xref: /openbmc/linux/drivers/s390/crypto/ap_bus.c (revision 77a87824)
1 /*
2  * Copyright IBM Corp. 2006, 2012
3  * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
4  *	      Martin Schwidefsky <schwidefsky@de.ibm.com>
5  *	      Ralph Wuerthner <rwuerthn@de.ibm.com>
6  *	      Felix Beck <felix.beck@de.ibm.com>
7  *	      Holger Dengler <hd@linux.vnet.ibm.com>
8  *
9  * Adjunct processor bus.
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24  */
25 
26 #define KMSG_COMPONENT "ap"
27 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
28 
29 #include <linux/kernel_stat.h>
30 #include <linux/module.h>
31 #include <linux/init.h>
32 #include <linux/delay.h>
33 #include <linux/err.h>
34 #include <linux/interrupt.h>
35 #include <linux/workqueue.h>
36 #include <linux/slab.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/mutex.h>
40 #include <linux/suspend.h>
41 #include <asm/reset.h>
42 #include <asm/airq.h>
43 #include <linux/atomic.h>
44 #include <asm/isc.h>
45 #include <linux/hrtimer.h>
46 #include <linux/ktime.h>
47 #include <asm/facility.h>
48 #include <linux/crypto.h>
49 
50 #include "ap_bus.h"
51 
52 /*
53  * Module description.
54  */
55 MODULE_AUTHOR("IBM Corporation");
56 MODULE_DESCRIPTION("Adjunct Processor Bus driver, " \
57 		   "Copyright IBM Corp. 2006, 2012");
58 MODULE_LICENSE("GPL");
59 MODULE_ALIAS_CRYPTO("z90crypt");
60 
61 /*
62  * Module parameter
63  */
64 int ap_domain_index = -1;	/* Adjunct Processor Domain Index */
65 module_param_named(domain, ap_domain_index, int, S_IRUSR|S_IRGRP);
66 MODULE_PARM_DESC(domain, "domain index for ap devices");
67 EXPORT_SYMBOL(ap_domain_index);
68 
69 static int ap_thread_flag = 0;
70 module_param_named(poll_thread, ap_thread_flag, int, S_IRUSR|S_IRGRP);
71 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
72 
73 static struct device *ap_root_device = NULL;
74 static struct ap_config_info *ap_configuration;
75 static DEFINE_SPINLOCK(ap_device_list_lock);
76 static LIST_HEAD(ap_device_list);
77 static bool initialised;
78 
79 /*
80  * Workqueue timer for bus rescan.
81  */
82 static struct timer_list ap_config_timer;
83 static int ap_config_time = AP_CONFIG_TIME;
84 static void ap_scan_bus(struct work_struct *);
85 static DECLARE_WORK(ap_scan_work, ap_scan_bus);
86 
87 /*
88  * Tasklet & timer for AP request polling and interrupts
89  */
90 static void ap_tasklet_fn(unsigned long);
91 static DECLARE_TASKLET(ap_tasklet, ap_tasklet_fn, 0);
92 static atomic_t ap_poll_requests = ATOMIC_INIT(0);
93 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
94 static struct task_struct *ap_poll_kthread = NULL;
95 static DEFINE_MUTEX(ap_poll_thread_mutex);
96 static DEFINE_SPINLOCK(ap_poll_timer_lock);
97 static struct hrtimer ap_poll_timer;
98 /* In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
99  * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.*/
100 static unsigned long long poll_timeout = 250000;
101 
102 /* Suspend flag */
103 static int ap_suspend_flag;
104 /* Maximum domain id */
105 static int ap_max_domain_id;
106 /* Flag to check if domain was set through module parameter domain=. This is
107  * important when supsend and resume is done in a z/VM environment where the
108  * domain might change. */
109 static int user_set_domain = 0;
110 static struct bus_type ap_bus_type;
111 
112 /* Adapter interrupt definitions */
113 static void ap_interrupt_handler(struct airq_struct *airq);
114 
115 static int ap_airq_flag;
116 
117 static struct airq_struct ap_airq = {
118 	.handler = ap_interrupt_handler,
119 	.isc = AP_ISC,
120 };
121 
122 /**
123  * ap_using_interrupts() - Returns non-zero if interrupt support is
124  * available.
125  */
126 static inline int ap_using_interrupts(void)
127 {
128 	return ap_airq_flag;
129 }
130 
131 /**
132  * ap_intructions_available() - Test if AP instructions are available.
133  *
134  * Returns 0 if the AP instructions are installed.
135  */
136 static inline int ap_instructions_available(void)
137 {
138 	register unsigned long reg0 asm ("0") = AP_MKQID(0,0);
139 	register unsigned long reg1 asm ("1") = -ENODEV;
140 	register unsigned long reg2 asm ("2") = 0UL;
141 
142 	asm volatile(
143 		"   .long 0xb2af0000\n"		/* PQAP(TAPQ) */
144 		"0: la    %1,0\n"
145 		"1:\n"
146 		EX_TABLE(0b, 1b)
147 		: "+d" (reg0), "+d" (reg1), "+d" (reg2) : : "cc" );
148 	return reg1;
149 }
150 
151 /**
152  * ap_interrupts_available(): Test if AP interrupts are available.
153  *
154  * Returns 1 if AP interrupts are available.
155  */
156 static int ap_interrupts_available(void)
157 {
158 	return test_facility(65);
159 }
160 
161 /**
162  * ap_configuration_available(): Test if AP configuration
163  * information is available.
164  *
165  * Returns 1 if AP configuration information is available.
166  */
167 static int ap_configuration_available(void)
168 {
169 	return test_facility(12);
170 }
171 
172 static inline struct ap_queue_status
173 __pqap_tapq(ap_qid_t qid, unsigned long *info)
174 {
175 	register unsigned long reg0 asm ("0") = qid;
176 	register struct ap_queue_status reg1 asm ("1");
177 	register unsigned long reg2 asm ("2") = 0UL;
178 
179 	asm volatile(".long 0xb2af0000"		/* PQAP(TAPQ) */
180 		     : "+d" (reg0), "=d" (reg1), "+d" (reg2) : : "cc");
181 	*info = reg2;
182 	return reg1;
183 }
184 
185 /**
186  * ap_test_queue(): Test adjunct processor queue.
187  * @qid: The AP queue number
188  * @info: Pointer to queue descriptor
189  *
190  * Returns AP queue status structure.
191  */
192 static inline struct ap_queue_status
193 ap_test_queue(ap_qid_t qid, unsigned long *info)
194 {
195 	struct ap_queue_status aqs;
196 	unsigned long _info;
197 
198 	if (test_facility(15))
199 		qid |= 1UL << 23;		/* set APFT T bit*/
200 	aqs = __pqap_tapq(qid, &_info);
201 	if (info)
202 		*info = _info;
203 	return aqs;
204 }
205 
206 /**
207  * ap_reset_queue(): Reset adjunct processor queue.
208  * @qid: The AP queue number
209  *
210  * Returns AP queue status structure.
211  */
212 static inline struct ap_queue_status ap_reset_queue(ap_qid_t qid)
213 {
214 	register unsigned long reg0 asm ("0") = qid | 0x01000000UL;
215 	register struct ap_queue_status reg1 asm ("1");
216 	register unsigned long reg2 asm ("2") = 0UL;
217 
218 	asm volatile(
219 		".long 0xb2af0000"		/* PQAP(RAPQ) */
220 		: "+d" (reg0), "=d" (reg1), "+d" (reg2) : : "cc");
221 	return reg1;
222 }
223 
224 /**
225  * ap_queue_interruption_control(): Enable interruption for a specific AP.
226  * @qid: The AP queue number
227  * @ind: The notification indicator byte
228  *
229  * Returns AP queue status.
230  */
231 static inline struct ap_queue_status
232 ap_queue_interruption_control(ap_qid_t qid, void *ind)
233 {
234 	register unsigned long reg0 asm ("0") = qid | 0x03000000UL;
235 	register unsigned long reg1_in asm ("1") = 0x0000800000000000UL | AP_ISC;
236 	register struct ap_queue_status reg1_out asm ("1");
237 	register void *reg2 asm ("2") = ind;
238 	asm volatile(
239 		".long 0xb2af0000"		/* PQAP(AQIC) */
240 		: "+d" (reg0), "+d" (reg1_in), "=d" (reg1_out), "+d" (reg2)
241 		:
242 		: "cc" );
243 	return reg1_out;
244 }
245 
246 /**
247  * ap_query_configuration(): Get AP configuration data
248  *
249  * Returns 0 on success, or -EOPNOTSUPP.
250  */
251 static inline int __ap_query_configuration(void)
252 {
253 	register unsigned long reg0 asm ("0") = 0x04000000UL;
254 	register unsigned long reg1 asm ("1") = -EINVAL;
255 	register void *reg2 asm ("2") = (void *) ap_configuration;
256 
257 	asm volatile(
258 		".long 0xb2af0000\n"		/* PQAP(QCI) */
259 		"0: la    %1,0\n"
260 		"1:\n"
261 		EX_TABLE(0b, 1b)
262 		: "+d" (reg0), "+d" (reg1), "+d" (reg2)
263 		:
264 		: "cc");
265 
266 	return reg1;
267 }
268 
269 static inline int ap_query_configuration(void)
270 {
271 	if (!ap_configuration)
272 		return -EOPNOTSUPP;
273 	return __ap_query_configuration();
274 }
275 
276 /**
277  * ap_init_configuration(): Allocate and query configuration array.
