xref: /openbmc/linux/drivers/s390/crypto/ap_bus.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright IBM Corp. 2006, 2012
4  * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
5  *	      Martin Schwidefsky <schwidefsky@de.ibm.com>
6  *	      Ralph Wuerthner <rwuerthn@de.ibm.com>
7  *	      Felix Beck <felix.beck@de.ibm.com>
8  *	      Holger Dengler <hd@linux.vnet.ibm.com>
9  *
10  * Adjunct processor bus.
11  */
12 
13 #define KMSG_COMPONENT "ap"
14 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
15 
16 #include <linux/kernel_stat.h>
17 #include <linux/moduleparam.h>
18 #include <linux/init.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/interrupt.h>
22 #include <linux/workqueue.h>
23 #include <linux/slab.h>
24 #include <linux/notifier.h>
25 #include <linux/kthread.h>
26 #include <linux/mutex.h>
27 #include <linux/suspend.h>
28 #include <asm/airq.h>
29 #include <linux/atomic.h>
30 #include <asm/isc.h>
31 #include <linux/hrtimer.h>
32 #include <linux/ktime.h>
33 #include <asm/facility.h>
34 #include <linux/crypto.h>
35 #include <linux/mod_devicetable.h>
36 #include <linux/debugfs.h>
37 #include <linux/ctype.h>
38 
39 #include "ap_bus.h"
40 #include "ap_debug.h"
41 
42 /*
43  * Module parameters; note though this file itself isn't modular.
44  */
45 int ap_domain_index = -1;	/* Adjunct Processor Domain Index */
46 static DEFINE_SPINLOCK(ap_domain_lock);
47 module_param_named(domain, ap_domain_index, int, 0440);
48 MODULE_PARM_DESC(domain, "domain index for ap devices");
49 EXPORT_SYMBOL(ap_domain_index);
50 
51 static int ap_thread_flag;
52 module_param_named(poll_thread, ap_thread_flag, int, 0440);
53 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
54 
55 static char *apm_str;
56 module_param_named(apmask, apm_str, charp, 0440);
57 MODULE_PARM_DESC(apmask, "AP bus adapter mask.");
58 
59 static char *aqm_str;
60 module_param_named(aqmask, aqm_str, charp, 0440);
61 MODULE_PARM_DESC(aqmask, "AP bus domain mask.");
62 
63 static struct device *ap_root_device;
64 
65 DEFINE_SPINLOCK(ap_list_lock);
66 LIST_HEAD(ap_card_list);
67 
68 /* Default permissions (ioctl, card and domain masking) */
69 struct ap_perms ap_perms;
70 EXPORT_SYMBOL(ap_perms);
71 DEFINE_MUTEX(ap_perms_mutex);
72 EXPORT_SYMBOL(ap_perms_mutex);
73 
74 static struct ap_config_info *ap_configuration;
75 static bool initialised;
76 
77 /*
78  * AP bus related debug feature things.
79  */
80 debug_info_t *ap_dbf_info;
81 
82 /*
83  * Workqueue timer for bus rescan.
84  */
85 static struct timer_list ap_config_timer;
86 static int ap_config_time = AP_CONFIG_TIME;
87 static void ap_scan_bus(struct work_struct *);
88 static DECLARE_WORK(ap_scan_work, ap_scan_bus);
89 
90 /*
91  * Tasklet & timer for AP request polling and interrupts
92  */
93 static void ap_tasklet_fn(unsigned long);
94 static DECLARE_TASKLET(ap_tasklet, ap_tasklet_fn, 0);
95 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
96 static struct task_struct *ap_poll_kthread;
97 static DEFINE_MUTEX(ap_poll_thread_mutex);
98 static DEFINE_SPINLOCK(ap_poll_timer_lock);
99 static struct hrtimer ap_poll_timer;
100 /*
101  * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
102  * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.
103  */
104 static unsigned long long poll_timeout = 250000;
105 
106 /* Suspend flag */
107 static int ap_suspend_flag;
108 /* Maximum domain id */
109 static int ap_max_domain_id;
110 /*
111  * Flag to check if domain was set through module parameter domain=. This is
112  * important when supsend and resume is done in a z/VM environment where the
113  * domain might change.
114  */
115 static int user_set_domain;
116 static struct bus_type ap_bus_type;
117 
118 /* Adapter interrupt definitions */
119 static void ap_interrupt_handler(struct airq_struct *airq, bool floating);
120 
121 static int ap_airq_flag;
122 
123 static struct airq_struct ap_airq = {
124 	.handler = ap_interrupt_handler,
125 	.isc = AP_ISC,
126 };
127 
128 /**
129  * ap_using_interrupts() - Returns non-zero if interrupt support is
130  * available.
131  */
132 static inline int ap_using_interrupts(void)
133 {
134 	return ap_airq_flag;
135 }
136 
137 /**
138  * ap_airq_ptr() - Get the address of the adapter interrupt indicator
139  *
140  * Returns the address of the local-summary-indicator of the adapter
141  * interrupt handler for AP, or NULL if adapter interrupts are not
142  * available.
143  */
144 void *ap_airq_ptr(void)
145 {
146 	if (ap_using_interrupts())
147 		return ap_airq.lsi_ptr;
148 	return NULL;
149 }
150 
151 /**
152  * ap_interrupts_available(): Test if AP interrupts are available.
153  *
154  * Returns 1 if AP interrupts are available.
155  */
156 static int ap_interrupts_available(void)
157 {
158 	return test_facility(65);
159 }
160 
161 /**
162  * ap_configuration_available(): Test if AP configuration
163  * information is available.
164  *
165  * Returns 1 if AP configuration information is available.
166  */
167 static int ap_configuration_available(void)
168 {
169 	return test_facility(12);
170 }
171 
172 /**
173  * ap_apft_available(): Test if AP facilities test (APFT)
174  * facility is available.
175  *
176  * Returns 1 if APFT is is available.
177  */
178 static int ap_apft_available(void)
179 {
180 	return test_facility(15);
181 }
182 
183 /*
184  * ap_qact_available(): Test if the PQAP(QACT) subfunction is available.
185  *
186  * Returns 1 if the QACT subfunction is available.
187  */
188 static inline int ap_qact_available(void)
189 {
190 	if (ap_configuration)
191 		return ap_configuration->qact;
192 	return 0;
193 }
194 
195 /*
196  * ap_query_configuration(): Fetch cryptographic config info
197  *
198  * Returns the ap configuration info fetched via PQAP(QCI).
199  * On success 0 is returned, on failure a negative errno
200  * is returned, e.g. if the PQAP(QCI) instruction is not
201  * available, the return value will be -EOPNOTSUPP.
202  */
203 static inline int ap_query_configuration(struct ap_config_info *info)
204 {
205 	if (!ap_configuration_available())
206 		return -EOPNOTSUPP;
207 	if (!info)
208 		return -EINVAL;
209 	return ap_qci(info);
210 }
211 EXPORT_SYMBOL(ap_query_configuration);
212 
213 /**
214  * ap_init_configuration(): Allocate and query configuration array.
215  */
216 static void ap_init_configuration(void)
217 {
218 	if (!ap_configuration_available())
219 		return;
220 
221 	ap_configuration = kzalloc(sizeof(*ap_configuration), GFP_KERNEL);
222 	if (!ap_configuration)
223 		return;
224 	if (ap_query_configuration(ap_configuration) != 0) {
225 		kfree(ap_configuration);
226 		ap_configuration = NULL;
227 		return;
228 	}
229 }
230 
231 /*
232  * ap_test_config(): helper function to extract the nrth bit
233  *		     within the unsigned int array field.
