1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright IBM Corp. 2006, 2021 4 * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com> 5 * Martin Schwidefsky <schwidefsky@de.ibm.com> 6 * Ralph Wuerthner <rwuerthn@de.ibm.com> 7 * Felix Beck <felix.beck@de.ibm.com> 8 * Holger Dengler <hd@linux.vnet.ibm.com> 9 * Harald Freudenberger <freude@linux.ibm.com> 10 * 11 * Adjunct processor bus. 12 */ 13 14 #define KMSG_COMPONENT "ap" 15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 16 17 #include <linux/kernel_stat.h> 18 #include <linux/moduleparam.h> 19 #include <linux/init.h> 20 #include <linux/delay.h> 21 #include <linux/err.h> 22 #include <linux/freezer.h> 23 #include <linux/interrupt.h> 24 #include <linux/workqueue.h> 25 #include <linux/slab.h> 26 #include <linux/notifier.h> 27 #include <linux/kthread.h> 28 #include <linux/mutex.h> 29 #include <asm/airq.h> 30 #include <linux/atomic.h> 31 #include <asm/isc.h> 32 #include <linux/hrtimer.h> 33 #include <linux/ktime.h> 34 #include <asm/facility.h> 35 #include <linux/crypto.h> 36 #include <linux/mod_devicetable.h> 37 #include <linux/debugfs.h> 38 #include <linux/ctype.h> 39 40 #include "ap_bus.h" 41 #include "ap_debug.h" 42 43 /* 44 * Module parameters; note though this file itself isn't modular. 45 */ 46 int ap_domain_index = -1; /* Adjunct Processor Domain Index */ 47 static DEFINE_SPINLOCK(ap_domain_lock); 48 module_param_named(domain, ap_domain_index, int, 0440); 49 MODULE_PARM_DESC(domain, "domain index for ap devices"); 50 EXPORT_SYMBOL(ap_domain_index); 51 52 static int ap_thread_flag; 53 module_param_named(poll_thread, ap_thread_flag, int, 0440); 54 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off)."); 55 56 static char *apm_str; 57 module_param_named(apmask, apm_str, charp, 0440); 58 MODULE_PARM_DESC(apmask, "AP bus adapter mask."); 59 60 static char *aqm_str; 61 module_param_named(aqmask, aqm_str, charp, 0440); 62 MODULE_PARM_DESC(aqmask, "AP bus domain mask."); 63 64 atomic_t ap_max_msg_size = ATOMIC_INIT(AP_DEFAULT_MAX_MSG_SIZE); 65 EXPORT_SYMBOL(ap_max_msg_size); 66 67 static struct device *ap_root_device; 68 69 /* Hashtable of all queue devices on the AP bus */ 70 DEFINE_HASHTABLE(ap_queues, 8); 71 /* lock used for the ap_queues hashtable */ 72 DEFINE_SPINLOCK(ap_queues_lock); 73 74 /* Default permissions (ioctl, card and domain masking) */ 75 struct ap_perms ap_perms; 76 EXPORT_SYMBOL(ap_perms); 77 DEFINE_MUTEX(ap_perms_mutex); 78 EXPORT_SYMBOL(ap_perms_mutex); 79 80 /* # of bus scans since init */ 81 static atomic64_t ap_scan_bus_count; 82 83 /* # of bindings complete since init */ 84 static atomic64_t ap_bindings_complete_count = ATOMIC64_INIT(0); 85 86 /* completion for initial APQN bindings complete */ 87 static DECLARE_COMPLETION(ap_init_apqn_bindings_complete); 88 89 static struct ap_config_info *ap_qci_info; 90 91 /* 92 * AP bus related debug feature things. 93 */ 94 debug_info_t *ap_dbf_info; 95 96 /* 97 * Workqueue timer for bus rescan. 98 */ 99 static struct timer_list ap_config_timer; 100 static int ap_config_time = AP_CONFIG_TIME; 101 static void ap_scan_bus(struct work_struct *); 102 static DECLARE_WORK(ap_scan_work, ap_scan_bus); 103 104 /* 105 * Tasklet & timer for AP request polling and interrupts 106 */ 107 static void ap_tasklet_fn(unsigned long); 108 static DECLARE_TASKLET_OLD(ap_tasklet, ap_tasklet_fn); 109 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait); 110 static struct task_struct *ap_poll_kthread; 111 static DEFINE_MUTEX(ap_poll_thread_mutex); 112 static DEFINE_SPINLOCK(ap_poll_timer_lock); 113 static struct hrtimer ap_poll_timer; 114 /* 115 * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds. 116 * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling. 117 */ 118 static unsigned long long poll_timeout = 250000; 119 120 /* Maximum domain id, if not given via qci */ 121 static int ap_max_domain_id = 15; 122 /* Maximum adapter id, if not given via qci */ 123 static int ap_max_adapter_id = 63; 124 125 static struct bus_type ap_bus_type; 126 127 /* Adapter interrupt definitions */ 128 static void ap_interrupt_handler(struct airq_struct *airq, bool floating); 129 130 static bool ap_irq_flag; 131 132 static struct airq_struct ap_airq = { 133 .handler = ap_interrupt_handler, 134 .isc = AP_ISC, 135 }; 136 137 /** 138 * ap_airq_ptr() - Get the address of the adapter interrupt indicator 139 * 140 * Returns the address of the local-summary-indicator of the adapter 141 * interrupt handler for AP, or NULL if adapter interrupts are not 142 * available. 143 */ 144 void *ap_airq_ptr(void) 145 { 146 if (ap_irq_flag) 147 return ap_airq.lsi_ptr; 148 return NULL; 149 } 150 151 /** 152 * ap_interrupts_available(): Test if AP interrupts are available. 153 * 154 * Returns 1 if AP interrupts are available. 155 */ 156 static int ap_interrupts_available(void) 157 { 158 return test_facility(65); 159 } 160 161 /** 162 * ap_qci_available(): Test if AP configuration 163 * information can be queried via QCI subfunction. 164 * 165 * Returns 1 if subfunction PQAP(QCI) is available. 166 */ 167 static int ap_qci_available(void) 168 { 169 return test_facility(12); 170 } 171 172 /** 173 * ap_apft_available(): Test if AP facilities test (APFT) 174 * facility is available. 175 * 176 * Returns 1 if APFT is is available. 177 */ 178 static int ap_apft_available(void) 179 { 180 return test_facility(15); 181 } 182 183 /* 184 * ap_qact_available(): Test if the PQAP(QACT) subfunction is available. 185 * 186 * Returns 1 if the QACT subfunction is available. 187 */ 188 static inline int ap_qact_available(void) 189 { 190 if (ap_qci_info) 191 return ap_qci_info->qact; 192 return 0; 193 } 194 195 /* 196 * ap_fetch_qci_info(): Fetch cryptographic config info 197 * 198 * Returns the ap configuration info fetched via PQAP(QCI). 199 * On success 0 is returned, on failure a negative errno 200 * is returned, e.g. if the PQAP(QCI) instruction is not 201 * available, the return value will be -EOPNOTSUPP. 202 */ 203 static inline int ap_fetch_qci_info(struct ap_config_info *info) 204 { 205 if (!ap_qci_available()) 206 return -EOPNOTSUPP; 207 if (!info) 208 return -EINVAL; 209 return ap_qci(info); 210 } 211 212 /** 213 * ap_init_qci_info(): Allocate and query qci config info. 214 * Does also update the static variables ap_max_domain_id 215 * and ap_max_adapter_id if this info is available. 216 */ 217 static void __init ap_init_qci_info(void) 218 { 219 if (!ap_qci_available()) { 220 AP_DBF_INFO("%s QCI not supported\n", __func__); 221 return; 222 } 223 224 ap_qci_info = kzalloc(sizeof(*ap_qci_info), GFP_KERNEL); 225 if (!ap_qci_info) 226 return; 227 if (ap_fetch_qci_info(ap_qci_info) != 0) { 228 kfree(ap_qci_info); 229 ap_qci_info = NULL; 230 return; 231 } 232 AP_DBF_INFO("%s successful fetched initial qci info\n", __func__); 233 234 if (ap_qci_info->apxa) { 235 if (ap_qci_info->Na) { 236 ap_max_adapter_id = ap_qci_info->Na; 237 AP_DBF_INFO("%s new ap_max_adapter_id is %d\n", 238 __func__, ap_max_adapter_id); 239 } 240 if (ap_qci_info->Nd) { 241 ap_max_domain_id = ap_qci_info->Nd; 242 AP_DBF_INFO("%s new ap_max_domain_id is %d\n", 243 __func__, ap_max_domain_id); 244 } 245 } 246 } 247 248 /* 249 * ap_test_config(): helper function to extract the nrth bit 250 * within the unsigned int array field. 