = 0;
575 
576 	if (!ap_dev)
577 		return -ENODEV;
578 
579 	/* Set up DEV_TYPE environment variable. */
580 	retval = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
581 	if (retval)
582 		return retval;
583 
584 	/* Add MODALIAS= */
585 	retval = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
586 
587 	return retval;
588 }
589 
590 static int ap_dev_suspend(struct device *dev)
591 {
592 	struct ap_device *ap_dev = to_ap_dev(dev);
593 
594 	if (ap_dev->drv && ap_dev->drv->suspend)
595 		ap_dev->drv->suspend(ap_dev);
596 	return 0;
597 }
598 
599 static int ap_dev_resume(struct device *dev)
600 {
601 	struct ap_device *ap_dev = to_ap_dev(dev);
602 
603 	if (ap_dev->drv && ap_dev->drv->resume)
604 		ap_dev->drv->resume(ap_dev);
605 	return 0;
606 }
607 
608 static void ap_bus_suspend(void)
609 {
610 	AP_DBF(DBF_DEBUG, "%s running\n", __func__);
611 
612 	ap_suspend_flag = 1;
613 	/*
614 	 * Disable scanning for devices, thus we do not want to scan
615 	 * for them after removing.
616 	 */
617 	flush_work(&ap_scan_work);
618 	tasklet_disable(&ap_tasklet);
619 }
620 
621 static int __ap_card_devices_unregister(struct device *dev, void *dummy)
622 {
623 	if (is_card_dev(dev))
624 		device_unregister(dev);
625 	return 0;
626 }
627 
628 static int __ap_queue_devices_unregister(struct device *dev, void *dummy)
629 {
630 	if (is_queue_dev(dev))
631 		device_unregister(dev);
632 	return 0;
633 }
634 
635 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data)
636 {
637 	if (is_queue_dev(dev) &&
638 	    AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long) data)
639 		device_unregister(dev);
640 	return 0;
641 }
642 
643 static void ap_bus_resume(void)
644 {
645 	int rc;
646 
647 	AP_DBF(DBF_DEBUG, "%s running\n", __func__);
648 
649 	/* remove all queue devices */
650 	bus_for_each_dev(&ap_bus_type, NULL, NULL,
651 			 __ap_queue_devices_unregister);
652 	/* remove all card devices */
653 	bus_for_each_dev(&ap_bus_type, NULL, NULL,
654 			 __ap_card_devices_unregister);
655 
656 	/* Reset thin interrupt setting */
657 	if (ap_interrupts_available() && !ap_using_interrupts()) {
658 		rc = register_adapter_interrupt(&ap_airq);
659 		ap_airq_flag = (rc == 0);
660 	}
661 	if (!ap_interrupts_available() && ap_using_interrupts()) {
662 		unregister_adapter_interrupt(&ap_airq);
663 		ap_airq_flag = 0;
664 	}
665 	/* Reset domain */
666 	if (!user_set_domain)
667 		ap_domain_index = -1;
668 	/* Get things going again */
669 	ap_suspend_flag = 0;
670 	if (ap_airq_flag)
671 		xchg(ap_airq.lsi_ptr, 0);
672 	tasklet_enable(&ap_tasklet);
673 	queue_work(system_long_wq, &ap_scan_work);
674 }
675 
676 static int ap_power_event(struct notifier_block *this, unsigned long event,
677 			  void *ptr)
678 {
679 	switch (event) {
680 	case PM_HIBERNATION_PREPARE:
681 	case PM_SUSPEND_PREPARE:
682 		ap_bus_suspend();
683 		break;
684 	case PM_POST_HIBERNATION:
685 	case PM_POST_SUSPEND:
686 		ap_bus_resume();
687 		break;
688 	default:
689 		break;
690 	}
691 	return NOTIFY_DONE;
692 }
693 static struct notifier_block ap_power_notifier = {
694 	.notifier_call = ap_power_event,
695 };
696 
697 static SIMPLE_DEV_PM_OPS(ap_bus_pm_ops, ap_dev_suspend, ap_dev_resume);
698 
699 static struct bus_type ap_bus_type = {
700 	.name = "ap",
701 	.match = &ap_bus_match,
702 	.uevent = &ap_uevent,
703 	.pm = &ap_bus_pm_ops,
704 };
705 
706 static int __ap_revise_reserved(struct device *dev, void *dummy)
707 {
708 	int rc, card, queue, devres, drvres;
709 
710 	if (is_queue_dev(dev)) {
711 		card = AP_QID_CARD(to_ap_queue(dev)->qid);
712 		queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
713 		mutex_lock(&ap_perms_mutex);
714 		devres = test_bit_inv(card, ap_perms.apm)
715 			&& test_bit_inv(queue, ap_perms.aqm);
716 		mutex_unlock(&ap_perms_mutex);
717 		drvres = to_ap_drv(dev->driver)->flags
718 			& AP_DRIVER_FLAG_DEFAULT;
719 		if (!!devres != !!drvres) {
720 			AP_DBF(DBF_DEBUG, "reprobing queue=%02x.%04x\n",
721 			       card, queue);
722 			rc = device_reprobe(dev);
723 		}
724 	}
725 
726 	return 0;
727 }
728 
729 static void ap_bus_revise_bindings(void)
730 {
731 	bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved);
732 }
733 
734 int ap_owned_by_def_drv(int card, int queue)
735 {
736 	int rc = 0;
737 
738 	if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS)