234  */
235 static inline int ap_test_config(unsigned int *field, unsigned int nr)
236 {
237 	return ap_test_bit((field + (nr >> 5)), (nr & 0x1f));
238 }
239 
240 /*
241  * ap_test_config_card_id(): Test, whether an AP card ID is configured.
242  * @id AP card ID
243  *
244  * Returns 0 if the card is not configured
245  *	   1 if the card is configured or
246  *	     if the configuration information is not available
247  */
248 static inline int ap_test_config_card_id(unsigned int id)
249 {
250 	if (!ap_configuration)	/* QCI not supported */
251 		/* only ids 0...3F may be probed */
252 		return id < 0x40 ? 1 : 0;
253 	return ap_test_config(ap_configuration->apm, id);
254 }
255 
256 /*
257  * ap_test_config_usage_domain(): Test, whether an AP usage domain
258  * is configured.
259  * @domain AP usage domain ID
260  *
261  * Returns 0 if the usage domain is not configured
262  *	   1 if the usage domain is configured or
263  *	     if the configuration information is not available
264  */
265 int ap_test_config_usage_domain(unsigned int domain)
266 {
267 	if (!ap_configuration)	/* QCI not supported */
268 		return domain < 16;
269 	return ap_test_config(ap_configuration->aqm, domain);
270 }
271 EXPORT_SYMBOL(ap_test_config_usage_domain);
272 
273 /*
274  * ap_test_config_ctrl_domain(): Test, whether an AP control domain
275  * is configured.
276  * @domain AP control domain ID
277  *
278  * Returns 1 if the control domain is configured
279  *	   0 in all other cases
280  */
281 int ap_test_config_ctrl_domain(unsigned int domain)
282 {
283 	if (!ap_configuration)	/* QCI not supported */
284 		return 0;
285 	return ap_test_config(ap_configuration->adm, domain);
286 }
287 EXPORT_SYMBOL(ap_test_config_ctrl_domain);
288 
289 /**
290  * ap_query_queue(): Check if an AP queue is available.
291  * @qid: The AP queue number
292  * @queue_depth: Pointer to queue depth value
293  * @device_type: Pointer to device type value
294  * @facilities: Pointer to facility indicator
295  */
296 static int ap_query_queue(ap_qid_t qid, int *queue_depth, int *device_type,
297 			  unsigned int *facilities)
298 {
299 	struct ap_queue_status status;
300 	unsigned long info;
301 	int nd;
302 
303 	if (!ap_test_config_card_id(AP_QID_CARD(qid)))
304 		return -ENODEV;
305 
306 	status = ap_test_queue(qid, ap_apft_available(), &info);
307 	switch (status.response_code) {
308 	case AP_RESPONSE_NORMAL:
309 		*queue_depth = (int)(info & 0xff);
310 		*device_type = (int)((info >> 24) & 0xff);
311 		*facilities = (unsigned int)(info >> 32);
312 		/* Update maximum domain id */
313 		nd = (info >> 16) & 0xff;
314 		/* if N bit is available, z13 and newer */
315 		if ((info & (1UL << 57)) && nd > 0)
316 			ap_max_domain_id = nd;
317 		else /* older machine types */
318 			ap_max_domain_id = 15;
319 		switch (*device_type) {
320 			/* For CEX2 and CEX3 the available functions
321 			 * are not reflected by the facilities bits.
322 			 * Instead it is coded into the type. So here
323 			 * modify the function bits based on the type.
324 			 */
325 		case AP_DEVICE_TYPE_CEX2A:
326 		case AP_DEVICE_TYPE_CEX3A:
327 			*facilities |= 0x08000000;
328 			break;
329 		case AP_DEVICE_TYPE_CEX2C:
330 		case AP_DEVICE_TYPE_CEX3C:
331 			*facilities |= 0x10000000;
332 			break;
333 		default:
334 			break;
335 		}
336 		return 0;
337 	case AP_RESPONSE_Q_NOT_AVAIL:
338 	case AP_RESPONSE_DECONFIGURED:
339 	case AP_RESPONSE_CHECKSTOPPED:
340 	case AP_RESPONSE_INVALID_ADDRESS:
341 		return -ENODEV;
342 	case AP_RESPONSE_RESET_IN_PROGRESS:
343 	case AP_RESPONSE_OTHERWISE_CHANGED:
344 	case AP_RESPONSE_BUSY:
345 		return -EBUSY;
346 	default:
347 		BUG();
348 	}
349 }
350 
351 void ap_wait(enum ap_wait wait)
352 {
353 	ktime_t hr_time;
354 
355 	switch (wait) {
356 	case AP_WAIT_AGAIN:
357 	case AP_WAIT_INTERRUPT:
358 		if (ap_using_interrupts())
359 			break;
360 		if (ap_poll_kthread) {
361 			wake_up(&ap_poll_wait);
362 			break;
363 		}
364 		/* Fall through */
365 	case AP_WAIT_TIMEOUT:
366 		spin_lock_bh(&ap_poll_timer_lock);
367 		if (!hrtimer_is_queued(&ap_poll_timer)) {
368 			hr_time = poll_timeout;
369 			hrtimer_forward_now(&ap_poll_timer, hr_time);
370 			hrtimer_restart(&ap_poll_timer);
371 		}
372 		spin_unlock_bh(&ap_poll_timer_lock);
373 		break;
374 	case AP_WAIT_NONE:
375 	default:
376 		break;
377 	}
378 }
379 
380 /**
381  * ap_request_timeout(): Handling of request timeouts
382  * @t: timer making this callback
383  *
384  * Handles request timeouts.
385  */
386 void ap_request_timeout(struct timer_list *t)
387 {
388 	struct ap_queue *aq = from_timer(aq, t, timeout);
389 
390 	if (ap_suspend_flag)
391 		return;
392 	spin_lock_bh(&aq->lock);
393 	ap_wait(ap_sm_event(aq, AP_EVENT_TIMEOUT));
394 	spin_unlock_bh(&aq->lock);
395 }
396 
397 /**
398  * ap_poll_timeout(): AP receive polling for finished AP requests.
399  * @unused: Unused pointer.
400  *
401  * Schedules the AP tasklet using a high resolution timer.
402  */
403 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
404 {
405 	if (!ap_suspend_flag)
406 		tasklet_schedule(&ap_tasklet);
407 	return HRTIMER_NORESTART;
408 }
409 
410 /**
411  * ap_interrupt_handler() - Schedule ap_tasklet on interrupt
412  * @airq: pointer to adapter interrupt descriptor
413  */
414 static void ap_interrupt_handler(struct airq_struct *airq, bool floating)
415 {
416 	inc_irq_stat(IRQIO_APB);
417 	if (!ap_suspend_flag)
418 		tasklet_schedule(&ap_tasklet);
419 }
420 
421 /**
422  * ap_tasklet_fn(): Tasklet to poll all AP devices.
423  * @dummy: Unused variable
424  *
425  * Poll all AP devices on the bus.
426  */
427 static void ap_tasklet_fn(unsigned long dummy)
428 {
429 	struct ap_card *ac;
430 	struct ap_queue *aq;
431 	enum ap_wait wait = AP_WAIT_NONE;
432 
433 	/* Reset the indicator if interrupts are used. Thus new interrupts can
434 	 * be received. Doing it in the beginning of the tasklet is therefor
435 	 * important that no requests on any AP get lost.