251 */ 252 static inline int ap_test_config(unsigned int *field, unsigned int nr) 253 { 254 return ap_test_bit((field + (nr >> 5)), (nr & 0x1f)); 255 } 256 257 /* 258 * ap_test_config_card_id(): Test, whether an AP card ID is configured. 259 * 260 * Returns 0 if the card is not configured 261 * 1 if the card is configured or 262 * if the configuration information is not available 263 */ 264 static inline int ap_test_config_card_id(unsigned int id) 265 { 266 if (id > ap_max_adapter_id) 267 return 0; 268 if (ap_qci_info) 269 return ap_test_config(ap_qci_info->apm, id); 270 return 1; 271 } 272 273 /* 274 * ap_test_config_usage_domain(): Test, whether an AP usage domain 275 * is configured. 276 * 277 * Returns 0 if the usage domain is not configured 278 * 1 if the usage domain is configured or 279 * if the configuration information is not available 280 */ 281 int ap_test_config_usage_domain(unsigned int domain) 282 { 283 if (domain > ap_max_domain_id) 284 return 0; 285 if (ap_qci_info) 286 return ap_test_config(ap_qci_info->aqm, domain); 287 return 1; 288 } 289 EXPORT_SYMBOL(ap_test_config_usage_domain); 290 291 /* 292 * ap_test_config_ctrl_domain(): Test, whether an AP control domain 293 * is configured. 294 * @domain AP control domain ID 295 * 296 * Returns 1 if the control domain is configured 297 * 0 in all other cases 298 */ 299 int ap_test_config_ctrl_domain(unsigned int domain) 300 { 301 if (!ap_qci_info || domain > ap_max_domain_id) 302 return 0; 303 return ap_test_config(ap_qci_info->adm, domain); 304 } 305 EXPORT_SYMBOL(ap_test_config_ctrl_domain); 306 307 /* 308 * ap_queue_info(): Check and get AP queue info. 309 * Returns true if TAPQ succeeded and the info is filled or 310 * false otherwise. 311 */ 312 static bool ap_queue_info(ap_qid_t qid, int *q_type, unsigned int *q_fac, 313 int *q_depth, int *q_ml, bool *q_decfg) 314 { 315 struct ap_queue_status status; 316 union { 317 unsigned long value; 318 struct { 319 unsigned int fac : 32; /* facility bits */ 320 unsigned int at : 8; /* ap type */ 321 unsigned int _res1 : 8; 322 unsigned int _res2 : 4; 323 unsigned int ml : 4; /* apxl ml */ 324 unsigned int _res3 : 4; 325 unsigned int qd : 4; /* queue depth */ 326 } tapq_gr2; 327 } tapq_info; 328 329 tapq_info.value = 0; 330 331 /* make sure we don't run into a specifiation exception */ 332 if (AP_QID_CARD(qid) > ap_max_adapter_id || 333 AP_QID_QUEUE(qid) > ap_max_domain_id) 334 return false; 335 336 /* call TAPQ on this APQN */ 337 status = ap_test_queue(qid, ap_apft_available(), &tapq_info.value); 338 switch (status.response_code) { 339 case AP_RESPONSE_NORMAL: 340 case AP_RESPONSE_RESET_IN_PROGRESS: 341 case AP_RESPONSE_DECONFIGURED: 342 case AP_RESPONSE_CHECKSTOPPED: 343 case AP_RESPONSE_BUSY: 344 /* 345 * According to the architecture in all these cases the 346 * info should be filled. All bits 0 is not possible as 347 * there is at least one of the mode bits set. 348 */ 349 if (WARN_ON_ONCE(!tapq_info.value)) 350 return false; 351 *q_type = tapq_info.tapq_gr2.at; 352 *q_fac = tapq_info.tapq_gr2.fac; 353 *q_depth = tapq_info.tapq_gr2.qd; 354 *q_ml = tapq_info.tapq_gr2.ml; 355 *q_decfg = status.response_code == AP_RESPONSE_DECONFIGURED; 356 switch (*q_type) { 357 /* For CEX2 and CEX3 the available functions 358 * are not reflected by the facilities bits. 359 * Instead it is coded into the type. So here 360 * modify the function bits based on the type. 361 */ 362 case AP_DEVICE_TYPE_CEX2A: 363 case AP_DEVICE_TYPE_CEX3A: 364 *q_fac |= 0x08000000; 365 break; 366 case AP_DEVICE_TYPE_CEX2C: 367 case AP_DEVICE_TYPE_CEX3C: 368 *q_fac |= 0x10000000; 369 break; 370 default: 371 break; 372 } 373 return true; 374 default: 375 /* 376 * A response code which indicates, there is no info available. 377 */ 378 return false; 379 } 380 } 381 382 void ap_wait(enum ap_sm_wait wait) 383 { 384 ktime_t hr_time; 385 386 switch (wait) { 387 case AP_SM_WAIT_AGAIN: 388 case AP_SM_WAIT_INTERRUPT: 389 if (ap_irq_flag) 390 break; 391 if (ap_poll_kthread) { 392 wake_up(&ap_poll_wait); 393 break; 394 } 395 fallthrough; 396 case AP_SM_WAIT_TIMEOUT: 397 spin_lock_bh(&ap_poll_timer_lock); 398 if (!hrtimer_is_queued(&ap_poll_timer)) { 399 hr_time = poll_timeout; 400 hrtimer_forward_now(&ap_poll_timer, hr_time); 401 hrtimer_restart(&ap_poll_timer); 402 } 403 spin_unlock_bh(&ap_poll_timer_lock); 404 break; 405 case AP_SM_WAIT_NONE: 406 default: 407 break; 408 } 409 } 410 411 /** 412 * ap_request_timeout(): Handling of request timeouts 413 * @t: timer making this callback 414 * 415 * Handles request timeouts. 416 */ 417 void ap_request_timeout(struct timer_list *t) 418 { 419 struct ap_queue *aq = from_timer(aq, t, timeout); 420 421 spin_lock_bh(&aq->lock); 422 ap_wait(ap_sm_event(aq, AP_SM_EVENT_TIMEOUT)); 423 spin_unlock_bh(&aq->lock); 424 } 425 426 /** 427 * ap_poll_timeout(): AP receive polling for finished AP requests. 428 * @unused: Unused pointer. 429 * 430 * Schedules the AP tasklet using a high resolution timer. 431 */ 432 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused) 433 { 434 tasklet_schedule(&ap_tasklet); 435 return HRTIMER_NORESTART; 436 } 437 438 /** 439 * ap_interrupt_handler() - Schedule ap_tasklet on interrupt 440 * @airq: pointer to adapter interrupt descriptor 441 * @floating: ignored 442 */ 443 static void ap_interrupt_handler(struct airq_struct *airq, bool floating) 444 { 445 inc_irq_stat(IRQIO_APB); 446 tasklet_schedule(&ap_tasklet); 447 } 448 449 /** 450 * ap_tasklet_fn(): Tasklet to poll all AP devices. 451 * @dummy: Unused variable 452 * 453 * Poll all AP devices on the bus. 454 */ 455 static void ap_tasklet_fn(unsigned long dummy) 456 { 457 int bkt; 458 struct ap_queue *aq; 459 enum ap_sm_wait wait = AP_SM_WAIT_NONE; 460 461 /* Reset the indicator if interrupts are used. Thus new interrupts can 462 * be received. Doing it in the beginning of the tasklet is therefor 463 * important that no requests on any AP get lost. 464 */ 465 if (ap_irq_flag) 466 xchg(ap_airq.lsi_ptr, 0); 467 468 spin_lock_bh(&ap_queues_lock); 469 hash_for_each(ap_queues, bkt, aq, hnode) { 470 spin_lock_bh(&aq->lock); 471 wait = min(wait, ap_sm_event_loop(aq, AP_SM_EVENT_POLL)); 472 spin_unlock_bh(&aq->lock); 473 } 474 spin_unlock_bh(&ap_queues_lock); 475 476 ap_wait(wait); 477 } 478 479 static int ap_pending_requests(void) 480 { 481 int bkt; 482 struct ap_queue *aq; 483 484 spin_lock_bh(&ap_queues_lock); 485 hash_for_each(ap_queues, bkt, aq, hnode) { 486 if (aq->queue_count == 0) 487 continue; 488 spin_unlock_bh(&ap_queues_lock); 489 return 1; 490 } 491 spin_unlock_bh(&ap_queues_lock); 492 return 0; 493 } 494 495 /** 496 * ap_poll_thread(): Thread that polls for finished requests. 