xref: /openbmc/linux/drivers/s390/crypto/ap_bus.c (revision 8dfb839c)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright IBM Corp. 2006, 2012
4  * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
5  *	      Martin Schwidefsky <schwidefsky@de.ibm.com>
6  *	      Ralph Wuerthner <rwuerthn@de.ibm.com>
7  *	      Felix Beck <felix.beck@de.ibm.com>
8  *	      Holger Dengler <hd@linux.vnet.ibm.com>
9  *
10  * Adjunct processor bus.
11  */
12 
13 #define KMSG_COMPONENT "ap"
14 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
15 
16 #include <linux/kernel_stat.h>
17 #include <linux/moduleparam.h>
18 #include <linux/init.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/interrupt.h>
22 #include <linux/workqueue.h>
23 #include <linux/slab.h>
24 #include <linux/notifier.h>
25 #include <linux/kthread.h>
26 #include <linux/mutex.h>
27 #include <linux/suspend.h>
28 #include <asm/airq.h>
29 #include <linux/atomic.h>
30 #include <asm/isc.h>
31 #include <linux/hrtimer.h>
32 #include <linux/ktime.h>
33 #include <asm/facility.h>
34 #include <linux/crypto.h>
35 #include <linux/mod_devicetable.h>
36 #include <linux/debugfs.h>
37 #include <linux/ctype.h>
38 
39 #include "ap_bus.h"
40 #include "ap_debug.h"
41 
42 /*
43  * Module parameters; note though this file itself isn't modular.
44  */
45 int ap_domain_index = -1;	/* Adjunct Processor Domain Index */
46 static DEFINE_SPINLOCK(ap_domain_lock);
47 module_param_named(domain, ap_domain_index, int, 0440);
48 MODULE_PARM_DESC(domain, "domain index for ap devices");
49 EXPORT_SYMBOL(ap_domain_index);
50 
51 static int ap_thread_flag;
52 module_param_named(poll_thread, ap_thread_flag, int, 0440);
53 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
54 
55 static char *apm_str;
56 module_param_named(apmask, apm_str, charp, 0440);
57 MODULE_PARM_DESC(apmask, "AP bus adapter mask.");
58 
59 static char *aqm_str;
60 module_param_named(aqmask, aqm_str, charp, 0440);
61 MODULE_PARM_DESC(aqmask, "AP bus domain mask.");
62 
63 static struct device *ap_root_device;
64 
65 DEFINE_SPINLOCK(ap_list_lock);
66 LIST_HEAD(ap_card_list);
67 
68 /* Default permissions (card and domain masking) */
69 static struct ap_perms {
70 	DECLARE_BITMAP(apm, AP_DEVICES);
71 	DECLARE_BITMAP(aqm, AP_DOMAINS);
72 } ap_perms;
73 static DEFINE_MUTEX(ap_perms_mutex);
74 
75 static struct ap_config_info *ap_configuration;
76 static bool initialised;
77 
78 /*
79  * AP bus related debug feature things.
80  */
81 debug_info_t *ap_dbf_info;
82 
83 /*
84  * Workqueue timer for bus rescan.
85  */
86 static struct timer_list ap_config_timer;
87 static int ap_config_time = AP_CONFIG_TIME;
88 static void ap_scan_bus(struct work_struct *);
89 static DECLARE_WORK(ap_scan_work, ap_scan_bus);
90 
91 /*
92  * Tasklet & timer for AP request polling and interrupts
93  */
94 static void ap_tasklet_fn(unsigned long);
95 static DECLARE_TASKLET(ap_tasklet, ap_tasklet_fn, 0);
96 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
97 static struct task_struct *ap_poll_kthread;
98 static DEFINE_MUTEX(ap_poll_thread_mutex);
99 static DEFINE_SPINLOCK(ap_poll_timer_lock);
100 static struct hrtimer ap_poll_timer;
101 /*
102  * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
103  * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.
104  */
105 static unsigned long long poll_timeout = 250000;
106 
107 /* Suspend flag */
108 static int ap_suspend_flag;
109 /* Maximum domain id */
110 static int ap_max_domain_id;
111 /*
112  * Flag to check if domain was set through module parameter domain=. This is
113  * important when supsend and resume is done in a z/VM environment where the
114  * domain might change.
115  */
116 static int user_set_domain;
117 static struct bus_type ap_bus_type;
118 
119 /* Adapter interrupt definitions */
120 static void ap_interrupt_handler(struct airq_struct *airq);
121 
122 static int ap_airq_flag;
123 
124 static struct airq_struct ap_airq = {
125 	.handler = ap_interrupt_handler,
126 	.isc = AP_ISC,
127 };
128 
129 /**
130  * ap_using_interrupts() - Returns non-zero if interrupt support is
131  * available.
132  */
133 static inline int ap_using_interrupts(void)
134 {
135 	return ap_airq_flag;
136 }
137 
138 /**
139  * ap_airq_ptr() - Get the address of the adapter interrupt indicator
140  *
141  * Returns the address of the local-summary-indicator of the adapter
142  * interrupt handler for AP, or NULL if adapter interrupts are not
143  * available.
144  */
145 void *ap_airq_ptr(void)
146 {
147 	if (ap_using_interrupts())
148 		return ap_airq.lsi_ptr;
149 	return NULL;
150 }
151 
152 /**
153  * ap_interrupts_available(): Test if AP interrupts are available.
154  *
155  * Returns 1 if AP interrupts are available.
156  */
157 static int ap_interrupts_available(void)
158 {
159 	return test_facility(65);
160 }
161 
162 /**
163  * ap_configuration_available(): Test if AP configuration
164  * information is available.
165  *
166  * Returns 1 if AP configuration information is available.
167  */
168 static int ap_configuration_available(void)
169 {
170 	return test_facility(12);
171 }
172 
173 /**
174  * ap_apft_available(): Test if AP facilities test (APFT)
175  * facility is available.
176  *
177  * Returns 1 if APFT is is available.
178  */
179 static int ap_apft_available(void)
180 {
181 	return test_facility(15);
182 }
183 
184 /*
185  * ap_qact_available(): Test if the PQAP(QACT) subfunction is available.
186  *
187  * Returns 1 if the QACT subfunction is available.
188  */
189 static inline int ap_qact_available(void)
190 {
191 	if (ap_configuration)
192 		return ap_configuration->qact;
193 	return 0;
194 }
195 
196 /*
197  * ap_query_configuration(): Fetch cryptographic config info
198  *
199  * Returns the ap configuration info fetched via PQAP(QCI).
200  * On success 0 is returned, on failure a negative errno
201  * is returned, e.g. if the PQAP(QCI) instruction is not
202  * available, the return value will be -EOPNOTSUPP.
203  */
204 static inline int ap_query_configuration(struct ap_config_info *info)
205 {
206 	if (!ap_configuration_available())
207 		return -EOPNOTSUPP;
208 	if (!info)
209 		return -EINVAL;
210 	return ap_qci(info);
211 }
212 EXPORT_SYMBOL(ap_query_configuration);
213 
214 /**
215  * ap_init_configuration(): Allocate and query configuration array.