739 		return -EINVAL;
740 
741 	mutex_lock(&ap_perms_mutex);
742 
743 	if (test_bit_inv(card, ap_perms.apm)
744 	    && test_bit_inv(queue, ap_perms.aqm))
745 		rc = 1;
746 
747 	mutex_unlock(&ap_perms_mutex);
748 
749 	return rc;
750 }
751 EXPORT_SYMBOL(ap_owned_by_def_drv);
752 
753 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm,
754 				       unsigned long *aqm)
755 {
756 	int card, queue, rc = 0;
757 
758 	mutex_lock(&ap_perms_mutex);
759 
760 	for (card = 0; !rc && card < AP_DEVICES; card++)
761 		if (test_bit_inv(card, apm) &&
762 		    test_bit_inv(card, ap_perms.apm))
763 			for (queue = 0; !rc && queue < AP_DOMAINS; queue++)
764 				if (test_bit_inv(queue, aqm) &&
765 				    test_bit_inv(queue, ap_perms.aqm))
766 					rc = 1;
767 
768 	mutex_unlock(&ap_perms_mutex);
769 
770 	return rc;
771 }
772 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv);
773 
774 static int ap_device_probe(struct device *dev)
775 {
776 	struct ap_device *ap_dev = to_ap_dev(dev);
777 	struct ap_driver *ap_drv = to_ap_drv(dev->driver);
778 	int card, queue, devres, drvres, rc;
779 
780 	if (is_queue_dev(dev)) {
781 		/*
782 		 * If the apqn is marked as reserved/used by ap bus and
783 		 * default drivers, only probe with drivers with the default
784 		 * flag set. If it is not marked, only probe with drivers
785 		 * with the default flag not set.
786 		 */
787 		card = AP_QID_CARD(to_ap_queue(dev)->qid);
788 		queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
789 		mutex_lock(&ap_perms_mutex);
790 		devres = test_bit_inv(card, ap_perms.apm)
791 			&& test_bit_inv(queue, ap_perms.aqm);
792 		mutex_unlock(&ap_perms_mutex);
793 		drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT;
794 		if (!!devres != !!drvres)
795 			return -ENODEV;
796 		/* (re-)init queue's state machine */
797 		ap_queue_reinit_state(to_ap_queue(dev));
798 	}
799 
800 	/* Add queue/card to list of active queues/cards */
801 	spin_lock_bh(&ap_list_lock);
802 	if (is_card_dev(dev))
803 		list_add(&to_ap_card(dev)->list, &ap_card_list);
804 	else
805 		list_add(&to_ap_queue(dev)->list,
806 			 &to_ap_queue(dev)->card->queues);
807 	spin_unlock_bh(&ap_list_lock);
808 
809 	ap_dev->drv = ap_drv;
810 	rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
811 
812 	if (rc) {
813 		spin_lock_bh(&ap_list_lock);
814 		if (is_card_dev(dev))
815 			list_del_init(&to_ap_card(dev)->list);
816 		else
817 			list_del_init(&to_ap_queue(dev)->list);
818 		spin_unlock_bh(&ap_list_lock);
819 		ap_dev->drv = NULL;
820 	}
821 
822 	return rc;
823 }
824 
825 static int ap_device_remove(struct device *dev)
826 {
827 	struct ap_device *ap_dev = to_ap_dev(dev);
828 	struct ap_driver *ap_drv = ap_dev->drv;
829 
830 	/* prepare ap queue device removal */
831 	if (is_queue_dev(dev))
832 		ap_queue_prepare_remove(to_ap_queue(dev));
833 
834 	/* driver's chance to clean up gracefully */
835 	if (ap_drv->remove)
836 		ap_drv->remove(ap_dev);
837 
838 	/* now do the ap queue device remove */
839 	if (is_queue_dev(dev))
840 		ap_queue_remove(to_ap_queue(dev));
841 
842 	/* Remove queue/card from list of active queues/cards */
843 	spin_lock_bh(&ap_list_lock);
844 	if (is_card_dev(dev))
845 		list_del_init(&to_ap_card(dev)->list);
846 	else
847 		list_del_init(&to_ap_queue(dev)->list);
848 	spin_unlock_bh(&ap_list_lock);
849 
850 	return 0;
851 }
852 
853 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
854 		       char *name)
855 {
856 	struct device_driver *drv = &ap_drv->driver;
857 
858 	if (!initialised)
859 		return -ENODEV;
860 
861 	drv->bus = &ap_bus_type;
862 	drv->probe = ap_device_probe;
863 	drv->remove = ap_device_remove;
864 	drv->owner = owner;
865 	drv->name = name;
866 	return driver_register(drv);
867 }
868 EXPORT_SYMBOL(ap_driver_register);
869 
870 void ap_driver_unregister(struct ap_driver *ap_drv)
871 {
872 	driver_unregister(&ap_drv->driver);
873 }
874 EXPORT_SYMBOL(ap_driver_unregister);
875 
876 void ap_bus_force_rescan(void)
877 {
878 	if (ap_suspend_flag)
879 		return;
880 	/* processing a asynchronous bus rescan */
881 	del_timer(&ap_config_timer);
882 	queue_work(system_long_wq, &ap_scan_work);
883 	flush_work(&ap_scan_work);
884 }
885 EXPORT_SYMBOL(ap_bus_force_rescan);
886 
887 /*
888 * A config change has happened, force an ap bus rescan.
