1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright IBM Corp. 2006, 2012 4 * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com> 5 * Martin Schwidefsky <schwidefsky@de.ibm.com> 6 * Ralph Wuerthner <rwuerthn@de.ibm.com> 7 * Felix Beck <felix.beck@de.ibm.com> 8 * Holger Dengler <hd@linux.vnet.ibm.com> 9 * 10 * Adjunct processor bus. 11 */ 12 13 #define KMSG_COMPONENT "ap" 14 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 15 16 #include <linux/kernel_stat.h> 17 #include <linux/moduleparam.h> 18 #include <linux/init.h> 19 #include <linux/delay.h> 20 #include <linux/err.h> 21 #include <linux/freezer.h> 22 #include <linux/interrupt.h> 23 #include <linux/workqueue.h> 24 #include <linux/slab.h> 25 #include <linux/notifier.h> 26 #include <linux/kthread.h> 27 #include <linux/mutex.h> 28 #include <asm/airq.h> 29 #include <linux/atomic.h> 30 #include <asm/isc.h> 31 #include <linux/hrtimer.h> 32 #include <linux/ktime.h> 33 #include <asm/facility.h> 34 #include <linux/crypto.h> 35 #include <linux/mod_devicetable.h> 36 #include <linux/debugfs.h> 37 #include <linux/ctype.h> 38 39 #include "ap_bus.h" 40 #include "ap_debug.h" 41 42 /* 43 * Module parameters; note though this file itself isn't modular. 44 */ 45 int ap_domain_index = -1; /* Adjunct Processor Domain Index */ 46 static DEFINE_SPINLOCK(ap_domain_lock); 47 module_param_named(domain, ap_domain_index, int, 0440); 48 MODULE_PARM_DESC(domain, "domain index for ap devices"); 49 EXPORT_SYMBOL(ap_domain_index); 50 51 static int ap_thread_flag; 52 module_param_named(poll_thread, ap_thread_flag, int, 0440); 53 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off)."); 54 55 static char *apm_str; 56 module_param_named(apmask, apm_str, charp, 0440); 57 MODULE_PARM_DESC(apmask, "AP bus adapter mask."); 58 59 static char *aqm_str; 60 module_param_named(aqmask, aqm_str, charp, 0440); 61 MODULE_PARM_DESC(aqmask, "AP bus domain mask."); 62 63 static struct device *ap_root_device; 64 65 /* Hashtable of all queue devices on the AP bus */ 66 DEFINE_HASHTABLE(ap_queues, 8); 67 /* lock used for the ap_queues hashtable */ 68 DEFINE_SPINLOCK(ap_queues_lock); 69 70 /* Default permissions (ioctl, card and domain masking) */ 71 struct ap_perms ap_perms; 72 EXPORT_SYMBOL(ap_perms); 73 DEFINE_MUTEX(ap_perms_mutex); 74 EXPORT_SYMBOL(ap_perms_mutex); 75 76 static struct ap_config_info *ap_configuration; 77 static bool initialised; 78 79 /* 80 * AP bus related debug feature things. 81 */ 82 debug_info_t *ap_dbf_info; 83 84 /* 85 * Workqueue timer for bus rescan. 86 */ 87 static struct timer_list ap_config_timer; 88 static int ap_config_time = AP_CONFIG_TIME; 89 static void ap_scan_bus(struct work_struct *); 90 static DECLARE_WORK(ap_scan_work, ap_scan_bus); 91 92 /* 93 * Tasklet & timer for AP request polling and interrupts 94 */ 95 static void ap_tasklet_fn(unsigned long); 96 static DECLARE_TASKLET(ap_tasklet, ap_tasklet_fn, 0); 97 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait); 98 static struct task_struct *ap_poll_kthread; 99 static DEFINE_MUTEX(ap_poll_thread_mutex); 100 static DEFINE_SPINLOCK(ap_poll_timer_lock); 101 static struct hrtimer ap_poll_timer; 102 /* 103 * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds. 104 * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling. 105 */ 106 static unsigned long long poll_timeout = 250000; 107 108 /* Maximum domain id */ 109 static int ap_max_domain_id; 110 111 static struct bus_type ap_bus_type; 112 113 /* Adapter interrupt definitions */ 114 static void ap_interrupt_handler(struct airq_struct *airq, bool floating); 115 116 static int ap_airq_flag; 117 118 static struct airq_struct ap_airq = { 119 .handler = ap_interrupt_handler, 120 .isc = AP_ISC, 121 }; 122 123 /** 124 * ap_using_interrupts() - Returns non-zero if interrupt support is 125 * available. 126 */ 127 static inline int ap_using_interrupts(void) 128 { 129 return ap_airq_flag; 130 } 131 132 /** 133 * ap_airq_ptr() - Get the address of the adapter interrupt indicator 134 * 135 * Returns the address of the local-summary-indicator of the adapter 136 * interrupt handler for AP, or NULL if adapter interrupts are not 137 * available. 138 */ 139 void *ap_airq_ptr(void) 140 { 141 if (ap_using_interrupts()) 142 return ap_airq.lsi_ptr; 143 return NULL; 144 } 145 146 /** 147 * ap_interrupts_available(): Test if AP interrupts are available. 148 * 149 * Returns 1 if AP interrupts are available. 150 */ 151 static int ap_interrupts_available(void) 152 { 153 return test_facility(65); 154 } 155 156 /** 157 * ap_configuration_available(): Test if AP configuration 158 * information is available. 159 * 160 * Returns 1 if AP configuration information is available. 161 */ 162 static int ap_configuration_available(void) 163 { 164 return test_facility(12); 165 } 166 167 /** 168 * ap_apft_available(): Test if AP facilities test (APFT) 169 * facility is available. 170 * 171 * Returns 1 if APFT is is available. 172 */ 173 static int ap_apft_available(void) 174 { 175 return test_facility(15); 176 } 177 178 /* 179 * ap_qact_available(): Test if the PQAP(QACT) subfunction is available. 180 * 181 * Returns 1 if the QACT subfunction is available. 182 */ 183 static inline int ap_qact_available(void) 184 { 185 if (ap_configuration) 186 return ap_configuration->qact; 187 return 0; 188 } 189 190 /* 191 * ap_query_configuration(): Fetch cryptographic config info 192 * 193 * Returns the ap configuration info fetched via PQAP(QCI). 194 * On success 0 is returned, on failure a negative errno 195 * is returned, e.g. if the PQAP(QCI) instruction is not 196 * available, the return value will be -EOPNOTSUPP. 