497 * @data: Unused pointer 498 * 499 * AP bus poll thread. The purpose of this thread is to poll for 500 * finished requests in a loop if there is a "free" cpu - that is 501 * a cpu that doesn't have anything better to do. The polling stops 502 * as soon as there is another task or if all messages have been 503 * delivered. 504 */ 505 static int ap_poll_thread(void *data) 506 { 507 DECLARE_WAITQUEUE(wait, current); 508 509 set_user_nice(current, MAX_NICE); 510 set_freezable(); 511 while (!kthread_should_stop()) { 512 add_wait_queue(&ap_poll_wait, &wait); 513 set_current_state(TASK_INTERRUPTIBLE); 514 if (!ap_pending_requests()) { 515 schedule(); 516 try_to_freeze(); 517 } 518 set_current_state(TASK_RUNNING); 519 remove_wait_queue(&ap_poll_wait, &wait); 520 if (need_resched()) { 521 schedule(); 522 try_to_freeze(); 523 continue; 524 } 525 ap_tasklet_fn(0); 526 } 527 528 return 0; 529 } 530 531 static int ap_poll_thread_start(void) 532 { 533 int rc; 534 535 if (ap_irq_flag || ap_poll_kthread) 536 return 0; 537 mutex_lock(&ap_poll_thread_mutex); 538 ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll"); 539 rc = PTR_ERR_OR_ZERO(ap_poll_kthread); 540 if (rc) 541 ap_poll_kthread = NULL; 542 mutex_unlock(&ap_poll_thread_mutex); 543 return rc; 544 } 545 546 static void ap_poll_thread_stop(void) 547 { 548 if (!ap_poll_kthread) 549 return; 550 mutex_lock(&ap_poll_thread_mutex); 551 kthread_stop(ap_poll_kthread); 552 ap_poll_kthread = NULL; 553 mutex_unlock(&ap_poll_thread_mutex); 554 } 555 556 #define is_card_dev(x) ((x)->parent == ap_root_device) 557 #define is_queue_dev(x) ((x)->parent != ap_root_device) 558 559 /** 560 * ap_bus_match() 561 * @dev: Pointer to device 562 * @drv: Pointer to device_driver 563 * 564 * AP bus driver registration/unregistration. 565 */ 566 static int ap_bus_match(struct device *dev, struct device_driver *drv) 567 { 568 struct ap_driver *ap_drv = to_ap_drv(drv); 569 struct ap_device_id *id; 570 571 /* 572 * Compare device type of the device with the list of 573 * supported types of the device_driver. 574 */ 575 for (id = ap_drv->ids; id->match_flags; id++) { 576 if (is_card_dev(dev) && 577 id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE && 578 id->dev_type == to_ap_dev(dev)->device_type) 579 return 1; 580 if (is_queue_dev(dev) && 581 id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE && 582 id->dev_type == to_ap_dev(dev)->device_type) 583 return 1; 584 } 585 return 0; 586 } 587 588 /** 589 * ap_uevent(): Uevent function for AP devices. 590 * @dev: Pointer to device 591 * @env: Pointer to kobj_uevent_env 592 * 593 * It sets up a single environment variable DEV_TYPE which contains the 594 * hardware device type. 595 */ 596 static int ap_uevent(struct device *dev, struct kobj_uevent_env *env) 597 { 598 int rc = 0; 599 struct ap_device *ap_dev = to_ap_dev(dev); 600 601 /* Uevents from ap bus core don't need extensions to the env */ 602 if (dev == ap_root_device) 603 return 0; 604 605 if (is_card_dev(dev)) { 606 struct ap_card *ac = to_ap_card(&ap_dev->device); 607 608 /* Set up DEV_TYPE environment variable. */ 609 rc = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type); 610 if (rc) 611 return rc; 612 /* Add MODALIAS= */ 613 rc = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type); 614 if (rc) 615 return rc; 616 617 /* Add MODE=<accel|cca|ep11> */ 618 if (ap_test_bit(&ac->functions, AP_FUNC_ACCEL)) 619 rc = add_uevent_var(env, "MODE=accel"); 620 else if (ap_test_bit(&ac->functions, AP_FUNC_COPRO)) 621 rc = add_uevent_var(env, "MODE=cca"); 622 else if (ap_test_bit(&ac->functions, AP_FUNC_EP11)) 623 rc = add_uevent_var(env, "MODE=ep11"); 624 if (rc) 625 return rc; 626 } else { 627 struct ap_queue *aq = to_ap_queue(&ap_dev->device); 628 629 /* Add MODE=<accel|cca|ep11> */ 630 if (ap_test_bit(&aq->card->functions, AP_FUNC_ACCEL)) 631 rc = add_uevent_var(env, "MODE=accel"); 632 else if (ap_test_bit(&aq->card->functions, AP_FUNC_COPRO)) 633 rc = add_uevent_var(env, "MODE=cca"); 634 else if (ap_test_bit(&aq->card->functions, AP_FUNC_EP11)) 635 rc = add_uevent_var(env, "MODE=ep11"); 636 if (rc) 637 return rc; 638 } 639 640 return 0; 641 } 642 643 static void ap_send_init_scan_done_uevent(void) 644 { 645 char *envp[] = { "INITSCAN=done", NULL }; 646 647 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp); 648 } 649 650 static void ap_send_bindings_complete_uevent(void) 651 { 652 char buf[32]; 653 char *envp[] = { "BINDINGS=complete", buf, NULL }; 654 655 snprintf(buf, sizeof(buf), "COMPLETECOUNT=%llu", 656 atomic64_inc_return(&ap_bindings_complete_count)); 657 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp); 658 } 659 660 void ap_send_config_uevent(struct ap_device *ap_dev, bool cfg) 661 { 662 char buf[16]; 663 char *envp[] = { buf, NULL }; 664 665 snprintf(buf, sizeof(buf), "CONFIG=%d", cfg ? 1 : 0); 666 667 kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp); 668 } 669 EXPORT_SYMBOL(ap_send_config_uevent); 670 671 void ap_send_online_uevent(struct ap_device *ap_dev, int online) 672 { 673 char buf[16]; 674 char *envp[] = { buf, NULL }; 675 676 snprintf(buf, sizeof(buf), "ONLINE=%d", online ? 1 : 0); 677 678 kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp); 679 } 680 EXPORT_SYMBOL(ap_send_online_uevent); 681 682 /* 683 * calc # of bound APQNs 684 */ 685 686 struct __ap_calc_ctrs { 687 unsigned int apqns; 688 unsigned int bound; 689 }; 690 691 static int __ap_calc_helper(struct device *dev, void *arg) 692 { 693 struct __ap_calc_ctrs *pctrs = (struct __ap_calc_ctrs *) arg; 694 695 if (is_queue_dev(dev)) { 696 pctrs->apqns++; 697 if (dev->driver) 698 pctrs->bound++; 699 } 700 701 return 0; 702 } 703 704 static void ap_calc_bound_apqns(unsigned int *apqns, unsigned int *bound) 705 { 706 struct __ap_calc_ctrs ctrs; 707 708 memset(&ctrs, 0, sizeof(ctrs)); 709 bus_for_each_dev(&ap_bus_type, NULL, (void *) &ctrs, __ap_calc_helper); 710 711 *apqns = ctrs.apqns; 712 *bound = ctrs.bound; 713 } 714 715 /* 716 * After initial ap bus scan do check if all existing APQNs are 717 * bound to device drivers. 718 */ 719 static void ap_check_bindings_complete(void) 720 { 721 unsigned int apqns, bound; 722 723 if (atomic64_read(&ap_scan_bus_count) >= 1) { 724 ap_calc_bound_apqns(&apqns, &bound); 725 if (bound == apqns) { 726 if (!completion_done(&ap_init_apqn_bindings_complete)) { 727 complete_all(&ap_init_apqn_bindings_complete); 728 AP_DBF(DBF_INFO, "%s complete\n", __func__); 729 } 730 ap_send_bindings_complete_uevent(); 731 } 732 } 733 } 734 735 /* 736 * Interface to wait for the AP bus to have done one initial ap bus 737 * scan and all detected APQNs have been bound to device drivers. 738 * If these both conditions are not fulfilled, this function blocks 739 * on a condition with wait_for_completion_interruptible_timeout(). 740 * If these both conditions are fulfilled (before the timeout hits) 741 * the return value is 0. If the timeout (in jiffies) hits instead 742 * -ETIME is returned. On failures negative return values are 743 * returned to the caller. 