216  */
217 static void ap_init_configuration(void)
218 {
219 	if (!ap_configuration_available())
220 		return;
221 
222 	ap_configuration = kzalloc(sizeof(*ap_configuration), GFP_KERNEL);
223 	if (!ap_configuration)
224 		return;
225 	if (ap_query_configuration(ap_configuration) != 0) {
226 		kfree(ap_configuration);
227 		ap_configuration = NULL;
228 		return;
229 	}
230 }
231 
232 /*
233  * ap_test_config(): helper function to extract the nrth bit
234  *		     within the unsigned int array field.
235  */
236 static inline int ap_test_config(unsigned int *field, unsigned int nr)
237 {
238 	return ap_test_bit((field + (nr >> 5)), (nr & 0x1f));
239 }
240 
241 /*
242  * ap_test_config_card_id(): Test, whether an AP card ID is configured.
243  * @id AP card ID
244  *
245  * Returns 0 if the card is not configured
246  *	   1 if the card is configured or
247  *	     if the configuration information is not available
248  */
249 static inline int ap_test_config_card_id(unsigned int id)
250 {
251 	if (!ap_configuration)	/* QCI not supported */
252 		return 1;
253 	return ap_test_config(ap_configuration->apm, id);
254 }
255 
256 /*
257  * ap_test_config_domain(): Test, whether an AP usage domain is configured.
258  * @domain AP usage domain ID
259  *
260  * Returns 0 if the usage domain is not configured
261  *	   1 if the usage domain is configured or
262  *	     if the configuration information is not available
263  */
264 static inline int ap_test_config_domain(unsigned int domain)
265 {
266 	if (!ap_configuration)	/* QCI not supported */
267 		return domain < 16;
268 	return ap_test_config(ap_configuration->aqm, domain);
269 }
270 
271 /**
272  * ap_query_queue(): Check if an AP queue is available.
273  * @qid: The AP queue number
274  * @queue_depth: Pointer to queue depth value
275  * @device_type: Pointer to device type value
276  * @facilities: Pointer to facility indicator
277  */
278 static int ap_query_queue(ap_qid_t qid, int *queue_depth, int *device_type,
279 			  unsigned int *facilities)
280 {
281 	struct ap_queue_status status;
282 	unsigned long info;
283 	int nd;
284 
285 	if (!ap_test_config_card_id(AP_QID_CARD(qid)))
286 		return -ENODEV;
287 
288 	status = ap_test_queue(qid, ap_apft_available(), &info);
289 	switch (status.response_code) {
290 	case AP_RESPONSE_NORMAL:
291 		*queue_depth = (int)(info & 0xff);
292 		*device_type = (int)((info >> 24) & 0xff);
293 		*facilities = (unsigned int)(info >> 32);
294 		/* Update maximum domain id */
295 		nd = (info >> 16) & 0xff;
296 		/* if N bit is available, z13 and newer */
297 		if ((info & (1UL << 57)) && nd > 0)
298 			ap_max_domain_id = nd;
299 		else /* older machine types */
300 			ap_max_domain_id = 15;
301 		switch (*device_type) {
302 			/* For CEX2 and CEX3 the available functions
303 			 * are not refrected by the facilities bits.
304 			 * Instead it is coded into the type. So here
305 			 * modify the function bits based on the type.
306 			 */
307 		case AP_DEVICE_TYPE_CEX2A:
308 		case AP_DEVICE_TYPE_CEX3A:
309 			*facilities |= 0x08000000;
310 			break;
311 		case AP_DEVICE_TYPE_CEX2C:
312 		case AP_DEVICE_TYPE_CEX3C:
313 			*facilities |= 0x10000000;
314 			break;
315 		default:
316 			break;
317 		}
318 		return 0;
319 	case AP_RESPONSE_Q_NOT_AVAIL:
320 	case AP_RESPONSE_DECONFIGURED:
321 	case AP_RESPONSE_CHECKSTOPPED:
322 	case AP_RESPONSE_INVALID_ADDRESS:
323 		return -ENODEV;
324 	case AP_RESPONSE_RESET_IN_PROGRESS:
325 	case AP_RESPONSE_OTHERWISE_CHANGED:
326 	case AP_RESPONSE_BUSY:
327 		return -EBUSY;
328 	default:
329 		BUG();
330 	}
331 }
332 
333 void ap_wait(enum ap_wait wait)
334 {
335 	ktime_t hr_time;
336 
337 	switch (wait) {
338 	case AP_WAIT_AGAIN:
339 	case AP_WAIT_INTERRUPT:
340 		if (ap_using_interrupts())
341 			break;
342 		if (ap_poll_kthread) {
343 			wake_up(&ap_poll_wait);
344 			break;
345 		}
346 		/* Fall through */
347 	case AP_WAIT_TIMEOUT:
348 		spin_lock_bh(&ap_poll_timer_lock);
349 		if (!hrtimer_is_queued(&ap_poll_timer)) {
350 			hr_time = poll_timeout;
351 			hrtimer_forward_now(&ap_poll_timer, hr_time);
352 			hrtimer_restart(&ap_poll_timer);
353 		}
354 		spin_unlock_bh(&ap_poll_timer_lock);
355 		break;
356 	case AP_WAIT_NONE:
357 	default:
358 		break;
359 	}
360 }
361 
362 /**
363  * ap_request_timeout(): Handling of request timeouts
364  * @t: timer making this callback
365  *
366  * Handles request timeouts.
367  */
368 void ap_request_timeout(struct timer_list *t)
369 {
370 	struct ap_queue *aq = from_timer(aq, t, timeout);
371 
372 	if (ap_suspend_flag)
373 		return;
374 	spin_lock_bh(&aq->lock);
375 	ap_wait(ap_sm_event(aq, AP_EVENT_TIMEOUT));
376 	spin_unlock_bh(&aq->lock);
377 }
378 
379 /**
380  * ap_poll_timeout(): AP receive polling for finished AP requests.
381  * @unused: Unused pointer.
382  *
383  * Schedules the AP tasklet using a high resolution timer.
384  */
385 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
386 {
387 	if (!ap_suspend_flag)
388 		tasklet_schedule(&ap_tasklet);
389 	return HRTIMER_NORESTART;
390 }
391 
392 /**
393  * ap_interrupt_handler() - Schedule ap_tasklet on interrupt
394  * @airq: pointer to adapter interrupt descriptor
395  */
396 static void ap_interrupt_handler(struct airq_struct *airq)
397 {
398 	inc_irq_stat(IRQIO_APB);
399 	if (!ap_suspend_flag)
400 		tasklet_schedule(&ap_tasklet);
401 }
402 
403 /**
404  * ap_tasklet_fn(): Tasklet to poll all AP devices.
405  * @dummy: Unused variable
406  *
407  * Poll all AP devices on the bus.
408  */
409 static void ap_tasklet_fn(unsigned long dummy)
410 {
411 	struct ap_card *ac;
412 	struct ap_queue *aq;
413 	enum ap_wait wait = AP_WAIT_NONE;
414 
415 	/* Reset the indicator if interrupts are used. Thus new interrupts can
416 	 * be received. Doing it in the beginning of the tasklet is therefor
417 	 * important that no requests on any AP get lost.
