xref: /openbmc/linux/drivers/s390/crypto/ap_bus.c (revision 86edee97)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright IBM Corp. 2006, 2012
4  * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
5  *	      Martin Schwidefsky <schwidefsky@de.ibm.com>
6  *	      Ralph Wuerthner <rwuerthn@de.ibm.com>
7  *	      Felix Beck <felix.beck@de.ibm.com>
8  *	      Holger Dengler <hd@linux.vnet.ibm.com>
9  *
10  * Adjunct processor bus.
11  */
12 
13 #define KMSG_COMPONENT "ap"
14 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
15 
16 #include <linux/kernel_stat.h>
17 #include <linux/moduleparam.h>
18 #include <linux/init.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/interrupt.h>
22 #include <linux/workqueue.h>
23 #include <linux/slab.h>
24 #include <linux/notifier.h>
25 #include <linux/kthread.h>
26 #include <linux/mutex.h>
27 #include <linux/suspend.h>
28 #include <asm/airq.h>
29 #include <linux/atomic.h>
30 #include <asm/isc.h>
31 #include <linux/hrtimer.h>
32 #include <linux/ktime.h>
33 #include <asm/facility.h>
34 #include <linux/crypto.h>
35 #include <linux/mod_devicetable.h>
36 #include <linux/debugfs.h>
37 #include <linux/ctype.h>
38 
39 #include "ap_bus.h"
40 #include "ap_debug.h"
41 
42 /*
43  * Module parameters; note though this file itself isn't modular.
44  */
45 int ap_domain_index = -1;	/* Adjunct Processor Domain Index */
46 static DEFINE_SPINLOCK(ap_domain_lock);
47 module_param_named(domain, ap_domain_index, int, 0440);
48 MODULE_PARM_DESC(domain, "domain index for ap devices");
49 EXPORT_SYMBOL(ap_domain_index);
50 
51 static int ap_thread_flag;
52 module_param_named(poll_thread, ap_thread_flag, int, 0440);
53 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
54 
55 static char *apm_str;
56 module_param_named(apmask, apm_str, charp, 0440);
57 MODULE_PARM_DESC(apmask, "AP bus adapter mask.");
58 
59 static char *aqm_str;
60 module_param_named(aqmask, aqm_str, charp, 0440);
61 MODULE_PARM_DESC(aqmask, "AP bus domain mask.");
62 
63 static struct device *ap_root_device;
64 
65 DEFINE_SPINLOCK(ap_list_lock);
66 LIST_HEAD(ap_card_list);
67 
68 /* Default permissions (ioctl, card and domain masking) */
69 struct ap_perms ap_perms;
70 EXPORT_SYMBOL(ap_perms);
71 DEFINE_MUTEX(ap_perms_mutex);
72 EXPORT_SYMBOL(ap_perms_mutex);
73 
74 static struct ap_config_info *ap_configuration;
75 static bool initialised;
76 
77 /*
78  * AP bus related debug feature things.
79  */
80 debug_info_t *ap_dbf_info;
81 
82 /*
83  * Workqueue timer for bus rescan.
84  */
85 static struct timer_list ap_config_timer;
86 static int ap_config_time = AP_CONFIG_TIME;
87 static void ap_scan_bus(struct work_struct *);
88 static DECLARE_WORK(ap_scan_work, ap_scan_bus);
89 
90 /*
91  * Tasklet & timer for AP request polling and interrupts
92  */
93 static void ap_tasklet_fn(unsigned long);
94 static DECLARE_TASKLET(ap_tasklet, ap_tasklet_fn, 0);
95 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
96 static struct task_struct *ap_poll_kthread;
97 static DEFINE_MUTEX(ap_poll_thread_mutex);
98 static DEFINE_SPINLOCK(ap_poll_timer_lock);
99 static struct hrtimer ap_poll_timer;
100 /*
101  * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
102  * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.
103  */
104 static unsigned long long poll_timeout = 250000;
105 
106 /* Suspend flag */
107 static int ap_suspend_flag;
108 /* Maximum domain id */
109 static int ap_max_domain_id;
110 /*
111  * Flag to check if domain was set through module parameter domain=. This is
112  * important when supsend and resume is done in a z/VM environment where the
113  * domain might change.
114  */
115 static int user_set_domain;
116 static struct bus_type ap_bus_type;
117 
118 /* Adapter interrupt definitions */
119 static void ap_interrupt_handler(struct airq_struct *airq, bool floating);
120 
121 static int ap_airq_flag;
122 
123 static struct airq_struct ap_airq = {
124 	.handler = ap_interrupt_handler,
125 	.isc = AP_ISC,
126 };
127 
128 /**
129  * ap_using_interrupts() - Returns non-zero if interrupt support is
130  * available.
131  */
132 static inline int ap_using_interrupts(void)
133 {
134 	return ap_airq_flag;
135 }
136 
137 /**
138  * ap_airq_ptr() - Get the address of the adapter interrupt indicator
139  *
140  * Returns the address of the local-summary-indicator of the adapter
141  * interrupt handler for AP, or NULL if adapter interrupts are not
142  * available.
143  */
144 void *ap_airq_ptr(void)
145 {
146 	if (ap_using_interrupts())
147 		return ap_airq.lsi_ptr;
148 	return NULL;
149 }
150 
151 /**
152  * ap_interrupts_available(): Test if AP interrupts are available.
153  *
154  * Returns 1 if AP interrupts are available.
155  */
156 static int ap_interrupts_available(void)
157 {
158 	return test_facility(65);
159 }
160 
161 /**
162  * ap_configuration_available(): Test if AP configuration
163  * information is available.
164  *
165  * Returns 1 if AP configuration information is available.
166  */
167 static int ap_configuration_available(void)
168 {
169 	return test_facility(12);
170 }
171 
172 /**
173  * ap_apft_available(): Test if AP facilities test (APFT)
174  * facility is available.
175  *
176  * Returns 1 if APFT is is available.
177  */
178 static int ap_apft_available(void)
179 {
180 	return test_facility(15);
181 }
182 
183 /*
184  * ap_qact_available(): Test if the PQAP(QACT) subfunction is available.
185  *
186  * Returns 1 if the QACT subfunction is available.
187  */
188 static inline int ap_qact_available(void)
189 {
190 	if (ap_configuration)
191 		return ap_configuration->qact;
192 	return 0;
193 }
194 
195 /*
196  * ap_query_configuration(): Fetch cryptographic config info
197  *
198  * Returns the ap configuration info fetched via PQAP(QCI).
199  * On success 0 is returned, on failure a negative errno
200  * is returned, e.g. if the PQAP(QCI) instruction is not
201  * available, the return value will be -EOPNOTSUPP.
202  */
203 static inline int ap_query_configuration(struct ap_config_info *info)
204 {
205 	if (!ap_configuration_available())
206 		return -EOPNOTSUPP;
207 	if (!info)
208 		return -EINVAL;
209 	return ap_qci(info);
210 }
211 
212 /**
213  * ap_init_configuration(): Allocate and query configuration array.
214  */
215 static void ap_init_configuration(void)
216 {
217 	if (!ap_configuration_available())
218 		return;
219 
220 	ap_configuration = kzalloc(sizeof(*ap_configuration), GFP_KERNEL);
221 	if (!ap_configuration)
222 		return;
223 	if (ap_query_configuration(ap_configuration) != 0) {
224 		kfree(ap_configuration);
225 		ap_configuration = NULL;
226 		return;
227 	}
228 }
229 
230 /*
231  * ap_test_config(): helper function to extract the nrth bit
232  *		     within the unsigned int array field.