197 */ 198 static inline int ap_query_configuration(struct ap_config_info *info) 199 { 200 if (!ap_configuration_available()) 201 return -EOPNOTSUPP; 202 if (!info) 203 return -EINVAL; 204 return ap_qci(info); 205 } 206 207 /** 208 * ap_init_configuration(): Allocate and query configuration array. 209 */ 210 static void ap_init_configuration(void) 211 { 212 if (!ap_configuration_available()) 213 return; 214 215 ap_configuration = kzalloc(sizeof(*ap_configuration), GFP_KERNEL); 216 if (!ap_configuration) 217 return; 218 if (ap_query_configuration(ap_configuration) != 0) { 219 kfree(ap_configuration); 220 ap_configuration = NULL; 221 return; 222 } 223 } 224 225 /* 226 * ap_test_config(): helper function to extract the nrth bit 227 * within the unsigned int array field. 228 */ 229 static inline int ap_test_config(unsigned int *field, unsigned int nr) 230 { 231 return ap_test_bit((field + (nr >> 5)), (nr & 0x1f)); 232 } 233 234 /* 235 * ap_test_config_card_id(): Test, whether an AP card ID is configured. 236 * @id AP card ID 237 * 238 * Returns 0 if the card is not configured 239 * 1 if the card is configured or 240 * if the configuration information is not available 241 */ 242 static inline int ap_test_config_card_id(unsigned int id) 243 { 244 if (!ap_configuration) /* QCI not supported */ 245 /* only ids 0...3F may be probed */ 246 return id < 0x40 ? 1 : 0; 247 return ap_test_config(ap_configuration->apm, id); 248 } 249 250 /* 251 * ap_test_config_usage_domain(): Test, whether an AP usage domain 252 * is configured. 253 * @domain AP usage domain ID 254 * 255 * Returns 0 if the usage domain is not configured 256 * 1 if the usage domain is configured or 257 * if the configuration information is not available 258 */ 259 int ap_test_config_usage_domain(unsigned int domain) 260 { 261 if (!ap_configuration) /* QCI not supported */ 262 return domain < 16; 263 return ap_test_config(ap_configuration->aqm, domain); 264 } 265 EXPORT_SYMBOL(ap_test_config_usage_domain); 266 267 /* 268 * ap_test_config_ctrl_domain(): Test, whether an AP control domain 269 * is configured. 270 * @domain AP control domain ID 271 * 272 * Returns 1 if the control domain is configured 273 * 0 in all other cases 274 */ 275 int ap_test_config_ctrl_domain(unsigned int domain) 276 { 277 if (!ap_configuration) /* QCI not supported */ 278 return 0; 279 return ap_test_config(ap_configuration->adm, domain); 280 } 281 EXPORT_SYMBOL(ap_test_config_ctrl_domain); 282 283 /** 284 * ap_query_queue(): Check if an AP queue is available. 285 * @qid: The AP queue number 286 * @queue_depth: Pointer to queue depth value 287 * @device_type: Pointer to device type value 288 * @facilities: Pointer to facility indicator 289 */ 290 static int ap_query_queue(ap_qid_t qid, int *queue_depth, int *device_type, 291 unsigned int *facilities) 292 { 293 struct ap_queue_status status; 294 unsigned long info; 295 int nd; 296 297 if (!ap_test_config_card_id(AP_QID_CARD(qid))) 298 return -ENODEV; 299 300 status = ap_test_queue(qid, ap_apft_available(), &info); 301 switch (status.response_code) { 302 case AP_RESPONSE_NORMAL: 303 *queue_depth = (int)(info & 0xff); 304 *device_type = (int)((info >> 24) & 0xff); 305 *facilities = (unsigned int)(info >> 32); 306 /* Update maximum domain id */ 307 nd = (info >> 16) & 0xff; 308 /* if N bit is available, z13 and newer */ 309 if ((info & (1UL << 57)) && nd > 0) 310 ap_max_domain_id = nd; 311 else /* older machine types */ 312 ap_max_domain_id = 15; 313 switch (*device_type) { 314 /* For CEX2 and CEX3 the available functions 315 * are not reflected by the facilities bits. 316 * Instead it is coded into the type. So here 317 * modify the function bits based on the type. 318 */ 319 case AP_DEVICE_TYPE_CEX2A: 320 case AP_DEVICE_TYPE_CEX3A: 321 *facilities |= 0x08000000; 322 break; 323 case AP_DEVICE_TYPE_CEX2C: 324 case AP_DEVICE_TYPE_CEX3C: 325 *facilities |= 0x10000000; 326 break; 327 default: 328 break; 329 } 330 return 0; 331 case AP_RESPONSE_Q_NOT_AVAIL: 332 case AP_RESPONSE_DECONFIGURED: 333 case AP_RESPONSE_CHECKSTOPPED: 334 case AP_RESPONSE_INVALID_ADDRESS: 335 return -ENODEV; 336 case AP_RESPONSE_RESET_IN_PROGRESS: 337 case AP_RESPONSE_OTHERWISE_CHANGED: 338 case AP_RESPONSE_BUSY: 339 return -EBUSY; 340 default: 341 BUG(); 342 } 343 } 344 345 void ap_wait(enum ap_wait wait) 346 { 347 ktime_t hr_time; 348 349 switch (wait) { 350 case AP_WAIT_AGAIN: 351 case AP_WAIT_INTERRUPT: 352 if (ap_using_interrupts()) 353 break; 354 if (ap_poll_kthread) { 355 wake_up(&ap_poll_wait); 356 break; 357 } 358 fallthrough; 359 case AP_WAIT_TIMEOUT: 360 spin_lock_bh(&ap_poll_timer_lock); 361 if (!hrtimer_is_queued(&ap_poll_timer)) { 362 hr_time = poll_timeout; 363 hrtimer_forward_now(&ap_poll_timer, hr_time); 364 hrtimer_restart(&ap_poll_timer); 365 } 366 spin_unlock_bh(&ap_poll_timer_lock); 367 break; 368 case AP_WAIT_NONE: 369 default: 370 break; 371 } 372 } 373 374 /** 375 * ap_request_timeout(): Handling of request timeouts 376 * @t: timer making this callback 377 * 378 * Handles request timeouts. 379 */ 380 void ap_request_timeout(struct timer_list *t) 381 { 382 struct ap_queue *aq = from_timer(aq, t, timeout); 383 384 spin_lock_bh(&aq->lock); 385 ap_wait(ap_sm_event(aq, AP_EVENT_TIMEOUT)); 386 spin_unlock_bh(&aq->lock); 387 } 388 389 /** 390 * ap_poll_timeout(): AP receive polling for finished AP requests. 391 * @unused: Unused pointer. 392 * 393 * Schedules the AP tasklet using a high resolution timer. 