744 */ 745 int ap_wait_init_apqn_bindings_complete(unsigned long timeout) 746 { 747 long l; 748 749 if (completion_done(&ap_init_apqn_bindings_complete)) 750 return 0; 751 752 if (timeout) 753 l = wait_for_completion_interruptible_timeout( 754 &ap_init_apqn_bindings_complete, timeout); 755 else 756 l = wait_for_completion_interruptible( 757 &ap_init_apqn_bindings_complete); 758 if (l < 0) 759 return l == -ERESTARTSYS ? -EINTR : l; 760 else if (l == 0 && timeout) 761 return -ETIME; 762 763 return 0; 764 } 765 EXPORT_SYMBOL(ap_wait_init_apqn_bindings_complete); 766 767 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data) 768 { 769 if (is_queue_dev(dev) && 770 AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long) data) 771 device_unregister(dev); 772 return 0; 773 } 774 775 static int __ap_revise_reserved(struct device *dev, void *dummy) 776 { 777 int rc, card, queue, devres, drvres; 778 779 if (is_queue_dev(dev)) { 780 card = AP_QID_CARD(to_ap_queue(dev)->qid); 781 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid); 782 mutex_lock(&ap_perms_mutex); 783 devres = test_bit_inv(card, ap_perms.apm) 784 && test_bit_inv(queue, ap_perms.aqm); 785 mutex_unlock(&ap_perms_mutex); 786 drvres = to_ap_drv(dev->driver)->flags 787 & AP_DRIVER_FLAG_DEFAULT; 788 if (!!devres != !!drvres) { 789 AP_DBF_DBG("reprobing queue=%02x.%04x\n", 790 card, queue); 791 rc = device_reprobe(dev); 792 } 793 } 794 795 return 0; 796 } 797 798 static void ap_bus_revise_bindings(void) 799 { 800 bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved); 801 } 802 803 int ap_owned_by_def_drv(int card, int queue) 804 { 805 int rc = 0; 806 807 if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS) 808 return -EINVAL; 809 810 mutex_lock(&ap_perms_mutex); 811 812 if (test_bit_inv(card, ap_perms.apm) 813 && test_bit_inv(queue, ap_perms.aqm)) 814 rc = 1; 815 816 mutex_unlock(&ap_perms_mutex); 817 818 return rc; 819 } 820 EXPORT_SYMBOL(ap_owned_by_def_drv); 821 822 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm, 823 unsigned long *aqm) 824 { 825 int card, queue, rc = 0; 826 827 mutex_lock(&ap_perms_mutex); 828 829 for (card = 0; !rc && card < AP_DEVICES; card++) 830 if (test_bit_inv(card, apm) && 831 test_bit_inv(card, ap_perms.apm)) 832 for (queue = 0; !rc && queue < AP_DOMAINS; queue++) 833 if (test_bit_inv(queue, aqm) && 834 test_bit_inv(queue, ap_perms.aqm)) 835 rc = 1; 836 837 mutex_unlock(&ap_perms_mutex); 838 839 return rc; 840 } 841 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv); 842 843 static int ap_device_probe(struct device *dev) 844 { 845 struct ap_device *ap_dev = to_ap_dev(dev); 846 struct ap_driver *ap_drv = to_ap_drv(dev->driver); 847 int card, queue, devres, drvres, rc = -ENODEV; 848 849 if (!get_device(dev)) 850 return rc; 851 852 if (is_queue_dev(dev)) { 853 /* 854 * If the apqn is marked as reserved/used by ap bus and 855 * default drivers, only probe with drivers with the default 856 * flag set. If it is not marked, only probe with drivers 857 * with the default flag not set. 858 */ 859 card = AP_QID_CARD(to_ap_queue(dev)->qid); 860 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid); 861 mutex_lock(&ap_perms_mutex); 862 devres = test_bit_inv(card, ap_perms.apm) 863 && test_bit_inv(queue, ap_perms.aqm); 864 mutex_unlock(&ap_perms_mutex); 865 drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT; 866 if (!!devres != !!drvres) 867 goto out; 868 } 869 870 /* Add queue/card to list of active queues/cards */ 871 spin_lock_bh(&ap_queues_lock); 872 if (is_queue_dev(dev)) 873 hash_add(ap_queues, &to_ap_queue(dev)->hnode, 874 to_ap_queue(dev)->qid); 875 spin_unlock_bh(&ap_queues_lock); 876 877 rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV; 878 879 if (rc) { 880 spin_lock_bh(&ap_queues_lock); 881 if (is_queue_dev(dev)) 882 hash_del(&to_ap_queue(dev)->hnode); 883 spin_unlock_bh(&ap_queues_lock); 884 } else 885 ap_check_bindings_complete(); 886 887 out: 888 if (rc) 889 put_device(dev); 890 return rc; 891 } 892 893 static void ap_device_remove(struct device *dev) 894 { 895 struct ap_device *ap_dev = to_ap_dev(dev); 896 struct ap_driver *ap_drv = to_ap_drv(dev->driver); 897 898 /* prepare ap queue device removal */ 899 if (is_queue_dev(dev)) 900 ap_queue_prepare_remove(to_ap_queue(dev)); 901 902 /* driver's chance to clean up gracefully */ 903 if (ap_drv->remove) 904 ap_drv->remove(ap_dev); 905 906 /* now do the ap queue device remove */ 907 if (is_queue_dev(dev)) 908 ap_queue_remove(to_ap_queue(dev)); 909 910 /* Remove queue/card from list of active queues/cards */ 911 spin_lock_bh(&ap_queues_lock); 912 if (is_queue_dev(dev)) 913 hash_del(&to_ap_queue(dev)->hnode); 914 spin_unlock_bh(&ap_queues_lock); 915 916 put_device(dev); 917 } 918 919 struct ap_queue *ap_get_qdev(ap_qid_t qid) 920 { 921 int bkt; 922 struct ap_queue *aq; 923 924 spin_lock_bh(&ap_queues_lock); 925 hash_for_each(ap_queues, bkt, aq, hnode) { 926 if (aq->qid == qid) { 927 get_device(&aq->ap_dev.device); 928 spin_unlock_bh(&ap_queues_lock); 929 return aq; 930 } 931 } 932 spin_unlock_bh(&ap_queues_lock); 933 934 return NULL; 935 } 936 EXPORT_SYMBOL(ap_get_qdev); 937 938 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner, 939 char *name) 940 { 941 struct device_driver *drv = &ap_drv->driver; 942 943 drv->bus = &ap_bus_type; 944 drv->owner = owner; 945 drv->name = name; 946 return driver_register(drv); 947 } 948 EXPORT_SYMBOL(ap_driver_register); 949 950 void ap_driver_unregister(struct ap_driver *ap_drv) 951 { 952 driver_unregister(&ap_drv->driver); 953 } 954 EXPORT_SYMBOL(ap_driver_unregister); 955 956 void ap_bus_force_rescan(void) 957 { 958 /* processing a asynchronous bus rescan */ 959 del_timer(&ap_config_timer); 960 queue_work(system_long_wq, &ap_scan_work); 961 flush_work(&ap_scan_work); 962 } 963 EXPORT_SYMBOL(ap_bus_force_rescan); 964 965 /* 966 * A config change has happened, force an ap bus rescan. 967 */ 968 void ap_bus_cfg_chg(void) 969 { 970 AP_DBF_DBG("%s config change, forcing bus rescan\n", __func__); 971 972 ap_bus_force_rescan(); 973 } 974 975 /* 976 * hex2bitmap() - parse hex mask string and set bitmap. 977 * Valid strings are "0x012345678" with at least one valid hex number. 978 * Rest of the bitmap to the right is padded with 0. No spaces allowed 979 * within the string, the leading 0x may be omitted. 980 * Returns the bitmask with exactly the bits set as given by the hex 981 * string (both in big endian order). 