418 	 */
419 	if (ap_using_interrupts())
420 		xchg(ap_airq.lsi_ptr, 0);
421 
422 	spin_lock_bh(&ap_list_lock);
423 	for_each_ap_card(ac) {
424 		for_each_ap_queue(aq, ac) {
425 			spin_lock_bh(&aq->lock);
426 			wait = min(wait, ap_sm_event_loop(aq, AP_EVENT_POLL));
427 			spin_unlock_bh(&aq->lock);
428 		}
429 	}
430 	spin_unlock_bh(&ap_list_lock);
431 
432 	ap_wait(wait);
433 }
434 
435 static int ap_pending_requests(void)
436 {
437 	struct ap_card *ac;
438 	struct ap_queue *aq;
439 
440 	spin_lock_bh(&ap_list_lock);
441 	for_each_ap_card(ac) {
442 		for_each_ap_queue(aq, ac) {
443 			if (aq->queue_count == 0)
444 				continue;
445 			spin_unlock_bh(&ap_list_lock);
446 			return 1;
447 		}
448 	}
449 	spin_unlock_bh(&ap_list_lock);
450 	return 0;
451 }
452 
453 /**
454  * ap_poll_thread(): Thread that polls for finished requests.
455  * @data: Unused pointer
456  *
457  * AP bus poll thread. The purpose of this thread is to poll for
458  * finished requests in a loop if there is a "free" cpu - that is
459  * a cpu that doesn't have anything better to do. The polling stops
460  * as soon as there is another task or if all messages have been
461  * delivered.
462  */
463 static int ap_poll_thread(void *data)
464 {
465 	DECLARE_WAITQUEUE(wait, current);
466 
467 	set_user_nice(current, MAX_NICE);
468 	set_freezable();
469 	while (!kthread_should_stop()) {
470 		add_wait_queue(&ap_poll_wait, &wait);
471 		set_current_state(TASK_INTERRUPTIBLE);
472 		if (ap_suspend_flag || !ap_pending_requests()) {
473 			schedule();
474 			try_to_freeze();
475 		}
476 		set_current_state(TASK_RUNNING);
477 		remove_wait_queue(&ap_poll_wait, &wait);
478 		if (need_resched()) {
479 			schedule();
480 			try_to_freeze();
481 			continue;
482 		}
483 		ap_tasklet_fn(0);
484 	}
485 
486 	return 0;
487 }
488 
489 static int ap_poll_thread_start(void)
490 {
491 	int rc;
492 
493 	if (ap_using_interrupts() || ap_poll_kthread)
494 		return 0;
495 	mutex_lock(&ap_poll_thread_mutex);
496 	ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
497 	rc = PTR_ERR_OR_ZERO(ap_poll_kthread);
498 	if (rc)
499 		ap_poll_kthread = NULL;
500 	mutex_unlock(&ap_poll_thread_mutex);
501 	return rc;
502 }
503 
504 static void ap_poll_thread_stop(void)
505 {
506 	if (!ap_poll_kthread)
507 		return;
508 	mutex_lock(&ap_poll_thread_mutex);
509 	kthread_stop(ap_poll_kthread);
510 	ap_poll_kthread = NULL;
511 	mutex_unlock(&ap_poll_thread_mutex);
512 }
513 
514 #define is_card_dev(x) ((x)->parent == ap_root_device)
515 #define is_queue_dev(x) ((x)->parent != ap_root_device)
516 
517 /**
518  * ap_bus_match()
519  * @dev: Pointer to device
520  * @drv: Pointer to device_driver
521  *
522  * AP bus driver registration/unregistration.
523  */
524 static int ap_bus_match(struct device *dev, struct device_driver *drv)
525 {
526 	struct ap_driver *ap_drv = to_ap_drv(drv);
527 	struct ap_device_id *id;
528 
529 	/*
530 	 * Compare device type of the device with the list of
531 	 * supported types of the device_driver.
532 	 */
533 	for (id = ap_drv->ids; id->match_flags; id++) {
534 		if (is_card_dev(dev) &&
535 		    id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE &&
536 		    id->dev_type == to_ap_dev(dev)->device_type)
537 			return 1;
538 		if (is_queue_dev(dev) &&
539 		    id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE &&
540 		    id->dev_type == to_ap_dev(dev)->device_type)
541 			return 1;
542 	}
543 	return 0;
544 }
545 
546 /**
547  * ap_uevent(): Uevent function for AP devices.
548  * @dev: Pointer to device
549  * @env: Pointer to kobj_uevent_env
550  *
551  * It sets up a single environment variable DEV_TYPE which contains the
552  * hardware device type.
553  */
554 static int ap_uevent(struct device *dev, struct kobj_uevent_env *env)
555 {
556 	struct ap_device *ap_dev = to_ap_dev(dev);
557 	int retval = 0;
558 
559 	if (!ap_dev)
560 		return -ENODEV;
561 
562 	/* Set up DEV_TYPE environment variable. */
563 	retval = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
564 	if (retval)
565 		return retval;
566 
567 	/* Add MODALIAS= */
568 	retval = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
569 
570 	return retval;
571 }
572 
573 static int ap_dev_suspend(struct device *dev)
574 {
575 	struct ap_device *ap_dev = to_ap_dev(dev);
576 
577 	if (ap_dev->drv && ap_dev->drv->suspend)
578 		ap_dev->drv->suspend(ap_dev);
579 	return 0;
580 }
581 
582 static int ap_dev_resume(struct device *dev)
583 {
584 	struct ap_device *ap_dev = to_ap_dev(dev);
585 
586 	if (ap_dev->drv && ap_dev->drv->resume)
587 		ap_dev->drv->resume(ap_dev);
588 	return 0;
589 }
590 
591 static void ap_bus_suspend(void)
592 {
593 	AP_DBF(DBF_DEBUG, "%s running\n", __func__);
594 
595 	ap_suspend_flag = 1;
596 	/*
597 	 * Disable scanning for devices, thus we do not want to scan
598 	 * for them after removing.