233  */
234 static inline int ap_test_config(unsigned int *field, unsigned int nr)
235 {
236 	return ap_test_bit((field + (nr >> 5)), (nr & 0x1f));
237 }
238 
239 /*
240  * ap_test_config_card_id(): Test, whether an AP card ID is configured.
241  * @id AP card ID
242  *
243  * Returns 0 if the card is not configured
244  *	   1 if the card is configured or
245  *	     if the configuration information is not available
246  */
247 static inline int ap_test_config_card_id(unsigned int id)
248 {
249 	if (!ap_configuration)	/* QCI not supported */
250 		/* only ids 0...3F may be probed */
251 		return id < 0x40 ? 1 : 0;
252 	return ap_test_config(ap_configuration->apm, id);
253 }
254 
255 /*
256  * ap_test_config_usage_domain(): Test, whether an AP usage domain
257  * is configured.
258  * @domain AP usage domain ID
259  *
260  * Returns 0 if the usage domain is not configured
261  *	   1 if the usage domain is configured or
262  *	     if the configuration information is not available
263  */
264 int ap_test_config_usage_domain(unsigned int domain)
265 {
266 	if (!ap_configuration)	/* QCI not supported */
267 		return domain < 16;
268 	return ap_test_config(ap_configuration->aqm, domain);
269 }
270 EXPORT_SYMBOL(ap_test_config_usage_domain);
271 
272 /*
273  * ap_test_config_ctrl_domain(): Test, whether an AP control domain
274  * is configured.
275  * @domain AP control domain ID
276  *
277  * Returns 1 if the control domain is configured
278  *	   0 in all other cases
279  */
280 int ap_test_config_ctrl_domain(unsigned int domain)
281 {
282 	if (!ap_configuration)	/* QCI not supported */
283 		return 0;
284 	return ap_test_config(ap_configuration->adm, domain);
285 }
286 EXPORT_SYMBOL(ap_test_config_ctrl_domain);
287 
288 /**
289  * ap_query_queue(): Check if an AP queue is available.
290  * @qid: The AP queue number
291  * @queue_depth: Pointer to queue depth value
292  * @device_type: Pointer to device type value
293  * @facilities: Pointer to facility indicator
294  */
295 static int ap_query_queue(ap_qid_t qid, int *queue_depth, int *device_type,
296 			  unsigned int *facilities)
297 {
298 	struct ap_queue_status status;
299 	unsigned long info;
300 	int nd;
301 
302 	if (!ap_test_config_card_id(AP_QID_CARD(qid)))
303 		return -ENODEV;
304 
305 	status = ap_test_queue(qid, ap_apft_available(), &info);
306 	switch (status.response_code) {
307 	case AP_RESPONSE_NORMAL:
308 		*queue_depth = (int)(info & 0xff);
309 		*device_type = (int)((info >> 24) & 0xff);
310 		*facilities = (unsigned int)(info >> 32);
311 		/* Update maximum domain id */
312 		nd = (info >> 16) & 0xff;
313 		/* if N bit is available, z13 and newer */
314 		if ((info & (1UL << 57)) && nd > 0)
315 			ap_max_domain_id = nd;
316 		else /* older machine types */
317 			ap_max_domain_id = 15;
318 		switch (*device_type) {
319 			/* For CEX2 and CEX3 the available functions
320 			 * are not reflected by the facilities bits.
321 			 * Instead it is coded into the type. So here
322 			 * modify the function bits based on the type.
323 			 */
324 		case AP_DEVICE_TYPE_CEX2A:
325 		case AP_DEVICE_TYPE_CEX3A:
326 			*facilities |= 0x08000000;
327 			break;
328 		case AP_DEVICE_TYPE_CEX2C:
329 		case AP_DEVICE_TYPE_CEX3C:
330 			*facilities |= 0x10000000;
331 			break;
332 		default:
333 			break;
334 		}
335 		return 0;
336 	case AP_RESPONSE_Q_NOT_AVAIL:
337 	case AP_RESPONSE_DECONFIGURED:
338 	case AP_RESPONSE_CHECKSTOPPED:
339 	case AP_RESPONSE_INVALID_ADDRESS:
340 		return -ENODEV;
341 	case AP_RESPONSE_RESET_IN_PROGRESS:
342 	case AP_RESPONSE_OTHERWISE_CHANGED:
343 	case AP_RESPONSE_BUSY:
344 		return -EBUSY;
345 	default:
346 		BUG();
347 	}
348 }
349 
350 void ap_wait(enum ap_wait wait)
351 {
352 	ktime_t hr_time;
353 
354 	switch (wait) {
355 	case AP_WAIT_AGAIN:
356 	case AP_WAIT_INTERRUPT:
357 		if (ap_using_interrupts())
358 			break;
359 		if (ap_poll_kthread) {
360 			wake_up(&ap_poll_wait);
361 			break;
362 		}
363 		/* Fall through */
364 	case AP_WAIT_TIMEOUT:
365 		spin_lock_bh(&ap_poll_timer_lock);
366 		if (!hrtimer_is_queued(&ap_poll_timer)) {
367 			hr_time = poll_timeout;
368 			hrtimer_forward_now(&ap_poll_timer, hr_time);
369 			hrtimer_restart(&ap_poll_timer);
370 		}
371 		spin_unlock_bh(&ap_poll_timer_lock);
372 		break;
373 	case AP_WAIT_NONE:
374 	default:
375 		break;
376 	}
377 }
378 
379 /**
380  * ap_request_timeout(): Handling of request timeouts
381  * @t: timer making this callback
382  *
383  * Handles request timeouts.
384  */
385 void ap_request_timeout(struct timer_list *t)
386 {
387 	struct ap_queue *aq = from_timer(aq, t, timeout);
388 
389 	if (ap_suspend_flag)
390 		return;
391 	spin_lock_bh(&aq->lock);
392 	ap_wait(ap_sm_event(aq, AP_EVENT_TIMEOUT));
393 	spin_unlock_bh(&aq->lock);
394 }
395 
396 /**
397  * ap_poll_timeout(): AP receive polling for finished AP requests.
398  * @unused: Unused pointer.
399  *
400  * Schedules the AP tasklet using a high resolution timer.
401  */
402 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
403 {
404 	if (!ap_suspend_flag)
405 		tasklet_schedule(&ap_tasklet);
406 	return HRTIMER_NORESTART;
407 }
408 
409 /**
410  * ap_interrupt_handler() - Schedule ap_tasklet on interrupt
411  * @airq: pointer to adapter interrupt descriptor
412  */
413 static void ap_interrupt_handler(struct airq_struct *airq, bool floating)
414 {
415 	inc_irq_stat(IRQIO_APB);
416 	if (!ap_suspend_flag)
417 		tasklet_schedule(&ap_tasklet);
418 }
419 
420 /**
421  * ap_tasklet_fn(): Tasklet to poll all AP devices.
422  * @dummy: Unused variable
423  *
424  * Poll all AP devices on the bus.
425  */
426 static void ap_tasklet_fn(unsigned long dummy)
427 {
428 	struct ap_card *ac;
429 	struct ap_queue *aq;
430 	enum ap_wait wait = AP_WAIT_NONE;
431 
432 	/* Reset the indicator if interrupts are used. Thus new interrupts can
433 	 * be received. Doing it in the beginning of the tasklet is therefor
434 	 * important that no requests on any AP get lost.