889 */
890 void ap_bus_cfg_chg(void)
891 {
892 	AP_DBF(DBF_INFO, "%s config change, forcing bus rescan\n", __func__);
893 
894 	ap_bus_force_rescan();
895 }
896 
897 /*
898  * hex2bitmap() - parse hex mask string and set bitmap.
899  * Valid strings are "0x012345678" with at least one valid hex number.
900  * Rest of the bitmap to the right is padded with 0. No spaces allowed
901  * within the string, the leading 0x may be omitted.
902  * Returns the bitmask with exactly the bits set as given by the hex
903  * string (both in big endian order).
904  */
905 static int hex2bitmap(const char *str, unsigned long *bitmap, int bits)
906 {
907 	int i, n, b;
908 
909 	/* bits needs to be a multiple of 8 */
910 	if (bits & 0x07)
911 		return -EINVAL;
912 
913 	if (str[0] == '0' && str[1] == 'x')
914 		str++;
915 	if (*str == 'x')
916 		str++;
917 
918 	for (i = 0; isxdigit(*str) && i < bits; str++) {
919 		b = hex_to_bin(*str);
920 		for (n = 0; n < 4; n++)
921 			if (b & (0x08 >> n))
922 				set_bit_inv(i + n, bitmap);
923 		i += 4;
924 	}
925 
926 	if (*str == '\n')
927 		str++;
928 	if (*str)
929 		return -EINVAL;
930 	return 0;
931 }
932 
933 /*
934  * modify_bitmap() - parse bitmask argument and modify an existing
935  * bit mask accordingly. A concatenation (done with ',') of these
936  * terms is recognized:
937  *   +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>]
938  * <bitnr> may be any valid number (hex, decimal or octal) in the range
939  * 0...bits-1; the leading + or - is required. Here are some examples:
940  *   +0-15,+32,-128,-0xFF
941  *   -0-255,+1-16,+0x128
942  *   +1,+2,+3,+4,-5,-7-10
943  * Returns the new bitmap after all changes have been applied. Every
944  * positive value in the string will set a bit and every negative value
945  * in the string will clear a bit. As a bit may be touched more than once,
946  * the last 'operation' wins:
947  * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be
948  * cleared again. All other bits are unmodified.
949  */
950 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits)
951 {
952 	int a, i, z;
953 	char *np, sign;
954 
955 	/* bits needs to be a multiple of 8 */
956 	if (bits & 0x07)
957 		return -EINVAL;
958 
959 	while (*str) {
960 		sign = *str++;
961 		if (sign != '+' && sign != '-')
962 			return -EINVAL;
963 		a = z = simple_strtoul(str, &np, 0);
964 		if (str == np || a >= bits)
965 			return -EINVAL;
966 		str = np;
967 		if (*str == '-') {
968 			z = simple_strtoul(++str, &np, 0);
969 			if (str == np || a > z || z >= bits)
970 				return -EINVAL;
971 			str = np;
972 		}
973 		for (i = a; i <= z; i++)
974 			if (sign == '+')
975 				set_bit_inv(i, bitmap);
976 			else
977 				clear_bit_inv(i, bitmap);
978 		while (*str == ',' || *str == '\n')
979 			str++;
980 	}
981 
982 	return 0;
983 }
984 
985 int ap_parse_mask_str(const char *str,
986 		      unsigned long *bitmap, int bits,
987 		      struct mutex *lock)
988 {
989 	unsigned long *newmap, size;
990 	int rc;
991 
992 	/* bits needs to be a multiple of 8 */
993 	if (bits & 0x07)
994 		return -EINVAL;
995 
996 	size = BITS_TO_LONGS(bits)*sizeof(unsigned long);
997 	newmap = kmalloc(size, GFP_KERNEL);
998 	if (!newmap)
999 		return -ENOMEM;
1000 	if (mutex_lock_interruptible(lock)) {
1001 		kfree(newmap);
1002 		return -ERESTARTSYS;
1003 	}
1004 
1005 	if (*str == '+' || *str == '-') {
1006 		memcpy(newmap, bitmap, size);
1007 		rc = modify_bitmap(str, newmap, bits);
1008 	} else {
1009 		memset(newmap, 0, size);
1010 		rc = hex2bitmap(str, newmap, bits);
1011 	}
1012 	if (rc == 0)
1013 		memcpy(bitmap, newmap, size);
1014 	mutex_unlock(lock);
1015 	kfree(newmap);
1016 	return rc;
1017 }
1018 EXPORT_SYMBOL(ap_parse_mask_str);
1019 
1020 /*
1021  * AP bus attributes.