599 	 */
600 	flush_work(&ap_scan_work);
601 	tasklet_disable(&ap_tasklet);
602 }
603 
604 static int __ap_card_devices_unregister(struct device *dev, void *dummy)
605 {
606 	if (is_card_dev(dev))
607 		device_unregister(dev);
608 	return 0;
609 }
610 
611 static int __ap_queue_devices_unregister(struct device *dev, void *dummy)
612 {
613 	if (is_queue_dev(dev))
614 		device_unregister(dev);
615 	return 0;
616 }
617 
618 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data)
619 {
620 	if (is_queue_dev(dev) &&
621 	    AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long) data)
622 		device_unregister(dev);
623 	return 0;
624 }
625 
626 static void ap_bus_resume(void)
627 {
628 	int rc;
629 
630 	AP_DBF(DBF_DEBUG, "%s running\n", __func__);
631 
632 	/* remove all queue devices */
633 	bus_for_each_dev(&ap_bus_type, NULL, NULL,
634 			 __ap_queue_devices_unregister);
635 	/* remove all card devices */
636 	bus_for_each_dev(&ap_bus_type, NULL, NULL,
637 			 __ap_card_devices_unregister);
638 
639 	/* Reset thin interrupt setting */
640 	if (ap_interrupts_available() && !ap_using_interrupts()) {
641 		rc = register_adapter_interrupt(&ap_airq);
642 		ap_airq_flag = (rc == 0);
643 	}
644 	if (!ap_interrupts_available() && ap_using_interrupts()) {
645 		unregister_adapter_interrupt(&ap_airq);
646 		ap_airq_flag = 0;
647 	}
648 	/* Reset domain */
649 	if (!user_set_domain)
650 		ap_domain_index = -1;
651 	/* Get things going again */
652 	ap_suspend_flag = 0;
653 	if (ap_airq_flag)
654 		xchg(ap_airq.lsi_ptr, 0);
655 	tasklet_enable(&ap_tasklet);
656 	queue_work(system_long_wq, &ap_scan_work);
657 }
658 
659 static int ap_power_event(struct notifier_block *this, unsigned long event,
660 			  void *ptr)
661 {
662 	switch (event) {
663 	case PM_HIBERNATION_PREPARE:
664 	case PM_SUSPEND_PREPARE:
665 		ap_bus_suspend();
666 		break;
667 	case PM_POST_HIBERNATION:
668 	case PM_POST_SUSPEND:
669 		ap_bus_resume();
670 		break;
671 	default:
672 		break;
673 	}
674 	return NOTIFY_DONE;
675 }
676 static struct notifier_block ap_power_notifier = {
677 	.notifier_call = ap_power_event,
678 };
679 
680 static SIMPLE_DEV_PM_OPS(ap_bus_pm_ops, ap_dev_suspend, ap_dev_resume);
681 
682 static struct bus_type ap_bus_type = {
683 	.name = "ap",
684 	.match = &ap_bus_match,
685 	.uevent = &ap_uevent,
686 	.pm = &ap_bus_pm_ops,
687 };
688 
689 static int __ap_revise_reserved(struct device *dev, void *dummy)
690 {
691 	int rc, card, queue, devres, drvres;
692 
693 	if (is_queue_dev(dev)) {
694 		card = AP_QID_CARD(to_ap_queue(dev)->qid);
695 		queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
696 		mutex_lock(&ap_perms_mutex);
697 		devres = test_bit_inv(card, ap_perms.apm)
698 			&& test_bit_inv(queue, ap_perms.aqm);
699 		mutex_unlock(&ap_perms_mutex);
700 		drvres = to_ap_drv(dev->driver)->flags
701 			& AP_DRIVER_FLAG_DEFAULT;
702 		if (!!devres != !!drvres) {
703 			AP_DBF(DBF_DEBUG, "reprobing queue=%02x.%04x\n",
704 			       card, queue);
705 			rc = device_reprobe(dev);
706 		}
707 	}
708 
709 	return 0;
710 }
711 
712 static void ap_bus_revise_bindings(void)
713 {
714 	bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved);
715 }
716 
717 int ap_owned_by_def_drv(int card, int queue)
718 {
719 	int rc = 0;
720 
721 	if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS)
722 		return -EINVAL;
723 
724 	mutex_lock(&ap_perms_mutex);
725 
726 	if (test_bit_inv(card, ap_perms.apm)
727 	    && test_bit_inv(queue, ap_perms.aqm))
728 		rc = 1;
729 
730 	mutex_unlock(&ap_perms_mutex);
731 
732 	return rc;
733 }
734 EXPORT_SYMBOL(ap_owned_by_def_drv);
735 
736 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm,
737 				       unsigned long *aqm)
738 {
739 	int card, queue, rc = 0;
740 
741 	mutex_lock(&ap_perms_mutex);
742 
743 	for (card = 0; !rc && card < AP_DEVICES; card++)
744 		if (test_bit_inv(card, apm) &&
745 		    test_bit_inv(card, ap_perms.apm))
746 			for (queue = 0; !rc && queue < AP_DOMAINS; queue++)
747 				if (test_bit_inv(queue, aqm) &&
748 				    test_bit_inv(queue, ap_perms.aqm))
749 					rc = 1;
750 
751 	mutex_unlock(&ap_perms_mutex);
752 
753 	return rc;
754 }
755 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv);
756 
757 static int ap_device_probe(struct device *dev)
758 {
759 	struct ap_device *ap_dev = to_ap_dev(dev);
760 	struct ap_driver *ap_drv = to_ap_drv(dev->driver);
761 	int card, queue, devres, drvres, rc;
762 
763 	if (is_queue_dev(dev)) {
764 		/*
765 		 * If the apqn is marked as reserved/used by ap bus and
766 		 * default drivers, only probe with drivers with the default
767 		 * flag set. If it is not marked, only probe with drivers
768 		 * with the default flag not set.
769 		 */
770 		card = AP_QID_CARD(to_ap_queue(dev)->qid);
771 		queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
772 		mutex_lock(&ap_perms_mutex);
773 		devres = test_bit_inv(card, ap_perms.apm)
774 			&& test_bit_inv(queue, ap_perms.aqm);
775 		mutex_unlock(&ap_perms_mutex);
776 		drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT;
777 		if (!!devres != !!drvres)
778 			return -ENODEV;
779 	}
780 
781 	/* Add queue/card to list of active queues/cards */
782 	spin_lock_bh(&ap_list_lock);
783 	if (is_card_dev(dev))
784 		list_add(&to_ap_card(dev)->list, &ap_card_list);
785 	else
786 		list_add(&to_ap_queue(dev)->list,
787 			 &to_ap_queue(dev)->card->queues);
788 	spin_unlock_bh(&ap_list_lock);
789 
790 	ap_dev->drv = ap_drv;
791 	rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
792 
793 	if (rc) {
794 		spin_lock_bh(&ap_list_lock);
795 		if (is_card_dev(dev))
796 			list_del_init(&to_ap_card(dev)->list);
797 		else
798 			list_del_init(&to_ap_queue(dev)->list);
799 		spin_unlock_bh(&ap_list_lock);
800 		ap_dev->drv = NULL;
801 	}
802 
803 	return rc;
804 }
805 
806 static int ap_device_remove(struct device *dev)
807 {
808 	struct ap_device *ap_dev = to_ap_dev(dev);
809 	struct ap_driver *ap_drv = ap_dev->drv;
810 
811 	if (ap_drv->remove)
812 		ap_drv->remove(ap_dev);
813 
814 	/* Remove queue/card from list of active queues/cards */
815 	spin_lock_bh(&ap_list_lock);
816 	if (is_card_dev(dev))
817 		list_del_init(&to_ap_card(dev)->list);
818 	else
819 		list_del_init(&to_ap_queue(dev)->list);
820 	spin_unlock_bh(&ap_list_lock);
821 
822 	return 0;
823 }
824 
825 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
826 		       char *name)
827 {
828 	struct device_driver *drv = &ap_drv->driver;
829 
830 	if (!initialised)
831 		return -ENODEV;
832 
833 	drv->bus = &ap_bus_type;
834 	drv->probe = ap_device_probe;
835 	drv->remove = ap_device_remove;
836 	drv->owner = owner;
837 	drv->name = name;
838 	return driver_register(drv);
839 }
840 EXPORT_SYMBOL(ap_driver_register);
841 
842 void ap_driver_unregister(struct ap_driver *ap_drv)
843 {
844 	driver_unregister(&ap_drv->driver);
845 }
846 EXPORT_SYMBOL(ap_driver_unregister);
847 
848 void ap_bus_force_rescan(void)
849 {
850 	if (ap_suspend_flag)
851 		return;
852 	/* processing a asynchronous bus rescan */
853 	del_timer(&ap_config_timer);
854 	queue_work(system_long_wq, &ap_scan_work);
855 	flush_work(&ap_scan_work);
856 }
857 EXPORT_SYMBOL(ap_bus_force_rescan);
858 
859 /*
860  * hex2bitmap() - parse hex mask string and set bitmap.