436 	 */
437 	if (ap_using_interrupts())
438 		xchg(ap_airq.lsi_ptr, 0);
439 
440 	spin_lock_bh(&ap_list_lock);
441 	for_each_ap_card(ac) {
442 		for_each_ap_queue(aq, ac) {
443 			spin_lock_bh(&aq->lock);
444 			wait = min(wait, ap_sm_event_loop(aq, AP_EVENT_POLL));
445 			spin_unlock_bh(&aq->lock);
446 		}
447 	}
448 	spin_unlock_bh(&ap_list_lock);
449 
450 	ap_wait(wait);
451 }
452 
453 static int ap_pending_requests(void)
454 {
455 	struct ap_card *ac;
456 	struct ap_queue *aq;
457 
458 	spin_lock_bh(&ap_list_lock);
459 	for_each_ap_card(ac) {
460 		for_each_ap_queue(aq, ac) {
461 			if (aq->queue_count == 0)
462 				continue;
463 			spin_unlock_bh(&ap_list_lock);
464 			return 1;
465 		}
466 	}
467 	spin_unlock_bh(&ap_list_lock);
468 	return 0;
469 }
470 
471 /**
472  * ap_poll_thread(): Thread that polls for finished requests.
473  * @data: Unused pointer
474  *
475  * AP bus poll thread. The purpose of this thread is to poll for
476  * finished requests in a loop if there is a "free" cpu - that is
477  * a cpu that doesn't have anything better to do. The polling stops
478  * as soon as there is another task or if all messages have been
479  * delivered.
480  */
481 static int ap_poll_thread(void *data)
482 {
483 	DECLARE_WAITQUEUE(wait, current);
484 
485 	set_user_nice(current, MAX_NICE);
486 	set_freezable();
487 	while (!kthread_should_stop()) {
488 		add_wait_queue(&ap_poll_wait, &wait);
489 		set_current_state(TASK_INTERRUPTIBLE);
490 		if (ap_suspend_flag || !ap_pending_requests()) {
491 			schedule();
492 			try_to_freeze();
493 		}
494 		set_current_state(TASK_RUNNING);
495 		remove_wait_queue(&ap_poll_wait, &wait);
496 		if (need_resched()) {
497 			schedule();
498 			try_to_freeze();
499 			continue;
500 		}
501 		ap_tasklet_fn(0);
502 	}
503 
504 	return 0;
505 }
506 
507 static int ap_poll_thread_start(void)
508 {
509 	int rc;
510 
511 	if (ap_using_interrupts() || ap_poll_kthread)
512 		return 0;
513 	mutex_lock(&ap_poll_thread_mutex);
514 	ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
515 	rc = PTR_ERR_OR_ZERO(ap_poll_kthread);
516 	if (rc)
517 		ap_poll_kthread = NULL;
518 	mutex_unlock(&ap_poll_thread_mutex);
519 	return rc;
520 }
521 
522 static void ap_poll_thread_stop(void)
523 {
524 	if (!ap_poll_kthread)
525 		return;
526 	mutex_lock(&ap_poll_thread_mutex);
527 	kthread_stop(ap_poll_kthread);
528 	ap_poll_kthread = NULL;
529 	mutex_unlock(&ap_poll_thread_mutex);
530 }
531 
532 #define is_card_dev(x) ((x)->parent == ap_root_device)
533 #define is_queue_dev(x) ((x)->parent != ap_root_device)
534 
535 /**
536  * ap_bus_match()
537  * @dev: Pointer to device
538  * @drv: Pointer to device_driver
539  *
540  * AP bus driver registration/unregistration.
541  */
542 static int ap_bus_match(struct device *dev, struct device_driver *drv)
543 {
544 	struct ap_driver *ap_drv = to_ap_drv(drv);
545 	struct ap_device_id *id;
546 
547 	/*
548 	 * Compare device type of the device with the list of
549 	 * supported types of the device_driver.
550 	 */
551 	for (id = ap_drv->ids; id->match_flags; id++) {
552 		if (is_card_dev(dev) &&
553 		    id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE &&
554 		    id->dev_type == to_ap_dev(dev)->device_type)
555 			return 1;
556 		if (is_queue_dev(dev) &&
557 		    id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE &&
558 		    id->dev_type == to_ap_dev(dev)->device_type)
559 			return 1;
560 	}
561 	return 0;
562 }
563 
564 /**
565  * ap_uevent(): Uevent function for AP devices.
566  * @dev: Pointer to device
567  * @env: Pointer to kobj_uevent_env
568  *
569  * It sets up a single environment variable DEV_TYPE which contains the
570  * hardware device type.
571  */
572 static int ap_uevent(struct device *dev, struct kobj_uevent_env *env)
573 {
574 	struct ap_device *ap_dev = to_ap_dev(dev);
575 	int retval = 0;
576 
577 	if (!ap_dev)
578 		return -ENODEV;
579 
580 	/* Set up DEV_TYPE environment variable. */
581 	retval = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
582 	if (retval)
583 		return retval;
584 
585 	/* Add MODALIAS= */
586 	retval = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
587 
588 	return retval;
589 }
590 
591 static int ap_dev_suspend(struct device *dev)
592 {
593 	struct ap_device *ap_dev = to_ap_dev(dev);
594 
595 	if (ap_dev->drv && ap_dev->drv->suspend)
596 		ap_dev->drv->suspend(ap_dev);
597 	return 0;
598 }
599 
600 static int ap_dev_resume(struct device *dev)
601 {
602 	struct ap_device *ap_dev = to_ap_dev(dev);
603 
604 	if (ap_dev->drv && ap_dev->drv->resume)
605 		ap_dev->drv->resume(ap_dev);
606 	return 0;
607 }
608 
609 static void ap_bus_suspend(void)
610 {
611 	AP_DBF(DBF_DEBUG, "%s running\n", __func__);
612 
613 	ap_suspend_flag = 1;
614 	/*
615 	 * Disable scanning for devices, thus we do not want to scan
616 	 * for them after removing.