1022  */
1023 
1024 static ssize_t ap_domain_show(struct bus_type *bus, char *buf)
1025 {
1026 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index);
1027 }
1028 
1029 static ssize_t ap_domain_store(struct bus_type *bus,
1030 			       const char *buf, size_t count)
1031 {
1032 	int domain;
1033 
1034 	if (sscanf(buf, "%i\n", &domain) != 1 ||
1035 	    domain < 0 || domain > ap_max_domain_id ||
1036 	    !test_bit_inv(domain, ap_perms.aqm))
1037 		return -EINVAL;
1038 	spin_lock_bh(&ap_domain_lock);
1039 	ap_domain_index = domain;
1040 	spin_unlock_bh(&ap_domain_lock);
1041 
1042 	AP_DBF(DBF_DEBUG, "stored new default domain=%d\n", domain);
1043 
1044 	return count;
1045 }
1046 
1047 static BUS_ATTR_RW(ap_domain);
1048 
1049 static ssize_t ap_control_domain_mask_show(struct bus_type *bus, char *buf)
1050 {
1051 	if (!ap_configuration)	/* QCI not supported */
1052 		return snprintf(buf, PAGE_SIZE, "not supported\n");
1053 
1054 	return snprintf(buf, PAGE_SIZE,
1055 			"0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1056 			ap_configuration->adm[0], ap_configuration->adm[1],
1057 			ap_configuration->adm[2], ap_configuration->adm[3],
1058 			ap_configuration->adm[4], ap_configuration->adm[5],
1059 			ap_configuration->adm[6], ap_configuration->adm[7]);
1060 }
1061 
1062 static BUS_ATTR_RO(ap_control_domain_mask);
1063 
1064 static ssize_t ap_usage_domain_mask_show(struct bus_type *bus, char *buf)
1065 {
1066 	if (!ap_configuration)	/* QCI not supported */
1067 		return snprintf(buf, PAGE_SIZE, "not supported\n");
1068 
1069 	return snprintf(buf, PAGE_SIZE,
1070 			"0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1071 			ap_configuration->aqm[0], ap_configuration->aqm[1],
1072 			ap_configuration->aqm[2], ap_configuration->aqm[3],
1073 			ap_configuration->aqm[4], ap_configuration->aqm[5],
1074 			ap_configuration->aqm[6], ap_configuration->aqm[7]);
1075 }
1076 
1077 static BUS_ATTR_RO(ap_usage_domain_mask);
1078 
1079 static ssize_t ap_adapter_mask_show(struct bus_type *bus, char *buf)
1080 {
1081 	if (!ap_configuration)	/* QCI not supported */
1082 		return snprintf(buf, PAGE_SIZE, "not supported\n");
1083 
1084 	return snprintf(buf, PAGE_SIZE,
1085 			"0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1086 			ap_configuration->apm[0], ap_configuration->apm[1],
1087 			ap_configuration->apm[2], ap_configuration->apm[3],
1088 			ap_configuration->apm[4], ap_configuration->apm[5],
1089 			ap_configuration->apm[6], ap_configuration->apm[7]);
1090 }
1091 
1092 static BUS_ATTR_RO(ap_adapter_mask);
1093 
1094 static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf)
1095 {
1096 	return snprintf(buf, PAGE_SIZE, "%d\n",
1097 			ap_using_interrupts() ? 1 : 0);
1098 }
1099 
1100 static BUS_ATTR_RO(ap_interrupts);
1101 
1102 static ssize_t config_time_show(struct bus_type *bus, char *buf)
1103 {
1104 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_config_time);
1105 }
1106 
1107 static ssize_t config_time_store(struct bus_type *bus,
1108 				 const char *buf, size_t count)
1109 {
1110 	int time;
1111 
1112 	if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
1113 		return -EINVAL;
1114 	ap_config_time = time;
1115 	mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1116 	return count;
1117 }
1118 
1119 static BUS_ATTR_RW(config_time);
1120 
1121 static ssize_t poll_thread_show(struct bus_type *bus, char *buf)
1122 {
1123 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0);
1124 }
1125 
1126 static ssize_t poll_thread_store(struct bus_type *bus,
1127 				 const char *buf, size_t count)
1128 {
1129 	int flag, rc;
1130 
1131 	if (sscanf(buf, "%d\n", &flag) != 1)
1132 		return -EINVAL;
1133 	if (flag) {
1134 		rc = ap_poll_thread_start();
1135 		if (rc)
1136 			count = rc;
1137 	} else
1138 		ap_poll_thread_stop();
1139 	return count;
1140 }
1141 
1142 static BUS_ATTR_RW(poll_thread);
1143 
1144 static ssize_t poll_timeout_show(struct bus_type *bus, char *buf)
1145 {
1146 	return snprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout);
1147 }
1148 
1149 static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf,
1150 				  size_t count)
1151 {
1152 	unsigned long long time;
1153 	ktime_t hr_time;
1154 
1155 	/* 120 seconds = maximum poll interval */
1156 	if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 ||
1157 	    time > 120000000000ULL)