278  */
279 static void ap_init_configuration(void)
280 {
281 	if (!ap_configuration_available())
282 		return;
283 
284 	ap_configuration = kzalloc(sizeof(*ap_configuration), GFP_KERNEL);
285 	if (!ap_configuration)
286 		return;
287 	if (ap_query_configuration() != 0) {
288 		kfree(ap_configuration);
289 		ap_configuration = NULL;
290 		return;
291 	}
292 }
293 
294 /*
295  * ap_test_config(): helper function to extract the nrth bit
296  *		     within the unsigned int array field.
297  */
298 static inline int ap_test_config(unsigned int *field, unsigned int nr)
299 {
300 	return ap_test_bit((field + (nr >> 5)), (nr & 0x1f));
301 }
302 
303 /*
304  * ap_test_config_card_id(): Test, whether an AP card ID is configured.
305  * @id AP card ID
306  *
307  * Returns 0 if the card is not configured
308  *	   1 if the card is configured or
309  *	     if the configuration information is not available
310  */
311 static inline int ap_test_config_card_id(unsigned int id)
312 {
313 	if (!ap_configuration)	/* QCI not supported */
314 		return 1;
315 	return ap_test_config(ap_configuration->apm, id);
316 }
317 
318 /*
319  * ap_test_config_domain(): Test, whether an AP usage domain is configured.
320  * @domain AP usage domain ID
321  *
322  * Returns 0 if the usage domain is not configured
323  *	   1 if the usage domain is configured or
324  *	     if the configuration information is not available
325  */
326 static inline int ap_test_config_domain(unsigned int domain)
327 {
328 	if (!ap_configuration)	/* QCI not supported */
329 		return domain < 16;
330 	return ap_test_config(ap_configuration->aqm, domain);
331 }
332 
333 /**
334  * ap_queue_enable_interruption(): Enable interruption on an AP.
335  * @qid: The AP queue number
336  * @ind: the notification indicator byte
337  *
338  * Enables interruption on AP queue via ap_queue_interruption_control(). Based
339  * on the return value it waits a while and tests the AP queue if interrupts
340  * have been switched on using ap_test_queue().
341  */
342 static int ap_queue_enable_interruption(struct ap_device *ap_dev, void *ind)
343 {
344 	struct ap_queue_status status;
345 
346 	status = ap_queue_interruption_control(ap_dev->qid, ind);
347 	switch (status.response_code) {
348 	case AP_RESPONSE_NORMAL:
349 	case AP_RESPONSE_OTHERWISE_CHANGED:
350 		return 0;
351 	case AP_RESPONSE_Q_NOT_AVAIL:
352 	case AP_RESPONSE_DECONFIGURED:
353 	case AP_RESPONSE_CHECKSTOPPED:
354 	case AP_RESPONSE_INVALID_ADDRESS:
355 		pr_err("Registering adapter interrupts for AP %d failed\n",
356 		       AP_QID_DEVICE(ap_dev->qid));
357 		return -EOPNOTSUPP;
358 	case AP_RESPONSE_RESET_IN_PROGRESS:
359 	case AP_RESPONSE_BUSY:
360 	default:
361 		return -EBUSY;
362 	}
363 }
364 
365 static inline struct ap_queue_status
366 __nqap(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length)
367 {
368 	typedef struct { char _[length]; } msgblock;
369 	register unsigned long reg0 asm ("0") = qid | 0x40000000UL;
370 	register struct ap_queue_status reg1 asm ("1");
371 	register unsigned long reg2 asm ("2") = (unsigned long) msg;
372 	register unsigned long reg3 asm ("3") = (unsigned long) length;
373 	register unsigned long reg4 asm ("4") = (unsigned int) (psmid >> 32);
374 	register unsigned long reg5 asm ("5") = psmid & 0xffffffff;
375 
376 	asm volatile (
377 		"0: .long 0xb2ad0042\n"		/* NQAP */
378 		"   brc   2,0b"
379 		: "+d" (reg0), "=d" (reg1), "+d" (reg2), "+d" (reg3)
380 		: "d" (reg4), "d" (reg5), "m" (*(msgblock *) msg)
381 		: "cc");
382 	return reg1;
383 }
384 
385 /**
386  * __ap_send(): Send message to adjunct processor queue.
387  * @qid: The AP queue number
388  * @psmid: The program supplied message identifier
389  * @msg: The message text
390  * @length: The message length
391  * @special: Special Bit
392  *
393  * Returns AP queue status structure.
394  * Condition code 1 on NQAP can't happen because the L bit is 1.
395  * Condition code 2 on NQAP also means the send is incomplete,
396  * because a segment boundary was reached. The NQAP is repeated.
397  */
398 static inline struct ap_queue_status
399 __ap_send(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length,
400 	  unsigned int special)
401 {
402 	if (special == 1)
403 		qid |= 0x400000UL;
404 	return __nqap(qid, psmid, msg, length);
405 }
406 
407 int ap_send(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length)
408 {
409 	struct ap_queue_status status;
410 
411 	status = __ap_send(qid, psmid, msg, length, 0);
412 	switch (status.response_code) {
413 	case AP_RESPONSE_NORMAL:
414 		return 0;
415 	case AP_RESPONSE_Q_FULL:
416 	case AP_RESPONSE_RESET_IN_PROGRESS:
417 		return -EBUSY;
418 	case AP_RESPONSE_REQ_FAC_NOT_INST:
419 		return -EINVAL;
420 	default:	/* Device is gone. */
421 		return -ENODEV;
422 	}
423 }
424 EXPORT_SYMBOL(ap_send);
425 
426 /**
427  * __ap_recv(): Receive message from adjunct processor queue.
428  * @qid: The AP queue number
429  * @psmid: Pointer to program supplied message identifier
430  * @msg: The message text
431  * @length: The message length
432  *
433  * Returns AP queue status structure.
434  * Condition code 1 on DQAP means the receive has taken place
435  * but only partially.	The response is incomplete, hence the
436  * DQAP is repeated.
437  * Condition code 2 on DQAP also means the receive is incomplete,
438  * this time because a segment boundary was reached. Again, the
439  * DQAP is repeated.
440  * Note that gpr2 is used by the DQAP instruction to keep track of
441  * any 'residual' length, in case the instruction gets interrupted.
442  * Hence it gets zeroed before the instruction.
443  */
444 static inline struct ap_queue_status
445 __ap_recv(ap_qid_t qid, unsigned long long *psmid, void *msg, size_t length)
446 {
447 	typedef struct { char _[length]; } msgblock;
448 	register unsigned long reg0 asm("0") = qid | 0x80000000UL;
449 	register struct ap_queue_status reg1 asm ("1");
450 	register unsigned long reg2 asm("2") = 0UL;
451 	register unsigned long reg4 asm("4") = (unsigned long) msg;
452 	register unsigned long reg5 asm("5") = (unsigned long) length;
453 	register unsigned long reg6 asm("6") = 0UL;
454 	register unsigned long reg7 asm("7") = 0UL;
455 
456 
457 	asm volatile(
458 		"0: .long 0xb2ae0064\n"		/* DQAP */
459 		"   brc   6,0b\n"
460 		: "+d" (reg0), "=d" (reg1), "+d" (reg2),
461 		"+d" (reg4), "+d" (reg5), "+d" (reg6), "+d" (reg7),
462 		"=m" (*(msgblock *) msg) : : "cc" );
463 	*psmid = (((unsigned long long) reg6) << 32) + reg7;
464 	return reg1;
465 }
466 
467 int ap_recv(ap_qid_t qid, unsigned long long *psmid, void *msg, size_t length)
468 {
469 	struct ap_queue_status status;
470 
471 	status = __ap_recv(qid, psmid, msg, length);
472 	switch (status.response_code) {
473 	case AP_RESPONSE_NORMAL:
474 		return 0;
475 	case AP_RESPONSE_NO_PENDING_REPLY:
476 		if (status.queue_empty)
477 			return -ENOENT;
478 		return -EBUSY;
479 	case AP_RESPONSE_RESET_IN_PROGRESS:
480 		return -EBUSY;
481 	default:
482 		return -ENODEV;
483 	}
484 }
485 EXPORT_SYMBOL(ap_recv);
486 
487 /**
488  * ap_query_queue(): Check if an AP queue is available.