617 	 */
618 	flush_work(&ap_scan_work);
619 	tasklet_disable(&ap_tasklet);
620 }
621 
622 static int __ap_card_devices_unregister(struct device *dev, void *dummy)
623 {
624 	if (is_card_dev(dev))
625 		device_unregister(dev);
626 	return 0;
627 }
628 
629 static int __ap_queue_devices_unregister(struct device *dev, void *dummy)
630 {
631 	if (is_queue_dev(dev))
632 		device_unregister(dev);
633 	return 0;
634 }
635 
636 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data)
637 {
638 	if (is_queue_dev(dev) &&
639 	    AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long) data)
640 		device_unregister(dev);
641 	return 0;
642 }
643 
644 static void ap_bus_resume(void)
645 {
646 	int rc;
647 
648 	AP_DBF(DBF_DEBUG, "%s running\n", __func__);
649 
650 	/* remove all queue devices */
651 	bus_for_each_dev(&ap_bus_type, NULL, NULL,
652 			 __ap_queue_devices_unregister);
653 	/* remove all card devices */
654 	bus_for_each_dev(&ap_bus_type, NULL, NULL,
655 			 __ap_card_devices_unregister);
656 
657 	/* Reset thin interrupt setting */
658 	if (ap_interrupts_available() && !ap_using_interrupts()) {
659 		rc = register_adapter_interrupt(&ap_airq);
660 		ap_airq_flag = (rc == 0);
661 	}
662 	if (!ap_interrupts_available() && ap_using_interrupts()) {
663 		unregister_adapter_interrupt(&ap_airq);
664 		ap_airq_flag = 0;
665 	}
666 	/* Reset domain */
667 	if (!user_set_domain)
668 		ap_domain_index = -1;
669 	/* Get things going again */
670 	ap_suspend_flag = 0;
671 	if (ap_airq_flag)
672 		xchg(ap_airq.lsi_ptr, 0);
673 	tasklet_enable(&ap_tasklet);
674 	queue_work(system_long_wq, &ap_scan_work);
675 }
676 
677 static int ap_power_event(struct notifier_block *this, unsigned long event,
678 			  void *ptr)
679 {
680 	switch (event) {
681 	case PM_HIBERNATION_PREPARE:
682 	case PM_SUSPEND_PREPARE:
683 		ap_bus_suspend();
684 		break;
685 	case PM_POST_HIBERNATION:
686 	case PM_POST_SUSPEND:
687 		ap_bus_resume();
688 		break;
689 	default:
690 		break;
691 	}
692 	return NOTIFY_DONE;
693 }
694 static struct notifier_block ap_power_notifier = {
695 	.notifier_call = ap_power_event,
696 };
697 
698 static SIMPLE_DEV_PM_OPS(ap_bus_pm_ops, ap_dev_suspend, ap_dev_resume);
699 
700 static struct bus_type ap_bus_type = {
701 	.name = "ap",
702 	.match = &ap_bus_match,
703 	.uevent = &ap_uevent,
704 	.pm = &ap_bus_pm_ops,
705 };
706 
707 static int __ap_revise_reserved(struct device *dev, void *dummy)
708 {
709 	int rc, card, queue, devres, drvres;
710 
711 	if (is_queue_dev(dev)) {
712 		card = AP_QID_CARD(to_ap_queue(dev)->qid);
713 		queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
714 		mutex_lock(&ap_perms_mutex);
715 		devres = test_bit_inv(card, ap_perms.apm)
716 			&& test_bit_inv(queue, ap_perms.aqm);
717 		mutex_unlock(&ap_perms_mutex);
718 		drvres = to_ap_drv(dev->driver)->flags
719 			& AP_DRIVER_FLAG_DEFAULT;
720 		if (!!devres != !!drvres) {
721 			AP_DBF(DBF_DEBUG, "reprobing queue=%02x.%04x\n",
722 			       card, queue);
723 			rc = device_reprobe(dev);
724 		}
725 	}
726 
727 	return 0;
728 }
729 
730 static void ap_bus_revise_bindings(void)
731 {
732 	bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved);
733 }
734 
735 int ap_owned_by_def_drv(int card, int queue)
736 {
737 	int rc = 0;
738 
739 	if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS)
740 		return -EINVAL;
741 
742 	mutex_lock(&ap_perms_mutex);
743 
744 	if (test_bit_inv(card, ap_perms.apm)
745 	    && test_bit_inv(queue, ap_perms.aqm))
746 		rc = 1;
747 
748 	mutex_unlock(&ap_perms_mutex);
749 
750 	return rc;
751 }
752 EXPORT_SYMBOL(ap_owned_by_def_drv);
753 
754 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm,
755 				       unsigned long *aqm)
756 {
757 	int card, queue, rc = 0;
758 
759 	mutex_lock(&ap_perms_mutex);
760 
761 	for (card = 0; !rc && card < AP_DEVICES; card++)
762 		if (test_bit_inv(card, apm) &&
763 		    test_bit_inv(card, ap_perms.apm))
764 			for (queue = 0; !rc && queue < AP_DOMAINS; queue++)
765 				if (test_bit_inv(queue, aqm) &&
766 				    test_bit_inv(queue, ap_perms.aqm))
767 					rc = 1;
768 
769 	mutex_unlock(&ap_perms_mutex);
770 
771 	return rc;
772 }
773 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv);
774 
775 static int ap_device_probe(struct device *dev)
776 {
777 	struct ap_device *ap_dev = to_ap_dev(dev);
778 	struct ap_driver *ap_drv = to_ap_drv(dev->driver);
779 	int card, queue, devres, drvres, rc;
780 
781 	if (is_queue_dev(dev)) {
782 		/*
783 		 * If the apqn is marked as reserved/used by ap bus and
784 		 * default drivers, only probe with drivers with the default
785 		 * flag set. If it is not marked, only probe with drivers
786 		 * with the default flag not set.
787 		 */
788 		card = AP_QID_CARD(to_ap_queue(dev)->qid);
789 		queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
790 		mutex_lock(&ap_perms_mutex);
791 		devres = test_bit_inv(card, ap_perms.apm)
792 			&& test_bit_inv(queue, ap_perms.aqm);
793 		mutex_unlock(&ap_perms_mutex);
794 		drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT;
795 		if (!!devres != !!drvres)
796 			return -ENODEV;
797 		/* (re-)init queue's state machine */
798 		ap_queue_reinit_state(to_ap_queue(dev));
799 	}
800 
801 	/* Add queue/card to list of active queues/cards */
802 	spin_lock_bh(&ap_list_lock);
803 	if (is_card_dev(dev))
804 		list_add(&to_ap_card(dev)->list, &ap_card_list);
805 	else
806 		list_add(&to_ap_queue(dev)->list,
807 			 &to_ap_queue(dev)->card->queues);
808 	spin_unlock_bh(&ap_list_lock);
809 
810 	ap_dev->drv = ap_drv;
811 	rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
812 
813 	if (rc) {
814 		spin_lock_bh(&ap_list_lock);
815 		if (is_card_dev(dev))
816 			list_del_init(&to_ap_card(dev)->list);
817 		else
818 			list_del_init(&to_ap_queue(dev)->list);
819 		spin_unlock_bh(&ap_list_lock);
820 		ap_dev->drv = NULL;
821 	}
822 
823 	return rc;
824 }
825 
826 static int ap_device_remove(struct device *dev)
827 {
828 	struct ap_device *ap_dev = to_ap_dev(dev);
829 	struct ap_driver *ap_drv = ap_dev->drv;
830 
831 	/* prepare ap queue device removal */
832 	if (is_queue_dev(dev))
833 		ap_queue_prepare_remove(to_ap_queue(dev));
834 
835 	/* driver's chance to clean up gracefully */
836 	if (ap_drv->remove)
837 		ap_drv->remove(ap_dev);
838 
839 	/* now do the ap queue device remove */
840 	if (is_queue_dev(dev))
841 		ap_queue_remove(to_ap_queue(dev));
842 
843 	/* Remove queue/card from list of active queues/cards */
844 	spin_lock_bh(&ap_list_lock);
845 	if (is_card_dev(dev))
846 		list_del_init(&to_ap_card(dev)->list);
847 	else
848 		list_del_init(&to_ap_queue(dev)->list);
849 	spin_unlock_bh(&ap_list_lock);
850 
851 	return 0;
852 }
853 
854 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
855 		       char *name)
856 {
857 	struct device_driver *drv = &ap_drv->driver;
858 
859 	if (!initialised)
860 		return -ENODEV;
861 
862 	drv->bus = &ap_bus_type;
863 	drv->probe = ap_device_probe;
864 	drv->remove = ap_device_remove;
865 	drv->owner = owner;
866 	drv->name = name;
867 	return driver_register(drv);
868 }
869 EXPORT_SYMBOL(ap_driver_register);
870 
871 void ap_driver_unregister(struct ap_driver *ap_drv)
872 {
873 	driver_unregister(&ap_drv->driver);
874 }
875 EXPORT_SYMBOL(ap_driver_unregister);
876 
877 void ap_bus_force_rescan(void)
878 {
879 	if (ap_suspend_flag)
880 		return;
881 	/* processing a asynchronous bus rescan */
882 	del_timer(&ap_config_timer);
883 	queue_work(system_long_wq, &ap_scan_work);
884 	flush_work(&ap_scan_work);
885 }
886 EXPORT_SYMBOL(ap_bus_force_rescan);
887 
888 /*
889 * A config change has happened, force an ap bus rescan.