982 */ 983 static int hex2bitmap(const char *str, unsigned long *bitmap, int bits) 984 { 985 int i, n, b; 986 987 /* bits needs to be a multiple of 8 */ 988 if (bits & 0x07) 989 return -EINVAL; 990 991 if (str[0] == '0' && str[1] == 'x') 992 str++; 993 if (*str == 'x') 994 str++; 995 996 for (i = 0; isxdigit(*str) && i < bits; str++) { 997 b = hex_to_bin(*str); 998 for (n = 0; n < 4; n++) 999 if (b & (0x08 >> n)) 1000 set_bit_inv(i + n, bitmap); 1001 i += 4; 1002 } 1003 1004 if (*str == '\n') 1005 str++; 1006 if (*str) 1007 return -EINVAL; 1008 return 0; 1009 } 1010 1011 /* 1012 * modify_bitmap() - parse bitmask argument and modify an existing 1013 * bit mask accordingly. A concatenation (done with ',') of these 1014 * terms is recognized: 1015 * +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>] 1016 * <bitnr> may be any valid number (hex, decimal or octal) in the range 1017 * 0...bits-1; the leading + or - is required. Here are some examples: 1018 * +0-15,+32,-128,-0xFF 1019 * -0-255,+1-16,+0x128 1020 * +1,+2,+3,+4,-5,-7-10 1021 * Returns the new bitmap after all changes have been applied. Every 1022 * positive value in the string will set a bit and every negative value 1023 * in the string will clear a bit. As a bit may be touched more than once, 1024 * the last 'operation' wins: 1025 * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be 1026 * cleared again. All other bits are unmodified. 1027 */ 1028 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits) 1029 { 1030 int a, i, z; 1031 char *np, sign; 1032 1033 /* bits needs to be a multiple of 8 */ 1034 if (bits & 0x07) 1035 return -EINVAL; 1036 1037 while (*str) { 1038 sign = *str++; 1039 if (sign != '+' && sign != '-') 1040 return -EINVAL; 1041 a = z = simple_strtoul(str, &np, 0); 1042 if (str == np || a >= bits) 1043 return -EINVAL; 1044 str = np; 1045 if (*str == '-') { 1046 z = simple_strtoul(++str, &np, 0); 1047 if (str == np || a > z || z >= bits) 1048 return -EINVAL; 1049 str = np; 1050 } 1051 for (i = a; i <= z; i++) 1052 if (sign == '+') 1053 set_bit_inv(i, bitmap); 1054 else 1055 clear_bit_inv(i, bitmap); 1056 while (*str == ',' || *str == '\n') 1057 str++; 1058 } 1059 1060 return 0; 1061 } 1062 1063 int ap_parse_mask_str(const char *str, 1064 unsigned long *bitmap, int bits, 1065 struct mutex *lock) 1066 { 1067 unsigned long *newmap, size; 1068 int rc; 1069 1070 /* bits needs to be a multiple of 8 */ 1071 if (bits & 0x07) 1072 return -EINVAL; 1073 1074 size = BITS_TO_LONGS(bits)*sizeof(unsigned long); 1075 newmap = kmalloc(size, GFP_KERNEL); 1076 if (!newmap) 1077 return -ENOMEM; 1078 if (mutex_lock_interruptible(lock)) { 1079 kfree(newmap); 1080 return -ERESTARTSYS; 1081 } 1082 1083 if (*str == '+' || *str == '-') { 1084 memcpy(newmap, bitmap, size); 1085 rc = modify_bitmap(str, newmap, bits); 1086 } else { 1087 memset(newmap, 0, size); 1088 rc = hex2bitmap(str, newmap, bits); 1089 } 1090 if (rc == 0) 1091 memcpy(bitmap, newmap, size); 1092 mutex_unlock(lock); 1093 kfree(newmap); 1094 return rc; 1095 } 1096 EXPORT_SYMBOL(ap_parse_mask_str); 1097 1098 /* 1099 * AP bus attributes. 1100 */ 1101 1102 static ssize_t ap_domain_show(struct bus_type *bus, char *buf) 1103 { 1104 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index); 1105 } 1106 1107 static ssize_t ap_domain_store(struct bus_type *bus, 1108 const char *buf, size_t count) 1109 { 1110 int domain; 1111 1112 if (sscanf(buf, "%i\n", &domain) != 1 || 1113 domain < 0 || domain > ap_max_domain_id || 1114 !test_bit_inv(domain, ap_perms.aqm)) 1115 return -EINVAL; 1116 1117 spin_lock_bh(&ap_domain_lock); 1118 ap_domain_index = domain; 1119 spin_unlock_bh(&ap_domain_lock); 1120 1121 AP_DBF_INFO("stored new default domain=%d\n", domain); 1122 1123 return count; 1124 } 1125 1126 static BUS_ATTR_RW(ap_domain); 1127 1128 static ssize_t ap_control_domain_mask_show(struct bus_type *bus, char *buf) 1129 { 1130 if (!ap_qci_info) /* QCI not supported */ 1131 return scnprintf(buf, PAGE_SIZE, "not supported\n"); 1132 1133 return scnprintf(buf, PAGE_SIZE, 1134 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1135 ap_qci_info->adm[0], ap_qci_info->adm[1], 1136 ap_qci_info->adm[2], ap_qci_info->adm[3], 1137 ap_qci_info->adm[4], ap_qci_info->adm[5], 1138 ap_qci_info->adm[6], ap_qci_info->adm[7]); 1139 } 1140 1141 static BUS_ATTR_RO(ap_control_domain_mask); 1142 1143 static ssize_t ap_usage_domain_mask_show(struct bus_type *bus, char *buf) 1144 { 1145 if (!ap_qci_info) /* QCI not supported */ 1146 return scnprintf(buf, PAGE_SIZE, "not supported\n"); 1147 1148 return scnprintf(buf, PAGE_SIZE, 1149 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1150 ap_qci_info->aqm[0], ap_qci_info->aqm[1], 1151 ap_qci_info->aqm[2], ap_qci_info->aqm[3], 1152 ap_qci_info->aqm[4], ap_qci_info->aqm[5], 1153 ap_qci_info->aqm[6], ap_qci_info->aqm[7]); 1154 } 1155 1156 static BUS_ATTR_RO(ap_usage_domain_mask); 1157 1158 static ssize_t ap_adapter_mask_show(struct bus_type *bus, char *buf) 1159 { 1160 if (!ap_qci_info) /* QCI not supported */ 1161 return scnprintf(buf, PAGE_SIZE, "not supported\n"); 1162 1163 return scnprintf(buf, PAGE_SIZE, 1164 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1165 ap_qci_info->apm[0], ap_qci_info->apm[1], 1166 ap_qci_info->apm[2], ap_qci_info->apm[3], 1167 ap_qci_info->apm[4], ap_qci_info->apm[5], 1168 ap_qci_info->apm[6], ap_qci_info->apm[7]); 1169 } 1170 1171 static BUS_ATTR_RO(ap_adapter_mask); 1172 1173 static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf) 1174 { 1175 return scnprintf(buf, PAGE_SIZE, "%d\n", 1176 ap_irq_flag ? 1 : 0); 1177 } 1178 1179 static BUS_ATTR_RO(ap_interrupts); 1180 1181 static ssize_t config_time_show(struct bus_type *bus, char *buf) 1182 { 1183 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_config_time); 1184 } 1185 1186 static ssize_t config_time_store(struct bus_type *bus, 1187 const char *buf, size_t count) 1188 { 1189 int time; 1190 1191 if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120) 1192 return -EINVAL; 1193 ap_config_time = time; 1194 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ); 1195 return count; 1196 } 1197 1198 static BUS_ATTR_RW(config_time); 1199 1200 static ssize_t poll_thread_show(struct bus_type *bus, char *buf) 1201 { 1202 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0); 1203 } 1204 1205 static ssize_t poll_thread_store(struct bus_type *bus, 1206 const char *buf, size_t count) 1207 { 1208 int flag, rc; 1209 1210 if (sscanf(buf, "%d\n", &flag) != 1) 1211 return -EINVAL; 1212 if (flag) { 1213 rc = ap_poll_thread_start(); 1214 if (rc) 1215 count = rc; 1216 } else 1217 ap_poll_thread_stop(); 1218 return count; 1219 } 1220 1221 static BUS_ATTR_RW(poll_thread); 1222 1223 static ssize_t poll_timeout_show(struct bus_type *bus, char *buf) 1224 { 1225 return scnprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout); 1226 } 1227 1228 static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf, 1229 size_t count) 1230 { 1231 unsigned long long time; 1232 ktime_t hr_time; 1233 1234 /* 120 seconds = maximum poll interval */ 1235 if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 || 1236 time > 120000000000ULL) 1237 return -EINVAL; 1238 poll_timeout = time; 1239 hr_time = poll_timeout; 1240 1241 spin_lock_bh(&ap_poll_timer_lock); 1242 hrtimer_cancel(&ap_poll_timer); 1243 hrtimer_set_expires(&ap_poll_timer, hr_time); 1244 hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS); 1245 