1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright IBM Corp. 2006, 2021 4 * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com> 5 * Martin Schwidefsky <schwidefsky@de.ibm.com> 6 * Ralph Wuerthner <rwuerthn@de.ibm.com> 7 * Felix Beck <felix.beck@de.ibm.com> 8 * Holger Dengler <hd@linux.vnet.ibm.com> 9 * Harald Freudenberger <freude@linux.ibm.com> 10 * 11 * Adjunct processor bus. 12 */ 13 14 #define KMSG_COMPONENT "ap" 15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 16 17 #include <linux/kernel_stat.h> 18 #include <linux/moduleparam.h> 19 #include <linux/init.h> 20 #include <linux/delay.h> 21 #include <linux/err.h> 22 #include <linux/freezer.h> 23 #include <linux/interrupt.h> 24 #include <linux/workqueue.h> 25 #include <linux/slab.h> 26 #include <linux/notifier.h> 27 #include <linux/kthread.h> 28 #include <linux/mutex.h> 29 #include <asm/airq.h> 30 #include <linux/atomic.h> 31 #include <asm/isc.h> 32 #include <linux/hrtimer.h> 33 #include <linux/ktime.h> 34 #include <asm/facility.h> 35 #include <linux/crypto.h> 36 #include <linux/mod_devicetable.h> 37 #include <linux/debugfs.h> 38 #include <linux/ctype.h> 39 40 #include "ap_bus.h" 41 #include "ap_debug.h" 42 43 /* 44 * Module parameters; note though this file itself isn't modular. 45 */ 46 int ap_domain_index = -1; /* Adjunct Processor Domain Index */ 47 static DEFINE_SPINLOCK(ap_domain_lock); 48 module_param_named(domain, ap_domain_index, int, 0440); 49 MODULE_PARM_DESC(domain, "domain index for ap devices"); 50 EXPORT_SYMBOL(ap_domain_index); 51 52 static int ap_thread_flag; 53 module_param_named(poll_thread, ap_thread_flag, int, 0440); 54 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off)."); 55 56 static char *apm_str; 57 module_param_named(apmask, apm_str, charp, 0440); 58 MODULE_PARM_DESC(apmask, "AP bus adapter mask."); 59 60 static char *aqm_str; 61 module_param_named(aqmask, aqm_str, charp, 0440); 62 MODULE_PARM_DESC(aqmask, "AP bus domain mask."); 63 64 atomic_t ap_max_msg_size = ATOMIC_INIT(AP_DEFAULT_MAX_MSG_SIZE); 65 EXPORT_SYMBOL(ap_max_msg_size); 66 67 static struct device *ap_root_device; 68 69 /* Hashtable of all queue devices on the AP bus */ 70 DEFINE_HASHTABLE(ap_queues, 8); 71 /* lock used for the ap_queues hashtable */ 72 DEFINE_SPINLOCK(ap_queues_lock); 73 74 /* Default permissions (ioctl, card and domain masking) */ 75 struct ap_perms ap_perms; 76 EXPORT_SYMBOL(ap_perms); 77 DEFINE_MUTEX(ap_perms_mutex); 78 EXPORT_SYMBOL(ap_perms_mutex); 79 80 /* # of bus scans since init */ 81 static atomic64_t ap_scan_bus_count; 82 83 /* # of bindings complete since init */ 84 static atomic64_t ap_bindings_complete_count = ATOMIC64_INIT(0); 85 86 /* completion for initial APQN bindings complete */ 87 static DECLARE_COMPLETION(ap_init_apqn_bindings_complete); 88 89 static struct ap_config_info *ap_qci_info; 90 91 /* 92 * AP bus related debug feature things. 93 */ 94 debug_info_t *ap_dbf_info; 95 96 /* 97 * Workqueue timer for bus rescan. 98 */ 99 static struct timer_list ap_config_timer; 100 static int ap_config_time = AP_CONFIG_TIME; 101 static void ap_scan_bus(struct work_struct *); 102 static DECLARE_WORK(ap_scan_work, ap_scan_bus); 103 104 /* 105 * Tasklet & timer for AP request polling and interrupts 106 */ 107 static void ap_tasklet_fn(unsigned long); 108 static DECLARE_TASKLET_OLD(ap_tasklet, ap_tasklet_fn); 109 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait); 110 static struct task_struct *ap_poll_kthread; 111 static DEFINE_MUTEX(ap_poll_thread_mutex); 112 static DEFINE_SPINLOCK(ap_poll_timer_lock); 113 static struct hrtimer ap_poll_timer; 114 /* 115 * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds. 116 * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling. 117 */ 118 static unsigned long long poll_timeout = 250000; 119 120 /* Maximum domain id, if not given via qci */ 121 static int ap_max_domain_id = 15; 122 /* Maximum adapter id, if not given via qci */ 123 static int ap_max_adapter_id = 63; 124 125 static struct bus_type ap_bus_type; 126 127 /* Adapter interrupt definitions */ 128 static void ap_interrupt_handler(struct airq_struct *airq, bool floating); 129 130 static int ap_airq_flag; 131 132 static struct airq_struct ap_airq = { 133 .handler = ap_interrupt_handler, 134 .isc = AP_ISC, 135 }; 136 137 /** 138 * ap_using_interrupts() - Returns non-zero if interrupt support is 139 * available. 140 */ 141 static inline int ap_using_interrupts(void) 142 { 143 return ap_airq_flag; 144 } 145 146 /** 147 * ap_airq_ptr() - Get the address of the adapter interrupt indicator 148 * 149 * Returns the address of the local-summary-indicator of the adapter 150 * interrupt handler for AP, or NULL if adapter interrupts are not 151 * available. 152 */ 153 void *ap_airq_ptr(void) 154 { 155 if (ap_using_interrupts()) 156 return ap_airq.lsi_ptr; 157 return NULL; 158 } 159 160 /** 161 * ap_interrupts_available(): Test if AP interrupts are available. 162 * 163 * Returns 1 if AP interrupts are available. 164 */ 165 static int ap_interrupts_available(void) 166 { 167 return test_facility(65); 168 } 169 170 /** 171 * ap_qci_available(): Test if AP configuration 172 * information can be queried via QCI subfunction. 173 * 174 * Returns 1 if subfunction PQAP(QCI) is available. 175 */ 176 static int ap_qci_available(void) 177 { 178 return test_facility(12); 179 } 180 181 /** 182 * ap_apft_available(): Test if AP facilities test (APFT) 183 * facility is available. 184 * 185 * Returns 1 if APFT is is available. 186 */ 187 static int ap_apft_available(void) 188 { 189 return test_facility(15); 190 } 191 192 /* 193 * ap_qact_available(): Test if the PQAP(QACT) subfunction is available. 194 * 195 * Returns 1 if the QACT subfunction is available. 196 */ 197 static inline int ap_qact_available(void) 198 { 199 if (ap_qci_info) 200 return ap_qci_info->qact; 201 return 0; 202 } 203 204 /* 205 * ap_fetch_qci_info(): Fetch cryptographic config info 206 * 207 * Returns the ap configuration info fetched via PQAP(QCI). 208 * On success 0 is returned, on failure a negative errno 209 * is returned, e.g. if the PQAP(QCI) instruction is not 210 * available, the return value will be -EOPNOTSUPP. 211 */ 212 static inline int ap_fetch_qci_info(struct ap_config_info *info) 213 { 214 if (!ap_qci_available()) 215 return -EOPNOTSUPP; 216 if (!info) 217 return -EINVAL; 218 return ap_qci(info); 219 } 220 221 /** 222 * ap_init_qci_info(): Allocate and query qci config info. 223 * Does also update the static variables ap_max_domain_id 224 * and ap_max_adapter_id if this info is available. 