890 */
891 void ap_bus_cfg_chg(void)
892 {
893 	AP_DBF(DBF_INFO, "%s config change, forcing bus rescan\n", __func__);
894 
895 	ap_bus_force_rescan();
896 }
897 
898 /*
899  * hex2bitmap() - parse hex mask string and set bitmap.
900  * Valid strings are "0x012345678" with at least one valid hex number.
901  * Rest of the bitmap to the right is padded with 0. No spaces allowed
902  * within the string, the leading 0x may be omitted.
903  * Returns the bitmask with exactly the bits set as given by the hex
904  * string (both in big endian order).
905  */
906 static int hex2bitmap(const char *str, unsigned long *bitmap, int bits)
907 {
908 	int i, n, b;
909 
910 	/* bits needs to be a multiple of 8 */
911 	if (bits & 0x07)
912 		return -EINVAL;
913 
914 	if (str[0] == '0' && str[1] == 'x')
915 		str++;
916 	if (*str == 'x')
917 		str++;
918 
919 	for (i = 0; isxdigit(*str) && i < bits; str++) {
920 		b = hex_to_bin(*str);
921 		for (n = 0; n < 4; n++)
922 			if (b & (0x08 >> n))
923 				set_bit_inv(i + n, bitmap);
924 		i += 4;
925 	}
926 
927 	if (*str == '\n')
928 		str++;
929 	if (*str)
930 		return -EINVAL;
931 	return 0;
932 }
933 
934 /*
935  * modify_bitmap() - parse bitmask argument and modify an existing
936  * bit mask accordingly. A concatenation (done with ',') of these
937  * terms is recognized:
938  *   +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>]
939  * <bitnr> may be any valid number (hex, decimal or octal) in the range
940  * 0...bits-1; the leading + or - is required. Here are some examples:
941  *   +0-15,+32,-128,-0xFF
942  *   -0-255,+1-16,+0x128
943  *   +1,+2,+3,+4,-5,-7-10
944  * Returns the new bitmap after all changes have been applied. Every
945  * positive value in the string will set a bit and every negative value
946  * in the string will clear a bit. As a bit may be touched more than once,
947  * the last 'operation' wins:
948  * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be
949  * cleared again. All other bits are unmodified.
950  */
951 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits)
952 {
953 	int a, i, z;
954 	char *np, sign;
955 
956 	/* bits needs to be a multiple of 8 */
957 	if (bits & 0x07)
958 		return -EINVAL;
959 
960 	while (*str) {
961 		sign = *str++;
962 		if (sign != '+' && sign != '-')
963 			return -EINVAL;
964 		a = z = simple_strtoul(str, &np, 0);
965 		if (str == np || a >= bits)
966 			return -EINVAL;
967 		str = np;
968 		if (*str == '-') {
969 			z = simple_strtoul(++str, &np, 0);
970 			if (str == np || a > z || z >= bits)
971 				return -EINVAL;
972 			str = np;
973 		}
974 		for (i = a; i <= z; i++)
975 			if (sign == '+')
976 				set_bit_inv(i, bitmap);
977 			else
978 				clear_bit_inv(i, bitmap);
979 		while (*str == ',' || *str == '\n')
980 			str++;
981 	}
982 
983 	return 0;
984 }
985 
986 int ap_parse_mask_str(const char *str,
987 		      unsigned long *bitmap, int bits,
988 		      struct mutex *lock)
989 {
990 	unsigned long *newmap, size;
991 	int rc;
992 
993 	/* bits needs to be a multiple of 8 */
994 	if (bits & 0x07)
995 		return -EINVAL;
996 
997 	size = BITS_TO_LONGS(bits)*sizeof(unsigned long);
998 	newmap = kmalloc(size, GFP_KERNEL);
999 	if (!newmap)
1000 		return -ENOMEM;
1001 	if (mutex_lock_interruptible(lock)) {
1002 		kfree(newmap);
1003 		return -ERESTARTSYS;
1004 	}
1005 
1006 	if (*str == '+' || *str == '-') {
1007 		memcpy(newmap, bitmap, size);
1008 		rc = modify_bitmap(str, newmap, bits);
1009 	} else {
1010 		memset(newmap, 0, size);
1011 		rc = hex2bitmap(str, newmap, bits);
1012 	}
1013 	if (rc == 0)
1014 		memcpy(bitmap, newmap, size);
1015 	mutex_unlock(lock);
1016 	kfree(newmap);
1017 	return rc;
1018 }
1019 EXPORT_SYMBOL(ap_parse_mask_str);
1020 
1021 /*
1022  * AP bus attributes.
1023  */
1024 
1025 static ssize_t ap_domain_show(struct bus_type *bus, char *buf)
1026 {
1027 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index);
1028 }
1029 
1030 static ssize_t ap_domain_store(struct bus_type *bus,
1031 			       const char *buf, size_t count)
1032 {
1033 	int domain;
1034 
1035 	if (sscanf(buf, "%i\n", &domain) != 1 ||
1036 	    domain < 0 || domain > ap_max_domain_id ||
1037 	    !test_bit_inv(domain, ap_perms.aqm))
1038 		return -EINVAL;
1039 	spin_lock_bh(&ap_domain_lock);
1040 	ap_domain_index = domain;
1041 	spin_unlock_bh(&ap_domain_lock);
1042 
1043 	AP_DBF(DBF_DEBUG, "stored new default domain=%d\n", domain);
1044 
1045 	return count;
1046 }
1047 
1048 static BUS_ATTR_RW(ap_domain);
1049 
1050 static ssize_t ap_control_domain_mask_show(struct bus_type *bus, char *buf)
1051 {
1052 	if (!ap_configuration)	/* QCI not supported */
1053 		return snprintf(buf, PAGE_SIZE, "not supported\n");
1054 
1055 	return snprintf(buf, PAGE_SIZE,
1056 			"0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1057 			ap_configuration->adm[0], ap_configuration->adm[1],
1058 			ap_configuration->adm[2], ap_configuration->adm[3],
1059 			ap_configuration->adm[4], ap_configuration->adm[5],
1060 			ap_configuration->adm[6], ap_configuration->adm[7]);
1061 }
1062 
1063 static BUS_ATTR_RO(ap_control_domain_mask);
1064 
1065 static ssize_t ap_usage_domain_mask_show(struct bus_type *bus, char *buf)
1066 {
1067 	if (!ap_configuration)	/* QCI not supported */
1068 		return snprintf(buf, PAGE_SIZE, "not supported\n");
1069 
1070 	return snprintf(buf, PAGE_SIZE,
1071 			"0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1072 			ap_configuration->aqm[0], ap_configuration->aqm[1],
1073 			ap_configuration->aqm[2], ap_configuration->aqm[3],
1074 			ap_configuration->aqm[4], ap_configuration->aqm[5],
1075 			ap_configuration->aqm[6], ap_configuration->aqm[7]);
1076 }
1077 
1078 static BUS_ATTR_RO(ap_usage_domain_mask);
1079 
1080 static ssize_t ap_adapter_mask_show(struct bus_type *bus, char *buf)
1081 {
1082 	if (!ap_configuration)	/* QCI not supported */
1083 		return snprintf(buf, PAGE_SIZE, "not supported\n");
1084 
1085 	return snprintf(buf, PAGE_SIZE,
1086 			"0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1087 			ap_configuration->apm[0], ap_configuration->apm[1],
1088 			ap_configuration->apm[2], ap_configuration->apm[3],
1089 			ap_configuration->apm[4], ap_configuration->apm[5],
1090 			ap_configuration->apm[6], ap_configuration->apm[7]);