435 	 */
436 	if (ap_using_interrupts())
437 		xchg(ap_airq.lsi_ptr, 0);
438 
439 	spin_lock_bh(&ap_list_lock);
440 	for_each_ap_card(ac) {
441 		for_each_ap_queue(aq, ac) {
442 			spin_lock_bh(&aq->lock);
443 			wait = min(wait, ap_sm_event_loop(aq, AP_EVENT_POLL));
444 			spin_unlock_bh(&aq->lock);
445 		}
446 	}
447 	spin_unlock_bh(&ap_list_lock);
448 
449 	ap_wait(wait);
450 }
451 
452 static int ap_pending_requests(void)
453 {
454 	struct ap_card *ac;
455 	struct ap_queue *aq;
456 
457 	spin_lock_bh(&ap_list_lock);
458 	for_each_ap_card(ac) {
459 		for_each_ap_queue(aq, ac) {
460 			if (aq->queue_count == 0)
461 				continue;
462 			spin_unlock_bh(&ap_list_lock);
463 			return 1;
464 		}
465 	}
466 	spin_unlock_bh(&ap_list_lock);
467 	return 0;
468 }
469 
470 /**
471  * ap_poll_thread(): Thread that polls for finished requests.
472  * @data: Unused pointer
473  *
474  * AP bus poll thread. The purpose of this thread is to poll for
475  * finished requests in a loop if there is a "free" cpu - that is
476  * a cpu that doesn't have anything better to do. The polling stops
477  * as soon as there is another task or if all messages have been
478  * delivered.
479  */
480 static int ap_poll_thread(void *data)
481 {
482 	DECLARE_WAITQUEUE(wait, current);
483 
484 	set_user_nice(current, MAX_NICE);
485 	set_freezable();
486 	while (!kthread_should_stop()) {
487 		add_wait_queue(&ap_poll_wait, &wait);
488 		set_current_state(TASK_INTERRUPTIBLE);
489 		if (ap_suspend_flag || !ap_pending_requests()) {
490 			schedule();
491 			try_to_freeze();
492 		}
493 		set_current_state(TASK_RUNNING);
494 		remove_wait_queue(&ap_poll_wait, &wait);
495 		if (need_resched()) {
496 			schedule();
497 			try_to_freeze();
498 			continue;
499 		}
500 		ap_tasklet_fn(0);
501 	}
502 
503 	return 0;
504 }
505 
506 static int ap_poll_thread_start(void)
507 {
508 	int rc;
509 
510 	if (ap_using_interrupts() || ap_poll_kthread)
511 		return 0;
512 	mutex_lock(&ap_poll_thread_mutex);
513 	ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
514 	rc = PTR_ERR_OR_ZERO(ap_poll_kthread);
515 	if (rc)
516 		ap_poll_kthread = NULL;
517 	mutex_unlock(&ap_poll_thread_mutex);
518 	return rc;
519 }
520 
521 static void ap_poll_thread_stop(void)
522 {
523 	if (!ap_poll_kthread)
524 		return;
525 	mutex_lock(&ap_poll_thread_mutex);
526 	kthread_stop(ap_poll_kthread);
527 	ap_poll_kthread = NULL;
528 	mutex_unlock(&ap_poll_thread_mutex);
529 }
530 
531 #define is_card_dev(x) ((x)->parent == ap_root_device)
532 #define is_queue_dev(x) ((x)->parent != ap_root_device)
533 
534 /**
535  * ap_bus_match()
536  * @dev: Pointer to device
537  * @drv: Pointer to device_driver
538  *
539  * AP bus driver registration/unregistration.
540  */
541 static int ap_bus_match(struct device *dev, struct device_driver *drv)
542 {
543 	struct ap_driver *ap_drv = to_ap_drv(drv);
544 	struct ap_device_id *id;
545 
546 	/*
547 	 * Compare device type of the device with the list of
548 	 * supported types of the device_driver.
549 	 */
550 	for (id = ap_drv->ids; id->match_flags; id++) {
551 		if (is_card_dev(dev) &&
552 		    id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE &&
553 		    id->dev_type == to_ap_dev(dev)->device_type)
554 			return 1;
555 		if (is_queue_dev(dev) &&
556 		    id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE &&
557 		    id->dev_type == to_ap_dev(dev)->device_type)
558 			return 1;
559 	}
560 	return 0;
561 }
562 
563 /**
564  * ap_uevent(): Uevent function for AP devices.
565  * @dev: Pointer to device
566  * @env: Pointer to kobj_uevent_env
567  *
568  * It sets up a single environment variable DEV_TYPE which contains the
569  * hardware device type.
570  */
571 static int ap_uevent(struct device *dev, struct kobj_uevent_env *env)
572 {
573 	struct ap_device *ap_dev = to_ap_dev(dev);
574 	int retval = 0;
575 
576 	if (!ap_dev)
577 		return -ENODEV;
578 
579 	/* Set up DEV_TYPE environment variable. */
580 	retval = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
581 	if (retval)
582 		return retval;
583 
584 	/* Add MODALIAS= */
585 	retval = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
586 
587 	return retval;
588 }
589 
590 static int ap_dev_suspend(struct device *dev)
591 {
592 	struct ap_device *ap_dev = to_ap_dev(dev);
593 
594 	if (ap_dev->drv && ap_dev->drv->suspend)
595 		ap_dev->drv->suspend(ap_dev);
596 	return 0;
597 }
598 
599 static int ap_dev_resume(struct device *dev)
600 {
601 	struct ap_device *ap_dev = to_ap_dev(dev);
602 
603 	if (ap_dev->drv && ap_dev->drv->resume)
604 		ap_dev->drv->resume(ap_dev);
605 	return 0;
606 }
607 
608 static void ap_bus_suspend(void)
609 {
610 	AP_DBF(DBF_DEBUG, "%s running\n", __func__);
611 
612 	ap_suspend_flag = 1;
613 	/*
614 	 * Disable scanning for devices, thus we do not want to scan
615 	 * for them after removing.
