1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright IBM Corp. 2006, 2012 4 * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com> 5 * Martin Schwidefsky <schwidefsky@de.ibm.com> 6 * Ralph Wuerthner <rwuerthn@de.ibm.com> 7 * Felix Beck <felix.beck@de.ibm.com> 8 * Holger Dengler <hd@linux.vnet.ibm.com> 9 * 10 * Adjunct processor bus. 11 */ 12 13 #define KMSG_COMPONENT "ap" 14 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 15 16 #include <linux/kernel_stat.h> 17 #include <linux/moduleparam.h> 18 #include <linux/init.h> 19 #include <linux/delay.h> 20 #include <linux/err.h> 21 #include <linux/freezer.h> 22 #include <linux/interrupt.h> 23 #include <linux/workqueue.h> 24 #include <linux/slab.h> 25 #include <linux/notifier.h> 26 #include <linux/kthread.h> 27 #include <linux/mutex.h> 28 #include <asm/airq.h> 29 #include <linux/atomic.h> 30 #include <asm/isc.h> 31 #include <linux/hrtimer.h> 32 #include <linux/ktime.h> 33 #include <asm/facility.h> 34 #include <linux/crypto.h> 35 #include <linux/mod_devicetable.h> 36 #include <linux/debugfs.h> 37 #include <linux/ctype.h> 38 39 #include "ap_bus.h" 40 #include "ap_debug.h" 41 42 /* 43 * Module parameters; note though this file itself isn't modular. 44 */ 45 int ap_domain_index = -1; /* Adjunct Processor Domain Index */ 46 static DEFINE_SPINLOCK(ap_domain_lock); 47 module_param_named(domain, ap_domain_index, int, 0440); 48 MODULE_PARM_DESC(domain, "domain index for ap devices"); 49 EXPORT_SYMBOL(ap_domain_index); 50 51 static int ap_thread_flag; 52 module_param_named(poll_thread, ap_thread_flag, int, 0440); 53 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off)."); 54 55 static char *apm_str; 56 module_param_named(apmask, apm_str, charp, 0440); 57 MODULE_PARM_DESC(apmask, "AP bus adapter mask."); 58 59 static char *aqm_str; 60 module_param_named(aqmask, aqm_str, charp, 0440); 61 MODULE_PARM_DESC(aqmask, "AP bus domain mask."); 62 63 static struct device *ap_root_device; 64 65 /* Hashtable of all queue devices on the AP bus */ 66 DEFINE_HASHTABLE(ap_queues, 8); 67 /* lock used for the ap_queues hashtable */ 68 DEFINE_SPINLOCK(ap_queues_lock); 69 70 /* Default permissions (ioctl, card and domain masking) */ 71 struct ap_perms ap_perms; 72 EXPORT_SYMBOL(ap_perms); 73 DEFINE_MUTEX(ap_perms_mutex); 74 EXPORT_SYMBOL(ap_perms_mutex); 75 76 static struct ap_config_info *ap_qci_info; 77 78 /* 79 * AP bus related debug feature things. 80 */ 81 debug_info_t *ap_dbf_info; 82 83 /* 84 * Workqueue timer for bus rescan. 85 */ 86 static struct timer_list ap_config_timer; 87 static int ap_config_time = AP_CONFIG_TIME; 88 static void ap_scan_bus(struct work_struct *); 89 static DECLARE_WORK(ap_scan_work, ap_scan_bus); 90 91 /* 92 * Tasklet & timer for AP request polling and interrupts 93 */ 94 static void ap_tasklet_fn(unsigned long); 95 static DECLARE_TASKLET_OLD(ap_tasklet, ap_tasklet_fn); 96 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait); 97 static struct task_struct *ap_poll_kthread; 98 static DEFINE_MUTEX(ap_poll_thread_mutex); 99 static DEFINE_SPINLOCK(ap_poll_timer_lock); 100 static struct hrtimer ap_poll_timer; 101 /* 102 * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds. 103 * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling. 104 */ 105 static unsigned long long poll_timeout = 250000; 106 107 /* Maximum domain id, if not given via qci */ 108 static int ap_max_domain_id = 15; 109 /* Maximum adapter id, if not given via qci */ 110 static int ap_max_adapter_id = 63; 111 112 static struct bus_type ap_bus_type; 113 114 /* Adapter interrupt definitions */ 115 static void ap_interrupt_handler(struct airq_struct *airq, bool floating); 116 117 static int ap_airq_flag; 118 119 static struct airq_struct ap_airq = { 120 .handler = ap_interrupt_handler, 121 .isc = AP_ISC, 122 }; 123 124 /** 125 * ap_using_interrupts() - Returns non-zero if interrupt support is 126 * available. 127 */ 128 static inline int ap_using_interrupts(void) 129 { 130 return ap_airq_flag; 131 } 132 133 /** 134 * ap_airq_ptr() - Get the address of the adapter interrupt indicator 135 * 136 * Returns the address of the local-summary-indicator of the adapter 137 * interrupt handler for AP, or NULL if adapter interrupts are not 138 * available. 139 */ 140 void *ap_airq_ptr(void) 141 { 142 if (ap_using_interrupts()) 143 return ap_airq.lsi_ptr; 144 return NULL; 145 } 146 147 /** 148 * ap_interrupts_available(): Test if AP interrupts are available. 149 * 150 * Returns 1 if AP interrupts are available. 151 */ 152 static int ap_interrupts_available(void) 153 { 154 return test_facility(65); 155 } 156 157 /** 158 * ap_qci_available(): Test if AP configuration 159 * information can be queried via QCI subfunction. 160 * 161 * Returns 1 if subfunction PQAP(QCI) is available. 162 */ 163 static int ap_qci_available(void) 164 { 165 return test_facility(12); 166 } 167 168 /** 169 * ap_apft_available(): Test if AP facilities test (APFT) 170 * facility is available. 171 * 172 * Returns 1 if APFT is is available. 173 */ 174 static int ap_apft_available(void) 175 { 176 return test_facility(15); 177 } 178 179 /* 180 * ap_qact_available(): Test if the PQAP(QACT) subfunction is available. 181 * 182 * Returns 1 if the QACT subfunction is available. 183 */ 184 static inline int ap_qact_available(void) 185 { 186 if (ap_qci_info) 187 return ap_qci_info->qact; 188 return 0; 189 } 190 191 /* 192 * ap_fetch_qci_info(): Fetch cryptographic config info 193 * 194 * Returns the ap configuration info fetched via PQAP(QCI). 195 * On success 0 is returned, on failure a negative errno 196 * is returned, e.g. if the PQAP(QCI) instruction is not 197 * available, the return value will be -EOPNOTSUPP. 