225 226 */ 227 static void __init ap_init_qci_info(void) 228 { 229 if (!ap_qci_available()) { 230 AP_DBF_INFO("%s QCI not supported\n", __func__); 231 return; 232 } 233 234 ap_qci_info = kzalloc(sizeof(*ap_qci_info), GFP_KERNEL); 235 if (!ap_qci_info) 236 return; 237 if (ap_fetch_qci_info(ap_qci_info) != 0) { 238 kfree(ap_qci_info); 239 ap_qci_info = NULL; 240 return; 241 } 242 AP_DBF_INFO("%s successful fetched initial qci info\n", __func__); 243 244 if (ap_qci_info->apxa) { 245 if (ap_qci_info->Na) { 246 ap_max_adapter_id = ap_qci_info->Na; 247 AP_DBF_INFO("%s new ap_max_adapter_id is %d\n", 248 __func__, ap_max_adapter_id); 249 } 250 if (ap_qci_info->Nd) { 251 ap_max_domain_id = ap_qci_info->Nd; 252 AP_DBF_INFO("%s new ap_max_domain_id is %d\n", 253 __func__, ap_max_domain_id); 254 } 255 } 256 } 257 258 /* 259 * ap_test_config(): helper function to extract the nrth bit 260 * within the unsigned int array field. 261 */ 262 static inline int ap_test_config(unsigned int *field, unsigned int nr) 263 { 264 return ap_test_bit((field + (nr >> 5)), (nr & 0x1f)); 265 } 266 267 /* 268 * ap_test_config_card_id(): Test, whether an AP card ID is configured. 269 * 270 * Returns 0 if the card is not configured 271 * 1 if the card is configured or 272 * if the configuration information is not available 273 */ 274 static inline int ap_test_config_card_id(unsigned int id) 275 { 276 if (id > ap_max_adapter_id) 277 return 0; 278 if (ap_qci_info) 279 return ap_test_config(ap_qci_info->apm, id); 280 return 1; 281 } 282 283 /* 284 * ap_test_config_usage_domain(): Test, whether an AP usage domain 285 * is configured. 286 * 287 * Returns 0 if the usage domain is not configured 288 * 1 if the usage domain is configured or 289 * if the configuration information is not available 290 */ 291 int ap_test_config_usage_domain(unsigned int domain) 292 { 293 if (domain > ap_max_domain_id) 294 return 0; 295 if (ap_qci_info) 296 return ap_test_config(ap_qci_info->aqm, domain); 297 return 1; 298 } 299 EXPORT_SYMBOL(ap_test_config_usage_domain); 300 301 /* 302 * ap_test_config_ctrl_domain(): Test, whether an AP control domain 303 * is configured. 304 * @domain AP control domain ID 305 * 306 * Returns 1 if the control domain is configured 307 * 0 in all other cases 308 */ 309 int ap_test_config_ctrl_domain(unsigned int domain) 310 { 311 if (!ap_qci_info || domain > ap_max_domain_id) 312 return 0; 313 return ap_test_config(ap_qci_info->adm, domain); 314 } 315 EXPORT_SYMBOL(ap_test_config_ctrl_domain); 316 317 /* 318 * ap_queue_info(): Check and get AP queue info. 319 * Returns true if TAPQ succeeded and the info is filled or 320 * false otherwise. 321 */ 322 static bool ap_queue_info(ap_qid_t qid, int *q_type, unsigned int *q_fac, 323 int *q_depth, int *q_ml, bool *q_decfg) 324 { 325 struct ap_queue_status status; 326 union { 327 unsigned long value; 328 struct { 329 unsigned int fac : 32; /* facility bits */ 330 unsigned int at : 8; /* ap type */ 331 unsigned int _res1 : 8; 332 unsigned int _res2 : 4; 333 unsigned int ml : 4; /* apxl ml */ 334 unsigned int _res3 : 4; 335 unsigned int qd : 4; /* queue depth */ 336 } tapq_gr2; 337 } tapq_info; 338 339 tapq_info.value = 0; 340 341 /* make sure we don't run into a specifiation exception */ 342 if (AP_QID_CARD(qid) > ap_max_adapter_id || 343 AP_QID_QUEUE(qid) > ap_max_domain_id) 344 return false; 345 346 /* call TAPQ on this APQN */ 347 status = ap_test_queue(qid, ap_apft_available(), &tapq_info.value); 348 switch (status.response_code) { 349 case AP_RESPONSE_NORMAL: 350 case AP_RESPONSE_RESET_IN_PROGRESS: 351 case AP_RESPONSE_DECONFIGURED: 352 case AP_RESPONSE_CHECKSTOPPED: 353 case AP_RESPONSE_BUSY: 354 /* 355 * According to the architecture in all these cases the 356 * info should be filled. All bits 0 is not possible as 357 * there is at least one of the mode bits set. 358 */ 359 if (WARN_ON_ONCE(!tapq_info.value)) 360 return false; 361 *q_type = tapq_info.tapq_gr2.at; 362 *q_fac = tapq_info.tapq_gr2.fac; 363 *q_depth = tapq_info.tapq_gr2.qd; 364 *q_ml = tapq_info.tapq_gr2.ml; 365 *q_decfg = status.response_code == AP_RESPONSE_DECONFIGURED; 366 switch (*q_type) { 367 /* For CEX2 and CEX3 the available functions 368 * are not reflected by the facilities bits. 369 * Instead it is coded into the type. So here 370 * modify the function bits based on the type. 371 */ 372 case AP_DEVICE_TYPE_CEX2A: 373 case AP_DEVICE_TYPE_CEX3A: 374 *q_fac |= 0x08000000; 375 break; 376 case AP_DEVICE_TYPE_CEX2C: 377 case AP_DEVICE_TYPE_CEX3C: 378 *q_fac |= 0x10000000; 379 break; 380 default: 381 break; 382 } 383 return true; 384 default: 385 /* 386 * A response code which indicates, there is no info available. 387 */ 388 return false; 389 } 390 } 391 392 void ap_wait(enum ap_sm_wait wait) 393 { 394 ktime_t hr_time; 395 396 switch (wait) { 397 case AP_SM_WAIT_AGAIN: 398 case AP_SM_WAIT_INTERRUPT: 399 if (ap_using_interrupts()) 400 break; 401 if (ap_poll_kthread) { 402 wake_up(&ap_poll_wait); 403 break; 404 } 405 fallthrough; 406 case AP_SM_WAIT_TIMEOUT: 407 spin_lock_bh(&ap_poll_timer_lock); 408 if (!hrtimer_is_queued(&ap_poll_timer)) { 409 hr_time = poll_timeout; 410 hrtimer_forward_now(&ap_poll_timer, hr_time); 411 hrtimer_restart(&ap_poll_timer); 412 } 413 spin_unlock_bh(&ap_poll_timer_lock); 414 break; 415 case AP_SM_WAIT_NONE: 416 default: 417 break; 418 } 419 } 420 421 /** 422 * ap_request_timeout(): Handling of request timeouts 423 * @t: timer making this callback 424 * 425 * Handles request timeouts. 426 */ 427 void ap_request_timeout(struct timer_list *t) 428 { 429 struct ap_queue *aq = from_timer(aq, t, timeout); 430 431 spin_lock_bh(&aq->lock); 432 ap_wait(ap_sm_event(aq, AP_SM_EVENT_TIMEOUT)); 433 spin_unlock_bh(&aq->lock); 434 } 435 436 /** 437 * ap_poll_timeout(): AP receive polling for finished AP requests. 438 * @unused: Unused pointer. 439 * 440 * Schedules the AP tasklet using a high resolution timer. 441 */ 442 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused) 443 { 444 tasklet_schedule(&ap_tasklet); 445 return HRTIMER_NORESTART; 446 } 447 448 /** 449 * ap_interrupt_handler() - Schedule ap_tasklet on interrupt 450 * @airq: pointer to adapter interrupt descriptor 451 */ 452 static void ap_interrupt_handler(struct airq_struct *airq, bool floating) 453 { 454 inc_irq_stat(IRQIO_APB); 455 tasklet_schedule(&ap_tasklet); 456 } 457 458 /** 459 * ap_tasklet_fn(): Tasklet to poll all AP devices. 460 * @dummy: Unused variable 461 * 462 * Poll all AP devices on the bus. 463 */ 464 static void ap_tasklet_fn(unsigned long dummy) 465 { 466 int bkt; 467 struct ap_queue *aq; 468 enum ap_sm_wait wait = AP_SM_WAIT_NONE; 469 470 /* Reset the indicator if interrupts are used. Thus new interrupts can 471 * be received. Doing it in the beginning of the tasklet is therefor 472 * important that no requests on any AP get lost. 473 */ 474 if (ap_using_interrupts()) 475 xchg(ap_airq.lsi_ptr, 0); 476 477 spin_lock_bh(&ap_queues_lock); 478 hash_for_each(ap_queues, bkt, aq, hnode) { 479 spin_lock_bh(&aq->lock); 480 wait = min(wait, ap_sm_event_loop(aq, AP_SM_EVENT_POLL)); 481 spin_unlock_bh(&aq->lock); 482 } 483 spin_unlock_bh(&ap_queues_lock); 484 485 ap_wait(wait); 486 } 487 488 static int ap_pending_requests(void) 489 { 490 int bkt; 491 struct ap_queue *aq; 492 493 spin_lock_bh(&ap_queues_lock); 494 hash_for_each(ap_queues, bkt, aq, hnode) { 495 if (aq->queue_count == 0) 496 continue; 497 spin_unlock_bh(&ap_queues_lock); 498 return 1; 499 } 500 spin_unlock_bh(&ap_queues_lock); 501 return 0; 502 } 503 504 /** 505 * ap_poll_thread(): Thread that polls for finished requests. 