394 */ 395 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused) 396 { 397 tasklet_schedule(&ap_tasklet); 398 return HRTIMER_NORESTART; 399 } 400 401 /** 402 * ap_interrupt_handler() - Schedule ap_tasklet on interrupt 403 * @airq: pointer to adapter interrupt descriptor 404 */ 405 static void ap_interrupt_handler(struct airq_struct *airq, bool floating) 406 { 407 inc_irq_stat(IRQIO_APB); 408 tasklet_schedule(&ap_tasklet); 409 } 410 411 /** 412 * ap_tasklet_fn(): Tasklet to poll all AP devices. 413 * @dummy: Unused variable 414 * 415 * Poll all AP devices on the bus. 416 */ 417 static void ap_tasklet_fn(unsigned long dummy) 418 { 419 int bkt; 420 struct ap_queue *aq; 421 enum ap_wait wait = AP_WAIT_NONE; 422 423 /* Reset the indicator if interrupts are used. Thus new interrupts can 424 * be received. Doing it in the beginning of the tasklet is therefor 425 * important that no requests on any AP get lost. 426 */ 427 if (ap_using_interrupts()) 428 xchg(ap_airq.lsi_ptr, 0); 429 430 spin_lock_bh(&ap_queues_lock); 431 hash_for_each(ap_queues, bkt, aq, hnode) { 432 spin_lock_bh(&aq->lock); 433 wait = min(wait, ap_sm_event_loop(aq, AP_EVENT_POLL)); 434 spin_unlock_bh(&aq->lock); 435 } 436 spin_unlock_bh(&ap_queues_lock); 437 438 ap_wait(wait); 439 } 440 441 static int ap_pending_requests(void) 442 { 443 int bkt; 444 struct ap_queue *aq; 445 446 spin_lock_bh(&ap_queues_lock); 447 hash_for_each(ap_queues, bkt, aq, hnode) { 448 if (aq->queue_count == 0) 449 continue; 450 spin_unlock_bh(&ap_queues_lock); 451 return 1; 452 } 453 spin_unlock_bh(&ap_queues_lock); 454 return 0; 455 } 456 457 /** 458 * ap_poll_thread(): Thread that polls for finished requests. 459 * @data: Unused pointer 460 * 461 * AP bus poll thread. The purpose of this thread is to poll for 462 * finished requests in a loop if there is a "free" cpu - that is 463 * a cpu that doesn't have anything better to do. The polling stops 464 * as soon as there is another task or if all messages have been 465 * delivered. 466 */ 467 static int ap_poll_thread(void *data) 468 { 469 DECLARE_WAITQUEUE(wait, current); 470 471 set_user_nice(current, MAX_NICE); 472 set_freezable(); 473 while (!kthread_should_stop()) { 474 add_wait_queue(&ap_poll_wait, &wait); 475 set_current_state(TASK_INTERRUPTIBLE); 476 if (!ap_pending_requests()) { 477 schedule(); 478 try_to_freeze(); 479 } 480 set_current_state(TASK_RUNNING); 481 remove_wait_queue(&ap_poll_wait, &wait); 482 if (need_resched()) { 483 schedule(); 484 try_to_freeze(); 485 continue; 486 } 487 ap_tasklet_fn(0); 488 } 489 490 return 0; 491 } 492 493 static int ap_poll_thread_start(void) 494 { 495 int rc; 496 497 if (ap_using_interrupts() || ap_poll_kthread) 498 return 0; 499 mutex_lock(&ap_poll_thread_mutex); 500 ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll"); 501 rc = PTR_ERR_OR_ZERO(ap_poll_kthread); 502 if (rc) 503 ap_poll_kthread = NULL; 504 mutex_unlock(&ap_poll_thread_mutex); 505 return rc; 506 } 507 508 static void ap_poll_thread_stop(void) 509 { 510 if (!ap_poll_kthread) 511 return; 512 mutex_lock(&ap_poll_thread_mutex); 513 kthread_stop(ap_poll_kthread); 514 ap_poll_kthread = NULL; 515 mutex_unlock(&ap_poll_thread_mutex); 516 } 517 518 #define is_card_dev(x) ((x)->parent == ap_root_device) 519 #define is_queue_dev(x) ((x)->parent != ap_root_device) 520 521 /** 522 * ap_bus_match() 523 * @dev: Pointer to device 524 * @drv: Pointer to device_driver 525 * 526 * AP bus driver registration/unregistration. 527 */ 528 static int ap_bus_match(struct device *dev, struct device_driver *drv) 529 { 530 struct ap_driver *ap_drv = to_ap_drv(drv); 531 struct ap_device_id *id; 532 533 /* 534 * Compare device type of the device with the list of 535 * supported types of the device_driver. 536 */ 537 for (id = ap_drv->ids; id->match_flags; id++) { 538 if (is_card_dev(dev) && 539 id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE && 540 id->dev_type == to_ap_dev(dev)->device_type) 541 return 1; 542 if (is_queue_dev(dev) && 543 id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE && 544 id->dev_type == to_ap_dev(dev)->device_type) 545 return 1; 546 } 547 return 0; 548 } 549 550 /** 551 * ap_uevent(): Uevent function for AP devices. 552 * @dev: Pointer to device 553 * @env: Pointer to kobj_uevent_env 554 * 555 * It sets up a single environment variable DEV_TYPE which contains the 556 * hardware device type. 557 */ 558 static int ap_uevent(struct device *dev, struct kobj_uevent_env *env) 559 { 560 struct ap_device *ap_dev = to_ap_dev(dev); 561 int retval = 0; 562 563 if (!ap_dev) 564 return -ENODEV; 565 566 /* Set up DEV_TYPE environment variable. */ 567 retval = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type); 568 if (retval) 569 return retval; 570 571 /* Add MODALIAS= */ 572 retval = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type); 573 574 return retval; 575 } 576 577 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data) 578 { 579 if (is_queue_dev(dev) && 580 AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long) data) 581 device_unregister(dev); 582 return 0; 583 } 584 585 static struct bus_type ap_bus_type = { 586 .name = "ap", 587 .match = &ap_bus_match, 588 .uevent = &ap_uevent, 589 }; 590 591 static int __ap_revise_reserved(struct device *dev, void *dummy) 592 { 593 int rc, card, queue, devres, drvres; 594 595 if (is_queue_dev(dev)) { 596 card = AP_QID_CARD(to_ap_queue(dev)->qid); 597 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid); 598 mutex_lock(&ap_perms_mutex); 599 devres = test_bit_inv(card, ap_perms.apm) 600 && test_bit_inv(queue, ap_perms.aqm); 601 mutex_unlock(&ap_perms_mutex); 602 drvres = to_ap_drv(dev->driver)->flags 603 & AP_DRIVER_FLAG_DEFAULT; 604 if (!!devres != !!drvres) { 605 AP_DBF(DBF_DEBUG, "reprobing queue=%02x.