861  * Valid strings are "0x012345678" with at least one valid hex number.
862  * Rest of the bitmap to the right is padded with 0. No spaces allowed
863  * within the string, the leading 0x may be omitted.
864  * Returns the bitmask with exactly the bits set as given by the hex
865  * string (both in big endian order).
866  */
867 static int hex2bitmap(const char *str, unsigned long *bitmap, int bits)
868 {
869 	int i, n, b;
870 
871 	/* bits needs to be a multiple of 8 */
872 	if (bits & 0x07)
873 		return -EINVAL;
874 
875 	if (str[0] == '0' && str[1] == 'x')
876 		str++;
877 	if (*str == 'x')
878 		str++;
879 
880 	for (i = 0; isxdigit(*str) && i < bits; str++) {
881 		b = hex_to_bin(*str);
882 		for (n = 0; n < 4; n++)
883 			if (b & (0x08 >> n))
884 				set_bit_inv(i + n, bitmap);
885 		i += 4;
886 	}
887 
888 	if (*str == '\n')
889 		str++;
890 	if (*str)
891 		return -EINVAL;
892 	return 0;
893 }
894 
895 /*
896  * modify_bitmap() - parse bitmask argument and modify an existing
897  * bit mask accordingly. A concatenation (done with ',') of these
898  * terms is recognized:
899  *   +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>]
900  * <bitnr> may be any valid number (hex, decimal or octal) in the range
901  * 0...bits-1; the leading + or - is required. Here are some examples:
902  *   +0-15,+32,-128,-0xFF
903  *   -0-255,+1-16,+0x128
904  *   +1,+2,+3,+4,-5,-7-10
905  * Returns the new bitmap after all changes have been applied. Every
906  * positive value in the string will set a bit and every negative value
907  * in the string will clear a bit. As a bit may be touched more than once,
908  * the last 'operation' wins:
909  * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be
910  * cleared again. All other bits are unmodified.
911  */
912 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits)
913 {
914 	int a, i, z;
915 	char *np, sign;
916 
917 	/* bits needs to be a multiple of 8 */
918 	if (bits & 0x07)
919 		return -EINVAL;
920 
921 	while (*str) {
922 		sign = *str++;
923 		if (sign != '+' && sign != '-')
924 			return -EINVAL;
925 		a = z = simple_strtoul(str, &np, 0);
926 		if (str == np || a >= bits)
927 			return -EINVAL;
928 		str = np;
929 		if (*str == '-') {
930 			z = simple_strtoul(++str, &np, 0);
931 			if (str == np || a > z || z >= bits)
932 				return -EINVAL;
933 			str = np;
934 		}
935 		for (i = a; i <= z; i++)
936 			if (sign == '+')
937 				set_bit_inv(i, bitmap);
938 			else
939 				clear_bit_inv(i, bitmap);
940 		while (*str == ',' || *str == '\n')
941 			str++;
942 	}
943 
944 	return 0;
945 }
946 
947 /*
948  * process_mask_arg() - parse a bitmap string and clear/set the
949  * bits in the bitmap accordingly. The string may be given as
950  * absolute value, a hex string like 0x1F2E3D4C5B6A" simple over-
951  * writing the current content of the bitmap. Or as relative string
952  * like "+1-16,-32,-0x40,+128" where only single bits or ranges of
953  * bits are cleared or set. Distinction is done based on the very
954  * first character which may be '+' or '-' for the relative string
955  * and othewise assume to be an absolute value string. If parsing fails
956  * a negative errno value is returned. All arguments and bitmaps are
957  * big endian order.
958  */
959 static int process_mask_arg(const char *str,
960 			    unsigned long *bitmap, int bits,
961 			    struct mutex *lock)
962 {
963 	unsigned long *newmap, size;
964 	int rc;
965 
966 	/* bits needs to be a multiple of 8 */
967 	if (bits & 0x07)
968 		return -EINVAL;
969 
970 	size = BITS_TO_LONGS(bits)*sizeof(unsigned long);
971 	newmap = kmalloc(size, GFP_KERNEL);
972 	if (!newmap)
973 		return -ENOMEM;
974 	if (mutex_lock_interruptible(lock)) {
975 		kfree(newmap);
976 		return -ERESTARTSYS;
977 	}
978 
979 	if (*str == '+' || *str == '-') {
980 		memcpy(newmap, bitmap, size);
981 		rc = modify_bitmap(str, newmap, bits);
982 	} else {
983 		memset(newmap, 0, size);
984 		rc = hex2bitmap(str, newmap, bits);
985 	}
986 	if (rc == 0)
987 		memcpy(bitmap, newmap, size);
988 	mutex_unlock(lock);
989 	kfree(newmap);
990 	return rc;
991 }
992 
993 /*
994  * AP bus attributes.