506 * @data: Unused pointer 507 * 508 * AP bus poll thread. The purpose of this thread is to poll for 509 * finished requests in a loop if there is a "free" cpu - that is 510 * a cpu that doesn't have anything better to do. The polling stops 511 * as soon as there is another task or if all messages have been 512 * delivered. 513 */ 514 static int ap_poll_thread(void *data) 515 { 516 DECLARE_WAITQUEUE(wait, current); 517 518 set_user_nice(current, MAX_NICE); 519 set_freezable(); 520 while (!kthread_should_stop()) { 521 add_wait_queue(&ap_poll_wait, &wait); 522 set_current_state(TASK_INTERRUPTIBLE); 523 if (!ap_pending_requests()) { 524 schedule(); 525 try_to_freeze(); 526 } 527 set_current_state(TASK_RUNNING); 528 remove_wait_queue(&ap_poll_wait, &wait); 529 if (need_resched()) { 530 schedule(); 531 try_to_freeze(); 532 continue; 533 } 534 ap_tasklet_fn(0); 535 } 536 537 return 0; 538 } 539 540 static int ap_poll_thread_start(void) 541 { 542 int rc; 543 544 if (ap_using_interrupts() || ap_poll_kthread) 545 return 0; 546 mutex_lock(&ap_poll_thread_mutex); 547 ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll"); 548 rc = PTR_ERR_OR_ZERO(ap_poll_kthread); 549 if (rc) 550 ap_poll_kthread = NULL; 551 mutex_unlock(&ap_poll_thread_mutex); 552 return rc; 553 } 554 555 static void ap_poll_thread_stop(void) 556 { 557 if (!ap_poll_kthread) 558 return; 559 mutex_lock(&ap_poll_thread_mutex); 560 kthread_stop(ap_poll_kthread); 561 ap_poll_kthread = NULL; 562 mutex_unlock(&ap_poll_thread_mutex); 563 } 564 565 #define is_card_dev(x) ((x)->parent == ap_root_device) 566 #define is_queue_dev(x) ((x)->parent != ap_root_device) 567 568 /** 569 * ap_bus_match() 570 * @dev: Pointer to device 571 * @drv: Pointer to device_driver 572 * 573 * AP bus driver registration/unregistration. 574 */ 575 static int ap_bus_match(struct device *dev, struct device_driver *drv) 576 { 577 struct ap_driver *ap_drv = to_ap_drv(drv); 578 struct ap_device_id *id; 579 580 /* 581 * Compare device type of the device with the list of 582 * supported types of the device_driver. 583 */ 584 for (id = ap_drv->ids; id->match_flags; id++) { 585 if (is_card_dev(dev) && 586 id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE && 587 id->dev_type == to_ap_dev(dev)->device_type) 588 return 1; 589 if (is_queue_dev(dev) && 590 id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE && 591 id->dev_type == to_ap_dev(dev)->device_type) 592 return 1; 593 } 594 return 0; 595 } 596 597 /** 598 * ap_uevent(): Uevent function for AP devices. 599 * @dev: Pointer to device 600 * @env: Pointer to kobj_uevent_env 601 * 602 * It sets up a single environment variable DEV_TYPE which contains the 603 * hardware device type. 604 */ 605 static int ap_uevent(struct device *dev, struct kobj_uevent_env *env) 606 { 607 int rc = 0; 608 struct ap_device *ap_dev = to_ap_dev(dev); 609 610 /* Uevents from ap bus core don't need extensions to the env */ 611 if (dev == ap_root_device) 612 return 0; 613 614 if (is_card_dev(dev)) { 615 struct ap_card *ac = to_ap_card(&ap_dev->device); 616 617 /* Set up DEV_TYPE environment variable. */ 618 rc = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type); 619 if (rc) 620 return rc; 621 /* Add MODALIAS= */ 622 rc = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type); 623 if (rc) 624 return rc; 625 626 /* Add MODE=<accel|cca|ep11> */ 627 if (ap_test_bit(&ac->functions, AP_FUNC_ACCEL)) 628 rc = add_uevent_var(env, "MODE=accel"); 629 else if (ap_test_bit(&ac->functions, AP_FUNC_COPRO)) 630 rc = add_uevent_var(env, "MODE=cca"); 631 else if (ap_test_bit(&ac->functions, AP_FUNC_EP11)) 632 rc = add_uevent_var(env, "MODE=ep11"); 633 if (rc) 634 return rc; 635 } else { 636 struct ap_queue *aq = to_ap_queue(&ap_dev->device); 637 638 /* Add MODE=<accel|cca|ep11> */ 639 if (ap_test_bit(&aq->card->functions, AP_FUNC_ACCEL)) 640 rc = add_uevent_var(env, "MODE=accel"); 641 else if (ap_test_bit(&aq->card->functions, AP_FUNC_COPRO)) 642 rc = add_uevent_var(env, "MODE=cca"); 643 else if (ap_test_bit(&aq->card->functions, AP_FUNC_EP11)) 644 rc = add_uevent_var(env, "MODE=ep11"); 645 if (rc) 646 return rc; 647 } 648 649 return 0; 650 } 651 652 static void ap_send_init_scan_done_uevent(void) 653 { 654 char *envp[] = { "INITSCAN=done", NULL }; 655 656 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp); 657 } 658 659 static void ap_send_bindings_complete_uevent(void) 660 { 661 char buf[32]; 662 char *envp[] = { "BINDINGS=complete", buf, NULL }; 663 664 snprintf(buf, sizeof(buf), "COMPLETECOUNT=%llu", 665 atomic64_inc_return(&ap_bindings_complete_count)); 666 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp); 667 } 668 669 void ap_send_config_uevent(struct ap_device *ap_dev, bool cfg) 670 { 671 char buf[16]; 672 char *envp[] = { buf, NULL }; 673 674 snprintf(buf, sizeof(buf), "CONFIG=%d", cfg ? 1 : 0); 675 676 kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp); 677 } 678 EXPORT_SYMBOL(ap_send_config_uevent); 679 680 void ap_send_online_uevent(struct ap_device *ap_dev, int online) 681 { 682 char buf[16]; 683 char *envp[] = { buf, NULL }; 684 685 snprintf(buf, sizeof(buf), "ONLINE=%d", online ? 1 : 0); 686 687 kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp); 688 } 689 EXPORT_SYMBOL(ap_send_online_uevent); 690 691 /* 692 * calc # of bound APQNs 693 */ 694 695 struct __ap_calc_ctrs { 696 unsigned int apqns; 697 unsigned int bound; 698 }; 699 700 static int __ap_calc_helper(struct device *dev, void *arg) 701 { 702 struct __ap_calc_ctrs *pctrs = (struct __ap_calc_ctrs *) arg; 703 704 if (is_queue_dev(dev)) { 705 pctrs->apqns++; 706 if ((to_ap_dev(dev))->drv) 707 pctrs->bound++; 708 } 709 710 return 0; 711 } 712 713 static void ap_calc_bound_apqns(unsigned int *apqns, unsigned int *bound) 714 { 715 struct __ap_calc_ctrs ctrs; 716 717 memset(&ctrs, 0, sizeof(ctrs)); 718 bus_for_each_dev(&ap_bus_type, NULL, (void *) &ctrs, __ap_calc_helper); 719 720 *apqns = ctrs.apqns; 721 *bound = ctrs.bound; 722 } 723 724 /* 725 * After initial ap bus scan do check if all existing APQNs are 726 * bound to device drivers. 727 */ 728 static void ap_check_bindings_complete(void) 729 { 730 unsigned int apqns, bound; 731 732 if (atomic64_read(&ap_scan_bus_count) >= 1) { 733 ap_calc_bound_apqns(&apqns, &bound); 734 if (bound == apqns) { 735 if (!completion_done(&ap_init_apqn_bindings_complete)) { 736 complete_all(&ap_init_apqn_bindings_complete); 737 AP_DBF(DBF_INFO, "%s complete\n", __func__); 738 } 739 ap_send_bindings_complete_uevent(); 740 } 741 } 742 } 743 744 /* 745 * Interface to wait for the AP bus to have done one initial ap bus 746 * scan and all detected APQNs have been bound to device drivers. 747 * If these both conditions are not fulfilled, this function blocks 748 * on a condition with wait_for_completion_interruptible_timeout(). 