616 	 */
617 	flush_work(&ap_scan_work);
618 	tasklet_disable(&ap_tasklet);
619 }
620 
621 static int __ap_card_devices_unregister(struct device *dev, void *dummy)
622 {
623 	if (is_card_dev(dev))
624 		device_unregister(dev);
625 	return 0;
626 }
627 
628 static int __ap_queue_devices_unregister(struct device *dev, void *dummy)
629 {
630 	if (is_queue_dev(dev))
631 		device_unregister(dev);
632 	return 0;
633 }
634 
635 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data)
636 {
637 	if (is_queue_dev(dev) &&
638 	    AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long) data)
639 		device_unregister(dev);
640 	return 0;
641 }
642 
643 static void ap_bus_resume(void)
644 {
645 	int rc;
646 
647 	AP_DBF(DBF_DEBUG, "%s running\n", __func__);
648 
649 	/* remove all queue devices */
650 	bus_for_each_dev(&ap_bus_type, NULL, NULL,
651 			 __ap_queue_devices_unregister);
652 	/* remove all card devices */
653 	bus_for_each_dev(&ap_bus_type, NULL, NULL,
654 			 __ap_card_devices_unregister);
655 
656 	/* Reset thin interrupt setting */
657 	if (ap_interrupts_available() && !ap_using_interrupts()) {
658 		rc = register_adapter_interrupt(&ap_airq);
659 		ap_airq_flag = (rc == 0);
660 	}
661 	if (!ap_interrupts_available() && ap_using_interrupts()) {
662 		unregister_adapter_interrupt(&ap_airq);
663 		ap_airq_flag = 0;
664 	}
665 	/* Reset domain */
666 	if (!user_set_domain)
667 		ap_domain_index = -1;
668 	/* Get things going again */
669 	ap_suspend_flag = 0;
670 	if (ap_airq_flag)
671 		xchg(ap_airq.lsi_ptr, 0);
672 	tasklet_enable(&ap_tasklet);
673 	queue_work(system_long_wq, &ap_scan_work);
674 }
675 
676 static int ap_power_event(struct notifier_block *this, unsigned long event,
677 			  void *ptr)
678 {
679 	switch (event) {
680 	case PM_HIBERNATION_PREPARE:
681 	case PM_SUSPEND_PREPARE:
682 		ap_bus_suspend();
683 		break;
684 	case PM_POST_HIBERNATION:
685 	case PM_POST_SUSPEND:
686 		ap_bus_resume();
687 		break;
688 	default:
689 		break;
690 	}
691 	return NOTIFY_DONE;
692 }
693 static struct notifier_block ap_power_notifier = {
694 	.notifier_call = ap_power_event,
695 };
696 
697 static SIMPLE_DEV_PM_OPS(ap_bus_pm_ops, ap_dev_suspend, ap_dev_resume);
698 
699 static struct bus_type ap_bus_type = {
700 	.name = "ap",
701 	.match = &ap_bus_match,
702 	.uevent = &ap_uevent,
703 	.pm = &ap_bus_pm_ops,
704 };
705 
706 static int __ap_revise_reserved(struct device *dev, void *dummy)
707 {
708 	int rc, card, queue, devres, drvres;
709 
710 	if (is_queue_dev(dev)) {
711 		card = AP_QID_CARD(to_ap_queue(dev)->qid);
712 		queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
713 		mutex_lock(&ap_perms_mutex);
714 		devres = test_bit_inv(card, ap_perms.apm)
715 			&& test_bit_inv(queue, ap_perms.aqm);
716 		mutex_unlock(&ap_perms_mutex);
717 		drvres = to_ap_drv(dev->driver)->flags
718 			& AP_DRIVER_FLAG_DEFAULT;
719 		if (!!devres != !!drvres) {
720 			AP_DBF(DBF_DEBUG, "reprobing queue=%02x.%04x\n",
721 			       card, queue);
722 			rc = device_reprobe(dev);
723 		}
724 	}
725 
726 	return 0;
727 }
728 
729 static void ap_bus_revise_bindings(void)
730 {
731 	bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved);
732 }
733 
734 int ap_owned_by_def_drv(int card, int queue)
735 {
736 	int rc = 0;
737 
738 	if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS)
739 		return -EINVAL;
740 
741 	mutex_lock(&ap_perms_mutex);
742 
743 	if (test_bit_inv(card, ap_perms.apm)
744 	    && test_bit_inv(queue, ap_perms.aqm))
745 		rc = 1;
746 
747 	mutex_unlock(&ap_perms_mutex);
748 
749 	return rc;
750 }
751 EXPORT_SYMBOL(ap_owned_by_def_drv);
752 
753 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm,
754 				       unsigned long *aqm)
755 {
756 	int card, queue, rc = 0;
757 
758 	mutex_lock(&ap_perms_mutex);
759 
760 	for (card = 0; !rc && card < AP_DEVICES; card++)
761 		if (test_bit_inv(card, apm) &&
762 		    test_bit_inv(card, ap_perms.apm))
763 			for (queue = 0; !rc && queue < AP_DOMAINS; queue++)
764 				if (test_bit_inv(queue, aqm) &&
765 				    test_bit_inv(queue, ap_perms.aqm))
766 					rc = 1;
767 
768 	mutex_unlock(&ap_perms_mutex);
769 
770 	return rc;
771 }
772 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv);
773 
774 static int ap_device_probe(struct device *dev)
775 {
776 	struct ap_device *ap_dev = to_ap_dev(dev);
777 	struct ap_driver *ap_drv = to_ap_drv(dev->driver);
778 	int card, queue, devres, drvres, rc;
779 
780 	if (is_queue_dev(dev)) {
781 		/*
782 		 * If the apqn is marked as reserved/used by ap bus and
783 		 * default drivers, only probe with drivers with the default
784 		 * flag set. If it is not marked, only probe with drivers
785 		 * with the default flag not set.
786 		 */
787 		card = AP_QID_CARD(to_ap_queue(dev)->qid);
788 		queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
789 		mutex_lock(&ap_perms_mutex);
790 		devres = test_bit_inv(card, ap_perms.apm)
791 			&& test_bit_inv(queue, ap_perms.aqm);
792 		mutex_unlock(&ap_perms_mutex);
793 		drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT;
794 		if (!!devres != !!drvres)
795 			return -ENODEV;
796 	}
797 
798 	/* Add queue/card to list of active queues/cards */
799 	spin_lock_bh(&ap_list_lock);
800 	if (is_card_dev(dev))
801 		list_add(&to_ap_card(dev)->list, &ap_card_list);
802 	else
803 		list_add(&to_ap_queue(dev)->list,
804 			 &to_ap_queue(dev)->card->queues);
805 	spin_unlock_bh(&ap_list_lock);
806 
807 	ap_dev->drv = ap_drv;
808 	rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
809 
810 	if (rc) {
811 		spin_lock_bh(&ap_list_lock);
812 		if (is_card_dev(dev))
813 			list_del_init(&to_ap_card(dev)->list);
814 		else
815 			list_del_init(&to_ap_queue(dev)->list);
816 		spin_unlock_bh(&ap_list_lock);
817 		ap_dev->drv = NULL;
818 	}
819 
820 	return rc;
821 }
822 
823 static int ap_device_remove(struct device *dev)
824 {
825 	struct ap_device *ap_dev = to_ap_dev(dev);
826 	struct ap_driver *ap_drv = ap_dev->drv;
827 
828 	/* prepare ap queue device removal */
829 	if (is_queue_dev(dev))
830 		ap_queue_prepare_remove(to_ap_queue(dev));
831 
832 	/* driver's chance to clean up gracefully */
833 	if (ap_drv->remove)
834 		ap_drv->remove(ap_dev);
835 
836 	/* now do the ap queue device remove */
837 	if (is_queue_dev(dev))
838 		ap_queue_remove(to_ap_queue(dev));
839 
840 	/* Remove queue/card from list of active queues/cards */
841 	spin_lock_bh(&ap_list_lock);
842 	if (is_card_dev(dev))
843 		list_del_init(&to_ap_card(dev)->list);
844 	else
845 		list_del_init(&to_ap_queue(dev)->list);
846 	spin_unlock_bh(&ap_list_lock);
847 
848 	return 0;
849 }
850 
851 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
852 		       char *name)
853 {
854 	struct device_driver *drv = &ap_drv->driver;
855 
856 	if (!initialised)
857 		return -ENODEV;
858 
859 	drv->bus = &ap_bus_type;
860 	drv->probe = ap_device_probe;
861 	drv->remove = ap_device_remove;
862 	drv->owner = owner;
863 	drv->name = name;
864 	return driver_register(drv);
865 }
866 EXPORT_SYMBOL(ap_driver_register);
867 
868 void ap_driver_unregister(struct ap_driver *ap_drv)
869 {
870 	driver_unregister(&ap_drv->driver);
871 }
872 EXPORT_SYMBOL(ap_driver_unregister);
873 
874 void ap_bus_force_rescan(void)
875 {
876 	if (ap_suspend_flag)
877 		return;
878 	/* processing a asynchronous bus rescan */
879 	del_timer(&ap_config_timer);
880 	queue_work(system_long_wq, &ap_scan_work);
881 	flush_work(&ap_scan_work);
882 }
883 EXPORT_SYMBOL(ap_bus_force_rescan);
884 
885 /*
886 * A config change has happened, force an ap bus rescan.