spin_unlock_bh(&ap_poll_timer_lock); 1246 1247 return count; 1248 } 1249 1250 static BUS_ATTR_RW(poll_timeout); 1251 1252 static ssize_t ap_max_domain_id_show(struct bus_type *bus, char *buf) 1253 { 1254 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_max_domain_id); 1255 } 1256 1257 static BUS_ATTR_RO(ap_max_domain_id); 1258 1259 static ssize_t ap_max_adapter_id_show(struct bus_type *bus, char *buf) 1260 { 1261 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_max_adapter_id); 1262 } 1263 1264 static BUS_ATTR_RO(ap_max_adapter_id); 1265 1266 static ssize_t apmask_show(struct bus_type *bus, char *buf) 1267 { 1268 int rc; 1269 1270 if (mutex_lock_interruptible(&ap_perms_mutex)) 1271 return -ERESTARTSYS; 1272 rc = scnprintf(buf, PAGE_SIZE, 1273 "0x%016lx%016lx%016lx%016lx\n", 1274 ap_perms.apm[0], ap_perms.apm[1], 1275 ap_perms.apm[2], ap_perms.apm[3]); 1276 mutex_unlock(&ap_perms_mutex); 1277 1278 return rc; 1279 } 1280 1281 static ssize_t apmask_store(struct bus_type *bus, const char *buf, 1282 size_t count) 1283 { 1284 int rc; 1285 1286 rc = ap_parse_mask_str(buf, ap_perms.apm, AP_DEVICES, &ap_perms_mutex); 1287 if (rc) 1288 return rc; 1289 1290 ap_bus_revise_bindings(); 1291 1292 return count; 1293 } 1294 1295 static BUS_ATTR_RW(apmask); 1296 1297 static ssize_t aqmask_show(struct bus_type *bus, char *buf) 1298 { 1299 int rc; 1300 1301 if (mutex_lock_interruptible(&ap_perms_mutex)) 1302 return -ERESTARTSYS; 1303 rc = scnprintf(buf, PAGE_SIZE, 1304 "0x%016lx%016lx%016lx%016lx\n", 1305 ap_perms.aqm[0], ap_perms.aqm[1], 1306 ap_perms.aqm[2], ap_perms.aqm[3]); 1307 mutex_unlock(&ap_perms_mutex); 1308 1309 return rc; 1310 } 1311 1312 static ssize_t aqmask_store(struct bus_type *bus, const char *buf, 1313 size_t count) 1314 { 1315 int rc; 1316 1317 rc = ap_parse_mask_str(buf, ap_perms.aqm, AP_DOMAINS, &ap_perms_mutex); 1318 if (rc) 1319 return rc; 1320 1321 ap_bus_revise_bindings(); 1322 1323 return count; 1324 } 1325 1326 static BUS_ATTR_RW(aqmask); 1327 1328 static ssize_t scans_show(struct bus_type *bus, char *buf) 1329 { 1330 return scnprintf(buf, PAGE_SIZE, "%llu\n", 1331 atomic64_read(&ap_scan_bus_count)); 1332 } 1333 1334 static BUS_ATTR_RO(scans); 1335 1336 static ssize_t bindings_show(struct bus_type *bus, char *buf) 1337 { 1338 int rc; 1339 unsigned int apqns, n; 1340 1341 ap_calc_bound_apqns(&apqns, &n); 1342 if (atomic64_read(&ap_scan_bus_count) >= 1 && n == apqns) 1343 rc = scnprintf(buf, PAGE_SIZE, "%u/%u (complete)\n", n, apqns); 1344 else 1345 rc = scnprintf(buf, PAGE_SIZE, "%u/%u\n", n, apqns); 1346 1347 return rc; 1348 } 1349 1350 static BUS_ATTR_RO(bindings); 1351 1352 static struct attribute *ap_bus_attrs[] = { 1353 &bus_attr_ap_domain.attr, 1354 &bus_attr_ap_control_domain_mask.attr, 1355 &bus_attr_ap_usage_domain_mask.attr, 1356 &bus_attr_ap_adapter_mask.attr, 1357 &bus_attr_config_time.attr, 1358 &bus_attr_poll_thread.attr, 1359 &bus_attr_ap_interrupts.attr, 1360 &bus_attr_poll_timeout.attr, 1361 &bus_attr_ap_max_domain_id.attr, 1362 &bus_attr_ap_max_adapter_id.attr, 1363 &bus_attr_apmask.attr, 1364 &bus_attr_aqmask.attr, 1365 &bus_attr_scans.attr, 1366 &bus_attr_bindings.attr, 1367 NULL, 1368 }; 1369 ATTRIBUTE_GROUPS(ap_bus); 1370 1371 static struct bus_type ap_bus_type = { 1372 .name = "ap", 1373 .bus_groups = ap_bus_groups, 1374 .match = &ap_bus_match, 1375 .uevent = &ap_uevent, 1376 .probe = ap_device_probe, 1377 .remove = ap_device_remove, 1378 }; 1379 1380 /** 1381 * ap_select_domain(): Select an AP domain if possible and we haven't 1382 * already done so before. 1383 */ 1384 static void ap_select_domain(void) 1385 { 1386 struct ap_queue_status status; 1387 int card, dom; 1388 1389 /* 1390 * Choose the default domain. Either the one specified with 1391 * the "domain=" parameter or the first domain with at least 1392 * one valid APQN. 1393 */ 1394 spin_lock_bh(&ap_domain_lock); 1395 if (ap_domain_index >= 0) { 1396 /* Domain has already been selected. */ 1397 goto out; 1398 } 1399 for (dom = 0; dom <= ap_max_domain_id; dom++) { 1400 if (!ap_test_config_usage_domain(dom) || 1401 !test_bit_inv(dom, ap_perms.aqm)) 1402 continue; 1403 for (card = 0; card <= ap_max_adapter_id; card++) { 1404 if (!ap_test_config_card_id(card) || 1405 !test_bit_inv(card, ap_perms.apm)) 1406 continue; 1407 status = ap_test_queue(AP_MKQID(card, dom), 1408 ap_apft_available(), 1409 NULL); 1410 if (status.response_code == AP_RESPONSE_NORMAL) 1411 break; 1412 } 1413 if (card <= ap_max_adapter_id) 1414 break; 1415 } 1416 if (dom <= ap_max_domain_id) { 1417 ap_domain_index = dom; 1418 AP_DBF_INFO("%s new default domain is %d\n", 1419 __func__, ap_domain_index); 1420 } 1421 out: 1422 spin_unlock_bh(&ap_domain_lock); 1423 } 1424 1425 /* 1426 * This function checks the type and returns either 0 for not 1427 * supported or the highest compatible type value (which may 1428 * include the input type value). 1429 */ 1430 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func) 1431 { 1432 int comp_type = 0; 1433 1434 /* < CEX2A is not supported */ 1435 if (rawtype < AP_DEVICE_TYPE_CEX2A) { 1436 AP_DBF_WARN("get_comp_type queue=%02x.%04x unsupported type %d\n", 1437 AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype); 1438 return 0; 1439 } 1440 /* up to CEX7 known and fully supported */ 1441 if (rawtype <= AP_DEVICE_TYPE_CEX7) 1442 return rawtype; 1443 /* 1444 * unknown new type > CEX7, check for compatibility 1445 * to the highest known and supported type which is 1446 * currently CEX7 with the help of the QACT function. 1447 */ 1448 if (ap_qact_available()) { 1449 struct ap_queue_status status; 1450 union ap_qact_ap_info apinfo = {0}; 1451 1452 apinfo.mode = (func >> 26) & 0x07; 1453 apinfo.cat = AP_DEVICE_TYPE_CEX7; 1454 status = ap_qact(qid, 0, &apinfo); 1455 if (status.response_code == AP_RESPONSE_NORMAL 1456 && apinfo.cat >= AP_DEVICE_TYPE_CEX2A 1457 && apinfo.cat <= AP_DEVICE_TYPE_CEX7) 1458 comp_type = apinfo.cat; 1459 } 1460 if (!comp_type) 1461 AP_DBF_WARN("get_comp_type queue=%02x.%04x unable to map type %d\n", 1462 AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype); 1463 else if (comp_type != rawtype) 1464 AP_DBF_INFO("get_comp_type queue=%02x.%04x map type %d to %d\n", 1465 AP_QID_CARD(qid), AP_QID_QUEUE(qid), 1466 rawtype, comp_type); 1467 return comp_type; 1468 } 1469 1470 /* 1471 * Helper function to be used with bus_find_dev 1472 * matches for the card device with the given id 1473 */ 1474 static int __match_card_device_with_id(struct device *dev, const void *data) 1475 { 1476 return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *) data; 1477 } 1478 1479 /* 1480 * Helper function to be used with bus_find_dev 1481 * matches for the queue device with a given qid 1482 */ 1483 static int __match_queue_device_with_qid(struct device *dev, const void *data) 1484 { 1485 return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long) data; 1486 } 1487 1488 /* 1489 * Helper function to be used with bus_find_dev 1490 * matches any queue device with given queue id 1491 */ 1492 static int __match_queue_device_with_queue_id(struct device *dev, const void *data) 1493 { 1494 return is_queue_dev(dev) 1495 && AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long) data; 1496 } 1497 1498 /* 1499 * Helper function for ap_scan_bus(). 