749 * If these both conditions are fulfilled (before the timeout hits) 750 * the return value is 0. If the timeout (in jiffies) hits instead 751 * -ETIME is returned. On failures negative return values are 752 * returned to the caller. 753 */ 754 int ap_wait_init_apqn_bindings_complete(unsigned long timeout) 755 { 756 long l; 757 758 if (completion_done(&ap_init_apqn_bindings_complete)) 759 return 0; 760 761 if (timeout) 762 l = wait_for_completion_interruptible_timeout( 763 &ap_init_apqn_bindings_complete, timeout); 764 else 765 l = wait_for_completion_interruptible( 766 &ap_init_apqn_bindings_complete); 767 if (l < 0) 768 return l == -ERESTARTSYS ? -EINTR : l; 769 else if (l == 0 && timeout) 770 return -ETIME; 771 772 return 0; 773 } 774 EXPORT_SYMBOL(ap_wait_init_apqn_bindings_complete); 775 776 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data) 777 { 778 if (is_queue_dev(dev) && 779 AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long) data) 780 device_unregister(dev); 781 return 0; 782 } 783 784 static int __ap_revise_reserved(struct device *dev, void *dummy) 785 { 786 int rc, card, queue, devres, drvres; 787 788 if (is_queue_dev(dev)) { 789 card = AP_QID_CARD(to_ap_queue(dev)->qid); 790 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid); 791 mutex_lock(&ap_perms_mutex); 792 devres = test_bit_inv(card, ap_perms.apm) 793 && test_bit_inv(queue, ap_perms.aqm); 794 mutex_unlock(&ap_perms_mutex); 795 drvres = to_ap_drv(dev->driver)->flags 796 & AP_DRIVER_FLAG_DEFAULT; 797 if (!!devres != !!drvres) { 798 AP_DBF_DBG("reprobing queue=%02x.%04x\n", 799 card, queue); 800 rc = device_reprobe(dev); 801 } 802 } 803 804 return 0; 805 } 806 807 static void ap_bus_revise_bindings(void) 808 { 809 bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved); 810 } 811 812 int ap_owned_by_def_drv(int card, int queue) 813 { 814 int rc = 0; 815 816 if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS) 817 return -EINVAL; 818 819 mutex_lock(&ap_perms_mutex); 820 821 if (test_bit_inv(card, ap_perms.apm) 822 && test_bit_inv(queue, ap_perms.aqm)) 823 rc = 1; 824 825 mutex_unlock(&ap_perms_mutex); 826 827 return rc; 828 } 829 EXPORT_SYMBOL(ap_owned_by_def_drv); 830 831 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm, 832 unsigned long *aqm) 833 { 834 int card, queue, rc = 0; 835 836 mutex_lock(&ap_perms_mutex); 837 838 for (card = 0; !rc && card < AP_DEVICES; card++) 839 if (test_bit_inv(card, apm) && 840 test_bit_inv(card, ap_perms.apm)) 841 for (queue = 0; !rc && queue < AP_DOMAINS; queue++) 842 if (test_bit_inv(queue, aqm) && 843 test_bit_inv(queue, ap_perms.aqm)) 844 rc = 1; 845 846 mutex_unlock(&ap_perms_mutex); 847 848 return rc; 849 } 850 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv); 851 852 static int ap_device_probe(struct device *dev) 853 { 854 struct ap_device *ap_dev = to_ap_dev(dev); 855 struct ap_driver *ap_drv = to_ap_drv(dev->driver); 856 int card, queue, devres, drvres, rc = -ENODEV; 857 858 if (!get_device(dev)) 859 return rc; 860 861 if (is_queue_dev(dev)) { 862 /* 863 * If the apqn is marked as reserved/used by ap bus and 864 * default drivers, only probe with drivers with the default 865 * flag set. If it is not marked, only probe with drivers 866 * with the default flag not set. 867 */ 868 card = AP_QID_CARD(to_ap_queue(dev)->qid); 869 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid); 870 mutex_lock(&ap_perms_mutex); 871 devres = test_bit_inv(card, ap_perms.apm) 872 && test_bit_inv(queue, ap_perms.aqm); 873 mutex_unlock(&ap_perms_mutex); 874 drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT; 875 if (!!devres != !!drvres) 876 goto out; 877 } 878 879 /* Add queue/card to list of active queues/cards */ 880 spin_lock_bh(&ap_queues_lock); 881 if (is_queue_dev(dev)) 882 hash_add(ap_queues, &to_ap_queue(dev)->hnode, 883 to_ap_queue(dev)->qid); 884 spin_unlock_bh(&ap_queues_lock); 885 886 ap_dev->drv = ap_drv; 887 rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV; 888 889 if (rc) { 890 spin_lock_bh(&ap_queues_lock); 891 if (is_queue_dev(dev)) 892 hash_del(&to_ap_queue(dev)->hnode); 893 spin_unlock_bh(&ap_queues_lock); 894 ap_dev->drv = NULL; 895 } else 896 ap_check_bindings_complete(); 897 898 out: 899 if (rc) 900 put_device(dev); 901 return rc; 902 } 903 904 static int ap_device_remove(struct device *dev) 905 { 906 struct ap_device *ap_dev = to_ap_dev(dev); 907 struct ap_driver *ap_drv = ap_dev->drv; 908 909 /* prepare ap queue device removal */ 910 if (is_queue_dev(dev)) 911 ap_queue_prepare_remove(to_ap_queue(dev)); 912 913 /* driver's chance to clean up gracefully */ 914 if (ap_drv->remove) 915 ap_drv->remove(ap_dev); 916 917 /* now do the ap queue device remove */ 918 if (is_queue_dev(dev)) 919 ap_queue_remove(to_ap_queue(dev)); 920 921 /* Remove queue/card from list of active queues/cards */ 922 spin_lock_bh(&ap_queues_lock); 923 if (is_queue_dev(dev)) 924 hash_del(&to_ap_queue(dev)->hnode); 925 spin_unlock_bh(&ap_queues_lock); 926 ap_dev->drv = NULL; 927 928 put_device(dev); 929 930 return 0; 931 } 932 933 struct ap_queue *ap_get_qdev(ap_qid_t qid) 934 { 935 int bkt; 936 struct ap_queue *aq; 937 938 spin_lock_bh(&ap_queues_lock); 939 hash_for_each(ap_queues, bkt, aq, hnode) { 940 if (aq->qid == qid) { 941 get_device(&aq->ap_dev.device); 942 spin_unlock_bh(&ap_queues_lock); 943 return aq; 944 } 945 } 946 spin_unlock_bh(&ap_queues_lock); 947 948 return NULL; 949 } 950 EXPORT_SYMBOL(ap_get_qdev); 951 952 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner, 953 char *name) 954 { 955 struct device_driver *drv = &ap_drv->driver; 956 957 drv->bus = &ap_bus_type; 958 drv->owner = owner; 959 drv->name = name; 960 return driver_register(drv); 961 } 962 EXPORT_SYMBOL(ap_driver_register); 963 964 void ap_driver_unregister(struct ap_driver *ap_drv) 965 { 966 driver_unregister(&ap_drv->driver); 967 } 968 EXPORT_SYMBOL(ap_driver_unregister); 969 970 void ap_bus_force_rescan(void) 971 { 972 /* processing a asynchronous bus rescan */ 973 del_timer(&ap_config_timer); 974 queue_work(system_long_wq, &ap_scan_work); 975 flush_work(&ap_scan_work); 976 } 977 EXPORT_SYMBOL(ap_bus_force_rescan); 978 979 /* 980 * A config change has happened, force an ap bus rescan. 981 */ 982 void ap_bus_cfg_chg(void) 983 { 984 AP_DBF_DBG("%s config change, forcing bus rescan\n", __func__); 985 986 ap_bus_force_rescan(); 987 } 988 989 /* 990 * hex2bitmap() - parse hex mask string and set bitmap. 991 * Valid strings are "0x012345678" with at least one valid hex number. 992 * Rest of the bitmap to the right is padded with 0. No spaces allowed 993 * within the string, the leading 0x may be omitted. 994 * Returns the bitmask with exactly the bits set as given by the hex 995 * string (both in big endian order). 