887 */
888 void ap_bus_cfg_chg(void)
889 {
890 	AP_DBF(DBF_INFO, "%s config change, forcing bus rescan\n", __func__);
891 
892 	ap_bus_force_rescan();
893 }
894 
895 /*
896  * hex2bitmap() - parse hex mask string and set bitmap.
897  * Valid strings are "0x012345678" with at least one valid hex number.
898  * Rest of the bitmap to the right is padded with 0. No spaces allowed
899  * within the string, the leading 0x may be omitted.
900  * Returns the bitmask with exactly the bits set as given by the hex
901  * string (both in big endian order).
902  */
903 static int hex2bitmap(const char *str, unsigned long *bitmap, int bits)
904 {
905 	int i, n, b;
906 
907 	/* bits needs to be a multiple of 8 */
908 	if (bits & 0x07)
909 		return -EINVAL;
910 
911 	if (str[0] == '0' && str[1] == 'x')
912 		str++;
913 	if (*str == 'x')
914 		str++;
915 
916 	for (i = 0; isxdigit(*str) && i < bits; str++) {
917 		b = hex_to_bin(*str);
918 		for (n = 0; n < 4; n++)
919 			if (b & (0x08 >> n))
920 				set_bit_inv(i + n, bitmap);
921 		i += 4;
922 	}
923 
924 	if (*str == '\n')
925 		str++;
926 	if (*str)
927 		return -EINVAL;
928 	return 0;
929 }
930 
931 /*
932  * modify_bitmap() - parse bitmask argument and modify an existing
933  * bit mask accordingly. A concatenation (done with ',') of these
934  * terms is recognized:
935  *   +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>]
936  * <bitnr> may be any valid number (hex, decimal or octal) in the range
937  * 0...bits-1; the leading + or - is required. Here are some examples:
938  *   +0-15,+32,-128,-0xFF
939  *   -0-255,+1-16,+0x128
940  *   +1,+2,+3,+4,-5,-7-10
941  * Returns the new bitmap after all changes have been applied. Every
942  * positive value in the string will set a bit and every negative value
943  * in the string will clear a bit. As a bit may be touched more than once,
944  * the last 'operation' wins:
945  * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be
946  * cleared again. All other bits are unmodified.
947  */
948 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits)
949 {
950 	int a, i, z;
951 	char *np, sign;
952 
953 	/* bits needs to be a multiple of 8 */
954 	if (bits & 0x07)
955 		return -EINVAL;
956 
957 	while (*str) {
958 		sign = *str++;
959 		if (sign != '+' && sign != '-')
960 			return -EINVAL;
961 		a = z = simple_strtoul(str, &np, 0);
962 		if (str == np || a >= bits)
963 			return -EINVAL;
964 		str = np;
965 		if (*str == '-') {
966 			z = simple_strtoul(++str, &np, 0);
967 			if (str == np || a > z || z >= bits)
968 				return -EINVAL;
969 			str = np;
970 		}
971 		for (i = a; i <= z; i++)
972 			if (sign == '+')
973 				set_bit_inv(i, bitmap);
974 			else
975 				clear_bit_inv(i, bitmap);
976 		while (*str == ',' || *str == '\n')
977 			str++;
978 	}
979 
980 	return 0;
981 }
982 
983 int ap_parse_mask_str(const char *str,
984 		      unsigned long *bitmap, int bits,
985 		      struct mutex *lock)
986 {
987 	unsigned long *newmap, size;
988 	int rc;
989 
990 	/* bits needs to be a multiple of 8 */
991 	if (bits & 0x07)
992 		return -EINVAL;
993 
994 	size = BITS_TO_LONGS(bits)*sizeof(unsigned long);
995 	newmap = kmalloc(size, GFP_KERNEL);
996 	if (!newmap)
997 		return -ENOMEM;
998 	if (mutex_lock_interruptible(lock)) {
999 		kfree(newmap);
1000 		return -ERESTARTSYS;
1001 	}
1002 
1003 	if (*str == '+' || *str == '-') {
1004 		memcpy(newmap, bitmap, size);
1005 		rc = modify_bitmap(str, newmap, bits);
1006 	} else {
1007 		memset(newmap, 0, size);
1008 		rc = hex2bitmap(str, newmap, bits);
1009 	}
1010 	if (rc == 0)
1011 		memcpy(bitmap, newmap, size);
1012 	mutex_unlock(lock);
1013 	kfree(newmap);
1014 	return rc;
1015 }
1016 EXPORT_SYMBOL(ap_parse_mask_str);
1017 
1018 /*
1019  * AP bus attributes.
1020  */
1021 
1022 static ssize_t ap_domain_show(struct bus_type *bus, char *buf)
1023 {
1024 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index);
1025 }
1026 
1027 static ssize_t ap_domain_store(struct bus_type *bus,
1028 			       const char *buf, size_t count)
1029 {
1030 	int domain;
1031 
1032 	if (sscanf(buf, "%i\n", &domain) != 1 ||
1033 	    domain < 0 || domain > ap_max_domain_id ||
1034 	    !test_bit_inv(domain, ap_perms.aqm))
1035 		return -EINVAL;
1036 	spin_lock_bh(&ap_domain_lock);
1037 	ap_domain_index = domain;
1038 	spin_unlock_bh(&ap_domain_lock);
1039 
1040 	AP_DBF(DBF_DEBUG, "stored new default domain=%d\n", domain);
1041 
1042 	return count;
1043 }
1044 
1045 static BUS_ATTR_RW(ap_domain);
1046 
1047 static ssize_t ap_control_domain_mask_show(struct bus_type *bus, char *buf)
1048 {
1049 	if (!ap_configuration)	/* QCI not supported */
1050 		return snprintf(buf, PAGE_SIZE, "not supported\n");
1051 
1052 	return snprintf(buf, PAGE_SIZE,
1053 			"0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1054 			ap_configuration->adm[0], ap_configuration->adm[1],
1055 			ap_configuration->adm[2], ap_configuration->adm[3],
1056 			ap_configuration->adm[4], ap_configuration->adm[5],
1057 			ap_configuration->adm[6], ap_configuration->adm[7]);
1058 }
1059 
1060 static BUS_ATTR_RO(ap_control_domain_mask);
1061 
1062 static ssize_t ap_usage_domain_mask_show(struct bus_type *bus, char *buf)
1063 {
1064 	if (!ap_configuration)	/* QCI not supported */
1065 		return snprintf(buf, PAGE_SIZE, "not supported\n");
1066 
1067 	return snprintf(buf, PAGE_SIZE,
1068 			"0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1069 			ap_configuration->aqm[0], ap_configuration->aqm[1],
1070 			ap_configuration->aqm[2], ap_configuration->aqm[3],
1071 			ap_configuration->aqm[4], ap_configuration->aqm[5],
1072 			ap_configuration->aqm[6], ap_configuration->aqm[7]);
1073 }
1074 
1075 static BUS_ATTR_RO(ap_usage_domain_mask);
1076 
1077 static ssize_t ap_adapter_mask_show(struct bus_type *bus, char *buf)
1078 {
1079 	if (!ap_configuration)	/* QCI not supported */
1080 		return snprintf(buf, PAGE_SIZE, "not supported\n");
1081 
1082 	return snprintf(buf, PAGE_SIZE,
1083 			"0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1084 			ap_configuration->apm[0], ap_configuration->apm[1],
1085 			ap_configuration->apm[2], ap_configuration->apm[3],
1086 			ap_configuration->apm[4], ap_configuration->apm[5],
1087 			ap_configuration->apm[6], ap_configuration->apm[7]);