995  */
996 
997 static ssize_t ap_domain_show(struct bus_type *bus, char *buf)
998 {
999 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index);
1000 }
1001 
1002 static ssize_t ap_domain_store(struct bus_type *bus,
1003 			       const char *buf, size_t count)
1004 {
1005 	int domain;
1006 
1007 	if (sscanf(buf, "%i\n", &domain) != 1 ||
1008 	    domain < 0 || domain > ap_max_domain_id ||
1009 	    !test_bit_inv(domain, ap_perms.aqm))
1010 		return -EINVAL;
1011 	spin_lock_bh(&ap_domain_lock);
1012 	ap_domain_index = domain;
1013 	spin_unlock_bh(&ap_domain_lock);
1014 
1015 	AP_DBF(DBF_DEBUG, "stored new default domain=%d\n", domain);
1016 
1017 	return count;
1018 }
1019 
1020 static BUS_ATTR_RW(ap_domain);
1021 
1022 static ssize_t ap_control_domain_mask_show(struct bus_type *bus, char *buf)
1023 {
1024 	if (!ap_configuration)	/* QCI not supported */
1025 		return snprintf(buf, PAGE_SIZE, "not supported\n");
1026 
1027 	return snprintf(buf, PAGE_SIZE,
1028 			"0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1029 			ap_configuration->adm[0], ap_configuration->adm[1],
1030 			ap_configuration->adm[2], ap_configuration->adm[3],
1031 			ap_configuration->adm[4], ap_configuration->adm[5],
1032 			ap_configuration->adm[6], ap_configuration->adm[7]);
1033 }
1034 
1035 static BUS_ATTR_RO(ap_control_domain_mask);
1036 
1037 static ssize_t ap_usage_domain_mask_show(struct bus_type *bus, char *buf)
1038 {
1039 	if (!ap_configuration)	/* QCI not supported */
1040 		return snprintf(buf, PAGE_SIZE, "not supported\n");
1041 
1042 	return snprintf(buf, PAGE_SIZE,
1043 			"0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1044 			ap_configuration->aqm[0], ap_configuration->aqm[1],
1045 			ap_configuration->aqm[2], ap_configuration->aqm[3],
1046 			ap_configuration->aqm[4], ap_configuration->aqm[5],
1047 			ap_configuration->aqm[6], ap_configuration->aqm[7]);
1048 }
1049 
1050 static BUS_ATTR_RO(ap_usage_domain_mask);
1051 
1052 static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf)
1053 {
1054 	return snprintf(buf, PAGE_SIZE, "%d\n",
1055 			ap_using_interrupts() ? 1 : 0);
1056 }
1057 
1058 static BUS_ATTR_RO(ap_interrupts);
1059 
1060 static ssize_t config_time_show(struct bus_type *bus, char *buf)
1061 {
1062 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_config_time);
1063 }
1064 
1065 static ssize_t config_time_store(struct bus_type *bus,
1066 				 const char *buf, size_t count)
1067 {
1068 	int time;
1069 
1070 	if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
1071 		return -EINVAL;
1072 	ap_config_time = time;
1073 	mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1074 	return count;
1075 }
1076 
1077 static BUS_ATTR_RW(config_time);
1078 
1079 static ssize_t poll_thread_show(struct bus_type *bus, char *buf)
1080 {
1081 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0);
1082 }
1083 
1084 static ssize_t poll_thread_store(struct bus_type *bus,
1085 				 const char *buf, size_t count)
1086 {
1087 	int flag, rc;
1088 
1089 	if (sscanf(buf, "%d\n", &flag) != 1)
1090 		return -EINVAL;
1091 	if (flag) {
1092 		rc = ap_poll_thread_start();
1093 		if (rc)
1094 			count = rc;
1095 	} else
1096 		ap_poll_thread_stop();
1097 	return count;
1098 }
1099 
1100 static BUS_ATTR_RW(poll_thread);
1101 
1102 static ssize_t poll_timeout_show(struct bus_type *bus, char *buf)
1103 {
1104 	return snprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout);
1105 }
1106 
1107 static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf,
1108 				  size_t count)
1109 {
1110 	unsigned long long time;
1111 	ktime_t hr_time;
1112 
1113 	/* 120 seconds = maximum poll interval */
1114 	if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 ||
1115 	    time > 120000000000ULL)
1116 		return -EINVAL;
1117 	poll_timeout = time;
1118 	hr_time = poll_timeout;
1119 
1120 	spin_lock_bh(&ap_poll_timer_lock);
1121 	hrtimer_cancel(&ap_poll_timer);
1122 	hrtimer_set_expires(&ap_poll_timer, hr_time);
1123 	hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
1124 	spin_unlock_bh(&ap_poll_timer_lock);
1125 
1126 	return count;
1127 }
1128 
1129 static BUS_ATTR_RW(poll_timeout);
1130 
1131 static ssize_t ap_max_domain_id_show(struct bus_type *bus, char *buf)
1132 {
1133 	int max_domain_id;
1134 
1135 	if (ap_configuration)
1136 		max_domain_id = ap_max_domain_id ? : -1;
1137 	else
1138 		max_domain_id = 15;
1139 	return snprintf(buf, PAGE_SIZE, "%d\n", max_domain_id);
1140 }
1141 
1142 static BUS_ATTR_RO(ap_max_domain_id);
1143 
1144 static ssize_t apmask_show(struct bus_type *bus, char *buf)
1145 {
1146 	int rc;
1147 
1148 	if (mutex_lock_interruptible(&ap_perms_mutex))
1149 		return -ERESTARTSYS;
1150 	rc = snprintf(buf, PAGE_SIZE,
1151 		      "0x%016lx%016lx%016lx%016lx\n",
1152 		      ap_perms.apm[0], ap_perms.apm[1],
1153 		      ap_perms.apm[2], ap_perms.apm[3]);
1154 	mutex_unlock(&ap_perms_mutex);
1155 
1156 	return rc;
1157 }
1158 
1159 static ssize_t apmask_store(struct bus_type *bus, const char *buf,
1160 			    size_t count)
1161 {
1162 	int rc;
1163 
1164 	rc = process_mask_arg(buf, ap_perms.apm, AP_DEVICES, &ap_perms_mutex);
1165 	if (rc)
1166 		return rc;
1167 
1168 	ap_bus_revise_bindings();
1169 
1170 	return count;
1171 }
1172 
1173 static BUS_ATTR_RW(apmask);
1174 
1175 static ssize_t aqmask_show(struct bus_type *bus, char *buf)
1176 {
1177 	int rc;
1178 
1179 	if (mutex_lock_interruptible(&ap_perms_mutex))
1180 		return -ERESTARTSYS;
1181 	rc = snprintf(buf, PAGE_SIZE,
1182 		      "0x%016lx%016lx%016lx%016lx\n",
1183 		      ap_perms.aqm[0], ap_perms.aqm[1],
1184 		      ap_perms.aqm[2], ap_perms.aqm[3]);
1185 	mutex_unlock(&ap_perms_mutex);
1186 
1187 	return rc;
1188 }
1189 
1190 static ssize_t aqmask_store(struct bus_type *bus, const char *buf,
1191 			    size_t count)
1192 {
1193 	int rc;
1194 
1195 	rc = process_mask_arg(buf, ap_perms.aqm, AP_DOMAINS, &ap_perms_mutex);
1196 	if (rc)
1197 		return rc;
1198 
1199 	ap_bus_revise_bindings();
1200 
1201 	return count;
1202 }
1203 
1204 static BUS_ATTR_RW(aqmask);
1205 
1206 static struct bus_attribute *const ap_bus_attrs[] = {
1207 	&bus_attr_ap_domain,
1208 	&bus_attr_ap_control_domain_mask,
1209 	&bus_attr_ap_usage_domain_mask,
1210 	&bus_attr_config_time,
1211 	&bus_attr_poll_thread,
1212 	&bus_attr_ap_interrupts,
1213 	&bus_attr_poll_timeout,
1214 	&bus_attr_ap_max_domain_id,
1215 	&bus_attr_apmask,
1216 	&bus_attr_aqmask,
1217 	NULL,
1218 };
1219 
1220 /**
1221  * ap_select_domain(): Select an AP domain.
1222  *
1223  * Pick one of the 16 AP domains.
1224  */
1225 static int ap_select_domain(void)
1226 {
1227 	int count, max_count, best_domain;
1228 	struct ap_queue_status status;
1229 	int i, j;
1230 
1231 	/*
1232 	 * We want to use a single domain. Either the one specified with
1233 	 * the "domain=" parameter or the domain with the maximum number
1234 	 * of devices.