%04x\n", 606 card, queue); 607 rc = device_reprobe(dev); 608 } 609 } 610 611 return 0; 612 } 613 614 static void ap_bus_revise_bindings(void) 615 { 616 bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved); 617 } 618 619 int ap_owned_by_def_drv(int card, int queue) 620 { 621 int rc = 0; 622 623 if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS) 624 return -EINVAL; 625 626 mutex_lock(&ap_perms_mutex); 627 628 if (test_bit_inv(card, ap_perms.apm) 629 && test_bit_inv(queue, ap_perms.aqm)) 630 rc = 1; 631 632 mutex_unlock(&ap_perms_mutex); 633 634 return rc; 635 } 636 EXPORT_SYMBOL(ap_owned_by_def_drv); 637 638 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm, 639 unsigned long *aqm) 640 { 641 int card, queue, rc = 0; 642 643 mutex_lock(&ap_perms_mutex); 644 645 for (card = 0; !rc && card < AP_DEVICES; card++) 646 if (test_bit_inv(card, apm) && 647 test_bit_inv(card, ap_perms.apm)) 648 for (queue = 0; !rc && queue < AP_DOMAINS; queue++) 649 if (test_bit_inv(queue, aqm) && 650 test_bit_inv(queue, ap_perms.aqm)) 651 rc = 1; 652 653 mutex_unlock(&ap_perms_mutex); 654 655 return rc; 656 } 657 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv); 658 659 static int ap_device_probe(struct device *dev) 660 { 661 struct ap_device *ap_dev = to_ap_dev(dev); 662 struct ap_driver *ap_drv = to_ap_drv(dev->driver); 663 int card, queue, devres, drvres, rc; 664 665 if (is_queue_dev(dev)) { 666 /* 667 * If the apqn is marked as reserved/used by ap bus and 668 * default drivers, only probe with drivers with the default 669 * flag set. If it is not marked, only probe with drivers 670 * with the default flag not set. 671 */ 672 card = AP_QID_CARD(to_ap_queue(dev)->qid); 673 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid); 674 mutex_lock(&ap_perms_mutex); 675 devres = test_bit_inv(card, ap_perms.apm) 676 && test_bit_inv(queue, ap_perms.aqm); 677 mutex_unlock(&ap_perms_mutex); 678 drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT; 679 if (!!devres != !!drvres) 680 return -ENODEV; 681 } 682 683 /* Add queue/card to list of active queues/cards */ 684 spin_lock_bh(&ap_queues_lock); 685 if (is_queue_dev(dev)) 686 hash_add(ap_queues, &to_ap_queue(dev)->hnode, 687 to_ap_queue(dev)->qid); 688 spin_unlock_bh(&ap_queues_lock); 689 690 ap_dev->drv = ap_drv; 691 rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV; 692 693 if (rc) { 694 spin_lock_bh(&ap_queues_lock); 695 if (is_queue_dev(dev)) 696 hash_del(&to_ap_queue(dev)->hnode); 697 spin_unlock_bh(&ap_queues_lock); 698 ap_dev->drv = NULL; 699 } 700 701 return rc; 702 } 703 704 static int ap_device_remove(struct device *dev) 705 { 706 struct ap_device *ap_dev = to_ap_dev(dev); 707 struct ap_driver *ap_drv = ap_dev->drv; 708 709 /* prepare ap queue device removal */ 710 if (is_queue_dev(dev)) 711 ap_queue_prepare_remove(to_ap_queue(dev)); 712 713 /* driver's chance to clean up gracefully */ 714 if (ap_drv->remove) 715 ap_drv->remove(ap_dev); 716 717 /* now do the ap queue device remove */ 718 if (is_queue_dev(dev)) 719 ap_queue_remove(to_ap_queue(dev)); 720 721 /* Remove queue/card from list of active queues/cards */ 722 spin_lock_bh(&ap_queues_lock); 723 if (is_queue_dev(dev)) 724 hash_del(&to_ap_queue(dev)->hnode); 725 spin_unlock_bh(&ap_queues_lock); 726 727 return 0; 728 } 729 730 struct ap_queue *ap_get_qdev(ap_qid_t qid) 731 { 732 int bkt; 733 struct ap_queue *aq; 734 735 spin_lock_bh(&ap_queues_lock); 736 hash_for_each(ap_queues, bkt, aq, hnode) { 737 if (aq->qid == qid) { 738 get_device(&aq->ap_dev.device); 739 spin_unlock_bh(&ap_queues_lock); 740 return aq; 741 } 742 } 743 spin_unlock_bh(&ap_queues_lock); 744 745 return NULL; 746 } 747 EXPORT_SYMBOL(ap_get_qdev); 748 749 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner, 750 char *name) 751 { 752 struct device_driver *drv = &ap_drv->driver; 753 754 if (!initialised) 755 return -ENODEV; 756 757 drv->bus = &ap_bus_type; 758 drv->probe = ap_device_probe; 759 drv->remove = ap_device_remove; 760 drv->owner = owner; 761 drv->name = name; 762 return driver_register(drv); 763 } 764 EXPORT_SYMBOL(ap_driver_register); 765 766 void ap_driver_unregister(struct ap_driver *ap_drv) 767 { 768 driver_unregister(&ap_drv->driver); 769 } 770 EXPORT_SYMBOL(ap_driver_unregister); 771 772 void ap_bus_force_rescan(void) 773 { 774 /* processing a asynchronous bus rescan */ 775 del_timer(&ap_config_timer); 776 queue_work(system_long_wq, &ap_scan_work); 777 flush_work(&ap_scan_work); 778 } 779 EXPORT_SYMBOL(ap_bus_force_rescan); 780 781 /* 782 * A config change has happened, force an ap bus rescan. 783 */ 784 void ap_bus_cfg_chg(void) 785 { 786 AP_DBF(DBF_INFO, "%s config change, forcing bus rescan\n", __func__); 787 788 ap_bus_force_rescan(); 789 } 790 791 /* 792 * hex2bitmap() - parse hex mask string and set bitmap. 793 * Valid strings are "0x012345678" with at least one valid hex number. 794 * Rest of the bitmap to the right is padded with 0. No spaces allowed 795 * within the string, the leading 0x may be omitted. 796 * Returns the bitmask with exactly the bits set as given by the hex 797 * string (both in big endian order). 