1088 }
1089 
1090 static BUS_ATTR_RO(ap_adapter_mask);
1091 
1092 static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf)
1093 {
1094 	return snprintf(buf, PAGE_SIZE, "%d\n",
1095 			ap_using_interrupts() ? 1 : 0);
1096 }
1097 
1098 static BUS_ATTR_RO(ap_interrupts);
1099 
1100 static ssize_t config_time_show(struct bus_type *bus, char *buf)
1101 {
1102 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_config_time);
1103 }
1104 
1105 static ssize_t config_time_store(struct bus_type *bus,
1106 				 const char *buf, size_t count)
1107 {
1108 	int time;
1109 
1110 	if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
1111 		return -EINVAL;
1112 	ap_config_time = time;
1113 	mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1114 	return count;
1115 }
1116 
1117 static BUS_ATTR_RW(config_time);
1118 
1119 static ssize_t poll_thread_show(struct bus_type *bus, char *buf)
1120 {
1121 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0);
1122 }
1123 
1124 static ssize_t poll_thread_store(struct bus_type *bus,
1125 				 const char *buf, size_t count)
1126 {
1127 	int flag, rc;
1128 
1129 	if (sscanf(buf, "%d\n", &flag) != 1)
1130 		return -EINVAL;
1131 	if (flag) {
1132 		rc = ap_poll_thread_start();
1133 		if (rc)
1134 			count = rc;
1135 	} else
1136 		ap_poll_thread_stop();
1137 	return count;
1138 }
1139 
1140 static BUS_ATTR_RW(poll_thread);
1141 
1142 static ssize_t poll_timeout_show(struct bus_type *bus, char *buf)
1143 {
1144 	return snprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout);
1145 }
1146 
1147 static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf,
1148 				  size_t count)
1149 {
1150 	unsigned long long time;
1151 	ktime_t hr_time;
1152 
1153 	/* 120 seconds = maximum poll interval */
1154 	if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 ||
1155 	    time > 120000000000ULL)
1156 		return -EINVAL;
1157 	poll_timeout = time;
1158 	hr_time = poll_timeout;
1159 
1160 	spin_lock_bh(&ap_poll_timer_lock);
1161 	hrtimer_cancel(&ap_poll_timer);
1162 	hrtimer_set_expires(&ap_poll_timer, hr_time);
1163 	hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
1164 	spin_unlock_bh(&ap_poll_timer_lock);
1165 
1166 	return count;
1167 }
1168 
1169 static BUS_ATTR_RW(poll_timeout);
1170 
1171 static ssize_t ap_max_domain_id_show(struct bus_type *bus, char *buf)
1172 {
1173 	int max_domain_id;
1174 
1175 	if (ap_configuration)
1176 		max_domain_id = ap_max_domain_id ? : -1;
1177 	else
1178 		max_domain_id = 15;
1179 	return snprintf(buf, PAGE_SIZE, "%d\n", max_domain_id);
1180 }
1181 
1182 static BUS_ATTR_RO(ap_max_domain_id);
1183 
1184 static ssize_t apmask_show(struct bus_type *bus, char *buf)
1185 {
1186 	int rc;
1187 
1188 	if (mutex_lock_interruptible(&ap_perms_mutex))
1189 		return -ERESTARTSYS;
1190 	rc = snprintf(buf, PAGE_SIZE,
1191 		      "0x%016lx%016lx%016lx%016lx\n",
1192 		      ap_perms.apm[0], ap_perms.apm[1],
1193 		      ap_perms.apm[2], ap_perms.apm[3]);
1194 	mutex_unlock(&ap_perms_mutex);
1195 
1196 	return rc;
1197 }
1198 
1199 static ssize_t apmask_store(struct bus_type *bus, const char *buf,
1200 			    size_t count)
1201 {
1202 	int rc;
1203 
1204 	rc = ap_parse_mask_str(buf, ap_perms.apm, AP_DEVICES, &ap_perms_mutex);
1205 	if (rc)
1206 		return rc;
1207 
1208 	ap_bus_revise_bindings();
1209 
1210 	return count;
1211 }
1212 
1213 static BUS_ATTR_RW(apmask);
1214 
1215 static ssize_t aqmask_show(struct bus_type *bus, char *buf)
1216 {
1217 	int rc;
1218 
1219 	if (mutex_lock_interruptible(&ap_perms_mutex))
1220 		return -ERESTARTSYS;
1221 	rc = snprintf(buf, PAGE_SIZE,
1222 		      "0x%016lx%016lx%016lx%016lx\n",
1223 		      ap_perms.aqm[0], ap_perms.aqm[1],
1224 		      ap_perms.aqm[2], ap_perms.aqm[3]);
1225 	mutex_unlock(&ap_perms_mutex);
1226 
1227 	return rc;
1228 }
1229 
1230 static ssize_t aqmask_store(struct bus_type *bus, const char *buf,
1231 			    size_t count)
1232 {
1233 	int rc;
1234 
1235 	rc = ap_parse_mask_str(buf, ap_perms.aqm, AP_DOMAINS, &ap_perms_mutex);
1236 	if (rc)
1237 		return rc;
1238 
1239 	ap_bus_revise_bindings();
1240 
1241 	return count;
1242 }
1243 
1244 static BUS_ATTR_RW(aqmask);
1245 
1246 static struct bus_attribute *const ap_bus_attrs[] = {
1247 	&bus_attr_ap_domain,
1248 	&bus_attr_ap_control_domain_mask,
1249 	&bus_attr_ap_usage_domain_mask,
1250 	&bus_attr_ap_adapter_mask,
1251 	&bus_attr_config_time,
1252 	&bus_attr_poll_thread,
1253 	&bus_attr_ap_interrupts,
1254 	&bus_attr_poll_timeout,
1255 	&bus_attr_ap_max_domain_id,
1256 	&bus_attr_apmask,
1257 	&bus_attr_aqmask,
1258 	NULL,
1259 };
1260 
1261 /**
1262  * ap_select_domain(): Select an AP domain if possible and we haven't
1263  * already done so before.
1264  */
1265 static void ap_select_domain(void)
1266 {
1267 	int count, max_count, best_domain;
1268 	struct ap_queue_status status;
1269 	int i, j;
1270 
1271 	/*
1272 	 * We want to use a single domain. Either the one specified with
1273 	 * the "domain=" parameter or the domain with the maximum number
1274 	 * of devices.
1275 	 */
1276 	spin_lock_bh(&ap_domain_lock);
1277 	if (ap_domain_index >= 0) {
1278 		/* Domain has already been selected. */
1279 		spin_unlock_bh(&ap_domain_lock);
1280 		return;
1281 	}
1282 	best_domain = -1;
1283 	max_count = 0;
1284 	for (i = 0; i < AP_DOMAINS; i++) {
1285 		if (!ap_test_config_usage_domain(i) ||
1286 		    !test_bit_inv(i, ap_perms.aqm))
1287 			continue;
1288 		count = 0;
1289 		for (j = 0; j < AP_DEVICES; j++) {
1290 			if (!ap_test_config_card_id(j))
1291 				continue;
1292 			status = ap_test_queue(AP_MKQID(j, i),
1293 					       ap_apft_available(),
1294 					       NULL);
1295 			if (status.response_code != AP_RESPONSE_NORMAL)
1296 				continue;
1297 			count++;
1298 		}
1299 		if (count > max_count) {
1300 			max_count = count;
1301 			best_domain = i;
1302 		}
1303 	}
1304 	if (best_domain >= 0) {
1305 		ap_domain_index = best_domain;
1306 		AP_DBF(DBF_DEBUG, "new ap_domain_index=%d\n", ap_domain_index);
1307 	}
1308 	spin_unlock_bh(&ap_domain_lock);
1309 }
1310 
1311 /*
1312  * This function checks the type and returns either 0 for not
1313  * supported or the highest compatible type value (which may
1314  * include the input type value).