996 */ 997 static int hex2bitmap(const char *str, unsigned long *bitmap, int bits) 998 { 999 int i, n, b; 1000 1001 /* bits needs to be a multiple of 8 */ 1002 if (bits & 0x07) 1003 return -EINVAL; 1004 1005 if (str[0] == '0' && str[1] == 'x') 1006 str++; 1007 if (*str == 'x') 1008 str++; 1009 1010 for (i = 0; isxdigit(*str) && i < bits; str++) { 1011 b = hex_to_bin(*str); 1012 for (n = 0; n < 4; n++) 1013 if (b & (0x08 >> n)) 1014 set_bit_inv(i + n, bitmap); 1015 i += 4; 1016 } 1017 1018 if (*str == '\n') 1019 str++; 1020 if (*str) 1021 return -EINVAL; 1022 return 0; 1023 } 1024 1025 /* 1026 * modify_bitmap() - parse bitmask argument and modify an existing 1027 * bit mask accordingly. A concatenation (done with ',') of these 1028 * terms is recognized: 1029 * +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>] 1030 * <bitnr> may be any valid number (hex, decimal or octal) in the range 1031 * 0...bits-1; the leading + or - is required. Here are some examples: 1032 * +0-15,+32,-128,-0xFF 1033 * -0-255,+1-16,+0x128 1034 * +1,+2,+3,+4,-5,-7-10 1035 * Returns the new bitmap after all changes have been applied. Every 1036 * positive value in the string will set a bit and every negative value 1037 * in the string will clear a bit. As a bit may be touched more than once, 1038 * the last 'operation' wins: 1039 * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be 1040 * cleared again. All other bits are unmodified. 1041 */ 1042 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits) 1043 { 1044 int a, i, z; 1045 char *np, sign; 1046 1047 /* bits needs to be a multiple of 8 */ 1048 if (bits & 0x07) 1049 return -EINVAL; 1050 1051 while (*str) { 1052 sign = *str++; 1053 if (sign != '+' && sign != '-') 1054 return -EINVAL; 1055 a = z = simple_strtoul(str, &np, 0); 1056 if (str == np || a >= bits) 1057 return -EINVAL; 1058 str = np; 1059 if (*str == '-') { 1060 z = simple_strtoul(++str, &np, 0); 1061 if (str == np || a > z || z >= bits) 1062 return -EINVAL; 1063 str = np; 1064 } 1065 for (i = a; i <= z; i++) 1066 if (sign == '+') 1067 set_bit_inv(i, bitmap); 1068 else 1069 clear_bit_inv(i, bitmap); 1070 while (*str == ',' || *str == '\n') 1071 str++; 1072 } 1073 1074 return 0; 1075 } 1076 1077 int ap_parse_mask_str(const char *str, 1078 unsigned long *bitmap, int bits, 1079 struct mutex *lock) 1080 { 1081 unsigned long *newmap, size; 1082 int rc; 1083 1084 /* bits needs to be a multiple of 8 */ 1085 if (bits & 0x07) 1086 return -EINVAL; 1087 1088 size = BITS_TO_LONGS(bits)*sizeof(unsigned long); 1089 newmap = kmalloc(size, GFP_KERNEL); 1090 if (!newmap) 1091 return -ENOMEM; 1092 if (mutex_lock_interruptible(lock)) { 1093 kfree(newmap); 1094 return -ERESTARTSYS; 1095 } 1096 1097 if (*str == '+' || *str == '-') { 1098 memcpy(newmap, bitmap, size); 1099 rc = modify_bitmap(str, newmap, bits); 1100 } else { 1101 memset(newmap, 0, size); 1102 rc = hex2bitmap(str, newmap, bits); 1103 } 1104 if (rc == 0) 1105 memcpy(bitmap, newmap, size); 1106 mutex_unlock(lock); 1107 kfree(newmap); 1108 return rc; 1109 } 1110 EXPORT_SYMBOL(ap_parse_mask_str); 1111 1112 /* 1113 * AP bus attributes. 1114 */ 1115 1116 static ssize_t ap_domain_show(struct bus_type *bus, char *buf) 1117 { 1118 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index); 1119 } 1120 1121 static ssize_t ap_domain_store(struct bus_type *bus, 1122 const char *buf, size_t count) 1123 { 1124 int domain; 1125 1126 if (sscanf(buf, "%i\n", &domain) != 1 || 1127 domain < 0 || domain > ap_max_domain_id || 1128 !test_bit_inv(domain, ap_perms.aqm)) 1129 return -EINVAL; 1130 1131 spin_lock_bh(&ap_domain_lock); 1132 ap_domain_index = domain; 1133 spin_unlock_bh(&ap_domain_lock); 1134 1135 AP_DBF_INFO("stored new default domain=%d\n", domain); 1136 1137 return count; 1138 } 1139 1140 static BUS_ATTR_RW(ap_domain); 1141 1142 static ssize_t ap_control_domain_mask_show(struct bus_type *bus, char *buf) 1143 { 1144 if (!ap_qci_info) /* QCI not supported */ 1145 return scnprintf(buf, PAGE_SIZE, "not supported\n"); 1146 1147 return scnprintf(buf, PAGE_SIZE, 1148 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1149 ap_qci_info->adm[0], ap_qci_info->adm[1], 1150 ap_qci_info->adm[2], ap_qci_info->adm[3], 1151 ap_qci_info->adm[4], ap_qci_info->adm[5], 1152 ap_qci_info->adm[6], ap_qci_info->adm[7]); 1153 } 1154 1155 static BUS_ATTR_RO(ap_control_domain_mask); 1156 1157 static ssize_t ap_usage_domain_mask_show(struct bus_type *bus, char *buf) 1158 { 1159 if (!ap_qci_info) /* QCI not supported */ 1160 return scnprintf(buf, PAGE_SIZE, "not supported\n"); 1161 1162 return scnprintf(buf, PAGE_SIZE, 1163 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1164 ap_qci_info->aqm[0], ap_qci_info->aqm[1], 1165 ap_qci_info->aqm[2], ap_qci_info->aqm[3], 1166 ap_qci_info->aqm[4], ap_qci_info->aqm[5], 1167 ap_qci_info->aqm[6], ap_qci_info->aqm[7]); 1168 } 1169 1170 static BUS_ATTR_RO(ap_usage_domain_mask); 1171 1172 static ssize_t ap_adapter_mask_show(struct bus_type *bus, char *buf) 1173 { 1174 if (!ap_qci_info) /* QCI not supported */ 1175 return scnprintf(buf, PAGE_SIZE, "not supported\n"); 1176 1177 return scnprintf(buf, PAGE_SIZE, 1178 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1179 ap_qci_info->apm[0], ap_qci_info->apm[1], 1180 ap_qci_info->apm[2], ap_qci_info->apm[3], 1181 ap_qci_info->apm[4], ap_qci_info->apm[5], 1182 ap_qci_info->apm[6], ap_qci_info->apm[7]); 1183 } 1184 1185 static BUS_ATTR_RO(ap_adapter_mask); 1186 1187 static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf) 1188 { 1189 return scnprintf(buf, PAGE_SIZE, "%d\n", 1190 ap_using_interrupts() ? 1 : 0); 1191 } 1192 1193 static BUS_ATTR_RO(ap_interrupts); 1194 1195 static ssize_t config_time_show(struct bus_type *bus, char *buf) 1196 { 1197 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_config_time); 1198 } 1199 1200 static ssize_t config_time_store(struct bus_type *bus, 1201 const char *buf, size_t count) 1202 { 1203 int time; 1204 1205 if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120) 1206 return -EINVAL; 1207 ap_config_time = time; 1208 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ); 1209 return count; 1210 } 1211 1212 static BUS_ATTR_RW(config_time); 1213 1214 static ssize_t poll_thread_show(struct bus_type *bus, char *buf) 1215 { 1216 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0); 1217 } 1218 1219 static ssize_t poll_thread_store(struct bus_type *bus, 1220 const char *buf, size_t count) 1221 { 1222 int flag, rc; 1223 1224 if (sscanf(buf, "%d\n", &flag) != 1) 1225 return -EINVAL; 1226 if (flag) { 1227 rc = ap_poll_thread_start(); 1228 if (rc) 1229 count = rc; 1230 } else 1231 ap_poll_thread_stop(); 1232 return count; 1233 } 1234 1235 static BUS_ATTR_RW(poll_thread); 1236 1237 static ssize_t poll_timeout_show(struct bus_type *bus, char *buf) 1238 { 1239 return scnprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout); 1240 } 1241 1242 static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf, 1243 size_t count) 1244 { 1245 unsigned long long time; 1246 ktime_t hr_time; 1247 1248 /* 120 seconds = maximum poll interval */ 1249 if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 || 1250 time > 120000000000ULL) 1251 return -EINVAL; 1252 poll_timeout = time; 1253 hr_time = poll_timeout; 1254 1255 spin_lock_bh(&ap_poll_timer_lock); 1256 