798 */ 799 static int hex2bitmap(const char *str, unsigned long *bitmap, int bits) 800 { 801 int i, n, b; 802 803 /* bits needs to be a multiple of 8 */ 804 if (bits & 0x07) 805 return -EINVAL; 806 807 if (str[0] == '0' && str[1] == 'x') 808 str++; 809 if (*str == 'x') 810 str++; 811 812 for (i = 0; isxdigit(*str) && i < bits; str++) { 813 b = hex_to_bin(*str); 814 for (n = 0; n < 4; n++) 815 if (b & (0x08 >> n)) 816 set_bit_inv(i + n, bitmap); 817 i += 4; 818 } 819 820 if (*str == '\n') 821 str++; 822 if (*str) 823 return -EINVAL; 824 return 0; 825 } 826 827 /* 828 * modify_bitmap() - parse bitmask argument and modify an existing 829 * bit mask accordingly. A concatenation (done with ',') of these 830 * terms is recognized: 831 * +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>] 832 * <bitnr> may be any valid number (hex, decimal or octal) in the range 833 * 0...bits-1; the leading + or - is required. Here are some examples: 834 * +0-15,+32,-128,-0xFF 835 * -0-255,+1-16,+0x128 836 * +1,+2,+3,+4,-5,-7-10 837 * Returns the new bitmap after all changes have been applied. Every 838 * positive value in the string will set a bit and every negative value 839 * in the string will clear a bit. As a bit may be touched more than once, 840 * the last 'operation' wins: 841 * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be 842 * cleared again. All other bits are unmodified. 843 */ 844 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits) 845 { 846 int a, i, z; 847 char *np, sign; 848 849 /* bits needs to be a multiple of 8 */ 850 if (bits & 0x07) 851 return -EINVAL; 852 853 while (*str) { 854 sign = *str++; 855 if (sign != '+' && sign != '-') 856 return -EINVAL; 857 a = z = simple_strtoul(str, &np, 0); 858 if (str == np || a >= bits) 859 return -EINVAL; 860 str = np; 861 if (*str == '-') { 862 z = simple_strtoul(++str, &np, 0); 863 if (str == np || a > z || z >= bits) 864 return -EINVAL; 865 str = np; 866 } 867 for (i = a; i <= z; i++) 868 if (sign == '+') 869 set_bit_inv(i, bitmap); 870 else 871 clear_bit_inv(i, bitmap); 872 while (*str == ',' || *str == '\n') 873 str++; 874 } 875 876 return 0; 877 } 878 879 int ap_parse_mask_str(const char *str, 880 unsigned long *bitmap, int bits, 881 struct mutex *lock) 882 { 883 unsigned long *newmap, size; 884 int rc; 885 886 /* bits needs to be a multiple of 8 */ 887 if (bits & 0x07) 888 return -EINVAL; 889 890 size = BITS_TO_LONGS(bits)*sizeof(unsigned long); 891 newmap = kmalloc(size, GFP_KERNEL); 892 if (!newmap) 893 return -ENOMEM; 894 if (mutex_lock_interruptible(lock)) { 895 kfree(newmap); 896 return -ERESTARTSYS; 897 } 898 899 if (*str == '+' || *str == '-') { 900 memcpy(newmap, bitmap, size); 901 rc = modify_bitmap(str, newmap, bits); 902 } else { 903 memset(newmap, 0, size); 904 rc = hex2bitmap(str, newmap, bits); 905 } 906 if (rc == 0) 907 memcpy(bitmap, newmap, size); 908 mutex_unlock(lock); 909 kfree(newmap); 910 return rc; 911 } 912 EXPORT_SYMBOL(ap_parse_mask_str); 913 914 /* 915 * AP bus attributes. 916 */ 917 918 static ssize_t ap_domain_show(struct bus_type *bus, char *buf) 919 { 920 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index); 921 } 922 923 static ssize_t ap_domain_store(struct bus_type *bus, 924 const char *buf, size_t count) 925 { 926 int domain; 927 928 if (sscanf(buf, "%i\n", &domain) != 1 || 929 domain < 0 || domain > ap_max_domain_id || 930 !test_bit_inv(domain, ap_perms.aqm)) 931 return -EINVAL; 932 spin_lock_bh(&ap_domain_lock); 933 ap_domain_index = domain; 934 spin_unlock_bh(&ap_domain_lock); 935 936 AP_DBF(DBF_DEBUG, "stored new default domain=%d\n", domain); 937 938 return count; 939 } 940 941 static BUS_ATTR_RW(ap_domain); 942 943 static ssize_t ap_control_domain_mask_show(struct bus_type *bus, char *buf) 944 { 945 if (!ap_configuration) /* QCI not supported */ 946 return scnprintf(buf, PAGE_SIZE, "not supported\n"); 947 948 return scnprintf(buf, PAGE_SIZE, 949 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 950 ap_configuration->adm[0], ap_configuration->adm[1], 951 ap_configuration->adm[2], ap_configuration->adm[3], 952 ap_configuration->adm[4], ap_configuration->adm[5], 953 ap_configuration->adm[6], ap_configuration->adm[7]); 954 } 955 956 static BUS_ATTR_RO(ap_control_domain_mask); 957 958 static ssize_t ap_usage_domain_mask_show(struct bus_type *bus, char *buf) 959 { 960 if (!ap_configuration) /* QCI not supported */ 961 return scnprintf(buf, PAGE_SIZE, "not supported\n"); 962 963 return scnprintf(buf, PAGE_SIZE, 964 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 965 ap_configuration->aqm[0], ap_configuration->aqm[1], 966 ap_configuration->aqm[2], ap_configuration->aqm[3], 967 ap_configuration->aqm[4], ap_configuration->aqm[5], 968 ap_configuration->aqm[6], ap_configuration->aqm[7]); 969 } 970 971 static BUS_ATTR_RO(ap_usage_domain_mask); 972 973 static ssize_t ap_adapter_mask_show(struct bus_type *bus, char *buf) 974 { 975 if (!ap_configuration) /* QCI not supported */ 976 return scnprintf(buf, PAGE_SIZE, "not supported\n"); 977 978 return scnprintf(buf, PAGE_SIZE, 979 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 980 ap_configuration->apm[0], ap_configuration->apm[1], 981 ap_configuration->apm[2], ap_configuration->apm[3], 982 ap_configuration->apm[4], ap_configuration->apm[5], 983 ap_configuration->apm[6], ap_configuration->apm[7]); 984 } 985 986 static BUS_ATTR_RO(ap_adapter_mask); 987 988 static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf) 989 { 990 return scnprintf(buf, PAGE_SIZE, "%d\n", 991 ap_using_interrupts() ? 