1315  */
1316 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func)
1317 {
1318 	int comp_type = 0;
1319 
1320 	/* < CEX2A is not supported */
1321 	if (rawtype < AP_DEVICE_TYPE_CEX2A)
1322 		return 0;
1323 	/* up to CEX7 known and fully supported */
1324 	if (rawtype <= AP_DEVICE_TYPE_CEX7)
1325 		return rawtype;
1326 	/*
1327 	 * unknown new type > CEX7, check for compatibility
1328 	 * to the highest known and supported type which is
1329 	 * currently CEX7 with the help of the QACT function.
1330 	 */
1331 	if (ap_qact_available()) {
1332 		struct ap_queue_status status;
1333 		union ap_qact_ap_info apinfo = {0};
1334 
1335 		apinfo.mode = (func >> 26) & 0x07;
1336 		apinfo.cat = AP_DEVICE_TYPE_CEX7;
1337 		status = ap_qact(qid, 0, &apinfo);
1338 		if (status.response_code == AP_RESPONSE_NORMAL
1339 		    && apinfo.cat >= AP_DEVICE_TYPE_CEX2A
1340 		    && apinfo.cat <= AP_DEVICE_TYPE_CEX7)
1341 			comp_type = apinfo.cat;
1342 	}
1343 	if (!comp_type)
1344 		AP_DBF(DBF_WARN, "queue=%02x.%04x unable to map type %d\n",
1345 		       AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype);
1346 	else if (comp_type != rawtype)
1347 		AP_DBF(DBF_INFO, "queue=%02x.%04x map type %d to %d\n",
1348 		       AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype, comp_type);
1349 	return comp_type;
1350 }
1351 
1352 /*
1353  * Helper function to be used with bus_find_dev
1354  * matches for the card device with the given id
1355  */
1356 static int __match_card_device_with_id(struct device *dev, const void *data)
1357 {
1358 	return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *) data;
1359 }
1360 
1361 /*
1362  * Helper function to be used with bus_find_dev
1363  * matches for the queue device with a given qid
1364  */
1365 static int __match_queue_device_with_qid(struct device *dev, const void *data)
1366 {
1367 	return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long) data;
1368 }
1369 
1370 /*
1371  * Helper function to be used with bus_find_dev
1372  * matches any queue device with given queue id
1373  */
1374 static int __match_queue_device_with_queue_id(struct device *dev, const void *data)
1375 {
1376 	return is_queue_dev(dev)
1377 		&& AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long) data;
1378 }
1379 
1380 /*
1381  * Helper function for ap_scan_bus().
1382  * Does the scan bus job for the given adapter id.
1383  */
1384 static void _ap_scan_bus_adapter(int id)
1385 {
1386 	ap_qid_t qid;
1387 	unsigned int func;
1388 	struct ap_card *ac;
1389 	struct device *dev;
1390 	struct ap_queue *aq;
1391 	int rc, dom, depth, type, comp_type, borked;
1392 
1393 	/* check if there is a card device registered with this id */
1394 	dev = bus_find_device(&ap_bus_type, NULL,
1395 			      (void *)(long) id,
1396 			      __match_card_device_with_id);
1397 	ac = dev ? to_ap_card(dev) : NULL;
1398 	if (!ap_test_config_card_id(id)) {
1399 		if (dev) {
1400 			/* Card device has been removed from configuration */
1401 			bus_for_each_dev(&ap_bus_type, NULL,
1402 					 (void *)(long) id,
1403 					 __ap_queue_devices_with_id_unregister);
1404 			device_unregister(dev);
1405 			put_device(dev);
1406 		}
1407 		return;
1408 	}
1409 
1410 	/*
1411 	 * This card id is enabled in the configuration. If we already have
1412 	 * a card device with this id, check if type and functions are still
1413 	 * the very same. Also verify that at least one queue is available.
1414 	 */
1415 	if (ac) {
1416 		/* find the first valid queue */
1417 		for (dom = 0; dom < AP_DOMAINS; dom++) {
1418 			qid = AP_MKQID(id, dom);
1419 			if (ap_query_queue(qid, &depth, &type, &func) == 0)
1420 				break;
1421 		}
1422 		borked = 0;
1423 		if (dom >= AP_DOMAINS) {
1424 			/* no accessible queue on this card */
1425 			borked = 1;
1426 		} else if (ac->raw_hwtype != type) {
1427 			/* card type has changed */
1428 			AP_DBF(DBF_INFO, "card=%02x type changed.\n", id);
1429 			borked = 1;
1430 		} else if (ac->functions != func) {
1431 			/* card functions have changed */
1432 			AP_DBF(DBF_INFO, "card=%02x functions changed.\n", id);
1433 			borked = 1;
1434 		}
1435 		if (borked) {
1436 			/* unregister card device and associated queues */
1437 			bus_for_each_dev(&ap_bus_type, NULL,
1438 					 (void *)(long) id,
1439 					 __ap_queue_devices_with_id_unregister);
1440 			device_unregister(dev);
1441 			put_device(dev);
1442 			/* go back if there is no valid queue on this card */
1443 			if (dom >= AP_DOMAINS)
1444 				return;
1445 			ac = NULL;
1446 		}
1447 	}
1448 
1449 	/*
1450 	 * Go through all possible queue ids. Check and maybe create or release
1451 	 * queue devices for this card. If there exists no card device yet,
1452 	 * create a card device also.
1453 	 */
1454 	for (dom = 0; dom < AP_DOMAINS; dom++) {
1455 		qid = AP_MKQID(id, dom);
1456 		dev = bus_find_device(&ap_bus_type, NULL,
1457 				      (void *)(long) qid,
1458 				      __match_queue_device_with_qid);
1459 		aq = dev ? to_ap_queue(dev) : NULL;
1460 		if (!ap_test_config_usage_domain(dom)) {
1461 			if (dev) {
1462 				/* Queue device exists but has been
1463 				 * removed from configuration.