1158 		return -EINVAL;
1159 	poll_timeout = time;
1160 	hr_time = poll_timeout;
1161 
1162 	spin_lock_bh(&ap_poll_timer_lock);
1163 	hrtimer_cancel(&ap_poll_timer);
1164 	hrtimer_set_expires(&ap_poll_timer, hr_time);
1165 	hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
1166 	spin_unlock_bh(&ap_poll_timer_lock);
1167 
1168 	return count;
1169 }
1170 
1171 static BUS_ATTR_RW(poll_timeout);
1172 
1173 static ssize_t ap_max_domain_id_show(struct bus_type *bus, char *buf)
1174 {
1175 	int max_domain_id;
1176 
1177 	if (ap_configuration)
1178 		max_domain_id = ap_max_domain_id ? : -1;
1179 	else
1180 		max_domain_id = 15;
1181 	return snprintf(buf, PAGE_SIZE, "%d\n", max_domain_id);
1182 }
1183 
1184 static BUS_ATTR_RO(ap_max_domain_id);
1185 
1186 static ssize_t apmask_show(struct bus_type *bus, char *buf)
1187 {
1188 	int rc;
1189 
1190 	if (mutex_lock_interruptible(&ap_perms_mutex))
1191 		return -ERESTARTSYS;
1192 	rc = snprintf(buf, PAGE_SIZE,
1193 		      "0x%016lx%016lx%016lx%016lx\n",
1194 		      ap_perms.apm[0], ap_perms.apm[1],
1195 		      ap_perms.apm[2], ap_perms.apm[3]);
1196 	mutex_unlock(&ap_perms_mutex);
1197 
1198 	return rc;
1199 }
1200 
1201 static ssize_t apmask_store(struct bus_type *bus, const char *buf,
1202 			    size_t count)
1203 {
1204 	int rc;
1205 
1206 	rc = ap_parse_mask_str(buf, ap_perms.apm, AP_DEVICES, &ap_perms_mutex);
1207 	if (rc)
1208 		return rc;
1209 
1210 	ap_bus_revise_bindings();
1211 
1212 	return count;
1213 }
1214 
1215 static BUS_ATTR_RW(apmask);
1216 
1217 static ssize_t aqmask_show(struct bus_type *bus, char *buf)
1218 {
1219 	int rc;
1220 
1221 	if (mutex_lock_interruptible(&ap_perms_mutex))
1222 		return -ERESTARTSYS;
1223 	rc = snprintf(buf, PAGE_SIZE,
1224 		      "0x%016lx%016lx%016lx%016lx\n",
1225 		      ap_perms.aqm[0], ap_perms.aqm[1],
1226 		      ap_perms.aqm[2], ap_perms.aqm[3]);
1227 	mutex_unlock(&ap_perms_mutex);
1228 
1229 	return rc;
1230 }
1231 
1232 static ssize_t aqmask_store(struct bus_type *bus, const char *buf,
1233 			    size_t count)
1234 {
1235 	int rc;
1236 
1237 	rc = ap_parse_mask_str(buf, ap_perms.aqm, AP_DOMAINS, &ap_perms_mutex);
1238 	if (rc)
1239 		return rc;
1240 
1241 	ap_bus_revise_bindings();
1242 
1243 	return count;
1244 }
1245 
1246 static BUS_ATTR_RW(aqmask);
1247 
1248 static struct bus_attribute *const ap_bus_attrs[] = {
1249 	&bus_attr_ap_domain,
1250 	&bus_attr_ap_control_domain_mask,
1251 	&bus_attr_ap_usage_domain_mask,
1252 	&bus_attr_ap_adapter_mask,
1253 	&bus_attr_config_time,
1254 	&bus_attr_poll_thread,
1255 	&bus_attr_ap_interrupts,
1256 	&bus_attr_poll_timeout,
1257 	&bus_attr_ap_max_domain_id,
1258 	&bus_attr_apmask,
1259 	&bus_attr_aqmask,
1260 	NULL,
1261 };
1262 
1263 /**
1264  * ap_select_domain(): Select an AP domain if possible and we haven't
1265  * already done so before.
1266  */
1267 static void ap_select_domain(void)
1268 {
1269 	int count, max_count, best_domain;
1270 	struct ap_queue_status status;
1271 	int i, j;
1272 
1273 	/*
1274 	 * We want to use a single domain. Either the one specified with
1275 	 * the "domain=" parameter or the domain with the maximum number
1276 	 * of devices.
1277 	 */
1278 	spin_lock_bh(&ap_domain_lock);
1279 	if (ap_domain_index >= 0) {
1280 		/* Domain has already been selected. */
1281 		spin_unlock_bh(&ap_domain_lock);
1282 		return;
1283 	}
1284 	best_domain = -1;
1285 	max_count = 0;
1286 	for (i = 0; i < AP_DOMAINS; i++) {
1287 		if (!ap_test_config_usage_domain(i) ||
1288 		    !test_bit_inv(i, ap_perms.aqm))
1289 			continue;
1290 		count = 0;
1291 		for (j = 0; j < AP_DEVICES; j++) {
1292 			if (!ap_test_config_card_id(j))
1293 				continue;
1294 			status = ap_test_queue(AP_MKQID(j, i),
1295 					       ap_apft_available(),
1296 					       NULL);
1297 			if (status.response_code != AP_RESPONSE_NORMAL)
1298 				continue;
1299 			count++;
1300 		}
1301 		if (count > max_count) {
1302 			max_count = count;
1303 			best_domain = i;
1304 		}
1305 	}
1306 	if (best_domain >= 0) {
1307 		ap_domain_index = best_domain;
1308 		AP_DBF(DBF_DEBUG, "new ap_domain_index=%d\n", ap_domain_index);
1309 	}
1310 	spin_unlock_bh(&ap_domain_lock);
1311 }
1312 
1313 /*
1314  * This function checks the type and returns either 0 for not
1315  * supported or the highest compatible type value (which may
1316  * include the input type value).