489  * @qid: The AP queue number
490  * @queue_depth: Pointer to queue depth value
491  * @device_type: Pointer to device type value
492  * @facilities: Pointer to facility indicator
493  */
494 static int ap_query_queue(ap_qid_t qid, int *queue_depth, int *device_type,
495 			  unsigned int *facilities)
496 {
497 	struct ap_queue_status status;
498 	unsigned long info;
499 	int nd;
500 
501 	if (!ap_test_config_card_id(AP_QID_DEVICE(qid)))
502 		return -ENODEV;
503 
504 	status = ap_test_queue(qid, &info);
505 	switch (status.response_code) {
506 	case AP_RESPONSE_NORMAL:
507 		*queue_depth = (int)(info & 0xff);
508 		*device_type = (int)((info >> 24) & 0xff);
509 		*facilities = (unsigned int)(info >> 32);
510 		/* Update maximum domain id */
511 		nd = (info >> 16) & 0xff;
512 		if ((info & (1UL << 57)) && nd > 0)
513 			ap_max_domain_id = nd;
514 		return 0;
515 	case AP_RESPONSE_Q_NOT_AVAIL:
516 	case AP_RESPONSE_DECONFIGURED:
517 	case AP_RESPONSE_CHECKSTOPPED:
518 	case AP_RESPONSE_INVALID_ADDRESS:
519 		return -ENODEV;
520 	case AP_RESPONSE_RESET_IN_PROGRESS:
521 	case AP_RESPONSE_OTHERWISE_CHANGED:
522 	case AP_RESPONSE_BUSY:
523 		return -EBUSY;
524 	default:
525 		BUG();
526 	}
527 }
528 
529 /* State machine definitions and helpers */
530 
531 static void ap_sm_wait(enum ap_wait wait)
532 {
533 	ktime_t hr_time;
534 
535 	switch (wait) {
536 	case AP_WAIT_AGAIN:
537 	case AP_WAIT_INTERRUPT:
538 		if (ap_using_interrupts())
539 			break;
540 		if (ap_poll_kthread) {
541 			wake_up(&ap_poll_wait);
542 			break;
543 		}
544 		/* Fall through */
545 	case AP_WAIT_TIMEOUT:
546 		spin_lock_bh(&ap_poll_timer_lock);
547 		if (!hrtimer_is_queued(&ap_poll_timer)) {
548 			hr_time = ktime_set(0, poll_timeout);
549 			hrtimer_forward_now(&ap_poll_timer, hr_time);
550 			hrtimer_restart(&ap_poll_timer);
551 		}
552 		spin_unlock_bh(&ap_poll_timer_lock);
553 		break;
554 	case AP_WAIT_NONE:
555 	default:
556 		break;
557 	}
558 }
559 
560 static enum ap_wait ap_sm_nop(struct ap_device *ap_dev)
561 {
562 	return AP_WAIT_NONE;
563 }
564 
565 /**
566  * ap_sm_recv(): Receive pending reply messages from an AP device but do
567  *	not change the state of the device.
568  * @ap_dev: pointer to the AP device
569  *
570  * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT
571  */
572 static struct ap_queue_status ap_sm_recv(struct ap_device *ap_dev)
573 {
574 	struct ap_queue_status status;
575 	struct ap_message *ap_msg;
576 
577 	status = __ap_recv(ap_dev->qid, &ap_dev->reply->psmid,
578 			   ap_dev->reply->message, ap_dev->reply->length);
579 	switch (status.response_code) {
580 	case AP_RESPONSE_NORMAL:
581 		atomic_dec(&ap_poll_requests);
582 		ap_dev->queue_count--;
583 		if (ap_dev->queue_count > 0)
584 			mod_timer(&ap_dev->timeout,
585 				  jiffies + ap_dev->drv->request_timeout);
586 		list_for_each_entry(ap_msg, &ap_dev->pendingq, list) {
587 			if (ap_msg->psmid != ap_dev->reply->psmid)
588 				continue;
589 			list_del_init(&ap_msg->list);
590 			ap_dev->pendingq_count--;
591 			ap_msg->receive(ap_dev, ap_msg, ap_dev->reply);
592 			break;
593 		}
594 	case AP_RESPONSE_NO_PENDING_REPLY:
595 		if (!status.queue_empty || ap_dev->queue_count <= 0)
596 			break;
597 		/* The card shouldn't forget requests but who knows. */
598 		atomic_sub(ap_dev->queue_count, &ap_poll_requests);
599 		ap_dev->queue_count = 0;
600 		list_splice_init(&ap_dev->pendingq, &ap_dev->requestq);
601 		ap_dev->requestq_count += ap_dev->pendingq_count;
602 		ap_dev->pendingq_count = 0;
603 		break;
604 	default:
605 		break;
606 	}
607 	return status;
608 }
609 
610 /**
611  * ap_sm_read(): Receive pending reply messages from an AP device.
612  * @ap_dev: pointer to the AP device
613  *
614  * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT
615  */
616 static enum ap_wait ap_sm_read(struct ap_device *ap_dev)
617 {
618 	struct ap_queue_status status;
619 
620 	status = ap_sm_recv(ap_dev);
621 	switch (status.response_code) {
622 	case AP_RESPONSE_NORMAL:
623 		if (ap_dev->queue_count > 0) {
624 			ap_dev->state = AP_STATE_WORKING;
625 			return AP_WAIT_AGAIN;
626 		}
627 		ap_dev->state = AP_STATE_IDLE;
628 		return AP_WAIT_NONE;
629 	case AP_RESPONSE_NO_PENDING_REPLY:
630 		if (ap_dev->queue_count > 0)
631 			return AP_WAIT_INTERRUPT;
632 		ap_dev->state = AP_STATE_IDLE;
633 		return AP_WAIT_NONE;
634 	default:
635 		ap_dev->state = AP_STATE_BORKED;
636 		return AP_WAIT_NONE;
637 	}
638 }
639 
640 /**
641  * ap_sm_write(): Send messages from the request queue to an AP device.
642  * @ap_dev: pointer to the AP device
643  *
644  * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT
645  */
646 static enum ap_wait ap_sm_write(struct ap_device *ap_dev)
647 {
648 	struct ap_queue_status status;
649 	struct ap_message *ap_msg;
650 
651 	if (ap_dev->requestq_count <= 0)
652 		return AP_WAIT_NONE;
653 	/* Start the next request on the queue. */
654 	ap_msg = list_entry(ap_dev->requestq.next, struct ap_message, list);
655 	status = __ap_send(ap_dev->qid, ap_msg->psmid,
656 			   ap_msg->message, ap_msg->length, ap_msg->special);
657 	switch (status.response_code) {
658 	case AP_RESPONSE_NORMAL:
659 		atomic_inc(&ap_poll_requests);
660 		ap_dev->queue_count++;
661 		if (ap_dev->queue_count == 1)
662 			mod_timer(&ap_dev->timeout,
663 				  jiffies + ap_dev->drv->request_timeout);
664 		list_move_tail(&ap_msg->list, &ap_dev->pendingq);
665 		ap_dev->requestq_count--;
666 		ap_dev->pendingq_count++;
667 		if (ap_dev->queue_count < ap_dev->queue_depth) {
668 			ap_dev->state = AP_STATE_WORKING;
669 			return AP_WAIT_AGAIN;
670 		}
671 		/* fall through */
672 	case AP_RESPONSE_Q_FULL:
673 		ap_dev->state = AP_STATE_QUEUE_FULL;
674 		return AP_WAIT_INTERRUPT;
675 	case AP_RESPONSE_RESET_IN_PROGRESS:
676 		ap_dev->state = AP_STATE_RESET_WAIT;
677 		return AP_WAIT_TIMEOUT;
678 	case AP_RESPONSE_MESSAGE_TOO_BIG:
679 	case AP_RESPONSE_REQ_FAC_NOT_INST:
680 		list_del_init(&ap_msg->list);
681 		ap_dev->requestq_count--;
682 		ap_msg->rc = -EINVAL;
683 		ap_msg->receive(ap_dev, ap_msg, NULL);
684 		return AP_WAIT_AGAIN;
685 	default:
686 		ap_dev->state = AP_STATE_BORKED;
687 		return AP_WAIT_NONE;
688 	}
689 }
690 
691 /**
692  * ap_sm_read_write(): Send and receive messages to/from an AP device.
693  * @ap_dev: pointer to the AP device
694  *
695  * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT
696  */
697 static enum ap_wait ap_sm_read_write(struct ap_device *ap_dev)
698 {
699 	return min(ap_sm_read(ap_dev), ap_sm_write(ap_dev));
700 }
701 
702 /**
703  * ap_sm_reset(): Reset an AP queue.
704  * @qid: The AP queue number
705  *
706  * Submit the Reset command to an AP queue.
707  */
708 static enum ap_wait ap_sm_reset(struct ap_device *ap_dev)
709 {
710 	struct ap_queue_status status;
711 
712 	status = ap_reset_queue(ap_dev->qid);
713 	switch (status.response_code) {
714 	case AP_RESPONSE_NORMAL:
715 	case AP_RESPONSE_RESET_IN_PROGRESS:
716 		ap_dev->state = AP_STATE_RESET_WAIT;
717 		ap_dev->interrupt = AP_INTR_DISABLED;
718 		return AP_WAIT_TIMEOUT;
719 	case AP_RESPONSE_BUSY:
720 		return AP_WAIT_TIMEOUT;
721 	case AP_RESPONSE_Q_NOT_AVAIL:
722 	case AP_RESPONSE_DECONFIGURED:
723 	case AP_RESPONSE_CHECKSTOPPED:
724 	default:
725 		ap_dev->state = AP_STATE_BORKED;
726 		return AP_WAIT_NONE;
727 	}
728 }
729 
730 /**
731  * ap_sm_reset_wait(): Test queue for completion of the reset operation
732  * @ap_dev: pointer to the AP device
733  *
734  * Returns AP_POLL_IMMEDIATELY, AP_POLL_AFTER_TIMEROUT or 0.