hrtimer_cancel(&ap_poll_timer); 1257 hrtimer_set_expires(&ap_poll_timer, hr_time); 1258 hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS); 1259 spin_unlock_bh(&ap_poll_timer_lock); 1260 1261 return count; 1262 } 1263 1264 static BUS_ATTR_RW(poll_timeout); 1265 1266 static ssize_t ap_max_domain_id_show(struct bus_type *bus, char *buf) 1267 { 1268 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_max_domain_id); 1269 } 1270 1271 static BUS_ATTR_RO(ap_max_domain_id); 1272 1273 static ssize_t ap_max_adapter_id_show(struct bus_type *bus, char *buf) 1274 { 1275 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_max_adapter_id); 1276 } 1277 1278 static BUS_ATTR_RO(ap_max_adapter_id); 1279 1280 static ssize_t apmask_show(struct bus_type *bus, char *buf) 1281 { 1282 int rc; 1283 1284 if (mutex_lock_interruptible(&ap_perms_mutex)) 1285 return -ERESTARTSYS; 1286 rc = scnprintf(buf, PAGE_SIZE, 1287 "0x%016lx%016lx%016lx%016lx\n", 1288 ap_perms.apm[0], ap_perms.apm[1], 1289 ap_perms.apm[2], ap_perms.apm[3]); 1290 mutex_unlock(&ap_perms_mutex); 1291 1292 return rc; 1293 } 1294 1295 static ssize_t apmask_store(struct bus_type *bus, const char *buf, 1296 size_t count) 1297 { 1298 int rc; 1299 1300 rc = ap_parse_mask_str(buf, ap_perms.apm, AP_DEVICES, &ap_perms_mutex); 1301 if (rc) 1302 return rc; 1303 1304 ap_bus_revise_bindings(); 1305 1306 return count; 1307 } 1308 1309 static BUS_ATTR_RW(apmask); 1310 1311 static ssize_t aqmask_show(struct bus_type *bus, char *buf) 1312 { 1313 int rc; 1314 1315 if (mutex_lock_interruptible(&ap_perms_mutex)) 1316 return -ERESTARTSYS; 1317 rc = scnprintf(buf, PAGE_SIZE, 1318 "0x%016lx%016lx%016lx%016lx\n", 1319 ap_perms.aqm[0], ap_perms.aqm[1], 1320 ap_perms.aqm[2], ap_perms.aqm[3]); 1321 mutex_unlock(&ap_perms_mutex); 1322 1323 return rc; 1324 } 1325 1326 static ssize_t aqmask_store(struct bus_type *bus, const char *buf, 1327 size_t count) 1328 { 1329 int rc; 1330 1331 rc = ap_parse_mask_str(buf, ap_perms.aqm, AP_DOMAINS, &ap_perms_mutex); 1332 if (rc) 1333 return rc; 1334 1335 ap_bus_revise_bindings(); 1336 1337 return count; 1338 } 1339 1340 static BUS_ATTR_RW(aqmask); 1341 1342 static ssize_t scans_show(struct bus_type *bus, char *buf) 1343 { 1344 return scnprintf(buf, PAGE_SIZE, "%llu\n", 1345 atomic64_read(&ap_scan_bus_count)); 1346 } 1347 1348 static BUS_ATTR_RO(scans); 1349 1350 static ssize_t bindings_show(struct bus_type *bus, char *buf) 1351 { 1352 int rc; 1353 unsigned int apqns, n; 1354 1355 ap_calc_bound_apqns(&apqns, &n); 1356 if (atomic64_read(&ap_scan_bus_count) >= 1 && n == apqns) 1357 rc = scnprintf(buf, PAGE_SIZE, "%u/%u (complete)\n", n, apqns); 1358 else 1359 rc = scnprintf(buf, PAGE_SIZE, "%u/%u\n", n, apqns); 1360 1361 return rc; 1362 } 1363 1364 static BUS_ATTR_RO(bindings); 1365 1366 static struct attribute *ap_bus_attrs[] = { 1367 &bus_attr_ap_domain.attr, 1368 &bus_attr_ap_control_domain_mask.attr, 1369 &bus_attr_ap_usage_domain_mask.attr, 1370 &bus_attr_ap_adapter_mask.attr, 1371 &bus_attr_config_time.attr, 1372 &bus_attr_poll_thread.attr, 1373 &bus_attr_ap_interrupts.attr, 1374 &bus_attr_poll_timeout.attr, 1375 &bus_attr_ap_max_domain_id.attr, 1376 &bus_attr_ap_max_adapter_id.attr, 1377 &bus_attr_apmask.attr, 1378 &bus_attr_aqmask.attr, 1379 &bus_attr_scans.attr, 1380 &bus_attr_bindings.attr, 1381 NULL, 1382 }; 1383 ATTRIBUTE_GROUPS(ap_bus); 1384 1385 static struct bus_type ap_bus_type = { 1386 .name = "ap", 1387 .bus_groups = ap_bus_groups, 1388 .match = &ap_bus_match, 1389 .uevent = &ap_uevent, 1390 .probe = ap_device_probe, 1391 .remove = ap_device_remove, 1392 }; 1393 1394 /** 1395 * ap_select_domain(): Select an AP domain if possible and we haven't 1396 * already done so before. 1397 */ 1398 static void ap_select_domain(void) 1399 { 1400 struct ap_queue_status status; 1401 int card, dom; 1402 1403 /* 1404 * Choose the default domain. Either the one specified with 1405 * the "domain=" parameter or the first domain with at least 1406 * one valid APQN. 1407 */ 1408 spin_lock_bh(&ap_domain_lock); 1409 if (ap_domain_index >= 0) { 1410 /* Domain has already been selected. */ 1411 goto out; 1412 } 1413 for (dom = 0; dom <= ap_max_domain_id; dom++) { 1414 if (!ap_test_config_usage_domain(dom) || 1415 !test_bit_inv(dom, ap_perms.aqm)) 1416 continue; 1417 for (card = 0; card <= ap_max_adapter_id; card++) { 1418 if (!ap_test_config_card_id(card) || 1419 !test_bit_inv(card, ap_perms.apm)) 1420 continue; 1421 status = ap_test_queue(AP_MKQID(card, dom), 1422 ap_apft_available(), 1423 NULL); 1424 if (status.response_code == AP_RESPONSE_NORMAL) 1425 break; 1426 } 1427 if (card <= ap_max_adapter_id) 1428 break; 1429 } 1430 if (dom <= ap_max_domain_id) { 1431 ap_domain_index = dom; 1432 AP_DBF_INFO("%s new default domain is %d\n", 1433 __func__, ap_domain_index); 1434 } 1435 out: 1436 spin_unlock_bh(&ap_domain_lock); 1437 } 1438 1439 /* 1440 * This function checks the type and returns either 0 for not 1441 * supported or the highest compatible type value (which may 1442 * include the input type value). 1443 */ 1444 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func) 1445 { 1446 int comp_type = 0; 1447 1448 /* < CEX2A is not supported */ 1449 if (rawtype < AP_DEVICE_TYPE_CEX2A) { 1450 AP_DBF_WARN("get_comp_type queue=%02x.%04x unsupported type %d\n", 1451 AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype); 1452 return 0; 1453 } 1454 /* up to CEX7 known and fully supported */ 1455 if (rawtype <= AP_DEVICE_TYPE_CEX7) 1456 return rawtype; 1457 /* 1458 * unknown new type > CEX7, check for compatibility 1459 * to the highest known and supported type which is 1460 * currently CEX7 with the help of the QACT function. 1461 */ 1462 if (ap_qact_available()) { 1463 struct ap_queue_status status; 1464 union ap_qact_ap_info apinfo = {0}; 1465 1466 apinfo.mode = (func >> 26) & 0x07; 1467 apinfo.cat = AP_DEVICE_TYPE_CEX7; 1468 status = ap_qact(qid, 0, &apinfo); 1469 if (status.response_code == AP_RESPONSE_NORMAL 1470 && apinfo.cat >= AP_DEVICE_TYPE_CEX2A 1471 && apinfo.cat <= AP_DEVICE_TYPE_CEX7) 1472 comp_type = apinfo.cat; 1473 } 1474 if (!comp_type) 1475 AP_DBF_WARN("get_comp_type queue=%02x.%04x unable to map type %d\n", 1476 AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype); 1477 else if (comp_type != rawtype) 1478 AP_DBF_INFO("get_comp_type queue=%02x.%04x map type %d to %d\n", 1479 AP_QID_CARD(qid), AP_QID_QUEUE(qid), 1480 rawtype, comp_type); 1481 return comp_type; 1482 } 1483 1484 /* 1485 * Helper function to be used with bus_find_dev 1486 * matches for the card device with the given id 1487 */ 1488 static int __match_card_device_with_id(struct device *dev, const void *data) 1489 { 1490 return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *) data; 1491 } 1492 1493 /* 1494 * Helper function to be used with bus_find_dev 1495 * matches for the queue device with a given qid 1496 */ 1497 static int __match_queue_device_with_qid(struct device *dev, const void *data) 1498 { 1499 return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long) data; 1500 } 1501 1502 /* 1503 * Helper function to be used with bus_find_dev 1504 * matches any queue device with given queue id 1505 */ 1506 static int __match_queue_device_with_queue_id(struct device *dev, const void *data) 1507 { 1508 return is_queue_dev(dev) 1509 && AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long) data; 1510 } 1511 1512 /* 1513 * Helper function for ap_scan_bus(). 