1500 * Remove card device and associated queue devices. 1501 */ 1502 static inline void ap_scan_rm_card_dev_and_queue_devs(struct ap_card *ac) 1503 { 1504 bus_for_each_dev(&ap_bus_type, NULL, 1505 (void *)(long) ac->id, 1506 __ap_queue_devices_with_id_unregister); 1507 device_unregister(&ac->ap_dev.device); 1508 } 1509 1510 /* 1511 * Helper function for ap_scan_bus(). 1512 * Does the scan bus job for all the domains within 1513 * a valid adapter given by an ap_card ptr. 1514 */ 1515 static inline void ap_scan_domains(struct ap_card *ac) 1516 { 1517 bool decfg; 1518 ap_qid_t qid; 1519 unsigned int func; 1520 struct device *dev; 1521 struct ap_queue *aq; 1522 int rc, dom, depth, type, ml; 1523 1524 /* 1525 * Go through the configuration for the domains and compare them 1526 * to the existing queue devices. Also take care of the config 1527 * and error state for the queue devices. 1528 */ 1529 1530 for (dom = 0; dom <= ap_max_domain_id; dom++) { 1531 qid = AP_MKQID(ac->id, dom); 1532 dev = bus_find_device(&ap_bus_type, NULL, 1533 (void *)(long) qid, 1534 __match_queue_device_with_qid); 1535 aq = dev ? to_ap_queue(dev) : NULL; 1536 if (!ap_test_config_usage_domain(dom)) { 1537 if (dev) { 1538 AP_DBF_INFO("%s(%d,%d) not in config any more, rm queue device\n", 1539 __func__, ac->id, dom); 1540 device_unregister(dev); 1541 put_device(dev); 1542 } 1543 continue; 1544 } 1545 /* domain is valid, get info from this APQN */ 1546 if (!ap_queue_info(qid, &type, &func, &depth, &ml, &decfg)) { 1547 if (aq) { 1548 AP_DBF_INFO( 1549 "%s(%d,%d) ap_queue_info() not successful, rm queue device\n", 1550 __func__, ac->id, dom); 1551 device_unregister(dev); 1552 put_device(dev); 1553 } 1554 continue; 1555 } 1556 /* if no queue device exists, create a new one */ 1557 if (!aq) { 1558 aq = ap_queue_create(qid, ac->ap_dev.device_type); 1559 if (!aq) { 1560 AP_DBF_WARN("%s(%d,%d) ap_queue_create() failed\n", 1561 __func__, ac->id, dom); 1562 continue; 1563 } 1564 aq->card = ac; 1565 aq->config = !decfg; 1566 dev = &aq->ap_dev.device; 1567 dev->bus = &ap_bus_type; 1568 dev->parent = &ac->ap_dev.device; 1569 dev_set_name(dev, "%02x.%04x", ac->id, dom); 1570 /* register queue device */ 1571 rc = device_register(dev); 1572 if (rc) { 1573 AP_DBF_WARN("%s(%d,%d) device_register() failed\n", 1574 __func__, ac->id, dom); 1575 goto put_dev_and_continue; 1576 } 1577 /* get it and thus adjust reference counter */ 1578 get_device(dev); 1579 if (decfg) 1580 AP_DBF_INFO("%s(%d,%d) new (decfg) queue device created\n", 1581 __func__, ac->id, dom); 1582 else 1583 AP_DBF_INFO("%s(%d,%d) new queue device created\n", 1584 __func__, ac->id, dom); 1585 goto put_dev_and_continue; 1586 } 1587 /* Check config state on the already existing queue device */ 1588 spin_lock_bh(&aq->lock); 1589 if (decfg && aq->config) { 1590 /* config off this queue device */ 1591 aq->config = false; 1592 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) { 1593 aq->dev_state = AP_DEV_STATE_ERROR; 1594 aq->last_err_rc = AP_RESPONSE_DECONFIGURED; 1595 } 1596 spin_unlock_bh(&aq->lock); 1597 AP_DBF_INFO("%s(%d,%d) queue device config off\n", 1598 __func__, ac->id, dom); 1599 ap_send_config_uevent(&aq->ap_dev, aq->config); 1600 /* 'receive' pending messages with -EAGAIN */ 1601 ap_flush_queue(aq); 1602 goto put_dev_and_continue; 1603 } 1604 if (!decfg && !aq->config) { 1605 /* config on this queue device */ 1606 aq->config = true; 1607 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) { 1608 aq->dev_state = AP_DEV_STATE_OPERATING; 1609 aq->sm_state = AP_SM_STATE_RESET_START; 1610 } 1611 spin_unlock_bh(&aq->lock); 1612 AP_DBF_INFO("%s(%d,%d) queue device config on\n", 1613 __func__, ac->id, dom); 1614 ap_send_config_uevent(&aq->ap_dev, aq->config); 1615 goto put_dev_and_continue; 1616 } 1617 /* handle other error states */ 1618 if (!decfg && aq->dev_state == AP_DEV_STATE_ERROR) { 1619 spin_unlock_bh(&aq->lock); 1620 /* 'receive' pending messages with -EAGAIN */ 1621 ap_flush_queue(aq); 1622 /* re-init (with reset) the queue device */ 1623 ap_queue_init_state(aq); 1624 AP_DBF_INFO("%s(%d,%d) queue device reinit enforced\n", 1625 __func__, ac->id, dom); 1626 goto put_dev_and_continue; 1627 } 1628 spin_unlock_bh(&aq->lock); 1629 put_dev_and_continue: 1630 put_device(dev); 1631 } 1632 } 1633 1634 /* 1635 * Helper function for ap_scan_bus(). 1636 * Does the scan bus job for the given adapter id. 1637 */ 1638 static inline void ap_scan_adapter(int ap) 1639 { 1640 bool decfg; 1641 ap_qid_t qid; 1642 unsigned int func; 1643 struct device *dev; 1644 struct ap_card *ac; 1645 int rc, dom, depth, type, comp_type, ml; 1646 1647 /* Is there currently a card device for this adapter ? */ 1648 dev = bus_find_device(&ap_bus_type, NULL, 1649 (void *)(long) ap, 1650 __match_card_device_with_id); 1651 ac = dev ? to_ap_card(dev) : NULL; 1652 1653 /* Adapter not in configuration ? */ 1654 if (!ap_test_config_card_id(ap)) { 1655 if (ac) { 1656 AP_DBF_INFO("%s(%d) ap not in config any more, rm card and queue devices\n", 1657 __func__, ap); 1658 ap_scan_rm_card_dev_and_queue_devs(ac); 1659 put_device(dev); 1660 } 1661 return; 1662 } 1663 1664 /* 1665 * Adapter ap is valid in the current configuration. So do some checks: 1666 * If no card device exists, build one. If a card device exists, check 1667 * for type and functions changed. For all this we need to find a valid 1668 * APQN first. 1669 */ 1670 1671 for (dom = 0; dom <= ap_max_domain_id; dom++) 1672 if (ap_test_config_usage_domain(dom)) { 1673 qid = AP_MKQID(ap, dom); 1674 if (ap_queue_info(qid, &type, &func, 1675 &depth, &ml, &decfg)) 1676 break; 1677 } 1678 if (dom > ap_max_domain_id) { 1679 /* Could not find a valid APQN for this adapter */ 1680 if (ac) { 1681 AP_DBF_INFO( 1682 "%s(%d) no type info (no APQN found), rm card and queue devices\n", 1683 __func__, ap); 1684 ap_scan_rm_card_dev_and_queue_devs(ac); 1685 put_device(dev); 1686 } else { 1687 AP_DBF_DBG("%s(%d) no type info (no APQN found), ignored\n", 1688 __func__, ap); 1689 } 1690 return; 1691 } 1692 if (!type) { 1693 /* No apdater type info available, an unusable adapter */ 1694 if (ac) { 1695 AP_DBF_INFO("%s(%d) no valid type (0) info, rm card and queue devices\n", 1696 __func__, ap); 1697 ap_scan_rm_card_dev_and_queue_devs(ac); 1698 put_device(dev); 1699 } else { 1700 AP_DBF_DBG("%s(%d) no valid type (0) info, ignored\n", 1701 __func__, ap); 1702 } 1703 return; 1704 } 1705 1706 if (ac) { 1707 /* Check APQN against existing card device for changes */ 1708 if (ac->raw_hwtype != type) { 1709 AP_DBF_INFO("%s(%d) hwtype %d changed, rm card and queue devices\n", 1710 __func__, ap, type); 1711 ap_scan_rm_card_dev_and_queue_devs(ac); 