1317  */
1318 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func)
1319 {
1320 	int comp_type = 0;
1321 
1322 	/* < CEX2A is not supported */
1323 	if (rawtype < AP_DEVICE_TYPE_CEX2A)
1324 		return 0;
1325 	/* up to CEX6 known and fully supported */
1326 	if (rawtype <= AP_DEVICE_TYPE_CEX6)
1327 		return rawtype;
1328 	/*
1329 	 * unknown new type > CEX6, check for compatibility
1330 	 * to the highest known and supported type which is
1331 	 * currently CEX6 with the help of the QACT function.
1332 	 */
1333 	if (ap_qact_available()) {
1334 		struct ap_queue_status status;
1335 		union ap_qact_ap_info apinfo = {0};
1336 
1337 		apinfo.mode = (func >> 26) & 0x07;
1338 		apinfo.cat = AP_DEVICE_TYPE_CEX6;
1339 		status = ap_qact(qid, 0, &apinfo);
1340 		if (status.response_code == AP_RESPONSE_NORMAL
1341 		    && apinfo.cat >= AP_DEVICE_TYPE_CEX2A
1342 		    && apinfo.cat <= AP_DEVICE_TYPE_CEX6)
1343 			comp_type = apinfo.cat;
1344 	}
1345 	if (!comp_type)
1346 		AP_DBF(DBF_WARN, "queue=%02x.%04x unable to map type %d\n",
1347 		       AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype);
1348 	else if (comp_type != rawtype)
1349 		AP_DBF(DBF_INFO, "queue=%02x.%04x map type %d to %d\n",
1350 		       AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype, comp_type);
1351 	return comp_type;
1352 }
1353 
1354 /*
1355  * Helper function to be used with bus_find_dev
1356  * matches for the card device with the given id
1357  */
1358 static int __match_card_device_with_id(struct device *dev, const void *data)
1359 {
1360 	return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *) data;
1361 }
1362 
1363 /*
1364  * Helper function to be used with bus_find_dev
1365  * matches for the queue device with a given qid
1366  */
1367 static int __match_queue_device_with_qid(struct device *dev, const void *data)
1368 {
1369 	return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long) data;
1370 }
1371 
1372 /*
1373  * Helper function to be used with bus_find_dev
1374  * matches any queue device with given queue id
1375  */
1376 static int __match_queue_device_with_queue_id(struct device *dev, const void *data)
1377 {
1378 	return is_queue_dev(dev)
1379 		&& AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long) data;
1380 }
1381 
1382 /*
1383  * Helper function for ap_scan_bus().
1384  * Does the scan bus job for the given adapter id.
1385  */
1386 static void _ap_scan_bus_adapter(int id)
1387 {
1388 	ap_qid_t qid;
1389 	unsigned int func;
1390 	struct ap_card *ac;
1391 	struct device *dev;
1392 	struct ap_queue *aq;
1393 	int rc, dom, depth, type, comp_type, borked;
1394 
1395 	/* check if there is a card device registered with this id */
1396 	dev = bus_find_device(&ap_bus_type, NULL,
1397 			      (void *)(long) id,
1398 			      __match_card_device_with_id);
1399 	ac = dev ? to_ap_card(dev) : NULL;
1400 	if (!ap_test_config_card_id(id)) {
1401 		if (dev) {
1402 			/* Card device has been removed from configuration */
1403 			bus_for_each_dev(&ap_bus_type, NULL,
1404 					 (void *)(long) id,
1405 					 __ap_queue_devices_with_id_unregister);
1406 			device_unregister(dev);
1407 			put_device(dev);
1408 		}
1409 		return;
1410 	}
1411 
1412 	/*
1413 	 * This card id is enabled in the configuration. If we already have
1414 	 * a card device with this id, check if type and functions are still
1415 	 * the very same. Also verify that at least one queue is available.
1416 	 */
1417 	if (ac) {
1418 		/* find the first valid queue */
1419 		for (dom = 0; dom < AP_DOMAINS; dom++) {
1420 			qid = AP_MKQID(id, dom);
1421 			if (ap_query_queue(qid, &depth, &type, &func) == 0)
1422 				break;
1423 		}
1424 		borked = 0;
1425 		if (dom >= AP_DOMAINS) {
1426 			/* no accessible queue on this card */
1427 			borked = 1;
1428 		} else if (ac->raw_hwtype != type) {
1429 			/* card type has changed */
1430 			AP_DBF(DBF_INFO, "card=%02x type changed.\n", id);
1431 			borked = 1;
1432 		} else if (ac->functions != func) {
1433 			/* card functions have changed */
1434 			AP_DBF(DBF_INFO, "card=%02x functions changed.\n", id);
1435 			borked = 1;
1436 		}
1437 		if (borked) {
1438 			/* unregister card device and associated queues */
1439 			bus_for_each_dev(&ap_bus_type, NULL,
1440 					 (void *)(long) id,
1441 					 __ap_queue_devices_with_id_unregister);
1442 			device_unregister(dev);
1443 			put_device(dev);
1444 			/* go back if there is no valid queue on this card */
1445 			if (dom >= AP_DOMAINS)
1446 				return;
1447 			ac = NULL;
1448 		}
1449 	}
1450 
1451 	/*
1452 	 * Go through all possible queue ids. Check and maybe create or release
1453 	 * queue devices for this card. If there exists no card device yet,
1454 	 * create a card device also.