1514 * Remove card device and associated queue devices. 1515 */ 1516 static inline void ap_scan_rm_card_dev_and_queue_devs(struct ap_card *ac) 1517 { 1518 bus_for_each_dev(&ap_bus_type, NULL, 1519 (void *)(long) ac->id, 1520 __ap_queue_devices_with_id_unregister); 1521 device_unregister(&ac->ap_dev.device); 1522 } 1523 1524 /* 1525 * Helper function for ap_scan_bus(). 1526 * Does the scan bus job for all the domains within 1527 * a valid adapter given by an ap_card ptr. 1528 */ 1529 static inline void ap_scan_domains(struct ap_card *ac) 1530 { 1531 bool decfg; 1532 ap_qid_t qid; 1533 unsigned int func; 1534 struct device *dev; 1535 struct ap_queue *aq; 1536 int rc, dom, depth, type, ml; 1537 1538 /* 1539 * Go through the configuration for the domains and compare them 1540 * to the existing queue devices. Also take care of the config 1541 * and error state for the queue devices. 1542 */ 1543 1544 for (dom = 0; dom <= ap_max_domain_id; dom++) { 1545 qid = AP_MKQID(ac->id, dom); 1546 dev = bus_find_device(&ap_bus_type, NULL, 1547 (void *)(long) qid, 1548 __match_queue_device_with_qid); 1549 aq = dev ? to_ap_queue(dev) : NULL; 1550 if (!ap_test_config_usage_domain(dom)) { 1551 if (dev) { 1552 AP_DBF_INFO("%s(%d,%d) not in config any more, rm queue device\n", 1553 __func__, ac->id, dom); 1554 device_unregister(dev); 1555 put_device(dev); 1556 } 1557 continue; 1558 } 1559 /* domain is valid, get info from this APQN */ 1560 if (!ap_queue_info(qid, &type, &func, &depth, &ml, &decfg)) { 1561 if (aq) { 1562 AP_DBF_INFO( 1563 "%s(%d,%d) ap_queue_info() not successful, rm queue device\n", 1564 __func__, ac->id, dom); 1565 device_unregister(dev); 1566 put_device(dev); 1567 } 1568 continue; 1569 } 1570 /* if no queue device exists, create a new one */ 1571 if (!aq) { 1572 aq = ap_queue_create(qid, ac->ap_dev.device_type); 1573 if (!aq) { 1574 AP_DBF_WARN("%s(%d,%d) ap_queue_create() failed\n", 1575 __func__, ac->id, dom); 1576 continue; 1577 } 1578 aq->card = ac; 1579 aq->config = !decfg; 1580 dev = &aq->ap_dev.device; 1581 dev->bus = &ap_bus_type; 1582 dev->parent = &ac->ap_dev.device; 1583 dev_set_name(dev, "%02x.%04x", ac->id, dom); 1584 /* register queue device */ 1585 rc = device_register(dev); 1586 if (rc) { 1587 AP_DBF_WARN("%s(%d,%d) device_register() failed\n", 1588 __func__, ac->id, dom); 1589 goto put_dev_and_continue; 1590 } 1591 /* get it and thus adjust reference counter */ 1592 get_device(dev); 1593 if (decfg) 1594 AP_DBF_INFO("%s(%d,%d) new (decfg) queue device created\n", 1595 __func__, ac->id, dom); 1596 else 1597 AP_DBF_INFO("%s(%d,%d) new queue device created\n", 1598 __func__, ac->id, dom); 1599 goto put_dev_and_continue; 1600 } 1601 /* Check config state on the already existing queue device */ 1602 spin_lock_bh(&aq->lock); 1603 if (decfg && aq->config) { 1604 /* config off this queue device */ 1605 aq->config = false; 1606 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) { 1607 aq->dev_state = AP_DEV_STATE_ERROR; 1608 aq->last_err_rc = AP_RESPONSE_DECONFIGURED; 1609 } 1610 spin_unlock_bh(&aq->lock); 1611 AP_DBF_INFO("%s(%d,%d) queue device config off\n", 1612 __func__, ac->id, dom); 1613 ap_send_config_uevent(&aq->ap_dev, aq->config); 1614 /* 'receive' pending messages with -EAGAIN */ 1615 ap_flush_queue(aq); 1616 goto put_dev_and_continue; 1617 } 1618 if (!decfg && !aq->config) { 1619 /* config on this queue device */ 1620 aq->config = true; 1621 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) { 1622 aq->dev_state = AP_DEV_STATE_OPERATING; 1623 aq->sm_state = AP_SM_STATE_RESET_START; 1624 } 1625 spin_unlock_bh(&aq->lock); 1626 AP_DBF_INFO("%s(%d,%d) queue device config on\n", 1627 __func__, ac->id, dom); 1628 ap_send_config_uevent(&aq->ap_dev, aq->config); 1629 goto put_dev_and_continue; 1630 } 1631 /* handle other error states */ 1632 if (!decfg && aq->dev_state == AP_DEV_STATE_ERROR) { 1633 spin_unlock_bh(&aq->lock); 1634 /* 'receive' pending messages with -EAGAIN */ 1635 ap_flush_queue(aq); 1636 /* re-init (with reset) the queue device */ 1637 ap_queue_init_state(aq); 1638 AP_DBF_INFO("%s(%d,%d) queue device reinit enforced\n", 1639 __func__, ac->id, dom); 1640 goto put_dev_and_continue; 1641 } 1642 spin_unlock_bh(&aq->lock); 1643 put_dev_and_continue: 1644 put_device(dev); 1645 } 1646 } 1647 1648 /* 1649 * Helper function for ap_scan_bus(). 1650 * Does the scan bus job for the given adapter id. 1651 */ 1652 static inline void ap_scan_adapter(int ap) 1653 { 1654 bool decfg; 1655 ap_qid_t qid; 1656 unsigned int func; 1657 struct device *dev; 1658 struct ap_card *ac; 1659 int rc, dom, depth, type, comp_type, ml; 1660 1661 /* Is there currently a card device for this adapter ? */ 1662 dev = bus_find_device(&ap_bus_type, NULL, 1663 (void *)(long) ap, 1664 __match_card_device_with_id); 1665 ac = dev ? to_ap_card(dev) : NULL; 1666 1667 /* Adapter not in configuration ? */ 1668 if (!ap_test_config_card_id(ap)) { 1669 if (ac) { 1670 AP_DBF_INFO("%s(%d) ap not in config any more, rm card and queue devices\n", 1671 __func__, ap); 1672 ap_scan_rm_card_dev_and_queue_devs(ac); 1673 put_device(dev); 1674 } 1675 return; 1676 } 1677 1678 /* 1679 * Adapter ap is valid in the current configuration. So do some checks: 1680 * If no card device exists, build one. If a card device exists, check 1681 * for type and functions changed. For all this we need to find a valid 1682 * APQN first. 1683 */ 1684 1685 for (dom = 0; dom <= ap_max_domain_id; dom++) 1686 if (ap_test_config_usage_domain(dom)) { 1687 qid = AP_MKQID(ap, dom); 1688 if (ap_queue_info(qid, &type, &func, 1689 &depth, &ml, &decfg)) 1690 break; 1691 } 1692 if (dom > ap_max_domain_id) { 1693 /* Could not find a valid APQN for this adapter */ 1694 if (ac) { 1695 AP_DBF_INFO( 1696 "%s(%d) no type info (no APQN found), rm card and queue devices\n", 1697 __func__, ap); 1698 ap_scan_rm_card_dev_and_queue_devs(ac); 1699 put_device(dev); 1700 } else { 1701 AP_DBF_DBG("%s(%d) no type info (no APQN found), ignored\n", 1702 __func__, ap); 1703 } 1704 return; 1705 } 1706 if (!type) { 1707 /* No apdater type info available, an unusable adapter */ 1708 if (ac) { 1709 AP_DBF_INFO("%s(%d) no valid type (0) info, rm card and queue devices\n", 1710 __func__, ap); 1711 ap_scan_rm_card_dev_and_queue_devs(ac); 1712 put_device(dev); 1713 } else { 1714 AP_DBF_DBG("%s(%d) no valid type (0) info, ignored\n", 1715 __func__, ap); 1716 } 1717 return; 1718 } 1719 1720 if (ac) { 1721 /* Check APQN against existing card device for changes */ 1722 if (ac->raw_hwtype != type) { 1723 AP_DBF_INFO("%s(%d) hwtype %d changed, rm card and queue devices\n", 1724 __func__, ap, type); 1725 ap_scan_rm_card_dev_and_queue_devs(ac); 1726 put_device(dev); 1727 ac = NULL; 1728 } else if (ac->functions != func) { 1729 AP_DBF_INFO("%s(%d) functions 0x%08x changed, rm card and queue devices\n", 1730 __func__, ap, type); 1731 ap_scan_rm_card_dev_and_queue_devs(ac); 1732 put_device(dev); 1733 ac = NULL; 1734 } else { 1735 if (decfg && ac->config) { 1736 ac->config = false; 1737 AP_DBF_INFO("%s(%d) card device config off\n", 1738 __func__, ap); 1739 ap_send_config_uevent(&ac->ap_dev, ac->config); 1740 } 1741 if (!decfg && !ac->config) { 1742 ac->config = true; 1743 AP_DBF_INFO("%s(%d) card device config on\n", 1744 __func__, ap); 1745 ap_send_config_uevent(&ac->ap_dev, ac->config); 1746 } 1747 } 1748 } 1749 1750 if (!ac) { 1751 /* Build a new card device */ 1752 comp_type = ap_get_compatible_type(qid, type, func); 1753 if (!comp_type) { 1754 AP_DBF_WARN("%s(%d) type %d, can't get compatibility type\n", 1755 __func__, ap, type); 1756 return; 1757 } 1758 ac = ap_card_create(ap, depth, type, comp_type, func, ml); 1759 if (!ac) { 1760 AP_DBF_WARN("%s(%d) ap_card_create() failed\n", 1761 __func__, ap); 1762 return; 1763 } 1764 ac->config = !decfg; 1765 dev = &ac->ap_dev.device; 1766 dev->bus = &ap_bus_type; 1767 dev->parent = ap_root_device; 1768 dev_set_name(dev, "card%02x", ap); 1769 /* maybe enlarge ap_max_msg_size to support this card */ 1770 if (ac->maxmsgsize > atomic_read(&ap_max_msg_size)) { 1771 atomic_set(&ap_max_msg_size, ac->maxmsgsize); 1772 AP_DBF_INFO("%s(%d) ap_max_msg_size update to %d byte\n", 1773 __func__, ap, atomic_read(&ap_max_msg_size)); 1774 } 1775 /* Register the new card device with AP bus */ 1776 rc = device_register(dev); 1777 if (rc) { 1778 AP_DBF_WARN("%s(%d) device_register() failed\n", 1779 __func__, ap); 1780 put_device(dev); 1781 return; 1782 } 1783 /* get it and thus adjust reference counter */ 1784 get_device(dev); 1785 if (decfg) 1786 AP_DBF_INFO("%s(%d) new (decfg) card device type=%d func=0x%08x created\n", 1787 __func__, ap, type, func); 1788 else 1789 AP_DBF_INFO("%s(%d) new card device type=%d func=0x%08x created\n", 1790 __func__, ap, type, func); 1791 } 1792 1793 /* Verify the domains and the queue devices for this card */ 1794 ap_scan_domains(ac); 1795 1796 /* release the card device */ 1797 put_device(&ac->ap_dev.device); 1798 } 1799 1800 /** 1801 * ap_scan_bus(): Scan the AP bus for new devices 1802 * Runs periodically, workqueue timer (ap_config_time) 1803 */ 1804 static void ap_scan_bus(struct work_struct *unused) 1805 { 1806 int ap; 1807 1808 ap_fetch_qci_info(ap_qci_info); 1809 ap_select_domain(); 1810 1811 AP_DBF_DBG("%s running\n", __func__); 1812 1813 /* loop over all possible adapters */ 1814 for (ap = 0; ap <= ap_max_adapter_id; ap++) 1815 ap_scan_adapter(ap); 1816 1817 /* check if there is at least one queue available with default domain */ 1818 if (ap_domain_index >= 0) { 1819 struct device *dev = 1820 bus_find_device(&ap_bus_type, NULL, 1821 (void *)(long) ap_domain_index, 1822 __match_queue_device_with_queue_id); 1823 if (dev) 1824 put_device(dev); 1825 else 1826 AP_DBF_INFO("no queue device with default domain %d available\n", 1827 ap_domain_index); 1828 } 1829 1830 if (atomic64_inc_return(&ap_scan_bus_count) == 1) { 1831 AP_DBF(DBF_DEBUG, "%s init scan complete\n", __func__); 1832 ap_send_init_scan_done_uevent(); 1833 ap_check_bindings_complete(); 1834 } 1835 1836 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ); 1837 } 1838 1839 static void ap_config_timeout(struct timer_list *unused) 1840 { 1841 queue_work(system_long_wq, &ap_scan_work); 1842 } 1843 1844 static int __init ap_debug_init(void) 1845 { 1846 ap_dbf_info = debug_register("ap", 1, 1, 1847 DBF_MAX_SPRINTF_ARGS * sizeof(long)); 1848 debug_register_view(ap_dbf_info, &debug_sprintf_view); 1849 debug_set_level(ap_dbf_info, DBF_ERR); 1850 1851 return 0; 1852 } 1853 1854 static void __init ap_perms_init(void) 1855 { 1856 /* all resources useable if no kernel parameter string given */ 1857 memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm)); 1858 memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm)); 1859 memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm)); 1860 1861 /* apm kernel parameter string */ 1862 if (apm_str) { 1863 memset(&ap_perms.apm, 0, sizeof(ap_perms.apm)); 1864 ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES, 1865 &ap_perms_mutex); 1866 } 1867 1868 /* aqm kernel parameter string */ 1869 if (aqm_str) { 1870 memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm)); 1871 ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS, 1872 &ap_perms_mutex); 1873 } 1874 } 1875 1876 /** 1877 * ap_module_init(): The module initialization code. 1878 * 1879 * Initializes the module. 1880 */ 1881 static int __init ap_module_init(void) 1882 { 1883 int rc; 1884 1885 rc = ap_debug_init(); 1886 if (rc) 1887 return rc; 1888 1889 if (!ap_instructions_available()) { 1890 pr_warn("The hardware system does not support AP instructions\n"); 1891 return -ENODEV; 1892 } 1893 1894 /* init ap_queue hashtable */ 1895 hash_init(ap_queues); 1896 1897 /* set up the AP permissions (ioctls, ap and aq masks) */ 1898 ap_perms_init(); 1899 1900 /* Get AP configuration data if available */ 1901 ap_init_qci_info(); 1902 1903 /* check default domain setting */ 1904 if (ap_domain_index < -1 || ap_domain_index > ap_max_domain_id || 1905 (ap_domain_index >= 0 && 1906 !test_bit_inv(ap_domain_index, ap_perms.aqm))) { 1907 pr_warn("%d is not a valid cryptographic domain\n", 1908 ap_domain_index); 1909 ap_domain_index = -1; 1910 } 1911 1912 /* enable interrupts if available */ 1913 if (ap_interrupts_available()) { 1914 rc = register_adapter_interrupt(&ap_airq); 1915 ap_airq_flag = (rc == 0); 1916 } 1917 1918 /* Create /sys/bus/ap. */ 1919 rc = bus_register(&ap_bus_type); 1920 if (rc) 1921 goto out; 1922 1923 /* Create /sys/devices/ap. */ 1924 ap_root_device = root_device_register("ap"); 1925 rc = PTR_ERR_OR_ZERO(ap_root_device); 1926 if (rc) 1927 goto out_bus; 1928 ap_root_device->bus = &ap_bus_type; 1929 1930 /* Setup the AP bus rescan timer. */ 1931 timer_setup(&ap_config_timer, ap_config_timeout, 0); 1932 1933 /* 1934 * Setup the high resultion poll timer. 1935 * If we are running under z/VM adjust polling to z/VM polling rate. 1936 */ 1937 if (MACHINE_IS_VM) 1938 poll_timeout = 1500000; 1939 hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1940 ap_poll_timer.function = ap_poll_timeout; 1941 1942 /* Start the low priority AP bus poll thread. */ 1943 if (ap_thread_flag) { 1944 rc = ap_poll_thread_start(); 1945 if (rc) 1946 goto out_work; 1947 } 1948 1949 queue_work(system_long_wq, &ap_scan_work); 1950 1951 return 0; 1952 1953 out_work: 1954 hrtimer_cancel(&ap_poll_timer); 1955 root_device_unregister(ap_root_device); 1956 out_bus: 1957 bus_unregister(&ap_bus_type); 1958 out: 1959 if (ap_using_interrupts()) 1960 unregister_adapter_interrupt(&ap_airq); 1961 kfree(ap_qci_info); 1962 return rc; 1963 } 1964 device_initcall(ap_module_init); 1965