198 */ 199 static inline int ap_fetch_qci_info(struct ap_config_info *info) 200 { 201 if (!ap_qci_available()) 202 return -EOPNOTSUPP; 203 if (!info) 204 return -EINVAL; 205 return ap_qci(info); 206 } 207 208 /** 209 * ap_init_qci_info(): Allocate and query qci config info. 210 * Does also update the static variables ap_max_domain_id 211 * and ap_max_adapter_id if this info is available. 212 213 */ 214 static void __init ap_init_qci_info(void) 215 { 216 if (!ap_qci_available()) { 217 AP_DBF(DBF_INFO, "%s QCI not supported\n", __func__); 218 return; 219 } 220 221 ap_qci_info = kzalloc(sizeof(*ap_qci_info), GFP_KERNEL); 222 if (!ap_qci_info) 223 return; 224 if (ap_fetch_qci_info(ap_qci_info) != 0) { 225 kfree(ap_qci_info); 226 ap_qci_info = NULL; 227 return; 228 } 229 AP_DBF(DBF_INFO, "%s successful fetched initial qci info\n", __func__); 230 231 if (ap_qci_info->apxa) { 232 if (ap_qci_info->Na) { 233 ap_max_adapter_id = ap_qci_info->Na; 234 AP_DBF(DBF_INFO, "%s new ap_max_adapter_id is %d\n", 235 __func__, ap_max_adapter_id); 236 } 237 if (ap_qci_info->Nd) { 238 ap_max_domain_id = ap_qci_info->Nd; 239 AP_DBF(DBF_INFO, "%s new ap_max_domain_id is %d\n", 240 __func__, ap_max_domain_id); 241 } 242 } 243 } 244 245 /* 246 * ap_test_config(): helper function to extract the nrth bit 247 * within the unsigned int array field. 248 */ 249 static inline int ap_test_config(unsigned int *field, unsigned int nr) 250 { 251 return ap_test_bit((field + (nr >> 5)), (nr & 0x1f)); 252 } 253 254 /* 255 * ap_test_config_card_id(): Test, whether an AP card ID is configured. 256 * 257 * Returns 0 if the card is not configured 258 * 1 if the card is configured or 259 * if the configuration information is not available 260 */ 261 static inline int ap_test_config_card_id(unsigned int id) 262 { 263 if (id > ap_max_adapter_id) 264 return 0; 265 if (ap_qci_info) 266 return ap_test_config(ap_qci_info->apm, id); 267 return 1; 268 } 269 270 /* 271 * ap_test_config_usage_domain(): Test, whether an AP usage domain 272 * is configured. 273 * 274 * Returns 0 if the usage domain is not configured 275 * 1 if the usage domain is configured or 276 * if the configuration information is not available 277 */ 278 int ap_test_config_usage_domain(unsigned int domain) 279 { 280 if (domain > ap_max_domain_id) 281 return 0; 282 if (ap_qci_info) 283 return ap_test_config(ap_qci_info->aqm, domain); 284 return 1; 285 } 286 EXPORT_SYMBOL(ap_test_config_usage_domain); 287 288 /* 289 * ap_test_config_ctrl_domain(): Test, whether an AP control domain 290 * is configured. 291 * @domain AP control domain ID 292 * 293 * Returns 1 if the control domain is configured 294 * 0 in all other cases 295 */ 296 int ap_test_config_ctrl_domain(unsigned int domain) 297 { 298 if (!ap_qci_info || domain > ap_max_domain_id) 299 return 0; 300 return ap_test_config(ap_qci_info->adm, domain); 301 } 302 EXPORT_SYMBOL(ap_test_config_ctrl_domain); 303 304 /* 305 * ap_queue_info(): Check and get AP queue info. 306 * Returns true if TAPQ succeeded and the info is filled or 307 * false otherwise. 308 */ 309 static bool ap_queue_info(ap_qid_t qid, int *q_type, 310 unsigned int *q_fac, int *q_depth) 311 { 312 struct ap_queue_status status; 313 unsigned long info = 0; 314 315 /* make sure we don't run into a specifiation exception */ 316 if (AP_QID_CARD(qid) > ap_max_adapter_id || 317 AP_QID_QUEUE(qid) > ap_max_domain_id) 318 return false; 319 320 /* call TAPQ on this APQN */ 321 status = ap_test_queue(qid, ap_apft_available(), &info); 322 switch (status.response_code) { 323 case AP_RESPONSE_NORMAL: 324 case AP_RESPONSE_RESET_IN_PROGRESS: 325 /* 326 * According to the architecture in all these cases the 327 * info should be filled. All bits 0 is not possible as 328 * there is at least one of the mode bits set. 329 */ 330 if (WARN_ON_ONCE(!info)) 331 return false; 332 *q_type = (int)((info >> 24) & 0xff); 333 *q_fac = (unsigned int)(info >> 32); 334 *q_depth = (int)(info & 0xff); 335 switch (*q_type) { 336 /* For CEX2 and CEX3 the available functions 337 * are not reflected by the facilities bits. 338 * Instead it is coded into the type. So here 339 * modify the function bits based on the type. 340 */ 341 case AP_DEVICE_TYPE_CEX2A: 342 case AP_DEVICE_TYPE_CEX3A: 343 *q_fac |= 0x08000000; 344 break; 345 case AP_DEVICE_TYPE_CEX2C: 346 case AP_DEVICE_TYPE_CEX3C: 347 *q_fac |= 0x10000000; 348 break; 349 default: 350 break; 351 } 352 return true; 353 default: 354 /* 355 * A response code which indicates, there is no info available. 356 */ 357 return false; 358 } 359 } 360 361 void ap_wait(enum ap_sm_wait wait) 362 { 363 ktime_t hr_time; 364 365 switch (wait) { 366 case AP_SM_WAIT_AGAIN: 367 case AP_SM_WAIT_INTERRUPT: 368 if (ap_using_interrupts()) 369 break; 370 if (ap_poll_kthread) { 371 wake_up(&ap_poll_wait); 372 break; 373 } 374 fallthrough; 375 case AP_SM_WAIT_TIMEOUT: 376 spin_lock_bh(&ap_poll_timer_lock); 377 if (!hrtimer_is_queued(&ap_poll_timer)) { 378 hr_time = poll_timeout; 379 hrtimer_forward_now(&ap_poll_timer, hr_time); 380 hrtimer_restart(&ap_poll_timer); 381 } 382 spin_unlock_bh(&ap_poll_timer_lock); 383 break; 384 case AP_SM_WAIT_NONE: 385 default: 386 break; 387 } 388 } 389 390 /** 391 * ap_request_timeout(): Handling of request timeouts 392 * @t: timer making this callback 393 * 394 * Handles request timeouts. 395 */ 396 void ap_request_timeout(struct timer_list *t) 397 { 398 struct ap_queue *aq = from_timer(aq, t, timeout); 399 400 spin_lock_bh(&aq->lock); 401 ap_wait(ap_sm_event(aq, AP_SM_EVENT_TIMEOUT)); 402 spin_unlock_bh(&aq->lock); 403 } 404 405 /** 406 * ap_poll_timeout(): AP receive polling for finished AP requests. 