1455 	 */
1456 	for (dom = 0; dom < AP_DOMAINS; dom++) {
1457 		qid = AP_MKQID(id, dom);
1458 		dev = bus_find_device(&ap_bus_type, NULL,
1459 				      (void *)(long) qid,
1460 				      __match_queue_device_with_qid);
1461 		aq = dev ? to_ap_queue(dev) : NULL;
1462 		if (!ap_test_config_usage_domain(dom)) {
1463 			if (dev) {
1464 				/* Queue device exists but has been
1465 				 * removed from configuration.
1466 				 */
1467 				device_unregister(dev);
1468 				put_device(dev);
1469 			}
1470 			continue;
1471 		}
1472 		/* try to fetch infos about this queue */
1473 		rc = ap_query_queue(qid, &depth, &type, &func);
1474 		if (dev) {
1475 			if (rc == -ENODEV)
1476 				borked = 1;
1477 			else {
1478 				spin_lock_bh(&aq->lock);
1479 				borked = aq->state == AP_STATE_BORKED;
1480 				spin_unlock_bh(&aq->lock);
1481 			}
1482 			if (borked) {
1483 				/* Remove broken device */
1484 				AP_DBF(DBF_DEBUG,
1485 				       "removing broken queue=%02x.%04x\n",
1486 				       id, dom);
1487 				device_unregister(dev);
1488 			}
1489 			put_device(dev);
1490 			continue;
1491 		}
1492 		if (rc)
1493 			continue;
1494 		/* a new queue device is needed, check out comp type */
1495 		comp_type = ap_get_compatible_type(qid, type, func);
1496 		if (!comp_type)
1497 			continue;
1498 		/* maybe a card device needs to be created first */
1499 		if (!ac) {
1500 			ac = ap_card_create(id, depth, type, comp_type, func);
1501 			if (!ac)
1502 				continue;
1503 			ac->ap_dev.device.bus = &ap_bus_type;
1504 			ac->ap_dev.device.parent = ap_root_device;
1505 			dev_set_name(&ac->ap_dev.device, "card%02x", id);
1506 			/* Register card device with AP bus */
1507 			rc = device_register(&ac->ap_dev.device);
1508 			if (rc) {
1509 				put_device(&ac->ap_dev.device);
1510 				ac = NULL;
1511 				break;
1512 			}
1513 			/* get it and thus adjust reference counter */
1514 			get_device(&ac->ap_dev.device);
1515 		}
1516 		/* now create the new queue device */
1517 		aq = ap_queue_create(qid, comp_type);
1518 		if (!aq)
1519 			continue;
1520 		aq->card = ac;
1521 		aq->ap_dev.device.bus = &ap_bus_type;
1522 		aq->ap_dev.device.parent = &ac->ap_dev.device;
1523 		dev_set_name(&aq->ap_dev.device, "%02x.%04x", id, dom);
1524 		/* Register queue device */
1525 		rc = device_register(&aq->ap_dev.device);
1526 		if (rc) {
1527 			put_device(&aq->ap_dev.device);
1528 			continue;
1529 		}
1530 	} /* end domain loop */
1531 
1532 	if (ac)
1533 		put_device(&ac->ap_dev.device);
1534 }
1535 
1536 /**
1537  * ap_scan_bus(): Scan the AP bus for new devices
1538  * Runs periodically, workqueue timer (ap_config_time)
1539  */
1540 static void ap_scan_bus(struct work_struct *unused)
1541 {
1542 	int id;
1543 
1544 	AP_DBF(DBF_DEBUG, "%s running\n", __func__);
1545 
1546 	ap_query_configuration(ap_configuration);
1547 	ap_select_domain();
1548 
1549 	/* loop over all possible adapters */
1550 	for (id = 0; id < AP_DEVICES; id++)
1551 		_ap_scan_bus_adapter(id);
1552 
1553 	/* check if there is at least one queue available with default domain */
1554 	if (ap_domain_index >= 0) {
1555 		struct device *dev =
1556 			bus_find_device(&ap_bus_type, NULL,
1557 					(void *)(long) ap_domain_index,
1558 					__match_queue_device_with_queue_id);
1559 		if (dev)
1560 			put_device(dev);
1561 		else
1562 			AP_DBF(DBF_INFO,
1563 			       "no queue device with default domain %d available\n",
1564 			       ap_domain_index);
1565 	}
1566 
1567 	mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1568 }
1569 
1570 static void ap_config_timeout(struct timer_list *unused)
1571 {
1572 	if (ap_suspend_flag)
1573 		return;
1574 	queue_work(system_long_wq, &ap_scan_work);
1575 }
1576 
1577 static int __init ap_debug_init(void)
1578 {
1579 	ap_dbf_info = debug_register("ap", 1, 1,
1580 				     DBF_MAX_SPRINTF_ARGS * sizeof(long));
1581 	debug_register_view(ap_dbf_info, &debug_sprintf_view);
1582 	debug_set_level(ap_dbf_info, DBF_ERR);
1583 
1584 	return 0;
1585 }
1586 
1587 static void __init ap_perms_init(void)
1588 {
1589 	/* all resources useable if no kernel parameter string given */
1590 	memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm));
1591 	memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm));
1592 	memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm));
1593 
1594 	/* apm kernel parameter string */
1595 	if (apm_str) {
1596 		memset(&ap_perms.apm, 0, sizeof(ap_perms.apm));
1597 		ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES,
1598 				  &ap_perms_mutex);
1599 	}
1600 
1601 	/* aqm kernel parameter string */
1602 	if (aqm_str) {
1603 		memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm));
1604 		ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS,
1605 				  &ap_perms_mutex);
1606 	}
1607 }
1608 
1609 /**
1610  * ap_module_init(): The module initialization code.