1712 put_device(dev); 1713 ac = NULL; 1714 } else if (ac->functions != func) { 1715 AP_DBF_INFO("%s(%d) functions 0x%08x changed, rm card and queue devices\n", 1716 __func__, ap, type); 1717 ap_scan_rm_card_dev_and_queue_devs(ac); 1718 put_device(dev); 1719 ac = NULL; 1720 } else { 1721 if (decfg && ac->config) { 1722 ac->config = false; 1723 AP_DBF_INFO("%s(%d) card device config off\n", 1724 __func__, ap); 1725 ap_send_config_uevent(&ac->ap_dev, ac->config); 1726 } 1727 if (!decfg && !ac->config) { 1728 ac->config = true; 1729 AP_DBF_INFO("%s(%d) card device config on\n", 1730 __func__, ap); 1731 ap_send_config_uevent(&ac->ap_dev, ac->config); 1732 } 1733 } 1734 } 1735 1736 if (!ac) { 1737 /* Build a new card device */ 1738 comp_type = ap_get_compatible_type(qid, type, func); 1739 if (!comp_type) { 1740 AP_DBF_WARN("%s(%d) type %d, can't get compatibility type\n", 1741 __func__, ap, type); 1742 return; 1743 } 1744 ac = ap_card_create(ap, depth, type, comp_type, func, ml); 1745 if (!ac) { 1746 AP_DBF_WARN("%s(%d) ap_card_create() failed\n", 1747 __func__, ap); 1748 return; 1749 } 1750 ac->config = !decfg; 1751 dev = &ac->ap_dev.device; 1752 dev->bus = &ap_bus_type; 1753 dev->parent = ap_root_device; 1754 dev_set_name(dev, "card%02x", ap); 1755 /* maybe enlarge ap_max_msg_size to support this card */ 1756 if (ac->maxmsgsize > atomic_read(&ap_max_msg_size)) { 1757 atomic_set(&ap_max_msg_size, ac->maxmsgsize); 1758 AP_DBF_INFO("%s(%d) ap_max_msg_size update to %d byte\n", 1759 __func__, ap, atomic_read(&ap_max_msg_size)); 1760 } 1761 /* Register the new card device with AP bus */ 1762 rc = device_register(dev); 1763 if (rc) { 1764 AP_DBF_WARN("%s(%d) device_register() failed\n", 1765 __func__, ap); 1766 put_device(dev); 1767 return; 1768 } 1769 /* get it and thus adjust reference counter */ 1770 get_device(dev); 1771 if (decfg) 1772 AP_DBF_INFO("%s(%d) new (decfg) card device type=%d func=0x%08x created\n", 1773 __func__, ap, type, func); 1774 else 1775 AP_DBF_INFO("%s(%d) new card device type=%d func=0x%08x created\n", 1776 __func__, ap, type, func); 1777 } 1778 1779 /* Verify the domains and the queue devices for this card */ 1780 ap_scan_domains(ac); 1781 1782 /* release the card device */ 1783 put_device(&ac->ap_dev.device); 1784 } 1785 1786 /** 1787 * ap_scan_bus(): Scan the AP bus for new devices 1788 * Runs periodically, workqueue timer (ap_config_time) 1789 * @unused: Unused pointer. 1790 */ 1791 static void ap_scan_bus(struct work_struct *unused) 1792 { 1793 int ap; 1794 1795 ap_fetch_qci_info(ap_qci_info); 1796 ap_select_domain(); 1797 1798 AP_DBF_DBG("%s running\n", __func__); 1799 1800 /* loop over all possible adapters */ 1801 for (ap = 0; ap <= ap_max_adapter_id; ap++) 1802 ap_scan_adapter(ap); 1803 1804 /* check if there is at least one queue available with default domain */ 1805 if (ap_domain_index >= 0) { 1806 struct device *dev = 1807 bus_find_device(&ap_bus_type, NULL, 1808 (void *)(long) ap_domain_index, 1809 __match_queue_device_with_queue_id); 1810 if (dev) 1811 put_device(dev); 1812 else 1813 AP_DBF_INFO("no queue device with default domain %d available\n", 1814 ap_domain_index); 1815 } 1816 1817 if (atomic64_inc_return(&ap_scan_bus_count) == 1) { 1818 AP_DBF(DBF_DEBUG, "%s init scan complete\n", __func__); 1819 ap_send_init_scan_done_uevent(); 1820 ap_check_bindings_complete(); 1821 } 1822 1823 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ); 1824 } 1825 1826 static void ap_config_timeout(struct timer_list *unused) 1827 { 1828 queue_work(system_long_wq, &ap_scan_work); 1829 } 1830 1831 static int __init ap_debug_init(void) 1832 { 1833 ap_dbf_info = debug_register("ap", 1, 1, 1834 DBF_MAX_SPRINTF_ARGS * sizeof(long)); 1835 debug_register_view(ap_dbf_info, &debug_sprintf_view); 1836 debug_set_level(ap_dbf_info, DBF_ERR); 1837 1838 return 0; 1839 } 1840 1841 static void __init ap_perms_init(void) 1842 { 1843 /* all resources useable if no kernel parameter string given */ 1844 memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm)); 1845 memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm)); 1846 memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm)); 1847 1848 /* apm kernel parameter string */ 1849 if (apm_str) { 1850 memset(&ap_perms.apm, 0, sizeof(ap_perms.apm)); 1851 ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES, 1852 &ap_perms_mutex); 1853 } 1854 1855 /* aqm kernel parameter string */ 1856 if (aqm_str) { 1857 memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm)); 1858 ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS, 1859 &ap_perms_mutex); 1860 } 1861 } 1862 1863 /** 1864 * ap_module_init(): The module initialization code. 1865 * 1866 * Initializes the module. 1867 */ 1868 static int __init ap_module_init(void) 1869 { 1870 int rc; 1871 1872 rc = ap_debug_init(); 1873 if (rc) 1874 return rc; 1875 1876 if (!ap_instructions_available()) { 1877 pr_warn("The hardware system does not support AP instructions\n"); 1878 return -ENODEV; 1879 } 1880 1881 /* init ap_queue hashtable */ 1882 hash_init(ap_queues); 1883 1884 /* set up the AP permissions (ioctls, ap and aq masks) */ 1885 ap_perms_init(); 1886 1887 /* Get AP configuration data if available */ 1888 ap_init_qci_info(); 1889 1890 /* check default domain setting */ 1891 if (ap_domain_index < -1 || ap_domain_index > ap_max_domain_id || 1892 (ap_domain_index >= 0 && 1893 !test_bit_inv(ap_domain_index, ap_perms.aqm))) { 1894 pr_warn("%d is not a valid cryptographic domain\n", 1895 ap_domain_index); 1896 ap_domain_index = -1; 1897 } 1898 1899 /* enable interrupts if available */ 1900 if (ap_interrupts_available()) { 1901 rc = register_adapter_interrupt(&ap_airq); 1902 ap_irq_flag = (rc == 0); 1903 } 1904 1905 /* Create /sys/bus/ap. */ 1906 rc = bus_register(&ap_bus_type); 1907 if (rc) 1908 goto out; 1909 1910 /* Create /sys/devices/ap. */ 1911 ap_root_device = root_device_register("ap"); 1912 rc = PTR_ERR_OR_ZERO(ap_root_device); 1913 if (rc) 1914 goto out_bus; 1915 ap_root_device->bus = &ap_bus_type; 1916 1917 /* Setup the AP bus rescan timer. */ 1918 timer_setup(&ap_config_timer, ap_config_timeout, 0); 1919 1920 /* 1921 * Setup the high resultion poll timer. 1922 * If we are running under z/VM adjust polling to z/VM polling rate. 1923 */ 1924 if (MACHINE_IS_VM) 1925 poll_timeout = 1500000; 1926 hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1927 ap_poll_timer.function = ap_poll_timeout; 1928 1929 /* Start the low priority AP bus poll thread. */ 1930 if (ap_thread_flag) { 1931 rc = ap_poll_thread_start(); 1932 if (rc) 1933 goto out_work; 1934 } 1935 1936 queue_work(system_long_wq, &ap_scan_work); 1937 1938 return 0; 1939 1940 out_work: 1941 hrtimer_cancel(&ap_poll_timer); 1942 root_device_unregister(ap_root_device); 1943 out_bus: 1944 bus_unregister(&ap_bus_type); 1945 out: 1946 if (ap_irq_flag) 1947 unregister_adapter_interrupt(&ap_airq); 1948 kfree(ap_qci_info); 1949 return rc; 1950 } 1951 device_initcall(ap_module_init); 1952