735  */
736 static enum ap_wait ap_sm_reset_wait(struct ap_device *ap_dev)
737 {
738 	struct ap_queue_status status;
739 	unsigned long info;
740 
741 	if (ap_dev->queue_count > 0)
742 		/* Try to read a completed message and get the status */
743 		status = ap_sm_recv(ap_dev);
744 	else
745 		/* Get the status with TAPQ */
746 		status = ap_test_queue(ap_dev->qid, &info);
747 
748 	switch (status.response_code) {
749 	case AP_RESPONSE_NORMAL:
750 		if (ap_using_interrupts() &&
751 		    ap_queue_enable_interruption(ap_dev,
752 						 ap_airq.lsi_ptr) == 0)
753 			ap_dev->state = AP_STATE_SETIRQ_WAIT;
754 		else
755 			ap_dev->state = (ap_dev->queue_count > 0) ?
756 				AP_STATE_WORKING : AP_STATE_IDLE;
757 		return AP_WAIT_AGAIN;
758 	case AP_RESPONSE_BUSY:
759 	case AP_RESPONSE_RESET_IN_PROGRESS:
760 		return AP_WAIT_TIMEOUT;
761 	case AP_RESPONSE_Q_NOT_AVAIL:
762 	case AP_RESPONSE_DECONFIGURED:
763 	case AP_RESPONSE_CHECKSTOPPED:
764 	default:
765 		ap_dev->state = AP_STATE_BORKED;
766 		return AP_WAIT_NONE;
767 	}
768 }
769 
770 /**
771  * ap_sm_setirq_wait(): Test queue for completion of the irq enablement
772  * @ap_dev: pointer to the AP device
773  *
774  * Returns AP_POLL_IMMEDIATELY, AP_POLL_AFTER_TIMEROUT or 0.
775  */
776 static enum ap_wait ap_sm_setirq_wait(struct ap_device *ap_dev)
777 {
778 	struct ap_queue_status status;
779 	unsigned long info;
780 
781 	if (ap_dev->queue_count > 0)
782 		/* Try to read a completed message and get the status */
783 		status = ap_sm_recv(ap_dev);
784 	else
785 		/* Get the status with TAPQ */
786 		status = ap_test_queue(ap_dev->qid, &info);
787 
788 	if (status.int_enabled == 1) {
789 		/* Irqs are now enabled */
790 		ap_dev->interrupt = AP_INTR_ENABLED;
791 		ap_dev->state = (ap_dev->queue_count > 0) ?
792 			AP_STATE_WORKING : AP_STATE_IDLE;
793 	}
794 
795 	switch (status.response_code) {
796 	case AP_RESPONSE_NORMAL:
797 		if (ap_dev->queue_count > 0)
798 			return AP_WAIT_AGAIN;
799 		/* fallthrough */
800 	case AP_RESPONSE_NO_PENDING_REPLY:
801 		return AP_WAIT_TIMEOUT;
802 	default:
803 		ap_dev->state = AP_STATE_BORKED;
804 		return AP_WAIT_NONE;
805 	}
806 }
807 
808 /*
809  * AP state machine jump table
810  */
811 static ap_func_t *ap_jumptable[NR_AP_STATES][NR_AP_EVENTS] = {
812 	[AP_STATE_RESET_START] = {
813 		[AP_EVENT_POLL] = ap_sm_reset,
814 		[AP_EVENT_TIMEOUT] = ap_sm_nop,
815 	},
816 	[AP_STATE_RESET_WAIT] = {
817 		[AP_EVENT_POLL] = ap_sm_reset_wait,
818 		[AP_EVENT_TIMEOUT] = ap_sm_nop,
819 	},
820 	[AP_STATE_SETIRQ_WAIT] = {
821 		[AP_EVENT_POLL] = ap_sm_setirq_wait,
822 		[AP_EVENT_TIMEOUT] = ap_sm_nop,
823 	},
824 	[AP_STATE_IDLE] = {
825 		[AP_EVENT_POLL] = ap_sm_write,
826 		[AP_EVENT_TIMEOUT] = ap_sm_nop,
827 	},
828 	[AP_STATE_WORKING] = {
829 		[AP_EVENT_POLL] = ap_sm_read_write,
830 		[AP_EVENT_TIMEOUT] = ap_sm_reset,
831 	},
832 	[AP_STATE_QUEUE_FULL] = {
833 		[AP_EVENT_POLL] = ap_sm_read,
834 		[AP_EVENT_TIMEOUT] = ap_sm_reset,
835 	},
836 	[AP_STATE_SUSPEND_WAIT] = {
837 		[AP_EVENT_POLL] = ap_sm_read,
838 		[AP_EVENT_TIMEOUT] = ap_sm_nop,
839 	},
840 	[AP_STATE_BORKED] = {
841 		[AP_EVENT_POLL] = ap_sm_nop,
842 		[AP_EVENT_TIMEOUT] = ap_sm_nop,
843 	},
844 };
845 
846 static inline enum ap_wait ap_sm_event(struct ap_device *ap_dev,
847 				       enum ap_event event)
848 {
849 	return ap_jumptable[ap_dev->state][event](ap_dev);
850 }
851 
852 static inline enum ap_wait ap_sm_event_loop(struct ap_device *ap_dev,
853 					    enum ap_event event)
854 {
855 	enum ap_wait wait;
856 
857 	while ((wait = ap_sm_event(ap_dev, event)) == AP_WAIT_AGAIN)
858 		;
859 	return wait;
860 }
861 
862 /**
863  * ap_request_timeout(): Handling of request timeouts
864  * @data: Holds the AP device.
865  *
866  * Handles request timeouts.
867  */
868 static void ap_request_timeout(unsigned long data)
869 {
870 	struct ap_device *ap_dev = (struct ap_device *) data;
871 
872 	if (ap_suspend_flag)
873 		return;
874 	spin_lock_bh(&ap_dev->lock);
875 	ap_sm_wait(ap_sm_event(ap_dev, AP_EVENT_TIMEOUT));
876 	spin_unlock_bh(&ap_dev->lock);
877 }
878 
879 /**
880  * ap_poll_timeout(): AP receive polling for finished AP requests.
881  * @unused: Unused pointer.
882  *
883  * Schedules the AP tasklet using a high resolution timer.
884  */
885 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
886 {
887 	if (!ap_suspend_flag)
888 		tasklet_schedule(&ap_tasklet);
889 	return HRTIMER_NORESTART;
890 }
891 
892 /**
893  * ap_interrupt_handler() - Schedule ap_tasklet on interrupt
894  * @airq: pointer to adapter interrupt descriptor
895  */
896 static void ap_interrupt_handler(struct airq_struct *airq)
897 {
898 	inc_irq_stat(IRQIO_APB);
899 	if (!ap_suspend_flag)
900 		tasklet_schedule(&ap_tasklet);
901 }
902 
903 /**
904  * ap_tasklet_fn(): Tasklet to poll all AP devices.
905  * @dummy: Unused variable
906  *
907  * Poll all AP devices on the bus.
908  */
909 static void ap_tasklet_fn(unsigned long dummy)
910 {
911 	struct ap_device *ap_dev;
912 	enum ap_wait wait = AP_WAIT_NONE;
913 
914 	/* Reset the indicator if interrupts are used. Thus new interrupts can
915 	 * be received. Doing it in the beginning of the tasklet is therefor
916 	 * important that no requests on any AP get lost.
917 	 */
918 	if (ap_using_interrupts())
919 		xchg(ap_airq.lsi_ptr, 0);
920 
921 	spin_lock(&ap_device_list_lock);
922 	list_for_each_entry(ap_dev, &ap_device_list, list) {
923 		spin_lock_bh(&ap_dev->lock);
924 		wait = min(wait, ap_sm_event_loop(ap_dev, AP_EVENT_POLL));
925 		spin_unlock_bh(&ap_dev->lock);
926 	}
927 	spin_unlock(&ap_device_list_lock);
928 	ap_sm_wait(wait);
929 }
930 
931 /**
932  * ap_poll_thread(): Thread that polls for finished requests.
933  * @data: Unused pointer
934  *
935  * AP bus poll thread. The purpose of this thread is to poll for
936  * finished requests in a loop if there is a "free" cpu - that is
937  * a cpu that doesn't have anything better to do. The polling stops
938  * as soon as there is another task or if all messages have been
939  * delivered.