407 * @unused: Unused pointer. 408 * 409 * Schedules the AP tasklet using a high resolution timer. 410 */ 411 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused) 412 { 413 tasklet_schedule(&ap_tasklet); 414 return HRTIMER_NORESTART; 415 } 416 417 /** 418 * ap_interrupt_handler() - Schedule ap_tasklet on interrupt 419 * @airq: pointer to adapter interrupt descriptor 420 */ 421 static void ap_interrupt_handler(struct airq_struct *airq, bool floating) 422 { 423 inc_irq_stat(IRQIO_APB); 424 tasklet_schedule(&ap_tasklet); 425 } 426 427 /** 428 * ap_tasklet_fn(): Tasklet to poll all AP devices. 429 * @dummy: Unused variable 430 * 431 * Poll all AP devices on the bus. 432 */ 433 static void ap_tasklet_fn(unsigned long dummy) 434 { 435 int bkt; 436 struct ap_queue *aq; 437 enum ap_sm_wait wait = AP_SM_WAIT_NONE; 438 439 /* Reset the indicator if interrupts are used. Thus new interrupts can 440 * be received. Doing it in the beginning of the tasklet is therefor 441 * important that no requests on any AP get lost. 442 */ 443 if (ap_using_interrupts()) 444 xchg(ap_airq.lsi_ptr, 0); 445 446 spin_lock_bh(&ap_queues_lock); 447 hash_for_each(ap_queues, bkt, aq, hnode) { 448 spin_lock_bh(&aq->lock); 449 wait = min(wait, ap_sm_event_loop(aq, AP_SM_EVENT_POLL)); 450 spin_unlock_bh(&aq->lock); 451 } 452 spin_unlock_bh(&ap_queues_lock); 453 454 ap_wait(wait); 455 } 456 457 static int ap_pending_requests(void) 458 { 459 int bkt; 460 struct ap_queue *aq; 461 462 spin_lock_bh(&ap_queues_lock); 463 hash_for_each(ap_queues, bkt, aq, hnode) { 464 if (aq->queue_count == 0) 465 continue; 466 spin_unlock_bh(&ap_queues_lock); 467 return 1; 468 } 469 spin_unlock_bh(&ap_queues_lock); 470 return 0; 471 } 472 473 /** 474 * ap_poll_thread(): Thread that polls for finished requests. 475 * @data: Unused pointer 476 * 477 * AP bus poll thread. The purpose of this thread is to poll for 478 * finished requests in a loop if there is a "free" cpu - that is 479 * a cpu that doesn't have anything better to do. The polling stops 480 * as soon as there is another task or if all messages have been 481 * delivered. 482 */ 483 static int ap_poll_thread(void *data) 484 { 485 DECLARE_WAITQUEUE(wait, current); 486 487 set_user_nice(current, MAX_NICE); 488 set_freezable(); 489 while (!kthread_should_stop()) { 490 add_wait_queue(&ap_poll_wait, &wait); 491 set_current_state(TASK_INTERRUPTIBLE); 492 if (!ap_pending_requests()) { 493 schedule(); 494 try_to_freeze(); 495 } 496 set_current_state(TASK_RUNNING); 497 remove_wait_queue(&ap_poll_wait, &wait); 498 if (need_resched()) { 499 schedule(); 500 try_to_freeze(); 501 continue; 502 } 503 ap_tasklet_fn(0); 504 } 505 506 return 0; 507 } 508 509 static int ap_poll_thread_start(void) 510 { 511 int rc; 512 513 if (ap_using_interrupts() || ap_poll_kthread) 514 return 0; 515 mutex_lock(&ap_poll_thread_mutex); 516 ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll"); 517 rc = PTR_ERR_OR_ZERO(ap_poll_kthread); 518 if (rc) 519 ap_poll_kthread = NULL; 520 mutex_unlock(&ap_poll_thread_mutex); 521 return rc; 522 } 523 524 static void ap_poll_thread_stop(void) 525 { 526 if (!ap_poll_kthread) 527 return; 528 mutex_lock(&ap_poll_thread_mutex); 529 kthread_stop(ap_poll_kthread); 530 ap_poll_kthread = NULL; 531 mutex_unlock(&ap_poll_thread_mutex); 532 } 533 534 #define is_card_dev(x) ((x)->parent == ap_root_device) 535 #define is_queue_dev(x) ((x)->parent != ap_root_device) 536 537 /** 538 * ap_bus_match() 539 * @dev: Pointer to device 540 * @drv: Pointer to device_driver 541 * 542 * AP bus driver registration/unregistration. 543 */ 544 static int ap_bus_match(struct device *dev, struct device_driver *drv) 545 { 546 struct ap_driver *ap_drv = to_ap_drv(drv); 547 struct ap_device_id *id; 548 549 /* 550 * Compare device type of the device with the list of 551 * supported types of the device_driver. 552 */ 553 for (id = ap_drv->ids; id->match_flags; id++) { 554 if (is_card_dev(dev) && 555 id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE && 556 id->dev_type == to_ap_dev(dev)->device_type) 557 return 1; 558 if (is_queue_dev(dev) && 559 id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE && 560 id->dev_type == to_ap_dev(dev)->device_type) 561 return 1; 562 } 563 return 0; 564 } 565 566 /** 567 * ap_uevent(): Uevent function for AP devices. 568 * @dev: Pointer to device 569 * @env: Pointer to kobj_uevent_env 570 * 571 * It sets up a single environment variable DEV_TYPE which contains the 572 * hardware device type. 573 */ 574 static int ap_uevent(struct device *dev, struct kobj_uevent_env *env) 575 { 576 struct ap_device *ap_dev = to_ap_dev(dev); 577 int retval = 0; 578 579 if (!ap_dev) 580 return -ENODEV; 581 582 /* Set up DEV_TYPE environment variable. */ 583 retval = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type); 584 if (retval) 585 return retval; 586 587 /* Add MODALIAS= */ 588 retval = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type); 589 590 return retval; 591 } 592 593 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data) 594 { 595 if (is_queue_dev(dev) && 596 AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long) data) 597 device_unregister(dev); 598 return 0; 599 } 600 601 static struct bus_type ap_bus_type = { 602 .name = "ap", 603 .match = &ap_bus_match, 604 .uevent = &ap_uevent, 605 }; 606 607 static int __ap_revise_reserved(struct device *dev, void *dummy) 608 { 609 int rc, card, queue, devres, drvres; 610 611 if (is_queue_dev(dev)) { 612 card = AP_QID_CARD(to_ap_queue(dev)->qid); 613 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid); 614 mutex_lock(&ap_perms_mutex); 615 devres = test_bit_inv(card, ap_perms.apm) 616 && test_bit_inv(queue, ap_perms.aqm); 617 mutex_unlock(&ap_perms_mutex); 618 drvres = to_ap_drv(dev->driver)->flags 619 & AP_DRIVER_FLAG_DEFAULT; 620 if (!!devres != !!drvres) { 621 AP_DBF(DBF_DEBUG, "reprobing queue=%02x.