1235 	 */
1236 	spin_lock_bh(&ap_domain_lock);
1237 	if (ap_domain_index >= 0) {
1238 		/* Domain has already been selected. */
1239 		spin_unlock_bh(&ap_domain_lock);
1240 		return 0;
1241 	}
1242 	best_domain = -1;
1243 	max_count = 0;
1244 	for (i = 0; i < AP_DOMAINS; i++) {
1245 		if (!ap_test_config_domain(i) ||
1246 		    !test_bit_inv(i, ap_perms.aqm))
1247 			continue;
1248 		count = 0;
1249 		for (j = 0; j < AP_DEVICES; j++) {
1250 			if (!ap_test_config_card_id(j))
1251 				continue;
1252 			status = ap_test_queue(AP_MKQID(j, i),
1253 					       ap_apft_available(),
1254 					       NULL);
1255 			if (status.response_code != AP_RESPONSE_NORMAL)
1256 				continue;
1257 			count++;
1258 		}
1259 		if (count > max_count) {
1260 			max_count = count;
1261 			best_domain = i;
1262 		}
1263 	}
1264 	if (best_domain >= 0) {
1265 		ap_domain_index = best_domain;
1266 		AP_DBF(DBF_DEBUG, "new ap_domain_index=%d\n", ap_domain_index);
1267 		spin_unlock_bh(&ap_domain_lock);
1268 		return 0;
1269 	}
1270 	spin_unlock_bh(&ap_domain_lock);
1271 	return -ENODEV;
1272 }
1273 
1274 /*
1275  * This function checks the type and returns either 0 for not
1276  * supported or the highest compatible type value (which may
1277  * include the input type value).
1278  */
1279 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func)
1280 {
1281 	int comp_type = 0;
1282 
1283 	/* < CEX2A is not supported */
1284 	if (rawtype < AP_DEVICE_TYPE_CEX2A)
1285 		return 0;
1286 	/* up to CEX6 known and fully supported */
1287 	if (rawtype <= AP_DEVICE_TYPE_CEX6)
1288 		return rawtype;
1289 	/*
1290 	 * unknown new type > CEX6, check for compatibility
1291 	 * to the highest known and supported type which is
1292 	 * currently CEX6 with the help of the QACT function.
1293 	 */
1294 	if (ap_qact_available()) {
1295 		struct ap_queue_status status;
1296 		union ap_qact_ap_info apinfo = {0};
1297 
1298 		apinfo.mode = (func >> 26) & 0x07;
1299 		apinfo.cat = AP_DEVICE_TYPE_CEX6;
1300 		status = ap_qact(qid, 0, &apinfo);
1301 		if (status.response_code == AP_RESPONSE_NORMAL
1302 		    && apinfo.cat >= AP_DEVICE_TYPE_CEX2A
1303 		    && apinfo.cat <= AP_DEVICE_TYPE_CEX6)
1304 			comp_type = apinfo.cat;
1305 	}
1306 	if (!comp_type)
1307 		AP_DBF(DBF_WARN, "queue=%02x.%04x unable to map type %d\n",
1308 		       AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype);
1309 	else if (comp_type != rawtype)
1310 		AP_DBF(DBF_INFO, "queue=%02x.%04x map type %d to %d\n",
1311 		       AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype, comp_type);
1312 	return comp_type;
1313 }
1314 
1315 /*
1316  * helper function to be used with bus_find_dev
1317  * matches for the card device with the given id
1318  */
1319 static int __match_card_device_with_id(struct device *dev, void *data)
1320 {
1321 	return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long) data;
1322 }
1323 
1324 /* helper function to be used with bus_find_dev
1325  * matches for the queue device with a given qid
1326  */
1327 static int __match_queue_device_with_qid(struct device *dev, void *data)
1328 {
1329 	return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long) data;
1330 }
1331 
1332 /**
1333  * ap_scan_bus(): Scan the AP bus for new devices
1334  * Runs periodically, workqueue timer (ap_config_time)
1335  */
1336 static void ap_scan_bus(struct work_struct *unused)
1337 {
1338 	struct ap_queue *aq;
1339 	struct ap_card *ac;
1340 	struct device *dev;
1341 	ap_qid_t qid;
1342 	int comp_type, depth = 0, type = 0;
1343 	unsigned int func = 0;
1344 	int rc, id, dom, borked, domains, defdomdevs = 0;
1345 
1346 	AP_DBF(DBF_DEBUG, "%s running\n", __func__);
1347 
1348 	ap_query_configuration(ap_configuration);
1349 	if (ap_select_domain() != 0)
1350 		goto out;
1351 
1352 	for (id = 0; id < AP_DEVICES; id++) {
1353 		/* check if device is registered */
1354 		dev = bus_find_device(&ap_bus_type, NULL,
1355 				      (void *)(long) id,
1356 				      __match_card_device_with_id);
1357 		ac = dev ? to_ap_card(dev) : NULL;
1358 		if (!ap_test_config_card_id(id)) {
1359 			if (dev) {
1360 				/* Card device has been removed from
1361 				 * configuration, remove the belonging
1362 				 * queue devices.
1363 				 */
1364 				bus_for_each_dev(&ap_bus_type, NULL,
1365 					(void *)(long) id,
1366 					__ap_queue_devices_with_id_unregister);
1367 				/* now remove the card device */
1368 				device_unregister(dev);
1369 				put_device(dev);
1370 			}
1371 			continue;
1372 		}
1373 		/* According to the configuration there should be a card
1374 		 * device, so check if there is at least one valid queue
1375 		 * and maybe create queue devices and the card device.
1376 		 */
1377 		domains = 0;
1378 		for (dom = 0; dom < AP_DOMAINS; dom++) {
1379 			qid = AP_MKQID(id, dom);
1380 			dev = bus_find_device(&ap_bus_type, NULL,
1381 					      (void *)(long) qid,
1382 					      __match_queue_device_with_qid);
1383 			aq = dev ? to_ap_queue(dev) : NULL;
1384 			if (!ap_test_config_domain(dom)) {
1385 				if (dev) {
1386 					/* Queue device exists but has been
1387 					 * removed from configuration.