940  */
941 static int ap_poll_thread(void *data)
942 {
943 	DECLARE_WAITQUEUE(wait, current);
944 
945 	set_user_nice(current, MAX_NICE);
946 	set_freezable();
947 	while (!kthread_should_stop()) {
948 		add_wait_queue(&ap_poll_wait, &wait);
949 		set_current_state(TASK_INTERRUPTIBLE);
950 		if (ap_suspend_flag ||
951 		    atomic_read(&ap_poll_requests) <= 0) {
952 			schedule();
953 			try_to_freeze();
954 		}
955 		set_current_state(TASK_RUNNING);
956 		remove_wait_queue(&ap_poll_wait, &wait);
957 		if (need_resched()) {
958 			schedule();
959 			try_to_freeze();
960 			continue;
961 		}
962 		ap_tasklet_fn(0);
963 	} while (!kthread_should_stop());
964 	return 0;
965 }
966 
967 static int ap_poll_thread_start(void)
968 {
969 	int rc;
970 
971 	if (ap_using_interrupts() || ap_poll_kthread)
972 		return 0;
973 	mutex_lock(&ap_poll_thread_mutex);
974 	ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
975 	rc = PTR_RET(ap_poll_kthread);
976 	if (rc)
977 		ap_poll_kthread = NULL;
978 	mutex_unlock(&ap_poll_thread_mutex);
979 	return rc;
980 }
981 
982 static void ap_poll_thread_stop(void)
983 {
984 	if (!ap_poll_kthread)
985 		return;
986 	mutex_lock(&ap_poll_thread_mutex);
987 	kthread_stop(ap_poll_kthread);
988 	ap_poll_kthread = NULL;
989 	mutex_unlock(&ap_poll_thread_mutex);
990 }
991 
992 /**
993  * ap_queue_message(): Queue a request to an AP device.
994  * @ap_dev: The AP device to queue the message to
995  * @ap_msg: The message that is to be added
996  */
997 void ap_queue_message(struct ap_device *ap_dev, struct ap_message *ap_msg)
998 {
999 	/* For asynchronous message handling a valid receive-callback
1000 	 * is required. */
1001 	BUG_ON(!ap_msg->receive);
1002 
1003 	spin_lock_bh(&ap_dev->lock);
1004 	/* Queue the message. */
1005 	list_add_tail(&ap_msg->list, &ap_dev->requestq);
1006 	ap_dev->requestq_count++;
1007 	ap_dev->total_request_count++;
1008 	/* Send/receive as many request from the queue as possible. */
1009 	ap_sm_wait(ap_sm_event_loop(ap_dev, AP_EVENT_POLL));
1010 	spin_unlock_bh(&ap_dev->lock);
1011 }
1012 EXPORT_SYMBOL(ap_queue_message);
1013 
1014 /**
1015  * ap_cancel_message(): Cancel a crypto request.
1016  * @ap_dev: The AP device that has the message queued
1017  * @ap_msg: The message that is to be removed
1018  *
1019  * Cancel a crypto request. This is done by removing the request
1020  * from the device pending or request queue. Note that the
1021  * request stays on the AP queue. When it finishes the message
1022  * reply will be discarded because the psmid can't be found.
1023  */
1024 void ap_cancel_message(struct ap_device *ap_dev, struct ap_message *ap_msg)
1025 {
1026 	struct ap_message *tmp;
1027 
1028 	spin_lock_bh(&ap_dev->lock);
1029 	if (!list_empty(&ap_msg->list)) {
1030 		list_for_each_entry(tmp, &ap_dev->pendingq, list)
1031 			if (tmp->psmid == ap_msg->psmid) {
1032 				ap_dev->pendingq_count--;
1033 				goto found;
1034 			}
1035 		ap_dev->requestq_count--;
1036 found:
1037 		list_del_init(&ap_msg->list);
1038 	}
1039 	spin_unlock_bh(&ap_dev->lock);
1040 }
1041 EXPORT_SYMBOL(ap_cancel_message);
1042 
1043 /*
1044  * AP device related attributes.
1045  */
1046 static ssize_t ap_hwtype_show(struct device *dev,
1047 			      struct device_attribute *attr, char *buf)
1048 {
1049 	struct ap_device *ap_dev = to_ap_dev(dev);
1050 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->device_type);
1051 }
1052 
1053 static DEVICE_ATTR(hwtype, 0444, ap_hwtype_show, NULL);
1054 
1055 static ssize_t ap_raw_hwtype_show(struct device *dev,
1056 			      struct device_attribute *attr, char *buf)
1057 {
1058 	struct ap_device *ap_dev = to_ap_dev(dev);
1059 
1060 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->raw_hwtype);
1061 }
1062 
1063 static DEVICE_ATTR(raw_hwtype, 0444, ap_raw_hwtype_show, NULL);
1064 
1065 static ssize_t ap_depth_show(struct device *dev, struct device_attribute *attr,
1066 			     char *buf)
1067 {
1068 	struct ap_device *ap_dev = to_ap_dev(dev);
1069 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->queue_depth);
1070 }
1071 
1072 static DEVICE_ATTR(depth, 0444, ap_depth_show, NULL);
1073 static ssize_t ap_request_count_show(struct device *dev,
1074 				     struct device_attribute *attr,
1075 				     char *buf)
1076 {
1077 	struct ap_device *ap_dev = to_ap_dev(dev);
1078 	int rc;
1079 
1080 	spin_lock_bh(&ap_dev->lock);
1081 	rc = snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->total_request_count);
1082 	spin_unlock_bh(&ap_dev->lock);
1083 	return rc;
1084 }
1085 
1086 static DEVICE_ATTR(request_count, 0444, ap_request_count_show, NULL);
1087 
1088 static ssize_t ap_requestq_count_show(struct device *dev,
1089 				      struct device_attribute *attr, char *buf)
1090 {
1091 	struct ap_device *ap_dev = to_ap_dev(dev);
1092 	int rc;
1093 
1094 	spin_lock_bh(&ap_dev->lock);
1095 	rc = snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->requestq_count);
1096 	spin_unlock_bh(&ap_dev->lock);
1097 	return rc;
1098 }
1099 
1100 static DEVICE_ATTR(requestq_count, 0444, ap_requestq_count_show, NULL);
1101 
1102 static ssize_t ap_pendingq_count_show(struct device *dev,
1103 				      struct device_attribute *attr, char *buf)
1104 {
1105 	struct ap_device *ap_dev = to_ap_dev(dev);
1106 	int rc;
1107 
1108 	spin_lock_bh(&ap_dev->lock);
1109 	rc = snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->pendingq_count);
1110 	spin_unlock_bh(&ap_dev->lock);
1111 	return rc;
1112 }
1113 
1114 static DEVICE_ATTR(pendingq_count, 0444, ap_pendingq_count_show, NULL);
1115 
1116 static ssize_t ap_reset_show(struct device *dev,
1117 				      struct device_attribute *attr, char *buf)
1118 {
1119 	struct ap_device *ap_dev = to_ap_dev(dev);
1120 	int rc = 0;
1121 
1122 	spin_lock_bh(&ap_dev->lock);
1123 	switch (ap_dev->state) {
1124 	case AP_STATE_RESET_START:
1125 	case AP_STATE_RESET_WAIT:
1126 		rc = snprintf(buf, PAGE_SIZE, "Reset in progress.\n");
1127 		break;
1128 	case AP_STATE_WORKING:
1129 	case AP_STATE_QUEUE_FULL:
1130 		rc = snprintf(buf, PAGE_SIZE, "Reset Timer armed.\n");
1131 		break;
1132 	default:
1133 		rc = snprintf(buf, PAGE_SIZE, "No Reset Timer set.\n");
1134 	}
1135 	spin_unlock_bh(&ap_dev->lock);
1136 	return rc;
1137 }
1138 
1139 static DEVICE_ATTR(reset, 0444, ap_reset_show, NULL);
1140 
1141 static ssize_t ap_interrupt_show(struct device *dev,
1142 				      struct device_attribute *attr, char *buf)
1143 {
1144 	struct ap_device *ap_dev = to_ap_dev(dev);
1145 	int rc = 0;
1146 
1147 	spin_lock_bh(&ap_dev->lock);
1148 	if (ap_dev->state == AP_STATE_SETIRQ_WAIT)
1149 		rc = snprintf(buf, PAGE_SIZE, "Enable Interrupt pending.\n");
1150 	else if (ap_dev->interrupt == AP_INTR_ENABLED)
1151 		rc = snprintf(buf, PAGE_SIZE, "Interrupts enabled.\n");
1152 	else
1153 		rc = snprintf(buf, PAGE_SIZE, "Interrupts disabled.\n");
1154 	spin_unlock_bh(&ap_dev->lock);
1155 	return rc;
1156 }
1157 
1158 static DEVICE_ATTR(interrupt, 0444, ap_interrupt_show, NULL);
1159 
1160 static ssize_t ap_modalias_show(struct device *dev,
1161 				struct device_attribute *attr, char *buf)
1162 {
1163 	return sprintf(buf, "ap:t%02X\n", to_ap_dev(dev)->device_type);
1164 }
1165 
1166 static DEVICE_ATTR(modalias, 0444, ap_modalias_show, NULL);
1167 
1168 static ssize_t ap_functions_show(struct device *dev,
1169 				 struct device_attribute *attr, char *buf)
1170 {
1171 	struct ap_device *ap_dev = to_ap_dev(dev);
1172 	return snprintf(buf, PAGE_SIZE, "0x%08X\n", ap_dev->functions);
1173 }
1174 
1175 static DEVICE_ATTR(ap_functions, 0444, ap_functions_show, NULL);
1176 
1177 static struct attribute *ap_dev_attrs[] = {
1178 	&dev_attr_hwtype.attr,
1179 	&dev_attr_raw_hwtype.attr,
1180 	&dev_attr_depth.attr,
1181 	&dev_attr_request_count.attr,
1182 	&dev_attr_requestq_count.attr,
1183 	&dev_attr_pendingq_count.attr,
1184 	&dev_attr_reset.attr,
1185 	&dev_attr_interrupt.attr,
1186 	&dev_attr_modalias.attr,
1187 	&dev_attr_ap_functions.attr,
1188 	NULL
1189 };
1190 static struct attribute_group ap_dev_attr_group = {
1191 	.attrs = ap_dev_attrs
1192 };
1193 
1194 /**
1195  * ap_bus_match()
1196  * @dev: Pointer to device
1197  * @drv: Pointer to device_driver
1198  *
1199  * AP bus driver registration/unregistration.