%04x\n", 622 card, queue); 623 rc = device_reprobe(dev); 624 } 625 } 626 627 return 0; 628 } 629 630 static void ap_bus_revise_bindings(void) 631 { 632 bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved); 633 } 634 635 int ap_owned_by_def_drv(int card, int queue) 636 { 637 int rc = 0; 638 639 if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS) 640 return -EINVAL; 641 642 mutex_lock(&ap_perms_mutex); 643 644 if (test_bit_inv(card, ap_perms.apm) 645 && test_bit_inv(queue, ap_perms.aqm)) 646 rc = 1; 647 648 mutex_unlock(&ap_perms_mutex); 649 650 return rc; 651 } 652 EXPORT_SYMBOL(ap_owned_by_def_drv); 653 654 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm, 655 unsigned long *aqm) 656 { 657 int card, queue, rc = 0; 658 659 mutex_lock(&ap_perms_mutex); 660 661 for (card = 0; !rc && card < AP_DEVICES; card++) 662 if (test_bit_inv(card, apm) && 663 test_bit_inv(card, ap_perms.apm)) 664 for (queue = 0; !rc && queue < AP_DOMAINS; queue++) 665 if (test_bit_inv(queue, aqm) && 666 test_bit_inv(queue, ap_perms.aqm)) 667 rc = 1; 668 669 mutex_unlock(&ap_perms_mutex); 670 671 return rc; 672 } 673 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv); 674 675 static int ap_device_probe(struct device *dev) 676 { 677 struct ap_device *ap_dev = to_ap_dev(dev); 678 struct ap_driver *ap_drv = to_ap_drv(dev->driver); 679 int card, queue, devres, drvres, rc; 680 681 if (is_queue_dev(dev)) { 682 /* 683 * If the apqn is marked as reserved/used by ap bus and 684 * default drivers, only probe with drivers with the default 685 * flag set. If it is not marked, only probe with drivers 686 * with the default flag not set. 687 */ 688 card = AP_QID_CARD(to_ap_queue(dev)->qid); 689 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid); 690 mutex_lock(&ap_perms_mutex); 691 devres = test_bit_inv(card, ap_perms.apm) 692 && test_bit_inv(queue, ap_perms.aqm); 693 mutex_unlock(&ap_perms_mutex); 694 drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT; 695 if (!!devres != !!drvres) 696 return -ENODEV; 697 } 698 699 /* Add queue/card to list of active queues/cards */ 700 spin_lock_bh(&ap_queues_lock); 701 if (is_queue_dev(dev)) 702 hash_add(ap_queues, &to_ap_queue(dev)->hnode, 703 to_ap_queue(dev)->qid); 704 spin_unlock_bh(&ap_queues_lock); 705 706 ap_dev->drv = ap_drv; 707 rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV; 708 709 if (rc) { 710 spin_lock_bh(&ap_queues_lock); 711 if (is_queue_dev(dev)) 712 hash_del(&to_ap_queue(dev)->hnode); 713 spin_unlock_bh(&ap_queues_lock); 714 ap_dev->drv = NULL; 715 } 716 717 return rc; 718 } 719 720 static int ap_device_remove(struct device *dev) 721 { 722 struct ap_device *ap_dev = to_ap_dev(dev); 723 struct ap_driver *ap_drv = ap_dev->drv; 724 725 /* prepare ap queue device removal */ 726 if (is_queue_dev(dev)) 727 ap_queue_prepare_remove(to_ap_queue(dev)); 728 729 /* driver's chance to clean up gracefully */ 730 if (ap_drv->remove) 731 ap_drv->remove(ap_dev); 732 733 /* now do the ap queue device remove */ 734 if (is_queue_dev(dev)) 735 ap_queue_remove(to_ap_queue(dev)); 736 737 /* Remove queue/card from list of active queues/cards */ 738 spin_lock_bh(&ap_queues_lock); 739 if (is_queue_dev(dev)) 740 hash_del(&to_ap_queue(dev)->hnode); 741 spin_unlock_bh(&ap_queues_lock); 742 743 return 0; 744 } 745 746 struct ap_queue *ap_get_qdev(ap_qid_t qid) 747 { 748 int bkt; 749 struct ap_queue *aq; 750 751 spin_lock_bh(&ap_queues_lock); 752 hash_for_each(ap_queues, bkt, aq, hnode) { 753 if (aq->qid == qid) { 754 get_device(&aq->ap_dev.device); 755 spin_unlock_bh(&ap_queues_lock); 756 return aq; 757 } 758 } 759 spin_unlock_bh(&ap_queues_lock); 760 761 return NULL; 762 } 763 EXPORT_SYMBOL(ap_get_qdev); 764 765 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner, 766 char *name) 767 { 768 struct device_driver *drv = &ap_drv->driver; 769 770 drv->bus = &ap_bus_type; 771 drv->probe = ap_device_probe; 772 drv->remove = ap_device_remove; 773 drv->owner = owner; 774 drv->name = name; 775 return driver_register(drv); 776 } 777 EXPORT_SYMBOL(ap_driver_register); 778 779 void ap_driver_unregister(struct ap_driver *ap_drv) 780 { 781 driver_unregister(&ap_drv->driver); 782 } 783 EXPORT_SYMBOL(ap_driver_unregister); 784 785 void ap_bus_force_rescan(void) 786 { 787 /* processing a asynchronous bus rescan */ 788 del_timer(&ap_config_timer); 789 queue_work(system_long_wq, &ap_scan_work); 790 flush_work(&ap_scan_work); 791 } 792 EXPORT_SYMBOL(ap_bus_force_rescan); 793 794 /* 795 * A config change has happened, force an ap bus rescan. 796 */ 797 void ap_bus_cfg_chg(void) 798 { 799 AP_DBF(DBF_INFO, "%s config change, forcing bus rescan\n", __func__); 800 801 ap_bus_force_rescan(); 802 } 803 804 /* 805 * hex2bitmap() - parse hex mask string and set bitmap. 806 * Valid strings are "0x012345678" with at least one valid hex number. 807 * Rest of the bitmap to the right is padded with 0. No spaces allowed 808 * within the string, the leading 0x may be omitted. 809 * Returns the bitmask with exactly the bits set as given by the hex 810 * string (both in big endian order). 