1 : 0); 992 } 993 994 static BUS_ATTR_RO(ap_interrupts); 995 996 static ssize_t config_time_show(struct bus_type *bus, char *buf) 997 { 998 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_config_time); 999 } 1000 1001 static ssize_t config_time_store(struct bus_type *bus, 1002 const char *buf, size_t count) 1003 { 1004 int time; 1005 1006 if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120) 1007 return -EINVAL; 1008 ap_config_time = time; 1009 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ); 1010 return count; 1011 } 1012 1013 static BUS_ATTR_RW(config_time); 1014 1015 static ssize_t poll_thread_show(struct bus_type *bus, char *buf) 1016 { 1017 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0); 1018 } 1019 1020 static ssize_t poll_thread_store(struct bus_type *bus, 1021 const char *buf, size_t count) 1022 { 1023 int flag, rc; 1024 1025 if (sscanf(buf, "%d\n", &flag) != 1) 1026 return -EINVAL; 1027 if (flag) { 1028 rc = ap_poll_thread_start(); 1029 if (rc) 1030 count = rc; 1031 } else 1032 ap_poll_thread_stop(); 1033 return count; 1034 } 1035 1036 static BUS_ATTR_RW(poll_thread); 1037 1038 static ssize_t poll_timeout_show(struct bus_type *bus, char *buf) 1039 { 1040 return scnprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout); 1041 } 1042 1043 static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf, 1044 size_t count) 1045 { 1046 unsigned long long time; 1047 ktime_t hr_time; 1048 1049 /* 120 seconds = maximum poll interval */ 1050 if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 || 1051 time > 120000000000ULL) 1052 return -EINVAL; 1053 poll_timeout = time; 1054 hr_time = poll_timeout; 1055 1056 spin_lock_bh(&ap_poll_timer_lock); 1057 hrtimer_cancel(&ap_poll_timer); 1058 hrtimer_set_expires(&ap_poll_timer, hr_time); 1059 hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS); 1060 spin_unlock_bh(&ap_poll_timer_lock); 1061 1062 return count; 1063 } 1064 1065 static BUS_ATTR_RW(poll_timeout); 1066 1067 static ssize_t ap_max_domain_id_show(struct bus_type *bus, char *buf) 1068 { 1069 int max_domain_id; 1070 1071 if (ap_configuration) 1072 max_domain_id = ap_max_domain_id ? : -1; 1073 else 1074 max_domain_id = 15; 1075 return scnprintf(buf, PAGE_SIZE, "%d\n", max_domain_id); 1076 } 1077 1078 static BUS_ATTR_RO(ap_max_domain_id); 1079 1080 static ssize_t apmask_show(struct bus_type *bus, char *buf) 1081 { 1082 int rc; 1083 1084 if (mutex_lock_interruptible(&ap_perms_mutex)) 1085 return -ERESTARTSYS; 1086 rc = scnprintf(buf, PAGE_SIZE, 1087 "0x%016lx%016lx%016lx%016lx\n", 1088 ap_perms.apm[0], ap_perms.apm[1], 1089 ap_perms.apm[2], ap_perms.apm[3]); 1090 mutex_unlock(&ap_perms_mutex); 1091 1092 return rc; 1093 } 1094 1095 static ssize_t apmask_store(struct bus_type *bus, const char *buf, 1096 size_t count) 1097 { 1098 int rc; 1099 1100 rc = ap_parse_mask_str(buf, ap_perms.apm, AP_DEVICES, &ap_perms_mutex); 1101 if (rc) 1102 return rc; 1103 1104 ap_bus_revise_bindings(); 1105 1106 return count; 1107 } 1108 1109 static BUS_ATTR_RW(apmask); 1110 1111 static ssize_t aqmask_show(struct bus_type *bus, char *buf) 1112 { 1113 int rc; 1114 1115 if (mutex_lock_interruptible(&ap_perms_mutex)) 1116 return -ERESTARTSYS; 1117 rc = scnprintf(buf, PAGE_SIZE, 1118 "0x%016lx%016lx%016lx%016lx\n", 1119 ap_perms.aqm[0], ap_perms.aqm[1], 1120 ap_perms.aqm[2], ap_perms.aqm[3]); 1121 mutex_unlock(&ap_perms_mutex); 1122 1123 return rc; 1124 } 1125 1126 static ssize_t aqmask_store(struct bus_type *bus, const char *buf, 1127 size_t count) 1128 { 1129 int rc; 1130 1131 rc = ap_parse_mask_str(buf, ap_perms.aqm, AP_DOMAINS, &ap_perms_mutex); 1132 if (rc) 1133 return rc; 1134 1135 ap_bus_revise_bindings(); 1136 1137 return count; 1138 } 1139 1140 static BUS_ATTR_RW(aqmask); 1141 1142 static struct bus_attribute *const ap_bus_attrs[] = { 1143 &bus_attr_ap_domain, 1144 &bus_attr_ap_control_domain_mask, 1145 &bus_attr_ap_usage_domain_mask, 1146 &bus_attr_ap_adapter_mask, 1147 &bus_attr_config_time, 1148 &bus_attr_poll_thread, 1149 &bus_attr_ap_interrupts, 1150 &bus_attr_poll_timeout, 1151 &bus_attr_ap_max_domain_id, 1152 &bus_attr_apmask, 1153 &bus_attr_aqmask, 1154 NULL, 1155 }; 1156 1157 /** 1158 * ap_select_domain(): Select an AP domain if possible and we haven't 1159 * already done so before. 1160 */ 1161 static void ap_select_domain(void) 1162 { 1163 int count, max_count, best_domain; 1164 struct ap_queue_status status; 1165 int i, j; 1166 1167 /* 1168 * We want to use a single domain. Either the one specified with 1169 * the "domain=" parameter or the domain with the maximum number 1170 * of devices. 1171 */ 1172 spin_lock_bh(&ap_domain_lock); 1173 if (ap_domain_index >= 0) { 1174 /* Domain has already been selected. */ 1175 spin_unlock_bh(&ap_domain_lock); 1176 return; 1177 } 1178 best_domain = -1; 1179 max_count = 0; 1180 for (i = 0; i < AP_DOMAINS; i++) { 1181 if (!ap_test_config_usage_domain(i) || 1182 !test_bit_inv(i, ap_perms.aqm)) 1183 continue; 1184 count = 0; 1185 for (j = 0; j < AP_DEVICES; j++) { 1186 if (!ap_test_config_card_id(j)) 1187 continue; 1188 status = ap_test_queue(AP_MKQID(j, i), 1189 ap_apft_available(), 1190 NULL); 1191 if (status.response_code != AP_RESPONSE_NORMAL) 1192 continue; 1193 count++; 1194 } 1195 if (count > max_count) { 1196 max_count = count; 1197 best_domain = i; 1198 } 1199 } 1200 if (best_domain >= 0) { 1201 ap_domain_index = best_domain; 1202 AP_DBF(DBF_DEBUG, "new ap_domain_index=%d\n", ap_domain_index); 1203 } 1204 spin_unlock_bh(&ap_domain_lock); 1205 } 1206 1207 /* 1208 * This function checks the type and returns either 0 for not 1209 * supported or the highest compatible type value (which may 1210 * include the input type value). 1211 */ 1212 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func) 1213 { 1214 int comp_type = 0; 1215 1216 /* < CEX2A is not supported */ 1217 if (rawtype < AP_DEVICE_TYPE_CEX2A) 1218 return 0; 1219 /* up to CEX7 known and fully supported */ 1220 if (rawtype <= AP_DEVICE_TYPE_CEX7) 1221 return rawtype; 1222 /* 1223 * unknown new type > CEX7, check for compatibility 1224 * to the highest known and supported type which is 1225 * currently CEX7 with the help of the QACT function. 