1200  */
1201 static int ap_bus_match(struct device *dev, struct device_driver *drv)
1202 {
1203 	struct ap_device *ap_dev = to_ap_dev(dev);
1204 	struct ap_driver *ap_drv = to_ap_drv(drv);
1205 	struct ap_device_id *id;
1206 
1207 	/*
1208 	 * Compare device type of the device with the list of
1209 	 * supported types of the device_driver.
1210 	 */
1211 	for (id = ap_drv->ids; id->match_flags; id++) {
1212 		if ((id->match_flags & AP_DEVICE_ID_MATCH_DEVICE_TYPE) &&
1213 		    (id->dev_type != ap_dev->device_type))
1214 			continue;
1215 		return 1;
1216 	}
1217 	return 0;
1218 }
1219 
1220 /**
1221  * ap_uevent(): Uevent function for AP devices.
1222  * @dev: Pointer to device
1223  * @env: Pointer to kobj_uevent_env
1224  *
1225  * It sets up a single environment variable DEV_TYPE which contains the
1226  * hardware device type.
1227  */
1228 static int ap_uevent (struct device *dev, struct kobj_uevent_env *env)
1229 {
1230 	struct ap_device *ap_dev = to_ap_dev(dev);
1231 	int retval = 0;
1232 
1233 	if (!ap_dev)
1234 		return -ENODEV;
1235 
1236 	/* Set up DEV_TYPE environment variable. */
1237 	retval = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
1238 	if (retval)
1239 		return retval;
1240 
1241 	/* Add MODALIAS= */
1242 	retval = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
1243 
1244 	return retval;
1245 }
1246 
1247 static int ap_dev_suspend(struct device *dev, pm_message_t state)
1248 {
1249 	struct ap_device *ap_dev = to_ap_dev(dev);
1250 
1251 	/* Poll on the device until all requests are finished. */
1252 	spin_lock_bh(&ap_dev->lock);
1253 	ap_dev->state = AP_STATE_SUSPEND_WAIT;
1254 	while (ap_sm_event(ap_dev, AP_EVENT_POLL) != AP_WAIT_NONE)
1255 		;
1256 	ap_dev->state = AP_STATE_BORKED;
1257 	spin_unlock_bh(&ap_dev->lock);
1258 	return 0;
1259 }
1260 
1261 static int ap_dev_resume(struct device *dev)
1262 {
1263 	return 0;
1264 }
1265 
1266 static void ap_bus_suspend(void)
1267 {
1268 	ap_suspend_flag = 1;
1269 	/*
1270 	 * Disable scanning for devices, thus we do not want to scan
1271 	 * for them after removing.
1272 	 */
1273 	flush_work(&ap_scan_work);
1274 	tasklet_disable(&ap_tasklet);
1275 }
1276 
1277 static int __ap_devices_unregister(struct device *dev, void *dummy)
1278 {
1279 	device_unregister(dev);
1280 	return 0;
1281 }
1282 
1283 static void ap_bus_resume(void)
1284 {
1285 	int rc;
1286 
1287 	/* Unconditionally remove all AP devices */
1288 	bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_devices_unregister);
1289 	/* Reset thin interrupt setting */
1290 	if (ap_interrupts_available() && !ap_using_interrupts()) {
1291 		rc = register_adapter_interrupt(&ap_airq);
1292 		ap_airq_flag = (rc == 0);
1293 	}
1294 	if (!ap_interrupts_available() && ap_using_interrupts()) {
1295 		unregister_adapter_interrupt(&ap_airq);
1296 		ap_airq_flag = 0;
1297 	}
1298 	/* Reset domain */
1299 	if (!user_set_domain)
1300 		ap_domain_index = -1;
1301 	/* Get things going again */
1302 	ap_suspend_flag = 0;
1303 	if (ap_airq_flag)
1304 		xchg(ap_airq.lsi_ptr, 0);
1305 	tasklet_enable(&ap_tasklet);
1306 	queue_work(system_long_wq, &ap_scan_work);
1307 }
1308 
1309 static int ap_power_event(struct notifier_block *this, unsigned long event,
1310 			  void *ptr)
1311 {
1312 	switch (event) {
1313 	case PM_HIBERNATION_PREPARE:
1314 	case PM_SUSPEND_PREPARE:
1315 		ap_bus_suspend();
1316 		break;
1317 	case PM_POST_HIBERNATION:
1318 	case PM_POST_SUSPEND:
1319 		ap_bus_resume();
1320 		break;
1321 	default:
1322 		break;
1323 	}
1324 	return NOTIFY_DONE;
1325 }
1326 static struct notifier_block ap_power_notifier = {
1327 	.notifier_call = ap_power_event,
1328 };
1329 
1330 static struct bus_type ap_bus_type = {
1331 	.name = "ap",
1332 	.match = &ap_bus_match,
1333 	.uevent = &ap_uevent,
1334 	.suspend = ap_dev_suspend,
1335 	.resume = ap_dev_resume,
1336 };
1337 
1338 static int ap_device_probe(struct device *dev)
1339 {
1340 	struct ap_device *ap_dev = to_ap_dev(dev);
1341 	struct ap_driver *ap_drv = to_ap_drv(dev->driver);
1342 	int rc;
1343 
1344 	ap_dev->drv = ap_drv;
1345 	rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
1346 	if (rc)
1347 		ap_dev->drv = NULL;
1348 	return rc;
1349 }
1350 
1351 /**
1352  * __ap_flush_queue(): Flush requests.
1353  * @ap_dev: Pointer to the AP device
1354  *
1355  * Flush all requests from the request/pending queue of an AP device.
1356  */
1357 static void __ap_flush_queue(struct ap_device *ap_dev)
1358 {
1359 	struct ap_message *ap_msg, *next;
1360 
1361 	list_for_each_entry_safe(ap_msg, next, &ap_dev->pendingq, list) {
1362 		list_del_init(&ap_msg->list);
1363 		ap_dev->pendingq_count--;
1364 		ap_msg->rc = -EAGAIN;
1365 		ap_msg->receive(ap_dev, ap_msg, NULL);
1366 	}
1367 	list_for_each_entry_safe(ap_msg, next, &ap_dev->requestq, list) {
1368 		list_del_init(&ap_msg->list);
1369 		ap_dev->requestq_count--;
1370 		ap_msg->rc = -EAGAIN;
1371 		ap_msg->receive(ap_dev, ap_msg, NULL);
1372 	}
1373 }
1374 
1375 void ap_flush_queue(struct ap_device *ap_dev)
1376 {
1377 	spin_lock_bh(&ap_dev->lock);
1378 	__ap_flush_queue(ap_dev);
1379 	spin_unlock_bh(&ap_dev->lock);
1380 }
1381 EXPORT_SYMBOL(ap_flush_queue);
1382 
1383 static int ap_device_remove(struct device *dev)
1384 {
1385 	struct ap_device *ap_dev = to_ap_dev(dev);
1386 	struct ap_driver *ap_drv = ap_dev->drv;
1387 
1388 	ap_flush_queue(ap_dev);
1389 	del_timer_sync(&ap_dev->timeout);
1390 	spin_lock_bh(&ap_device_list_lock);
1391 	list_del_init(&ap_dev->list);
1392 	spin_unlock_bh(&ap_device_list_lock);
1393 	if (ap_drv->remove)
1394 		ap_drv->remove(ap_dev);
1395 	spin_lock_bh(&ap_dev->lock);
1396 	atomic_sub(ap_dev->queue_count, &ap_poll_requests);
1397 	spin_unlock_bh(&ap_dev->lock);
1398 	return 0;
1399 }
1400 
1401 static void ap_device_release(struct device *dev)
1402 {
1403 	kfree(to_ap_dev(dev));
1404 }
1405 
1406 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
1407 		       char *name)
1408 {
1409 	struct device_driver *drv = &ap_drv->driver;
1410 
1411 	if (!initialised)
1412 		return -ENODEV;
1413 
1414 	drv->bus = &ap_bus_type;
1415 	drv->probe = ap_device_probe;
1416 	drv->remove = ap_device_remove;
1417 	drv->owner = owner;
1418 	drv->name = name;
1419 	return driver_register(drv);
1420 }
1421 EXPORT_SYMBOL(ap_driver_register);
1422 
1423 void ap_driver_unregister(struct ap_driver *ap_drv)
1424 {
1425 	driver_unregister(&ap_drv->driver);
1426 }
1427 EXPORT_SYMBOL(ap_driver_unregister);
1428 
1429 void ap_bus_force_rescan(void)
1430 {
1431 	if (ap_suspend_flag)
1432 		return;
1433 	/* processing a asynchronous bus rescan */
1434 	del_timer(&ap_config_timer);
1435 	queue_work(system_long_wq, &ap_scan_work);
1436 	flush_work(&ap_scan_work);
1437 }
1438 EXPORT_SYMBOL(ap_bus_force_rescan);
1439 
1440 /*
1441  * AP bus attributes.