811 */ 812 static int hex2bitmap(const char *str, unsigned long *bitmap, int bits) 813 { 814 int i, n, b; 815 816 /* bits needs to be a multiple of 8 */ 817 if (bits & 0x07) 818 return -EINVAL; 819 820 if (str[0] == '0' && str[1] == 'x') 821 str++; 822 if (*str == 'x') 823 str++; 824 825 for (i = 0; isxdigit(*str) && i < bits; str++) { 826 b = hex_to_bin(*str); 827 for (n = 0; n < 4; n++) 828 if (b & (0x08 >> n)) 829 set_bit_inv(i + n, bitmap); 830 i += 4; 831 } 832 833 if (*str == '\n') 834 str++; 835 if (*str) 836 return -EINVAL; 837 return 0; 838 } 839 840 /* 841 * modify_bitmap() - parse bitmask argument and modify an existing 842 * bit mask accordingly. A concatenation (done with ',') of these 843 * terms is recognized: 844 * +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>] 845 * <bitnr> may be any valid number (hex, decimal or octal) in the range 846 * 0...bits-1; the leading + or - is required. Here are some examples: 847 * +0-15,+32,-128,-0xFF 848 * -0-255,+1-16,+0x128 849 * +1,+2,+3,+4,-5,-7-10 850 * Returns the new bitmap after all changes have been applied. Every 851 * positive value in the string will set a bit and every negative value 852 * in the string will clear a bit. As a bit may be touched more than once, 853 * the last 'operation' wins: 854 * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be 855 * cleared again. All other bits are unmodified. 856 */ 857 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits) 858 { 859 int a, i, z; 860 char *np, sign; 861 862 /* bits needs to be a multiple of 8 */ 863 if (bits & 0x07) 864 return -EINVAL; 865 866 while (*str) { 867 sign = *str++; 868 if (sign != '+' && sign != '-') 869 return -EINVAL; 870 a = z = simple_strtoul(str, &np, 0); 871 if (str == np || a >= bits) 872 return -EINVAL; 873 str = np; 874 if (*str == '-') { 875 z = simple_strtoul(++str, &np, 0); 876 if (str == np || a > z || z >= bits) 877 return -EINVAL; 878 str = np; 879 } 880 for (i = a; i <= z; i++) 881 if (sign == '+') 882 set_bit_inv(i, bitmap); 883 else 884 clear_bit_inv(i, bitmap); 885 while (*str == ',' || *str == '\n') 886 str++; 887 } 888 889 return 0; 890 } 891 892 int ap_parse_mask_str(const char *str, 893 unsigned long *bitmap, int bits, 894 struct mutex *lock) 895 { 896 unsigned long *newmap, size; 897 int rc; 898 899 /* bits needs to be a multiple of 8 */ 900 if (bits & 0x07) 901 return -EINVAL; 902 903 size = BITS_TO_LONGS(bits)*sizeof(unsigned long); 904 newmap = kmalloc(size, GFP_KERNEL); 905 if (!newmap) 906 return -ENOMEM; 907 if (mutex_lock_interruptible(lock)) { 908 kfree(newmap); 909 return -ERESTARTSYS; 910 } 911 912 if (*str == '+' || *str == '-') { 913 memcpy(newmap, bitmap, size); 914 rc = modify_bitmap(str, newmap, bits); 915 } else { 916 memset(newmap, 0, size); 917 rc = hex2bitmap(str, newmap, bits); 918 } 919 if (rc == 0) 920 memcpy(bitmap, newmap, size); 921 mutex_unlock(lock); 922 kfree(newmap); 923 return rc; 924 } 925 EXPORT_SYMBOL(ap_parse_mask_str); 926 927 /* 928 * AP bus attributes. 929 */ 930 931 static ssize_t ap_domain_show(struct bus_type *bus, char *buf) 932 { 933 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index); 934 } 935 936 static ssize_t ap_domain_store(struct bus_type *bus, 937 const char *buf, size_t count) 938 { 939 int domain; 940 941 if (sscanf(buf, "%i\n", &domain) != 1 || 942 domain < 0 || domain > ap_max_domain_id || 943 !test_bit_inv(domain, ap_perms.aqm)) 944 return -EINVAL; 945 946 spin_lock_bh(&ap_domain_lock); 947 ap_domain_index = domain; 948 spin_unlock_bh(&ap_domain_lock); 949 950 AP_DBF(DBF_INFO, "stored new default domain=%d\n", domain); 951 952 return count; 953 } 954 955 static BUS_ATTR_RW(ap_domain); 956 957 static ssize_t ap_control_domain_mask_show(struct bus_type *bus, char *buf) 958 { 959 if (!ap_qci_info) /* QCI not supported */ 960 return scnprintf(buf, PAGE_SIZE, "not supported\n"); 961 962 return scnprintf(buf, PAGE_SIZE, 963 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 964 ap_qci_info->adm[0], ap_qci_info->adm[1], 965 ap_qci_info->adm[2], ap_qci_info->adm[3], 966 ap_qci_info->adm[4], ap_qci_info->adm[5], 967 ap_qci_info->adm[6], ap_qci_info->adm[7]); 968 } 969 970 static BUS_ATTR_RO(ap_control_domain_mask); 971 972 static ssize_t ap_usage_domain_mask_show(struct bus_type *bus, char *buf) 973 { 974 if (!ap_qci_info) /* QCI not supported */ 975 return scnprintf(buf, PAGE_SIZE, "not supported\n"); 976 977 return scnprintf(buf, PAGE_SIZE, 978 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 979 ap_qci_info->aqm[0], ap_qci_info->aqm[1], 980 ap_qci_info->aqm[2], ap_qci_info->aqm[3], 981 ap_qci_info->aqm[4], ap_qci_info->aqm[5], 982 ap_qci_info->aqm[6], ap_qci_info->aqm[7]); 983 } 984 985 static BUS_ATTR_RO(ap_usage_domain_mask); 986 987 static ssize_t ap_adapter_mask_show(struct bus_type *bus, char *buf) 988 { 989 if (!ap_qci_info) /* QCI not supported */ 990 return scnprintf(buf, PAGE_SIZE, "not supported\n"); 991 992 return scnprintf(buf, PAGE_SIZE, 993 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 994 ap_qci_info->apm[0], ap_qci_info->apm[1], 995 ap_qci_info->apm[2], ap_qci_info->apm[3], 996 ap_qci_info->apm[4], ap_qci_info->apm[5], 997 ap_qci_info->apm[6], ap_qci_info->apm[7]); 998 } 999 1000 static BUS_ATTR_RO(ap_adapter_mask); 1001 1002 static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf) 1003 { 1004 return scnprintf(buf, PAGE_SIZE, "%d\n", 1005 ap_using_interrupts() ? 