1091 }
1092 
1093 static BUS_ATTR_RO(ap_adapter_mask);
1094 
1095 static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf)
1096 {
1097 	return snprintf(buf, PAGE_SIZE, "%d\n",
1098 			ap_using_interrupts() ? 1 : 0);
1099 }
1100 
1101 static BUS_ATTR_RO(ap_interrupts);
1102 
1103 static ssize_t config_time_show(struct bus_type *bus, char *buf)
1104 {
1105 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_config_time);
1106 }
1107 
1108 static ssize_t config_time_store(struct bus_type *bus,
1109 				 const char *buf, size_t count)
1110 {
1111 	int time;
1112 
1113 	if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
1114 		return -EINVAL;
1115 	ap_config_time = time;
1116 	mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1117 	return count;
1118 }
1119 
1120 static BUS_ATTR_RW(config_time);
1121 
1122 static ssize_t poll_thread_show(struct bus_type *bus, char *buf)
1123 {
1124 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0);
1125 }
1126 
1127 static ssize_t poll_thread_store(struct bus_type *bus,
1128 				 const char *buf, size_t count)
1129 {
1130 	int flag, rc;
1131 
1132 	if (sscanf(buf, "%d\n", &flag) != 1)
1133 		return -EINVAL;
1134 	if (flag) {
1135 		rc = ap_poll_thread_start();
1136 		if (rc)
1137 			count = rc;
1138 	} else
1139 		ap_poll_thread_stop();
1140 	return count;
1141 }
1142 
1143 static BUS_ATTR_RW(poll_thread);
1144 
1145 static ssize_t poll_timeout_show(struct bus_type *bus, char *buf)
1146 {
1147 	return snprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout);
1148 }
1149 
1150 static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf,
1151 				  size_t count)
1152 {
1153 	unsigned long long time;
1154 	ktime_t hr_time;
1155 
1156 	/* 120 seconds = maximum poll interval */
1157 	if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 ||
1158 	    time > 120000000000ULL)
1159 		return -EINVAL;
1160 	poll_timeout = time;
1161 	hr_time = poll_timeout;
1162 
1163 	spin_lock_bh(&ap_poll_timer_lock);
1164 	hrtimer_cancel(&ap_poll_timer);
1165 	hrtimer_set_expires(&ap_poll_timer, hr_time);
1166 	hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
1167 	spin_unlock_bh(&ap_poll_timer_lock);
1168 
1169 	return count;
1170 }
1171 
1172 static BUS_ATTR_RW(poll_timeout);
1173 
1174 static ssize_t ap_max_domain_id_show(struct bus_type *bus, char *buf)
1175 {
1176 	int max_domain_id;
1177 
1178 	if (ap_configuration)
1179 		max_domain_id = ap_max_domain_id ? : -1;
1180 	else
1181 		max_domain_id = 15;
1182 	return snprintf(buf, PAGE_SIZE, "%d\n", max_domain_id);
1183 }
1184 
1185 static BUS_ATTR_RO(ap_max_domain_id);
1186 
1187 static ssize_t apmask_show(struct bus_type *bus, char *buf)
1188 {
1189 	int rc;
1190 
1191 	if (mutex_lock_interruptible(&ap_perms_mutex))
1192 		return -ERESTARTSYS;
1193 	rc = snprintf(buf, PAGE_SIZE,
1194 		      "0x%016lx%016lx%016lx%016lx\n",
1195 		      ap_perms.apm[0], ap_perms.apm[1],
1196 		      ap_perms.apm[2], ap_perms.apm[3]);
1197 	mutex_unlock(&ap_perms_mutex);
1198 
1199 	return rc;
1200 }
1201 
1202 static ssize_t apmask_store(struct bus_type *bus, const char *buf,
1203 			    size_t count)
1204 {
1205 	int rc;
1206 
1207 	rc = ap_parse_mask_str(buf, ap_perms.apm, AP_DEVICES, &ap_perms_mutex);
1208 	if (rc)
1209 		return rc;
1210 
1211 	ap_bus_revise_bindings();
1212 
1213 	return count;
1214 }
1215 
1216 static BUS_ATTR_RW(apmask);
1217 
1218 static ssize_t aqmask_show(struct bus_type *bus, char *buf)
1219 {
1220 	int rc;
1221 
1222 	if (mutex_lock_interruptible(&ap_perms_mutex))
1223 		return -ERESTARTSYS;
1224 	rc = snprintf(buf, PAGE_SIZE,
1225 		      "0x%016lx%016lx%016lx%016lx\n",
1226 		      ap_perms.aqm[0], ap_perms.aqm[1],
1227 		      ap_perms.aqm[2], ap_perms.aqm[3]);
1228 	mutex_unlock(&ap_perms_mutex);
1229 
1230 	return rc;
1231 }
1232 
1233 static ssize_t aqmask_store(struct bus_type *bus, const char *buf,
1234 			    size_t count)
1235 {
1236 	int rc;
1237 
1238 	rc = ap_parse_mask_str(buf, ap_perms.aqm, AP_DOMAINS, &ap_perms_mutex);
1239 	if (rc)
1240 		return rc;
1241 
1242 	ap_bus_revise_bindings();
1243 
1244 	return count;
1245 }
1246 
1247 static BUS_ATTR_RW(aqmask);
1248 
1249 static struct bus_attribute *const ap_bus_attrs[] = {
1250 	&bus_attr_ap_domain,
1251 	&bus_attr_ap_control_domain_mask,
1252 	&bus_attr_ap_usage_domain_mask,
1253 	&bus_attr_ap_adapter_mask,
1254 	&bus_attr_config_time,
1255 	&bus_attr_poll_thread,
1256 	&bus_attr_ap_interrupts,
1257 	&bus_attr_poll_timeout,
1258 	&bus_attr_ap_max_domain_id,
1259 	&bus_attr_apmask,
1260 	&bus_attr_aqmask,
1261 	NULL,
1262 };
1263 
1264 /**
1265  * ap_select_domain(): Select an AP domain if possible and we haven't
1266  * already done so before.
1267  */
1268 static void ap_select_domain(void)
1269 {
1270 	int count, max_count, best_domain;
1271 	struct ap_queue_status status;
1272 	int i, j;
1273 
1274 	/*
1275 	 * We want to use a single domain. Either the one specified with
1276 	 * the "domain=" parameter or the domain with the maximum number
1277 	 * of devices.
1278 	 */
1279 	spin_lock_bh(&ap_domain_lock);
1280 	if (ap_domain_index >= 0) {
1281 		/* Domain has already been selected. */
1282 		spin_unlock_bh(&ap_domain_lock);
1283 		return;
1284 	}
1285 	best_domain = -1;
1286 	max_count = 0;
1287 	for (i = 0; i < AP_DOMAINS; i++) {
1288 		if (!ap_test_config_usage_domain(i) ||
1289 		    !test_bit_inv(i, ap_perms.aqm))
1290 			continue;
1291 		count = 0;
1292 		for (j = 0; j < AP_DEVICES; j++) {
1293 			if (!ap_test_config_card_id(j))
1294 				continue;
1295 			status = ap_test_queue(AP_MKQID(j, i),
1296 					       ap_apft_available(),
1297 					       NULL);
1298 			if (status.response_code != AP_RESPONSE_NORMAL)
1299 				continue;
1300 			count++;
1301 		}
1302 		if (count > max_count) {
1303 			max_count = count;
1304 			best_domain = i;
1305 		}
1306 	}
1307 	if (best_domain >= 0) {
1308 		ap_domain_index = best_domain;
1309 		AP_DBF(DBF_DEBUG, "new ap_domain_index=%d\n", ap_domain_index);
1310 	}
1311 	spin_unlock_bh(&ap_domain_lock);
1312 }
1313 
1314 /*
1315  * This function checks the type and returns either 0 for not
1316  * supported or the highest compatible type value (which may
1317  * include the input type value).