1442  */
1443 static ssize_t ap_domain_show(struct bus_type *bus, char *buf)
1444 {
1445 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index);
1446 }
1447 
1448 static BUS_ATTR(ap_domain, 0444, ap_domain_show, NULL);
1449 
1450 static ssize_t ap_control_domain_mask_show(struct bus_type *bus, char *buf)
1451 {
1452 	if (!ap_configuration)	/* QCI not supported */
1453 		return snprintf(buf, PAGE_SIZE, "not supported\n");
1454 	if (!test_facility(76))
1455 		/* format 0 - 16 bit domain field */
1456 		return snprintf(buf, PAGE_SIZE, "%08x%08x\n",
1457 				ap_configuration->adm[0],
1458 				ap_configuration->adm[1]);
1459 	/* format 1 - 256 bit domain field */
1460 	return snprintf(buf, PAGE_SIZE,
1461 			"0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1462 			ap_configuration->adm[0], ap_configuration->adm[1],
1463 			ap_configuration->adm[2], ap_configuration->adm[3],
1464 			ap_configuration->adm[4], ap_configuration->adm[5],
1465 			ap_configuration->adm[6], ap_configuration->adm[7]);
1466 }
1467 
1468 static BUS_ATTR(ap_control_domain_mask, 0444,
1469 		ap_control_domain_mask_show, NULL);
1470 
1471 static ssize_t ap_config_time_show(struct bus_type *bus, char *buf)
1472 {
1473 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_config_time);
1474 }
1475 
1476 static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf)
1477 {
1478 	return snprintf(buf, PAGE_SIZE, "%d\n",
1479 			ap_using_interrupts() ? 1 : 0);
1480 }
1481 
1482 static BUS_ATTR(ap_interrupts, 0444, ap_interrupts_show, NULL);
1483 
1484 static ssize_t ap_config_time_store(struct bus_type *bus,
1485 				    const char *buf, size_t count)
1486 {
1487 	int time;
1488 
1489 	if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
1490 		return -EINVAL;
1491 	ap_config_time = time;
1492 	mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1493 	return count;
1494 }
1495 
1496 static BUS_ATTR(config_time, 0644, ap_config_time_show, ap_config_time_store);
1497 
1498 static ssize_t ap_poll_thread_show(struct bus_type *bus, char *buf)
1499 {
1500 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0);
1501 }
1502 
1503 static ssize_t ap_poll_thread_store(struct bus_type *bus,
1504 				    const char *buf, size_t count)
1505 {
1506 	int flag, rc;
1507 
1508 	if (sscanf(buf, "%d\n", &flag) != 1)
1509 		return -EINVAL;
1510 	if (flag) {
1511 		rc = ap_poll_thread_start();
1512 		if (rc)
1513 			count = rc;
1514 	} else
1515 		ap_poll_thread_stop();
1516 	return count;
1517 }
1518 
1519 static BUS_ATTR(poll_thread, 0644, ap_poll_thread_show, ap_poll_thread_store);
1520 
1521 static ssize_t poll_timeout_show(struct bus_type *bus, char *buf)
1522 {
1523 	return snprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout);
1524 }
1525 
1526 static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf,
1527 				  size_t count)
1528 {
1529 	unsigned long long time;
1530 	ktime_t hr_time;
1531 
1532 	/* 120 seconds = maximum poll interval */
1533 	if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 ||
1534 	    time > 120000000000ULL)
1535 		return -EINVAL;
1536 	poll_timeout = time;
1537 	hr_time = ktime_set(0, poll_timeout);
1538 
1539 	spin_lock_bh(&ap_poll_timer_lock);
1540 	hrtimer_cancel(&ap_poll_timer);
1541 	hrtimer_set_expires(&ap_poll_timer, hr_time);
1542 	hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
1543 	spin_unlock_bh(&ap_poll_timer_lock);
1544 
1545 	return count;
1546 }
1547 
1548 static BUS_ATTR(poll_timeout, 0644, poll_timeout_show, poll_timeout_store);
1549 
1550 static ssize_t ap_max_domain_id_show(struct bus_type *bus, char *buf)
1551 {
1552 	int max_domain_id;
1553 
1554 	if (ap_configuration)
1555 		max_domain_id = ap_max_domain_id ? : -1;
1556 	else
1557 		max_domain_id = 15;
1558 	return snprintf(buf, PAGE_SIZE, "%d\n", max_domain_id);
1559 }
1560 
1561 static BUS_ATTR(ap_max_domain_id, 0444, ap_max_domain_id_show, NULL);
1562 
1563 static struct bus_attribute *const ap_bus_attrs[] = {
1564 	&bus_attr_ap_domain,
1565 	&bus_attr_ap_control_domain_mask,
1566 	&bus_attr_config_time,
1567 	&bus_attr_poll_thread,
1568 	&bus_attr_ap_interrupts,
1569 	&bus_attr_poll_timeout,
1570 	&bus_attr_ap_max_domain_id,
1571 	NULL,
1572 };
1573 
1574 /**
1575  * ap_select_domain(): Select an AP domain.
1576  *
1577  * Pick one of the 16 AP domains.
1578  */
1579 static int ap_select_domain(void)
1580 {
1581 	int count, max_count, best_domain;
1582 	struct ap_queue_status status;
1583 	int i, j;
1584 
1585 	/*
1586 	 * We want to use a single domain. Either the one specified with
1587 	 * the "domain=" parameter or the domain with the maximum number
1588 	 * of devices.
1589 	 */
1590 	if (ap_domain_index >= 0)
1591 		/* Domain has already been selected. */
1592 		return 0;
1593 	best_domain = -1;
1594 	max_count = 0;
1595 	for (i = 0; i < AP_DOMAINS; i++) {
1596 		if (!ap_test_config_domain(i))
1597 			continue;
1598 		count = 0;
1599 		for (j = 0; j < AP_DEVICES; j++) {
1600 			if (!ap_test_config_card_id(j))
1601 				continue;
1602 			status = ap_test_queue(AP_MKQID(j, i), NULL);
1603 			if (status.response_code != AP_RESPONSE_NORMAL)
1604 				continue;
1605 			count++;
1606 		}
1607 		if (count > max_count) {
1608 			max_count = count;
1609 			best_domain = i;
1610 		}
1611 	}
1612 	if (best_domain >= 0){
1613 		ap_domain_index = best_domain;
1614 		return 0;
1615 	}
1616 	return -ENODEV;
1617 }
1618 
1619 /**
1620  * __ap_scan_bus(): Scan the AP bus.
1621  * @dev: Pointer to device
1622  * @data: Pointer to data
1623  *
1624  * Scan the AP bus for new devices.