1 : 0); 1006 } 1007 1008 static BUS_ATTR_RO(ap_interrupts); 1009 1010 static ssize_t config_time_show(struct bus_type *bus, char *buf) 1011 { 1012 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_config_time); 1013 } 1014 1015 static ssize_t config_time_store(struct bus_type *bus, 1016 const char *buf, size_t count) 1017 { 1018 int time; 1019 1020 if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120) 1021 return -EINVAL; 1022 ap_config_time = time; 1023 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ); 1024 return count; 1025 } 1026 1027 static BUS_ATTR_RW(config_time); 1028 1029 static ssize_t poll_thread_show(struct bus_type *bus, char *buf) 1030 { 1031 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0); 1032 } 1033 1034 static ssize_t poll_thread_store(struct bus_type *bus, 1035 const char *buf, size_t count) 1036 { 1037 int flag, rc; 1038 1039 if (sscanf(buf, "%d\n", &flag) != 1) 1040 return -EINVAL; 1041 if (flag) { 1042 rc = ap_poll_thread_start(); 1043 if (rc) 1044 count = rc; 1045 } else 1046 ap_poll_thread_stop(); 1047 return count; 1048 } 1049 1050 static BUS_ATTR_RW(poll_thread); 1051 1052 static ssize_t poll_timeout_show(struct bus_type *bus, char *buf) 1053 { 1054 return scnprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout); 1055 } 1056 1057 static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf, 1058 size_t count) 1059 { 1060 unsigned long long time; 1061 ktime_t hr_time; 1062 1063 /* 120 seconds = maximum poll interval */ 1064 if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 || 1065 time > 120000000000ULL) 1066 return -EINVAL; 1067 poll_timeout = time; 1068 hr_time = poll_timeout; 1069 1070 spin_lock_bh(&ap_poll_timer_lock); 1071 hrtimer_cancel(&ap_poll_timer); 1072 hrtimer_set_expires(&ap_poll_timer, hr_time); 1073 hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS); 1074 spin_unlock_bh(&ap_poll_timer_lock); 1075 1076 return count; 1077 } 1078 1079 static BUS_ATTR_RW(poll_timeout); 1080 1081 static ssize_t ap_max_domain_id_show(struct bus_type *bus, char *buf) 1082 { 1083 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_max_domain_id); 1084 } 1085 1086 static BUS_ATTR_RO(ap_max_domain_id); 1087 1088 static ssize_t ap_max_adapter_id_show(struct bus_type *bus, char *buf) 1089 { 1090 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_max_adapter_id); 1091 } 1092 1093 static BUS_ATTR_RO(ap_max_adapter_id); 1094 1095 static ssize_t apmask_show(struct bus_type *bus, char *buf) 1096 { 1097 int rc; 1098 1099 if (mutex_lock_interruptible(&ap_perms_mutex)) 1100 return -ERESTARTSYS; 1101 rc = scnprintf(buf, PAGE_SIZE, 1102 "0x%016lx%016lx%016lx%016lx\n", 1103 ap_perms.apm[0], ap_perms.apm[1], 1104 ap_perms.apm[2], ap_perms.apm[3]); 1105 mutex_unlock(&ap_perms_mutex); 1106 1107 return rc; 1108 } 1109 1110 static ssize_t apmask_store(struct bus_type *bus, const char *buf, 1111 size_t count) 1112 { 1113 int rc; 1114 1115 rc = ap_parse_mask_str(buf, ap_perms.apm, AP_DEVICES, &ap_perms_mutex); 1116 if (rc) 1117 return rc; 1118 1119 ap_bus_revise_bindings(); 1120 1121 return count; 1122 } 1123 1124 static BUS_ATTR_RW(apmask); 1125 1126 static ssize_t aqmask_show(struct bus_type *bus, char *buf) 1127 { 1128 int rc; 1129 1130 if (mutex_lock_interruptible(&ap_perms_mutex)) 1131 return -ERESTARTSYS; 1132 rc = scnprintf(buf, PAGE_SIZE, 1133 "0x%016lx%016lx%016lx%016lx\n", 1134 ap_perms.aqm[0], ap_perms.aqm[1], 1135 ap_perms.aqm[2], ap_perms.aqm[3]); 1136 mutex_unlock(&ap_perms_mutex); 1137 1138 return rc; 1139 } 1140 1141 static ssize_t aqmask_store(struct bus_type *bus, const char *buf, 1142 size_t count) 1143 { 1144 int rc; 1145 1146 rc = ap_parse_mask_str(buf, ap_perms.aqm, AP_DOMAINS, &ap_perms_mutex); 1147 if (rc) 1148 return rc; 1149 1150 ap_bus_revise_bindings(); 1151 1152 return count; 1153 } 1154 1155 static BUS_ATTR_RW(aqmask); 1156 1157 static struct bus_attribute *const ap_bus_attrs[] = { 1158 &bus_attr_ap_domain, 1159 &bus_attr_ap_control_domain_mask, 1160 &bus_attr_ap_usage_domain_mask, 1161 &bus_attr_ap_adapter_mask, 1162 &bus_attr_config_time, 1163 &bus_attr_poll_thread, 1164 &bus_attr_ap_interrupts, 1165 &bus_attr_poll_timeout, 1166 &bus_attr_ap_max_domain_id, 1167 &bus_attr_ap_max_adapter_id, 1168 &bus_attr_apmask, 1169 &bus_attr_aqmask, 1170 NULL, 1171 }; 1172 1173 /** 1174 * ap_select_domain(): Select an AP domain if possible and we haven't 1175 * already done so before. 1176 */ 1177 static void ap_select_domain(void) 1178 { 1179 struct ap_queue_status status; 1180 int card, dom; 1181 1182 /* 1183 * Choose the default domain. Either the one specified with 1184 * the "domain=" parameter or the first domain with at least 1185 * one valid APQN. 1186 */ 1187 spin_lock_bh(&ap_domain_lock); 1188 if (ap_domain_index >= 0) { 1189 /* Domain has already been selected. */ 1190 goto out; 1191 } 1192 for (dom = 0; dom <= ap_max_domain_id; dom++) { 1193 if (!ap_test_config_usage_domain(dom) || 1194 !test_bit_inv(dom, ap_perms.aqm)) 1195 continue; 1196 for (card = 0; card <= ap_max_adapter_id; card++) { 1197 if (!ap_test_config_card_id(card) || 1198 !test_bit_inv(card, ap_perms.apm)) 1199 continue; 1200 status = ap_test_queue(AP_MKQID(card, dom), 1201 ap_apft_available(), 1202 NULL); 1203 if (status.response_code == AP_RESPONSE_NORMAL) 1204 break; 1205 } 1206 if (card <= ap_max_adapter_id) 1207 break; 1208 } 1209 if (dom <= ap_max_domain_id) { 1210 ap_domain_index = dom; 1211 AP_DBF(DBF_DEBUG, "%s new default domain is %d\n", 1212 __func__, ap_domain_index); 1213 } 1214 out: 1215 spin_unlock_bh(&ap_domain_lock); 1216 } 1217 1218 /* 1219 * This function checks the type and returns either 0 for not 1220 * supported or the highest compatible type value (which may 1221 * include the input type value). 