1611  *
1612  * Initializes the module.
1613  */
1614 static int __init ap_module_init(void)
1615 {
1616 	int max_domain_id;
1617 	int rc, i;
1618 
1619 	rc = ap_debug_init();
1620 	if (rc)
1621 		return rc;
1622 
1623 	if (!ap_instructions_available()) {
1624 		pr_warn("The hardware system does not support AP instructions\n");
1625 		return -ENODEV;
1626 	}
1627 
1628 	/* set up the AP permissions (ioctls, ap and aq masks) */
1629 	ap_perms_init();
1630 
1631 	/* Get AP configuration data if available */
1632 	ap_init_configuration();
1633 
1634 	if (ap_configuration)
1635 		max_domain_id =
1636 			ap_max_domain_id ? ap_max_domain_id : AP_DOMAINS - 1;
1637 	else
1638 		max_domain_id = 15;
1639 	if (ap_domain_index < -1 || ap_domain_index > max_domain_id ||
1640 	    (ap_domain_index >= 0 &&
1641 	     !test_bit_inv(ap_domain_index, ap_perms.aqm))) {
1642 		pr_warn("%d is not a valid cryptographic domain\n",
1643 			ap_domain_index);
1644 		ap_domain_index = -1;
1645 	}
1646 	/* In resume callback we need to know if the user had set the domain.
1647 	 * If so, we can not just reset it.
1648 	 */
1649 	if (ap_domain_index >= 0)
1650 		user_set_domain = 1;
1651 
1652 	if (ap_interrupts_available()) {
1653 		rc = register_adapter_interrupt(&ap_airq);
1654 		ap_airq_flag = (rc == 0);
1655 	}
1656 
1657 	/* Create /sys/bus/ap. */
1658 	rc = bus_register(&ap_bus_type);
1659 	if (rc)
1660 		goto out;
1661 	for (i = 0; ap_bus_attrs[i]; i++) {
1662 		rc = bus_create_file(&ap_bus_type, ap_bus_attrs[i]);
1663 		if (rc)
1664 			goto out_bus;
1665 	}
1666 
1667 	/* Create /sys/devices/ap. */
1668 	ap_root_device = root_device_register("ap");
1669 	rc = PTR_ERR_OR_ZERO(ap_root_device);
1670 	if (rc)
1671 		goto out_bus;
1672 
1673 	/* Setup the AP bus rescan timer. */
1674 	timer_setup(&ap_config_timer, ap_config_timeout, 0);
1675 
1676 	/*
1677 	 * Setup the high resultion poll timer.
1678 	 * If we are running under z/VM adjust polling to z/VM polling rate.
1679 	 */
1680 	if (MACHINE_IS_VM)
1681 		poll_timeout = 1500000;
1682 	spin_lock_init(&ap_poll_timer_lock);
1683 	hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1684 	ap_poll_timer.function = ap_poll_timeout;
1685 
1686 	/* Start the low priority AP bus poll thread. */
1687 	if (ap_thread_flag) {
1688 		rc = ap_poll_thread_start();
1689 		if (rc)
1690 			goto out_work;
1691 	}
1692 
1693 	rc = register_pm_notifier(&ap_power_notifier);
1694 	if (rc)
1695 		goto out_pm;
1696 
1697 	queue_work(system_long_wq, &ap_scan_work);
1698 	initialised = true;
1699 
1700 	return 0;
1701 
1702 out_pm:
1703 	ap_poll_thread_stop();
1704 out_work:
1705 	hrtimer_cancel(&ap_poll_timer);
1706 	root_device_unregister(ap_root_device);
1707 out_bus:
1708 	while (i--)
1709 		bus_remove_file(&ap_bus_type, ap_bus_attrs[i]);
1710 	bus_unregister(&ap_bus_type);
1711 out:
1712 	if (ap_using_interrupts())
1713 		unregister_adapter_interrupt(&ap_airq);
1714 	kfree(ap_configuration);
1715 	return rc;
1716 }
1717 device_initcall(ap_module_init);
1718