1625  */
1626 static int __ap_scan_bus(struct device *dev, void *data)
1627 {
1628 	return to_ap_dev(dev)->qid == (ap_qid_t)(unsigned long) data;
1629 }
1630 
1631 static void ap_scan_bus(struct work_struct *unused)
1632 {
1633 	struct ap_device *ap_dev;
1634 	struct device *dev;
1635 	ap_qid_t qid;
1636 	int queue_depth = 0, device_type = 0;
1637 	unsigned int device_functions = 0;
1638 	int rc, i, borked;
1639 
1640 	ap_query_configuration();
1641 	if (ap_select_domain() != 0)
1642 		goto out;
1643 
1644 	for (i = 0; i < AP_DEVICES; i++) {
1645 		qid = AP_MKQID(i, ap_domain_index);
1646 		dev = bus_find_device(&ap_bus_type, NULL,
1647 				      (void *)(unsigned long)qid,
1648 				      __ap_scan_bus);
1649 		rc = ap_query_queue(qid, &queue_depth, &device_type,
1650 				    &device_functions);
1651 		if (dev) {
1652 			ap_dev = to_ap_dev(dev);
1653 			spin_lock_bh(&ap_dev->lock);
1654 			if (rc == -ENODEV)
1655 				ap_dev->state = AP_STATE_BORKED;
1656 			borked = ap_dev->state == AP_STATE_BORKED;
1657 			spin_unlock_bh(&ap_dev->lock);
1658 			if (borked)	/* Remove broken device */
1659 				device_unregister(dev);
1660 			put_device(dev);
1661 			if (!borked)
1662 				continue;
1663 		}
1664 		if (rc)
1665 			continue;
1666 		ap_dev = kzalloc(sizeof(*ap_dev), GFP_KERNEL);
1667 		if (!ap_dev)
1668 			break;
1669 		ap_dev->qid = qid;
1670 		ap_dev->state = AP_STATE_RESET_START;
1671 		ap_dev->interrupt = AP_INTR_DISABLED;
1672 		ap_dev->queue_depth = queue_depth;
1673 		ap_dev->raw_hwtype = device_type;
1674 		ap_dev->device_type = device_type;
1675 		ap_dev->functions = device_functions;
1676 		spin_lock_init(&ap_dev->lock);
1677 		INIT_LIST_HEAD(&ap_dev->pendingq);
1678 		INIT_LIST_HEAD(&ap_dev->requestq);
1679 		INIT_LIST_HEAD(&ap_dev->list);
1680 		setup_timer(&ap_dev->timeout, ap_request_timeout,
1681 			    (unsigned long) ap_dev);
1682 
1683 		ap_dev->device.bus = &ap_bus_type;
1684 		ap_dev->device.parent = ap_root_device;
1685 		rc = dev_set_name(&ap_dev->device, "card%02x",
1686 				  AP_QID_DEVICE(ap_dev->qid));
1687 		if (rc) {
1688 			kfree(ap_dev);
1689 			continue;
1690 		}
1691 		/* Add to list of devices */
1692 		spin_lock_bh(&ap_device_list_lock);
1693 		list_add(&ap_dev->list, &ap_device_list);
1694 		spin_unlock_bh(&ap_device_list_lock);
1695 		/* Start with a device reset */
1696 		spin_lock_bh(&ap_dev->lock);
1697 		ap_sm_wait(ap_sm_event(ap_dev, AP_EVENT_POLL));
1698 		spin_unlock_bh(&ap_dev->lock);
1699 		/* Register device */
1700 		ap_dev->device.release = ap_device_release;
1701 		rc = device_register(&ap_dev->device);
1702 		if (rc) {
1703 			spin_lock_bh(&ap_dev->lock);
1704 			list_del_init(&ap_dev->list);
1705 			spin_unlock_bh(&ap_dev->lock);
1706 			put_device(&ap_dev->device);
1707 			continue;
1708 		}
1709 		/* Add device attributes. */
1710 		rc = sysfs_create_group(&ap_dev->device.kobj,
1711 					&ap_dev_attr_group);
1712 		if (rc) {
1713 			device_unregister(&ap_dev->device);
1714 			continue;
1715 		}
1716 	}
1717 out:
1718 	mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1719 }
1720 
1721 static void ap_config_timeout(unsigned long ptr)
1722 {
1723 	if (ap_suspend_flag)
1724 		return;
1725 	queue_work(system_long_wq, &ap_scan_work);
1726 }
1727 
1728 static void ap_reset_domain(void)
1729 {
1730 	int i;
1731 
1732 	if (ap_domain_index == -1 || !ap_test_config_domain(ap_domain_index))
1733 		return;
1734 	for (i = 0; i < AP_DEVICES; i++)
1735 		ap_reset_queue(AP_MKQID(i, ap_domain_index));
1736 }
1737 
1738 static void ap_reset_all(void)
1739 {
1740 	int i, j;
1741 
1742 	for (i = 0; i < AP_DOMAINS; i++) {
1743 		if (!ap_test_config_domain(i))
1744 			continue;
1745 		for (j = 0; j < AP_DEVICES; j++) {
1746 			if (!ap_test_config_card_id(j))
1747 				continue;
1748 			ap_reset_queue(AP_MKQID(j, i));
1749 		}
1750 	}
1751 }
1752 
1753 static struct reset_call ap_reset_call = {
1754 	.fn = ap_reset_all,
1755 };
1756 
1757 /**
1758  * ap_module_init(): The module initialization code.
1759  *
1760  * Initializes the module.
1761  */
1762 int __init ap_module_init(void)
1763 {
1764 	int max_domain_id;
1765 	int rc, i;
1766 
1767 	if (ap_instructions_available() != 0) {
1768 		pr_warn("The hardware system does not support AP instructions\n");
1769 		return -ENODEV;
1770 	}
1771 
1772 	/* Get AP configuration data if available */
1773 	ap_init_configuration();
1774 
1775 	if (ap_configuration)
1776 		max_domain_id = ap_max_domain_id ? : (AP_DOMAINS - 1);
1777 	else
1778 		max_domain_id = 15;
1779 	if (ap_domain_index < -1 || ap_domain_index > max_domain_id) {
1780 		pr_warn("%d is not a valid cryptographic domain\n",
1781 			ap_domain_index);
1782 		return -EINVAL;
1783 	}
1784 	/* In resume callback we need to know if the user had set the domain.
1785 	 * If so, we can not just reset it.
1786 	 */
1787 	if (ap_domain_index >= 0)
1788 		user_set_domain = 1;
1789 
1790 	if (ap_interrupts_available()) {
1791 		rc = register_adapter_interrupt(&ap_airq);
1792 		ap_airq_flag = (rc == 0);
1793 	}
1794 
1795 	register_reset_call(&ap_reset_call);
1796 
1797 	/* Create /sys/bus/ap. */
1798 	rc = bus_register(&ap_bus_type);
1799 	if (rc)
1800 		goto out;
1801 	for (i = 0; ap_bus_attrs[i]; i++) {
1802 		rc = bus_create_file(&ap_bus_type, ap_bus_attrs[i]);
1803 		if (rc)
1804 			goto out_bus;
1805 	}
1806 
1807 	/* Create /sys/devices/ap. */
1808 	ap_root_device = root_device_register("ap");
1809 	rc = PTR_RET(ap_root_device);
1810 	if (rc)
1811 		goto out_bus;
1812 
1813 	/* Setup the AP bus rescan timer. */
1814 	setup_timer(&ap_config_timer, ap_config_timeout, 0);
1815 
1816 	/*
1817 	 * Setup the high resultion poll timer.
1818 	 * If we are running under z/VM adjust polling to z/VM polling rate.
1819 	 */
1820 	if (MACHINE_IS_VM)
1821 		poll_timeout = 1500000;
1822 	spin_lock_init(&ap_poll_timer_lock);
1823 	hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1824 	ap_poll_timer.function = ap_poll_timeout;
1825 
1826 	/* Start the low priority AP bus poll thread. */
1827 	if (ap_thread_flag) {
1828 		rc = ap_poll_thread_start();
1829 		if (rc)
1830 			goto out_work;
1831 	}
1832 
1833 	rc = register_pm_notifier(&ap_power_notifier);
1834 	if (rc)
1835 		goto out_pm;
1836 
1837 	queue_work(system_long_wq, &ap_scan_work);
1838 	initialised = true;
1839 
1840 	return 0;
1841 
1842 out_pm:
1843 	ap_poll_thread_stop();
1844 out_work:
1845 	hrtimer_cancel(&ap_poll_timer);
1846 	root_device_unregister(ap_root_device);
1847 out_bus:
1848 	while (i--)
1849 		bus_remove_file(&ap_bus_type, ap_bus_attrs[i]);
1850 	bus_unregister(&ap_bus_type);
1851 out:
1852 	unregister_reset_call(&ap_reset_call);
1853 	if (ap_using_interrupts())
1854 		unregister_adapter_interrupt(&ap_airq);
1855 	kfree(ap_configuration);
1856 	return rc;
1857 }
1858 
1859 /**
1860  * ap_modules_exit(): The module termination code
1861  *
1862  * Terminates the module.
1863  */
1864 void ap_module_exit(void)
1865 {
1866 	int i;
1867 
1868 	initialised = false;
1869 	ap_reset_domain();
1870 	ap_poll_thread_stop();
1871 	del_timer_sync(&ap_config_timer);
1872 	hrtimer_cancel(&ap_poll_timer);
1873 	tasklet_kill(&ap_tasklet);
1874 	bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_devices_unregister);
1875 	for (i = 0; ap_bus_attrs[i]; i++)
1876 		bus_remove_file(&ap_bus_type, ap_bus_attrs[i]);
1877 	unregister_pm_notifier(&ap_power_notifier);
1878 	root_device_unregister(ap_root_device);
1879 	bus_unregister(&ap_bus_type);
1880 	kfree(ap_configuration);
1881 	unregister_reset_call(&ap_reset_call);
1882 	if (ap_using_interrupts())
1883 		unregister_adapter_interrupt(&ap_airq);
1884 }
1885 
1886 module_init(ap_module_init);
1887 module_exit(ap_module_exit);
1888