1318  */
1319 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func)
1320 {
1321 	int comp_type = 0;
1322 
1323 	/* < CEX2A is not supported */
1324 	if (rawtype < AP_DEVICE_TYPE_CEX2A)
1325 		return 0;
1326 	/* up to CEX6 known and fully supported */
1327 	if (rawtype <= AP_DEVICE_TYPE_CEX6)
1328 		return rawtype;
1329 	/*
1330 	 * unknown new type > CEX6, check for compatibility
1331 	 * to the highest known and supported type which is
1332 	 * currently CEX6 with the help of the QACT function.
1333 	 */
1334 	if (ap_qact_available()) {
1335 		struct ap_queue_status status;
1336 		union ap_qact_ap_info apinfo = {0};
1337 
1338 		apinfo.mode = (func >> 26) & 0x07;
1339 		apinfo.cat = AP_DEVICE_TYPE_CEX6;
1340 		status = ap_qact(qid, 0, &apinfo);
1341 		if (status.response_code == AP_RESPONSE_NORMAL
1342 		    && apinfo.cat >= AP_DEVICE_TYPE_CEX2A
1343 		    && apinfo.cat <= AP_DEVICE_TYPE_CEX6)
1344 			comp_type = apinfo.cat;
1345 	}
1346 	if (!comp_type)
1347 		AP_DBF(DBF_WARN, "queue=%02x.%04x unable to map type %d\n",
1348 		       AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype);
1349 	else if (comp_type != rawtype)
1350 		AP_DBF(DBF_INFO, "queue=%02x.%04x map type %d to %d\n",
1351 		       AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype, comp_type);
1352 	return comp_type;
1353 }
1354 
1355 /*
1356  * Helper function to be used with bus_find_dev
1357  * matches for the card device with the given id
1358  */
1359 static int __match_card_device_with_id(struct device *dev, void *data)
1360 {
1361 	return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long) data;
1362 }
1363 
1364 /*
1365  * Helper function to be used with bus_find_dev
1366  * matches for the queue device with a given qid
1367  */
1368 static int __match_queue_device_with_qid(struct device *dev, void *data)
1369 {
1370 	return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long) data;
1371 }
1372 
1373 /*
1374  * Helper function to be used with bus_find_dev
1375  * matches any queue device with given queue id
1376  */
1377 static int __match_queue_device_with_queue_id(struct device *dev, void *data)
1378 {
1379 	return is_queue_dev(dev)
1380 		&& AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long) data;
1381 }
1382 
1383 /*
1384  * Helper function for ap_scan_bus().
1385  * Does the scan bus job for the given adapter id.
1386  */
1387 static void _ap_scan_bus_adapter(int id)
1388 {
1389 	ap_qid_t qid;
1390 	unsigned int func;
1391 	struct ap_card *ac;
1392 	struct device *dev;
1393 	struct ap_queue *aq;
1394 	int rc, dom, depth, type, comp_type, borked;
1395 
1396 	/* check if there is a card device registered with this id */
1397 	dev = bus_find_device(&ap_bus_type, NULL,
1398 			      (void *)(long) id,
1399 			      __match_card_device_with_id);
1400 	ac = dev ? to_ap_card(dev) : NULL;
1401 	if (!ap_test_config_card_id(id)) {
1402 		if (dev) {
1403 			/* Card device has been removed from configuration */
1404 			bus_for_each_dev(&ap_bus_type, NULL,
1405 					 (void *)(long) id,
1406 					 __ap_queue_devices_with_id_unregister);
1407 			device_unregister(dev);
1408 			put_device(dev);
1409 		}
1410 		return;
1411 	}
1412 
1413 	/*
1414 	 * This card id is enabled in the configuration. If we already have
1415 	 * a card device with this id, check if type and functions are still
1416 	 * the very same. Also verify that at least one queue is available.
1417 	 */
1418 	if (ac) {
1419 		/* find the first valid queue */
1420 		for (dom = 0; dom < AP_DOMAINS; dom++) {
1421 			qid = AP_MKQID(id, dom);
1422 			if (ap_query_queue(qid, &depth, &type, &func) == 0)
1423 				break;
1424 		}
1425 		borked = 0;
1426 		if (dom >= AP_DOMAINS) {
1427 			/* no accessible queue on this card */
1428 			borked = 1;
1429 		} else if (ac->raw_hwtype != type) {
1430 			/* card type has changed */
1431 			AP_DBF(DBF_INFO, "card=%02x type changed.\n", id);
1432 			borked = 1;
1433 		} else if (ac->functions != func) {
1434 			/* card functions have changed */
1435 			AP_DBF(DBF_INFO, "card=%02x functions changed.\n", id);
1436 			borked = 1;
1437 		}
1438 		if (borked) {
1439 			/* unregister card device and associated queues */
1440 			bus_for_each_dev(&ap_bus_type, NULL,
1441 					 (void *)(long) id,
1442 					 __ap_queue_devices_with_id_unregister);
1443 			device_unregister(dev);
1444 			put_device(dev);
1445 			/* go back if there is no valid queue on this card */
1446 			if (dom >= AP_DOMAINS)
1447 				return;
1448 			ac = NULL;
1449 		}
1450 	}
1451 
1452 	/*
1453 	 * Go through all possible queue ids. Check and maybe create or release
1454 	 * queue devices for this card. If there exists no card device yet,
1455 	 * create a card device also.
1456 	 */
1457 	for (dom = 0; dom < AP_DOMAINS; dom++) {
1458 		qid = AP_MKQID(id, dom);
1459 		dev = bus_find_device(&ap_bus_type, NULL,
1460 				      (void *)(long) qid,
1461 				      __match_queue_device_with_qid);
1462 		aq = dev ? to_ap_queue(dev) : NULL;
1463 		if (!ap_test_config_usage_domain(dom)) {
1464 			if (dev) {
1465 				/* Queue device exists but has been
1466 				 * removed from configuration.