1226 */ 1227 if (ap_qact_available()) { 1228 struct ap_queue_status status; 1229 union ap_qact_ap_info apinfo = {0}; 1230 1231 apinfo.mode = (func >> 26) & 0x07; 1232 apinfo.cat = AP_DEVICE_TYPE_CEX7; 1233 status = ap_qact(qid, 0, &apinfo); 1234 if (status.response_code == AP_RESPONSE_NORMAL 1235 && apinfo.cat >= AP_DEVICE_TYPE_CEX2A 1236 && apinfo.cat <= AP_DEVICE_TYPE_CEX7) 1237 comp_type = apinfo.cat; 1238 } 1239 if (!comp_type) 1240 AP_DBF(DBF_WARN, "queue=%02x.%04x unable to map type %d\n", 1241 AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype); 1242 else if (comp_type != rawtype) 1243 AP_DBF(DBF_INFO, "queue=%02x.%04x map type %d to %d\n", 1244 AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype, comp_type); 1245 return comp_type; 1246 } 1247 1248 /* 1249 * Helper function to be used with bus_find_dev 1250 * matches for the card device with the given id 1251 */ 1252 static int __match_card_device_with_id(struct device *dev, const void *data) 1253 { 1254 return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *) data; 1255 } 1256 1257 /* 1258 * Helper function to be used with bus_find_dev 1259 * matches for the queue device with a given qid 1260 */ 1261 static int __match_queue_device_with_qid(struct device *dev, const void *data) 1262 { 1263 return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long) data; 1264 } 1265 1266 /* 1267 * Helper function to be used with bus_find_dev 1268 * matches any queue device with given queue id 1269 */ 1270 static int __match_queue_device_with_queue_id(struct device *dev, const void *data) 1271 { 1272 return is_queue_dev(dev) 1273 && AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long) data; 1274 } 1275 1276 /* 1277 * Helper function for ap_scan_bus(). 1278 * Does the scan bus job for the given adapter id. 1279 */ 1280 static void _ap_scan_bus_adapter(int id) 1281 { 1282 ap_qid_t qid; 1283 unsigned int func; 1284 struct ap_card *ac; 1285 struct device *dev; 1286 struct ap_queue *aq; 1287 int rc, dom, depth, type, comp_type, borked; 1288 1289 /* check if there is a card device registered with this id */ 1290 dev = bus_find_device(&ap_bus_type, NULL, 1291 (void *)(long) id, 1292 __match_card_device_with_id); 1293 ac = dev ? to_ap_card(dev) : NULL; 1294 if (!ap_test_config_card_id(id)) { 1295 if (dev) { 1296 /* Card device has been removed from configuration */ 1297 bus_for_each_dev(&ap_bus_type, NULL, 1298 (void *)(long) id, 1299 __ap_queue_devices_with_id_unregister); 1300 device_unregister(dev); 1301 put_device(dev); 1302 } 1303 return; 1304 } 1305 1306 /* 1307 * This card id is enabled in the configuration. If we already have 1308 * a card device with this id, check if type and functions are still 1309 * the very same. Also verify that at least one queue is available. 1310 */ 1311 if (ac) { 1312 /* find the first valid queue */ 1313 for (dom = 0; dom < AP_DOMAINS; dom++) { 1314 qid = AP_MKQID(id, dom); 1315 if (ap_query_queue(qid, &depth, &type, &func) == 0) 1316 break; 1317 } 1318 borked = 0; 1319 if (dom >= AP_DOMAINS) { 1320 /* no accessible queue on this card */ 1321 borked = 1; 1322 } else if (ac->raw_hwtype != type) { 1323 /* card type has changed */ 1324 AP_DBF(DBF_INFO, "card=%02x type changed.\n", id); 1325 borked = 1; 1326 } else if (ac->functions != func) { 1327 /* card functions have changed */ 1328 AP_DBF(DBF_INFO, "card=%02x functions changed.\n", id); 1329 borked = 1; 1330 } 1331 if (borked) { 1332 /* unregister card device and associated queues */ 1333 bus_for_each_dev(&ap_bus_type, NULL, 1334 (void *)(long) id, 1335 __ap_queue_devices_with_id_unregister); 1336 device_unregister(dev); 1337 put_device(dev); 1338 /* go back if there is no valid queue on this card */ 1339 if (dom >= AP_DOMAINS) 1340 return; 1341 ac = NULL; 1342 } 1343 } 1344 1345 /* 1346 * Go through all possible queue ids. Check and maybe create or release 1347 * queue devices for this card. If there exists no card device yet, 1348 * create a card device also. 1349 */ 1350 for (dom = 0; dom < AP_DOMAINS; dom++) { 1351 qid = AP_MKQID(id, dom); 1352 dev = bus_find_device(&ap_bus_type, NULL, 1353 (void *)(long) qid, 1354 __match_queue_device_with_qid); 1355 aq = dev ? to_ap_queue(dev) : NULL; 1356 if (!ap_test_config_usage_domain(dom)) { 1357 if (dev) { 1358 /* Queue device exists but has been 1359 * removed from configuration. 1360 */ 1361 device_unregister(dev); 1362 put_device(dev); 1363 } 1364 continue; 1365 } 1366 /* try to fetch infos about this queue */ 1367 rc = ap_query_queue(qid, &depth, &type, &func); 1368 if (dev) { 1369 if (rc == -ENODEV) 1370 borked = 1; 1371 else { 1372 spin_lock_bh(&aq->lock); 1373 borked = aq->state == AP_STATE_BORKED; 1374 spin_unlock_bh(&aq->lock); 1375 } 1376 if (borked) { 1377 /* Remove broken device */ 1378 AP_DBF(DBF_DEBUG, 1379 "removing broken queue=%02x.%04x\n", 1380 id, dom); 1381 device_unregister(dev); 1382 } 1383 put_device(dev); 1384 continue; 1385 } 1386 if (rc) 1387 continue; 1388 /* a new queue device is needed, check out comp type */ 1389 comp_type = ap_get_compatible_type(qid, type, func); 1390 if (!comp_type) 1391 continue; 1392 /* maybe a card device needs to be created first */ 1393 if (!ac) { 1394 ac = ap_card_create(id, depth, type, comp_type, func); 1395 if (!ac) 1396 continue; 1397 ac->ap_dev.device.bus = &ap_bus_type; 1398 ac->ap_dev.device.parent = ap_root_device; 1399 dev_set_name(&ac->ap_dev.device, "card%02x", id); 1400 /* Register card device with AP bus */ 1401 rc = device_register(&ac->ap_dev.device); 1402 if (rc) { 1403 put_device(&ac->ap_dev.device); 1404 ac = NULL; 1405 break; 1406 } 1407 /* get it and thus adjust reference counter */ 1408 get_device(&ac->ap_dev.device); 1409 } 1410 /* now create the new queue device */ 1411 aq = ap_queue_create(qid, comp_type); 1412 if (!aq) 1413 continue; 1414 aq->card = ac; 1415 aq->ap_dev.device.bus = &ap_bus_type; 1416 aq->ap_dev.device.parent = &ac->ap_dev.device; 1417 dev_set_name(&aq->ap_dev.device, "%02x.