1222 */ 1223 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func) 1224 { 1225 int comp_type = 0; 1226 1227 /* < CEX2A is not supported */ 1228 if (rawtype < AP_DEVICE_TYPE_CEX2A) 1229 return 0; 1230 /* up to CEX7 known and fully supported */ 1231 if (rawtype <= AP_DEVICE_TYPE_CEX7) 1232 return rawtype; 1233 /* 1234 * unknown new type > CEX7, check for compatibility 1235 * to the highest known and supported type which is 1236 * currently CEX7 with the help of the QACT function. 1237 */ 1238 if (ap_qact_available()) { 1239 struct ap_queue_status status; 1240 union ap_qact_ap_info apinfo = {0}; 1241 1242 apinfo.mode = (func >> 26) & 0x07; 1243 apinfo.cat = AP_DEVICE_TYPE_CEX7; 1244 status = ap_qact(qid, 0, &apinfo); 1245 if (status.response_code == AP_RESPONSE_NORMAL 1246 && apinfo.cat >= AP_DEVICE_TYPE_CEX2A 1247 && apinfo.cat <= AP_DEVICE_TYPE_CEX7) 1248 comp_type = apinfo.cat; 1249 } 1250 if (!comp_type) 1251 AP_DBF(DBF_WARN, "queue=%02x.%04x unable to map type %d\n", 1252 AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype); 1253 else if (comp_type != rawtype) 1254 AP_DBF(DBF_INFO, "queue=%02x.%04x map type %d to %d\n", 1255 AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype, comp_type); 1256 return comp_type; 1257 } 1258 1259 /* 1260 * Helper function to be used with bus_find_dev 1261 * matches for the card device with the given id 1262 */ 1263 static int __match_card_device_with_id(struct device *dev, const void *data) 1264 { 1265 return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *) data; 1266 } 1267 1268 /* 1269 * Helper function to be used with bus_find_dev 1270 * matches for the queue device with a given qid 1271 */ 1272 static int __match_queue_device_with_qid(struct device *dev, const void *data) 1273 { 1274 return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long) data; 1275 } 1276 1277 /* 1278 * Helper function to be used with bus_find_dev 1279 * matches any queue device with given queue id 1280 */ 1281 static int __match_queue_device_with_queue_id(struct device *dev, const void *data) 1282 { 1283 return is_queue_dev(dev) 1284 && AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long) data; 1285 } 1286 1287 /* 1288 * Helper function for ap_scan_bus(). 1289 * Does the scan bus job for the given adapter id. 1290 */ 1291 static void _ap_scan_bus_adapter(int id) 1292 { 1293 bool broken; 1294 ap_qid_t qid; 1295 unsigned int func; 1296 struct ap_card *ac; 1297 struct device *dev; 1298 struct ap_queue *aq; 1299 int rc, dom, depth, type, comp_type; 1300 1301 /* check if there is a card device registered with this id */ 1302 dev = bus_find_device(&ap_bus_type, NULL, 1303 (void *)(long) id, 1304 __match_card_device_with_id); 1305 ac = dev ? to_ap_card(dev) : NULL; 1306 if (!ap_test_config_card_id(id)) { 1307 if (dev) { 1308 /* Card device has been removed from configuration */ 1309 bus_for_each_dev(&ap_bus_type, NULL, 1310 (void *)(long) id, 1311 __ap_queue_devices_with_id_unregister); 1312 device_unregister(dev); 1313 put_device(dev); 1314 } 1315 return; 1316 } 1317 1318 /* 1319 * This card id is enabled in the configuration. If we already have 1320 * a card device with this id, check if type and functions are still 1321 * the very same. Also verify that at least one queue is available. 1322 */ 1323 if (ac) { 1324 /* find the first valid queue */ 1325 for (dom = 0; dom < AP_DOMAINS; dom++) { 1326 qid = AP_MKQID(id, dom); 1327 if (ap_queue_info(qid, &type, &func, &depth)) 1328 break; 1329 } 1330 broken = false; 1331 if (dom >= AP_DOMAINS) { 1332 /* no accessible queue on this card */ 1333 broken = true; 1334 } else if (ac->raw_hwtype != type) { 1335 /* card type has changed */ 1336 AP_DBF(DBF_INFO, "card=%02x type changed.\n", id); 1337 broken = true; 1338 } else if (ac->functions != func) { 1339 /* card functions have changed */ 1340 AP_DBF(DBF_INFO, "card=%02x functions changed.\n", id); 1341 broken = true; 1342 } 1343 if (broken) { 1344 /* unregister card device and associated queues */ 1345 bus_for_each_dev(&ap_bus_type, NULL, 1346 (void *)(long) id, 1347 __ap_queue_devices_with_id_unregister); 1348 device_unregister(dev); 1349 put_device(dev); 1350 /* go back if there is no valid queue on this card */ 1351 if (dom >= AP_DOMAINS) 1352 return; 1353 ac = NULL; 1354 } 1355 } 1356 1357 /* 1358 * Go through all possible queue ids. Check and maybe create or release 1359 * queue devices for this card. If there exists no card device yet, 1360 * create a card device also. 1361 */ 1362 for (dom = 0; dom < AP_DOMAINS; dom++) { 1363 qid = AP_MKQID(id, dom); 1364 dev = bus_find_device(&ap_bus_type, NULL, 1365 (void *)(long) qid, 1366 __match_queue_device_with_qid); 1367 aq = dev ? to_ap_queue(dev) : NULL; 1368 if (!ap_test_config_usage_domain(dom)) { 1369 if (dev) { 1370 /* Queue device exists but has been 1371 * removed from configuration. 1372 */ 1373 device_unregister(dev); 1374 put_device(dev); 1375 } 1376 continue; 1377 } 1378 /* try to fetch infos about this queue */ 1379 broken = !ap_queue_info(qid, &type, &func, &depth); 1380 if (dev) { 1381 if (!broken) { 1382 spin_lock_bh(&aq->lock); 1383 broken = aq->sm_state == AP_SM_STATE_BORKED; 1384 spin_unlock_bh(&aq->lock); 1385 } 1386 if (broken) { 1387 /* Remove broken device */ 1388 AP_DBF(DBF_DEBUG, 1389 "removing broken queue=%02x.