1467 				 */
1468 				device_unregister(dev);
1469 				put_device(dev);
1470 			}
1471 			continue;
1472 		}
1473 		/* try to fetch infos about this queue */
1474 		rc = ap_query_queue(qid, &depth, &type, &func);
1475 		if (dev) {
1476 			if (rc == -ENODEV)
1477 				borked = 1;
1478 			else {
1479 				spin_lock_bh(&aq->lock);
1480 				borked = aq->state == AP_STATE_BORKED;
1481 				spin_unlock_bh(&aq->lock);
1482 			}
1483 			if (borked) {
1484 				/* Remove broken device */
1485 				AP_DBF(DBF_DEBUG,
1486 				       "removing broken queue=%02x.%04x\n",
1487 				       id, dom);
1488 				device_unregister(dev);
1489 			}
1490 			put_device(dev);
1491 			continue;
1492 		}
1493 		if (rc)
1494 			continue;
1495 		/* a new queue device is needed, check out comp type */
1496 		comp_type = ap_get_compatible_type(qid, type, func);
1497 		if (!comp_type)
1498 			continue;
1499 		/* maybe a card device needs to be created first */
1500 		if (!ac) {
1501 			ac = ap_card_create(id, depth, type, comp_type, func);
1502 			if (!ac)
1503 				continue;
1504 			ac->ap_dev.device.bus = &ap_bus_type;
1505 			ac->ap_dev.device.parent = ap_root_device;
1506 			dev_set_name(&ac->ap_dev.device, "card%02x", id);
1507 			/* Register card device with AP bus */
1508 			rc = device_register(&ac->ap_dev.device);
1509 			if (rc) {
1510 				put_device(&ac->ap_dev.device);
1511 				ac = NULL;
1512 				break;
1513 			}
1514 			/* get it and thus adjust reference counter */
1515 			get_device(&ac->ap_dev.device);
1516 		}
1517 		/* now create the new queue device */
1518 		aq = ap_queue_create(qid, comp_type);
1519 		if (!aq)
1520 			continue;
1521 		aq->card = ac;
1522 		aq->ap_dev.device.bus = &ap_bus_type;
1523 		aq->ap_dev.device.parent = &ac->ap_dev.device;
1524 		dev_set_name(&aq->ap_dev.device, "%02x.%04x", id, dom);
1525 		/* Register queue device */
1526 		rc = device_register(&aq->ap_dev.device);
1527 		if (rc) {
1528 			put_device(&aq->ap_dev.device);
1529 			continue;
1530 		}
1531 	} /* end domain loop */
1532 
1533 	if (ac)
1534 		put_device(&ac->ap_dev.device);
1535 }
1536 
1537 /**
1538  * ap_scan_bus(): Scan the AP bus for new devices
1539  * Runs periodically, workqueue timer (ap_config_time)
1540  */
1541 static void ap_scan_bus(struct work_struct *unused)
1542 {
1543 	int id;
1544 
1545 	AP_DBF(DBF_DEBUG, "%s running\n", __func__);
1546 
1547 	ap_query_configuration(ap_configuration);
1548 	ap_select_domain();
1549 
1550 	/* loop over all possible adapters */
1551 	for (id = 0; id < AP_DEVICES; id++)
1552 		_ap_scan_bus_adapter(id);
1553 
1554 	/* check if there is at least one queue available with default domain */
1555 	if (ap_domain_index >= 0) {
1556 		struct device *dev =
1557 			bus_find_device(&ap_bus_type, NULL,
1558 					(void *)(long) ap_domain_index,
1559 					__match_queue_device_with_queue_id);
1560 		if (dev)
1561 			put_device(dev);
1562 		else
1563 			AP_DBF(DBF_INFO,
1564 			       "no queue device with default domain %d available\n",
1565 			       ap_domain_index);
1566 	}
1567 
1568 	mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1569 }
1570 
1571 static void ap_config_timeout(struct timer_list *unused)
1572 {
1573 	if (ap_suspend_flag)
1574 		return;
1575 	queue_work(system_long_wq, &ap_scan_work);
1576 }
1577 
1578 static int __init ap_debug_init(void)
1579 {
1580 	ap_dbf_info = debug_register("ap", 1, 1,
1581 				     DBF_MAX_SPRINTF_ARGS * sizeof(long));
1582 	debug_register_view(ap_dbf_info, &debug_sprintf_view);
1583 	debug_set_level(ap_dbf_info, DBF_ERR);
1584 
1585 	return 0;
1586 }
1587 
1588 static void __init ap_perms_init(void)
1589 {
1590 	/* all resources useable if no kernel parameter string given */
1591 	memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm));
1592 	memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm));
1593 	memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm));
1594 
1595 	/* apm kernel parameter string */
1596 	if (apm_str) {
1597 		memset(&ap_perms.apm, 0, sizeof(ap_perms.apm));
1598 		ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES,
1599 				  &ap_perms_mutex);
1600 	}
1601 
1602 	/* aqm kernel parameter string */
1603 	if (aqm_str) {
1604 		memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm));
1605 		ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS,
1606 				  &ap_perms_mutex);
1607 	}
1608 }
1609 
1610 /**
1611  * ap_module_init(): The module initialization code.
1612  *
1613  * Initializes the module.
1614  */
1615 static int __init ap_module_init(void)
1616 {
1617 	int max_domain_id;
1618 	int rc, i;
1619 
1620 	rc = ap_debug_init();
1621 	if (rc)
1622 		return rc;
1623 
1624 	if (!ap_instructions_available()) {
1625 		pr_warn("The hardware system does not support AP instructions\n");
1626 		return -ENODEV;
1627 	}
1628 
1629 	/* set up the AP permissions (ioctls, ap and aq masks) */
1630 	ap_perms_init();
1631 
1632 	/* Get AP configuration data if available */
1633 	ap_init_configuration();
1634 
1635 	if (ap_configuration)
1636 		max_domain_id =
1637 			ap_max_domain_id ? ap_max_domain_id : AP_DOMAINS - 1;
1638 	else
1639 		max_domain_id = 15;
1640 	if (ap_domain_index < -1 || ap_domain_index > max_domain_id ||
1641 	    (ap_domain_index >= 0 &&
1642 	     !test_bit_inv(ap_domain_index, ap_perms.aqm))) {
1643 		pr_warn("%d is not a valid cryptographic domain\n",
1644 			ap_domain_index);
1645 		ap_domain_index = -1;
1646 	}
1647 	/* In resume callback we need to know if the user had set the domain.
1648 	 * If so, we can not just reset it.
1649 	 */
1650 	if (ap_domain_index >= 0)
1651 		user_set_domain = 1;
1652 
1653 	if (ap_interrupts_available()) {
1654 		rc = register_adapter_interrupt(&ap_airq);
1655 		ap_airq_flag = (rc == 0);
1656 	}
1657 
1658 	/* Create /sys/bus/ap. */
1659 	rc = bus_register(&ap_bus_type);
1660 	if (rc)
1661 		goto out;
1662 	for (i = 0; ap_bus_attrs[i]; i++) {
1663 		rc = bus_create_file(&ap_bus_type, ap_bus_attrs[i]);
1664 		if (rc)
1665 			goto out_bus;
1666 	}
1667 
1668 	/* Create /sys/devices/ap. */
1669 	ap_root_device = root_device_register("ap");
1670 	rc = PTR_ERR_OR_ZERO(ap_root_device);
1671 	if (rc)
1672 		goto out_bus;
1673 
1674 	/* Setup the AP bus rescan timer. */
1675 	timer_setup(&ap_config_timer, ap_config_timeout, 0);
1676 
1677 	/*
1678 	 * Setup the high resultion poll timer.
1679 	 * If we are running under z/VM adjust polling to z/VM polling rate.
1680 	 */
1681 	if (MACHINE_IS_VM)
1682 		poll_timeout = 1500000;
1683 	spin_lock_init(&ap_poll_timer_lock);
1684 	hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1685 	ap_poll_timer.function = ap_poll_timeout;
1686 
1687 	/* Start the low priority AP bus poll thread. */
1688 	if (ap_thread_flag) {
1689 		rc = ap_poll_thread_start();
1690 		if (rc)
1691 			goto out_work;
1692 	}
1693 
1694 	rc = register_pm_notifier(&ap_power_notifier);
1695 	if (rc)
1696 		goto out_pm;
1697 
1698 	queue_work(system_long_wq, &ap_scan_work);
1699 	initialised = true;
1700 
1701 	return 0;
1702 
1703 out_pm:
1704 	ap_poll_thread_stop();
1705 out_work:
1706 	hrtimer_cancel(&ap_poll_timer);
1707 	root_device_unregister(ap_root_device);
1708 out_bus:
1709 	while (i--)
1710 		bus_remove_file(&ap_bus_type, ap_bus_attrs[i]);
1711 	bus_unregister(&ap_bus_type);
1712 out:
1713 	if (ap_using_interrupts())
1714 		unregister_adapter_interrupt(&ap_airq);
1715 	kfree(ap_configuration);
1716 	return rc;
1717 }
1718 device_initcall(ap_module_init);
1719