1464 				 */
1465 				device_unregister(dev);
1466 				put_device(dev);
1467 			}
1468 			continue;
1469 		}
1470 		/* try to fetch infos about this queue */
1471 		rc = ap_query_queue(qid, &depth, &type, &func);
1472 		if (dev) {
1473 			if (rc == -ENODEV)
1474 				borked = 1;
1475 			else {
1476 				spin_lock_bh(&aq->lock);
1477 				borked = aq->state == AP_STATE_BORKED;
1478 				spin_unlock_bh(&aq->lock);
1479 			}
1480 			if (borked) {
1481 				/* Remove broken device */
1482 				AP_DBF(DBF_DEBUG,
1483 				       "removing broken queue=%02x.%04x\n",
1484 				       id, dom);
1485 				device_unregister(dev);
1486 			}
1487 			put_device(dev);
1488 			continue;
1489 		}
1490 		if (rc)
1491 			continue;
1492 		/* a new queue device is needed, check out comp type */
1493 		comp_type = ap_get_compatible_type(qid, type, func);
1494 		if (!comp_type)
1495 			continue;
1496 		/* maybe a card device needs to be created first */
1497 		if (!ac) {
1498 			ac = ap_card_create(id, depth, type, comp_type, func);
1499 			if (!ac)
1500 				continue;
1501 			ac->ap_dev.device.bus = &ap_bus_type;
1502 			ac->ap_dev.device.parent = ap_root_device;
1503 			dev_set_name(&ac->ap_dev.device, "card%02x", id);
1504 			/* Register card device with AP bus */
1505 			rc = device_register(&ac->ap_dev.device);
1506 			if (rc) {
1507 				put_device(&ac->ap_dev.device);
1508 				ac = NULL;
1509 				break;
1510 			}
1511 			/* get it and thus adjust reference counter */
1512 			get_device(&ac->ap_dev.device);
1513 		}
1514 		/* now create the new queue device */
1515 		aq = ap_queue_create(qid, comp_type);
1516 		if (!aq)
1517 			continue;
1518 		aq->card = ac;
1519 		aq->ap_dev.device.bus = &ap_bus_type;
1520 		aq->ap_dev.device.parent = &ac->ap_dev.device;
1521 		dev_set_name(&aq->ap_dev.device, "%02x.%04x", id, dom);
1522 		/* Register queue device */
1523 		rc = device_register(&aq->ap_dev.device);
1524 		if (rc) {
1525 			put_device(&aq->ap_dev.device);
1526 			continue;
1527 		}
1528 	} /* end domain loop */
1529 
1530 	if (ac)
1531 		put_device(&ac->ap_dev.device);
1532 }
1533 
1534 /**
1535  * ap_scan_bus(): Scan the AP bus for new devices
1536  * Runs periodically, workqueue timer (ap_config_time)
1537  */
1538 static void ap_scan_bus(struct work_struct *unused)
1539 {
1540 	int id;
1541 
1542 	AP_DBF(DBF_DEBUG, "%s running\n", __func__);
1543 
1544 	ap_query_configuration(ap_configuration);
1545 	ap_select_domain();
1546 
1547 	/* loop over all possible adapters */
1548 	for (id = 0; id < AP_DEVICES; id++)
1549 		_ap_scan_bus_adapter(id);
1550 
1551 	/* check if there is at least one queue available with default domain */
1552 	if (ap_domain_index >= 0) {
1553 		struct device *dev =
1554 			bus_find_device(&ap_bus_type, NULL,
1555 					(void *)(long) ap_domain_index,
1556 					__match_queue_device_with_queue_id);
1557 		if (dev)
1558 			put_device(dev);
1559 		else
1560 			AP_DBF(DBF_INFO,
1561 			       "no queue device with default domain %d available\n",
1562 			       ap_domain_index);
1563 	}
1564 
1565 	mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1566 }
1567 
1568 static void ap_config_timeout(struct timer_list *unused)
1569 {
1570 	if (ap_suspend_flag)
1571 		return;
1572 	queue_work(system_long_wq, &ap_scan_work);
1573 }
1574 
1575 static int __init ap_debug_init(void)
1576 {
1577 	ap_dbf_info = debug_register("ap", 1, 1,
1578 				     DBF_MAX_SPRINTF_ARGS * sizeof(long));
1579 	debug_register_view(ap_dbf_info, &debug_sprintf_view);
1580 	debug_set_level(ap_dbf_info, DBF_ERR);
1581 
1582 	return 0;
1583 }
1584 
1585 static void __init ap_perms_init(void)
1586 {
1587 	/* all resources useable if no kernel parameter string given */
1588 	memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm));
1589 	memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm));
1590 	memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm));
1591 
1592 	/* apm kernel parameter string */
1593 	if (apm_str) {
1594 		memset(&ap_perms.apm, 0, sizeof(ap_perms.apm));
1595 		ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES,
1596 				  &ap_perms_mutex);
1597 	}
1598 
1599 	/* aqm kernel parameter string */
1600 	if (aqm_str) {
1601 		memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm));
1602 		ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS,
1603 				  &ap_perms_mutex);
1604 	}
1605 }
1606 
1607 /**
1608  * ap_module_init(): The module initialization code.
1609  *
1610  * Initializes the module.
1611  */
1612 static int __init ap_module_init(void)
1613 {
1614 	int max_domain_id;
1615 	int rc, i;
1616 
1617 	rc = ap_debug_init();
1618 	if (rc)
1619 		return rc;
1620 
1621 	if (!ap_instructions_available()) {
1622 		pr_warn("The hardware system does not support AP instructions\n");
1623 		return -ENODEV;
1624 	}
1625 
1626 	/* set up the AP permissions (ioctls, ap and aq masks) */
1627 	ap_perms_init();
1628 
1629 	/* Get AP configuration data if available */
1630 	ap_init_configuration();
1631 
1632 	if (ap_configuration)
1633 		max_domain_id =
1634 			ap_max_domain_id ? ap_max_domain_id : AP_DOMAINS - 1;
1635 	else
1636 		max_domain_id = 15;
1637 	if (ap_domain_index < -1 || ap_domain_index > max_domain_id ||
1638 	    (ap_domain_index >= 0 &&
1639 	     !test_bit_inv(ap_domain_index, ap_perms.aqm))) {
1640 		pr_warn("%d is not a valid cryptographic domain\n",
1641 			ap_domain_index);
1642 		ap_domain_index = -1;
1643 	}
1644 	/* In resume callback we need to know if the user had set the domain.
1645 	 * If so, we can not just reset it.
1646 	 */
1647 	if (ap_domain_index >= 0)
1648 		user_set_domain = 1;
1649 
1650 	if (ap_interrupts_available()) {
1651 		rc = register_adapter_interrupt(&ap_airq);
1652 		ap_airq_flag = (rc == 0);
1653 	}
1654 
1655 	/* Create /sys/bus/ap. */
1656 	rc = bus_register(&ap_bus_type);
1657 	if (rc)
1658 		goto out;
1659 	for (i = 0; ap_bus_attrs[i]; i++) {
1660 		rc = bus_create_file(&ap_bus_type, ap_bus_attrs[i]);
1661 		if (rc)
1662 			goto out_bus;
1663 	}
1664 
1665 	/* Create /sys/devices/ap. */
1666 	ap_root_device = root_device_register("ap");
1667 	rc = PTR_ERR_OR_ZERO(ap_root_device);
1668 	if (rc)
1669 		goto out_bus;
1670 
1671 	/* Setup the AP bus rescan timer. */
1672 	timer_setup(&ap_config_timer, ap_config_timeout, 0);
1673 
1674 	/*
1675 	 * Setup the high resultion poll timer.
1676 	 * If we are running under z/VM adjust polling to z/VM polling rate.
1677 	 */
1678 	if (MACHINE_IS_VM)
1679 		poll_timeout = 1500000;
1680 	spin_lock_init(&ap_poll_timer_lock);
1681 	hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1682 	ap_poll_timer.function = ap_poll_timeout;
1683 
1684 	/* Start the low priority AP bus poll thread. */
1685 	if (ap_thread_flag) {
1686 		rc = ap_poll_thread_start();
1687 		if (rc)
1688 			goto out_work;
1689 	}
1690 
1691 	rc = register_pm_notifier(&ap_power_notifier);
1692 	if (rc)
1693 		goto out_pm;
1694 
1695 	queue_work(system_long_wq, &ap_scan_work);
1696 	initialised = true;
1697 
1698 	return 0;
1699 
1700 out_pm:
1701 	ap_poll_thread_stop();
1702 out_work:
1703 	hrtimer_cancel(&ap_poll_timer);
1704 	root_device_unregister(ap_root_device);
1705 out_bus:
1706 	while (i--)
1707 		bus_remove_file(&ap_bus_type, ap_bus_attrs[i]);
1708 	bus_unregister(&ap_bus_type);
1709 out:
1710 	if (ap_using_interrupts())
1711 		unregister_adapter_interrupt(&ap_airq);
1712 	kfree(ap_configuration);
1713 	return rc;
1714 }
1715 device_initcall(ap_module_init);
1716