%04x", id, dom); 1418 /* Register queue device */ 1419 rc = device_register(&aq->ap_dev.device); 1420 if (rc) { 1421 put_device(&aq->ap_dev.device); 1422 continue; 1423 } 1424 } /* end domain loop */ 1425 1426 if (ac) 1427 put_device(&ac->ap_dev.device); 1428 } 1429 1430 /** 1431 * ap_scan_bus(): Scan the AP bus for new devices 1432 * Runs periodically, workqueue timer (ap_config_time) 1433 */ 1434 static void ap_scan_bus(struct work_struct *unused) 1435 { 1436 int id; 1437 1438 AP_DBF(DBF_DEBUG, "%s running\n", __func__); 1439 1440 ap_query_configuration(ap_configuration); 1441 ap_select_domain(); 1442 1443 /* loop over all possible adapters */ 1444 for (id = 0; id < AP_DEVICES; id++) 1445 _ap_scan_bus_adapter(id); 1446 1447 /* check if there is at least one queue available with default domain */ 1448 if (ap_domain_index >= 0) { 1449 struct device *dev = 1450 bus_find_device(&ap_bus_type, NULL, 1451 (void *)(long) ap_domain_index, 1452 __match_queue_device_with_queue_id); 1453 if (dev) 1454 put_device(dev); 1455 else 1456 AP_DBF(DBF_INFO, 1457 "no queue device with default domain %d available\n", 1458 ap_domain_index); 1459 } 1460 1461 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ); 1462 } 1463 1464 static void ap_config_timeout(struct timer_list *unused) 1465 { 1466 queue_work(system_long_wq, &ap_scan_work); 1467 } 1468 1469 static int __init ap_debug_init(void) 1470 { 1471 ap_dbf_info = debug_register("ap", 1, 1, 1472 DBF_MAX_SPRINTF_ARGS * sizeof(long)); 1473 debug_register_view(ap_dbf_info, &debug_sprintf_view); 1474 debug_set_level(ap_dbf_info, DBF_ERR); 1475 1476 return 0; 1477 } 1478 1479 static void __init ap_perms_init(void) 1480 { 1481 /* all resources useable if no kernel parameter string given */ 1482 memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm)); 1483 memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm)); 1484 memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm)); 1485 1486 /* apm kernel parameter string */ 1487 if (apm_str) { 1488 memset(&ap_perms.apm, 0, sizeof(ap_perms.apm)); 1489 ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES, 1490 &ap_perms_mutex); 1491 } 1492 1493 /* aqm kernel parameter string */ 1494 if (aqm_str) { 1495 memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm)); 1496 ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS, 1497 &ap_perms_mutex); 1498 } 1499 } 1500 1501 /** 1502 * ap_module_init(): The module initialization code. 1503 * 1504 * Initializes the module. 1505 */ 1506 static int __init ap_module_init(void) 1507 { 1508 int max_domain_id; 1509 int rc, i; 1510 1511 rc = ap_debug_init(); 1512 if (rc) 1513 return rc; 1514 1515 if (!ap_instructions_available()) { 1516 pr_warn("The hardware system does not support AP instructions\n"); 1517 return -ENODEV; 1518 } 1519 1520 /* init ap_queue hashtable */ 1521 hash_init(ap_queues); 1522 1523 /* set up the AP permissions (ioctls, ap and aq masks) */ 1524 ap_perms_init(); 1525 1526 /* Get AP configuration data if available */ 1527 ap_init_configuration(); 1528 1529 if (ap_configuration) 1530 max_domain_id = 1531 ap_max_domain_id ? ap_max_domain_id : AP_DOMAINS - 1; 1532 else 1533 max_domain_id = 15; 1534 if (ap_domain_index < -1 || ap_domain_index > max_domain_id || 1535 (ap_domain_index >= 0 && 1536 !test_bit_inv(ap_domain_index, ap_perms.aqm))) { 1537 pr_warn("%d is not a valid cryptographic domain\n", 1538 ap_domain_index); 1539 ap_domain_index = -1; 1540 } 1541 1542 if (ap_interrupts_available()) { 1543 rc = register_adapter_interrupt(&ap_airq); 1544 ap_airq_flag = (rc == 0); 1545 } 1546 1547 /* Create /sys/bus/ap. */ 1548 rc = bus_register(&ap_bus_type); 1549 if (rc) 1550 goto out; 1551 for (i = 0; ap_bus_attrs[i]; i++) { 1552 rc = bus_create_file(&ap_bus_type, ap_bus_attrs[i]); 1553 if (rc) 1554 goto out_bus; 1555 } 1556 1557 /* Create /sys/devices/ap. */ 1558 ap_root_device = root_device_register("ap"); 1559 rc = PTR_ERR_OR_ZERO(ap_root_device); 1560 if (rc) 1561 goto out_bus; 1562 1563 /* Setup the AP bus rescan timer. */ 1564 timer_setup(&ap_config_timer, ap_config_timeout, 0); 1565 1566 /* 1567 * Setup the high resultion poll timer. 1568 * If we are running under z/VM adjust polling to z/VM polling rate. 1569 */ 1570 if (MACHINE_IS_VM) 1571 poll_timeout = 1500000; 1572 spin_lock_init(&ap_poll_timer_lock); 1573 hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1574 ap_poll_timer.function = ap_poll_timeout; 1575 1576 /* Start the low priority AP bus poll thread. */ 1577 if (ap_thread_flag) { 1578 rc = ap_poll_thread_start(); 1579 if (rc) 1580 goto out_work; 1581 } 1582 1583 queue_work(system_long_wq, &ap_scan_work); 1584 initialised = true; 1585 1586 return 0; 1587 1588 out_work: 1589 hrtimer_cancel(&ap_poll_timer); 1590 root_device_unregister(ap_root_device); 1591 out_bus: 1592 while (i--) 1593 bus_remove_file(&ap_bus_type, ap_bus_attrs[i]); 1594 bus_unregister(&ap_bus_type); 1595 out: 1596 if (ap_using_interrupts()) 1597 unregister_adapter_interrupt(&ap_airq); 1598 kfree(ap_configuration); 1599 return rc; 1600 } 1601 device_initcall(ap_module_init); 1602