1388 					 */
1389 					device_unregister(dev);
1390 					put_device(dev);
1391 				}
1392 				continue;
1393 			}
1394 			rc = ap_query_queue(qid, &depth, &type, &func);
1395 			if (dev) {
1396 				spin_lock_bh(&aq->lock);
1397 				if (rc == -ENODEV ||
1398 				    /* adapter reconfiguration */
1399 				    (ac && ac->functions != func))
1400 					aq->state = AP_STATE_BORKED;
1401 				borked = aq->state == AP_STATE_BORKED;
1402 				spin_unlock_bh(&aq->lock);
1403 				if (borked)	/* Remove broken device */
1404 					device_unregister(dev);
1405 				put_device(dev);
1406 				if (!borked) {
1407 					domains++;
1408 					if (dom == ap_domain_index)
1409 						defdomdevs++;
1410 					continue;
1411 				}
1412 			}
1413 			if (rc)
1414 				continue;
1415 			/* a new queue device is needed, check out comp type */
1416 			comp_type = ap_get_compatible_type(qid, type, func);
1417 			if (!comp_type)
1418 				continue;
1419 			/* maybe a card device needs to be created first */
1420 			if (!ac) {
1421 				ac = ap_card_create(id, depth, type,
1422 						    comp_type, func);
1423 				if (!ac)
1424 					continue;
1425 				ac->ap_dev.device.bus = &ap_bus_type;
1426 				ac->ap_dev.device.parent = ap_root_device;
1427 				dev_set_name(&ac->ap_dev.device,
1428 					     "card%02x", id);
1429 				/* Register card with AP bus */
1430 				rc = device_register(&ac->ap_dev.device);
1431 				if (rc) {
1432 					put_device(&ac->ap_dev.device);
1433 					ac = NULL;
1434 					break;
1435 				}
1436 				/* get it and thus adjust reference counter */
1437 				get_device(&ac->ap_dev.device);
1438 			}
1439 			/* now create the new queue device */
1440 			aq = ap_queue_create(qid, comp_type);
1441 			if (!aq)
1442 				continue;
1443 			aq->card = ac;
1444 			aq->ap_dev.device.bus = &ap_bus_type;
1445 			aq->ap_dev.device.parent = &ac->ap_dev.device;
1446 			dev_set_name(&aq->ap_dev.device,
1447 				     "%02x.%04x", id, dom);
1448 			/* Start with a device reset */
1449 			spin_lock_bh(&aq->lock);
1450 			ap_wait(ap_sm_event(aq, AP_EVENT_POLL));
1451 			spin_unlock_bh(&aq->lock);
1452 			/* Register device */
1453 			rc = device_register(&aq->ap_dev.device);
1454 			if (rc) {
1455 				put_device(&aq->ap_dev.device);
1456 				continue;
1457 			}
1458 			domains++;
1459 			if (dom == ap_domain_index)
1460 				defdomdevs++;
1461 		} /* end domain loop */
1462 		if (ac) {
1463 			/* remove card dev if there are no queue devices */
1464 			if (!domains)
1465 				device_unregister(&ac->ap_dev.device);
1466 			put_device(&ac->ap_dev.device);
1467 		}
1468 	} /* end device loop */
1469 
1470 	if (defdomdevs < 1)
1471 		AP_DBF(DBF_INFO,
1472 		       "no queue device with default domain %d available\n",
1473 		       ap_domain_index);
1474 
1475 out:
1476 	mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1477 }
1478 
1479 static void ap_config_timeout(struct timer_list *unused)
1480 {
1481 	if (ap_suspend_flag)
1482 		return;
1483 	queue_work(system_long_wq, &ap_scan_work);
1484 }
1485 
1486 static int __init ap_debug_init(void)
1487 {
1488 	ap_dbf_info = debug_register("ap", 1, 1,
1489 				     DBF_MAX_SPRINTF_ARGS * sizeof(long));
1490 	debug_register_view(ap_dbf_info, &debug_sprintf_view);
1491 	debug_set_level(ap_dbf_info, DBF_ERR);
1492 
1493 	return 0;
1494 }
1495 
1496 static void __init ap_perms_init(void)
1497 {
1498 	/* all resources useable if no kernel parameter string given */
1499 	memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm));
1500 	memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm));
1501 
1502 	/* apm kernel parameter string */
1503 	if (apm_str) {
1504 		memset(&ap_perms.apm, 0, sizeof(ap_perms.apm));
1505 		process_mask_arg(apm_str, ap_perms.apm, AP_DEVICES,
1506 				 &ap_perms_mutex);
1507 	}
1508 
1509 	/* aqm kernel parameter string */
1510 	if (aqm_str) {
1511 		memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm));
1512 		process_mask_arg(aqm_str, ap_perms.aqm, AP_DOMAINS,
1513 				 &ap_perms_mutex);
1514 	}
1515 }
1516 
1517 /**
1518  * ap_module_init(): The module initialization code.
1519  *
1520  * Initializes the module.
1521  */
1522 static int __init ap_module_init(void)
1523 {
1524 	int max_domain_id;
1525 	int rc, i;
1526 
1527 	rc = ap_debug_init();
1528 	if (rc)
1529 		return rc;
1530 
1531 	if (!ap_instructions_available()) {
1532 		pr_warn("The hardware system does not support AP instructions\n");
1533 		return -ENODEV;
1534 	}
1535 
1536 	/* set up the AP permissions (ap and aq masks) */
1537 	ap_perms_init();
1538 
1539 	/* Get AP configuration data if available */
1540 	ap_init_configuration();
1541 
1542 	if (ap_configuration)
1543 		max_domain_id =
1544 			ap_max_domain_id ? ap_max_domain_id : AP_DOMAINS - 1;
1545 	else
1546 		max_domain_id = 15;
1547 	if (ap_domain_index < -1 || ap_domain_index > max_domain_id ||
1548 	    (ap_domain_index >= 0 &&
1549 	     !test_bit_inv(ap_domain_index, ap_perms.aqm))) {
1550 		pr_warn("%d is not a valid cryptographic domain\n",
1551 			ap_domain_index);
1552 		ap_domain_index = -1;
1553 	}
1554 	/* In resume callback we need to know if the user had set the domain.
1555 	 * If so, we can not just reset it.
1556 	 */
1557 	if (ap_domain_index >= 0)
1558 		user_set_domain = 1;
1559 
1560 	if (ap_interrupts_available()) {
1561 		rc = register_adapter_interrupt(&ap_airq);
1562 		ap_airq_flag = (rc == 0);
1563 	}
1564 
1565 	/* Create /sys/bus/ap. */
1566 	rc = bus_register(&ap_bus_type);
1567 	if (rc)
1568 		goto out;
1569 	for (i = 0; ap_bus_attrs[i]; i++) {
1570 		rc = bus_create_file(&ap_bus_type, ap_bus_attrs[i]);
1571 		if (rc)
1572 			goto out_bus;
1573 	}
1574 
1575 	/* Create /sys/devices/ap. */
1576 	ap_root_device = root_device_register("ap");
1577 	rc = PTR_ERR_OR_ZERO(ap_root_device);
1578 	if (rc)
1579 		goto out_bus;
1580 
1581 	/* Setup the AP bus rescan timer. */
1582 	timer_setup(&ap_config_timer, ap_config_timeout, 0);
1583 
1584 	/*
1585 	 * Setup the high resultion poll timer.
1586 	 * If we are running under z/VM adjust polling to z/VM polling rate.
1587 	 */
1588 	if (MACHINE_IS_VM)
1589 		poll_timeout = 1500000;
1590 	spin_lock_init(&ap_poll_timer_lock);
1591 	hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1592 	ap_poll_timer.function = ap_poll_timeout;
1593 
1594 	/* Start the low priority AP bus poll thread. */
1595 	if (ap_thread_flag) {
1596 		rc = ap_poll_thread_start();
1597 		if (rc)
1598 			goto out_work;
1599 	}
1600 
1601 	rc = register_pm_notifier(&ap_power_notifier);
1602 	if (rc)
1603 		goto out_pm;
1604 
1605 	queue_work(system_long_wq, &ap_scan_work);
1606 	initialised = true;
1607 
1608 	return 0;
1609 
1610 out_pm:
1611 	ap_poll_thread_stop();
1612 out_work:
1613 	hrtimer_cancel(&ap_poll_timer);
1614 	root_device_unregister(ap_root_device);
1615 out_bus:
1616 	while (i--)
1617 		bus_remove_file(&ap_bus_type, ap_bus_attrs[i]);
1618 	bus_unregister(&ap_bus_type);
1619 out:
1620 	if (ap_using_interrupts())
1621 		unregister_adapter_interrupt(&ap_airq);
1622 	kfree(ap_configuration);
1623 	return rc;
1624 }
1625 device_initcall(ap_module_init);
1626