%04x\n", 1390 id, dom); 1391 device_unregister(dev); 1392 } 1393 put_device(dev); 1394 continue; 1395 } 1396 if (broken) 1397 continue; 1398 /* a new queue device is needed, check out comp type */ 1399 comp_type = ap_get_compatible_type(qid, type, func); 1400 if (!comp_type) 1401 continue; 1402 /* maybe a card device needs to be created first */ 1403 if (!ac) { 1404 ac = ap_card_create(id, depth, type, comp_type, func); 1405 if (!ac) 1406 continue; 1407 ac->ap_dev.device.bus = &ap_bus_type; 1408 ac->ap_dev.device.parent = ap_root_device; 1409 dev_set_name(&ac->ap_dev.device, "card%02x", id); 1410 /* Register card device with AP bus */ 1411 rc = device_register(&ac->ap_dev.device); 1412 if (rc) { 1413 put_device(&ac->ap_dev.device); 1414 ac = NULL; 1415 break; 1416 } 1417 /* get it and thus adjust reference counter */ 1418 get_device(&ac->ap_dev.device); 1419 } 1420 /* now create the new queue device */ 1421 aq = ap_queue_create(qid, comp_type); 1422 if (!aq) 1423 continue; 1424 aq->card = ac; 1425 aq->ap_dev.device.bus = &ap_bus_type; 1426 aq->ap_dev.device.parent = &ac->ap_dev.device; 1427 dev_set_name(&aq->ap_dev.device, "%02x.%04x", id, dom); 1428 /* Register queue device */ 1429 rc = device_register(&aq->ap_dev.device); 1430 if (rc) { 1431 put_device(&aq->ap_dev.device); 1432 continue; 1433 } 1434 } /* end domain loop */ 1435 1436 if (ac) 1437 put_device(&ac->ap_dev.device); 1438 } 1439 1440 /** 1441 * ap_scan_bus(): Scan the AP bus for new devices 1442 * Runs periodically, workqueue timer (ap_config_time) 1443 */ 1444 static void ap_scan_bus(struct work_struct *unused) 1445 { 1446 int id; 1447 1448 ap_fetch_qci_info(ap_qci_info); 1449 ap_select_domain(); 1450 1451 AP_DBF(DBF_DEBUG, "%s running\n", __func__); 1452 1453 /* loop over all possible adapters */ 1454 for (id = 0; id < AP_DEVICES; id++) 1455 _ap_scan_bus_adapter(id); 1456 1457 /* check if there is at least one queue available with default domain */ 1458 if (ap_domain_index >= 0) { 1459 struct device *dev = 1460 bus_find_device(&ap_bus_type, NULL, 1461 (void *)(long) ap_domain_index, 1462 __match_queue_device_with_queue_id); 1463 if (dev) 1464 put_device(dev); 1465 else 1466 AP_DBF(DBF_INFO, 1467 "no queue device with default domain %d available\n", 1468 ap_domain_index); 1469 } 1470 1471 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ); 1472 } 1473 1474 static void ap_config_timeout(struct timer_list *unused) 1475 { 1476 queue_work(system_long_wq, &ap_scan_work); 1477 } 1478 1479 static int __init ap_debug_init(void) 1480 { 1481 ap_dbf_info = debug_register("ap", 1, 1, 1482 DBF_MAX_SPRINTF_ARGS * sizeof(long)); 1483 debug_register_view(ap_dbf_info, &debug_sprintf_view); 1484 debug_set_level(ap_dbf_info, DBF_ERR); 1485 1486 return 0; 1487 } 1488 1489 static void __init ap_perms_init(void) 1490 { 1491 /* all resources useable if no kernel parameter string given */ 1492 memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm)); 1493 memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm)); 1494 memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm)); 1495 1496 /* apm kernel parameter string */ 1497 if (apm_str) { 1498 memset(&ap_perms.apm, 0, sizeof(ap_perms.apm)); 1499 ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES, 1500 &ap_perms_mutex); 1501 } 1502 1503 /* aqm kernel parameter string */ 1504 if (aqm_str) { 1505 memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm)); 1506 ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS, 1507 &ap_perms_mutex); 1508 } 1509 } 1510 1511 /** 1512 * ap_module_init(): The module initialization code. 1513 * 1514 * Initializes the module. 1515 */ 1516 static int __init ap_module_init(void) 1517 { 1518 int rc, i; 1519 1520 rc = ap_debug_init(); 1521 if (rc) 1522 return rc; 1523 1524 if (!ap_instructions_available()) { 1525 pr_warn("The hardware system does not support AP instructions\n"); 1526 return -ENODEV; 1527 } 1528 1529 /* init ap_queue hashtable */ 1530 hash_init(ap_queues); 1531 1532 /* set up the AP permissions (ioctls, ap and aq masks) */ 1533 ap_perms_init(); 1534 1535 /* Get AP configuration data if available */ 1536 ap_init_qci_info(); 1537 1538 /* check default domain setting */ 1539 if (ap_domain_index < -1 || ap_domain_index > ap_max_domain_id || 1540 (ap_domain_index >= 0 && 1541 !test_bit_inv(ap_domain_index, ap_perms.aqm))) { 1542 pr_warn("%d is not a valid cryptographic domain\n", 1543 ap_domain_index); 1544 ap_domain_index = -1; 1545 } 1546 1547 /* enable interrupts if available */ 1548 if (ap_interrupts_available()) { 1549 rc = register_adapter_interrupt(&ap_airq); 1550 ap_airq_flag = (rc == 0); 1551 } 1552 1553 /* Create /sys/bus/ap. */ 1554 rc = bus_register(&ap_bus_type); 1555 if (rc) 1556 goto out; 1557 for (i = 0; ap_bus_attrs[i]; i++) { 1558 rc = bus_create_file(&ap_bus_type, ap_bus_attrs[i]); 1559 if (rc) 1560 goto out_bus; 1561 } 1562 1563 /* Create /sys/devices/ap. */ 1564 ap_root_device = root_device_register("ap"); 1565 rc = PTR_ERR_OR_ZERO(ap_root_device); 1566 if (rc) 1567 goto out_bus; 1568 1569 /* Setup the AP bus rescan timer. */ 1570 timer_setup(&ap_config_timer, ap_config_timeout, 0); 1571 1572 /* 1573 * Setup the high resultion poll timer. 1574 * If we are running under z/VM adjust polling to z/VM polling rate. 1575 */ 1576 if (MACHINE_IS_VM) 1577 poll_timeout = 1500000; 1578 spin_lock_init(&ap_poll_timer_lock); 1579 hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1580 ap_poll_timer.function = ap_poll_timeout; 1581 1582 /* Start the low priority AP bus poll thread. */ 1583 if (ap_thread_flag) { 1584 rc = ap_poll_thread_start(); 1585 if (rc) 1586 goto out_work; 1587 } 1588 1589 queue_work(system_long_wq, &ap_scan_work); 1590 1591 return 0; 1592 1593 out_work: 1594 hrtimer_cancel(&ap_poll_timer); 1595 root_device_unregister(ap_root_device); 1596 out_bus: 1597 while (i--) 1598 bus_remove_file(&ap_bus_type, ap_bus_attrs[i]); 1599 bus_unregister(&ap_bus_type); 1600 out: 1601 if (ap_using_interrupts()) 1602 unregister_adapter_interrupt(&ap_airq); 1603 kfree(ap_qci_info); 1604 return rc; 1605 } 1606 device_initcall(ap_module_init); 1607