xref: /openbmc/linux/drivers/s390/crypto/ap_bus.c (revision 242cdad8)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright IBM Corp. 2006, 2012
4  * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
5  *	      Martin Schwidefsky <schwidefsky@de.ibm.com>
6  *	      Ralph Wuerthner <rwuerthn@de.ibm.com>
7  *	      Felix Beck <felix.beck@de.ibm.com>
8  *	      Holger Dengler <hd@linux.vnet.ibm.com>
9  *
10  * Adjunct processor bus.
11  */
12 
13 #define KMSG_COMPONENT "ap"
14 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
15 
16 #include <linux/kernel_stat.h>
17 #include <linux/moduleparam.h>
18 #include <linux/init.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/interrupt.h>
22 #include <linux/workqueue.h>
23 #include <linux/slab.h>
24 #include <linux/notifier.h>
25 #include <linux/kthread.h>
26 #include <linux/mutex.h>
27 #include <linux/suspend.h>
28 #include <asm/airq.h>
29 #include <linux/atomic.h>
30 #include <asm/isc.h>
31 #include <linux/hrtimer.h>
32 #include <linux/ktime.h>
33 #include <asm/facility.h>
34 #include <linux/crypto.h>
35 #include <linux/mod_devicetable.h>
36 #include <linux/debugfs.h>
37 #include <linux/ctype.h>
38 
39 #include "ap_bus.h"
40 #include "ap_debug.h"
41 
42 /*
43  * Module parameters; note though this file itself isn't modular.
44  */
45 int ap_domain_index = -1;	/* Adjunct Processor Domain Index */
46 static DEFINE_SPINLOCK(ap_domain_lock);
47 module_param_named(domain, ap_domain_index, int, 0440);
48 MODULE_PARM_DESC(domain, "domain index for ap devices");
49 EXPORT_SYMBOL(ap_domain_index);
50 
51 static int ap_thread_flag;
52 module_param_named(poll_thread, ap_thread_flag, int, 0440);
53 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
54 
55 static char *apm_str;
56 module_param_named(apmask, apm_str, charp, 0440);
57 MODULE_PARM_DESC(apmask, "AP bus adapter mask.");
58 
59 static char *aqm_str;
60 module_param_named(aqmask, aqm_str, charp, 0440);
61 MODULE_PARM_DESC(aqmask, "AP bus domain mask.");
62 
63 static struct device *ap_root_device;
64 
65 DEFINE_SPINLOCK(ap_list_lock);
66 LIST_HEAD(ap_card_list);
67 
68 /* Default permissions (card and domain masking) */
69 static struct ap_perms {
70 	DECLARE_BITMAP(apm, AP_DEVICES);
71 	DECLARE_BITMAP(aqm, AP_DOMAINS);
72 } ap_perms;
73 static DEFINE_MUTEX(ap_perms_mutex);
74 
75 static struct ap_config_info *ap_configuration;
76 static bool initialised;
77 
78 /*
79  * AP bus related debug feature things.
80  */
81 debug_info_t *ap_dbf_info;
82 
83 /*
84  * Workqueue timer for bus rescan.
85  */
86 static struct timer_list ap_config_timer;
87 static int ap_config_time = AP_CONFIG_TIME;
88 static void ap_scan_bus(struct work_struct *);
89 static DECLARE_WORK(ap_scan_work, ap_scan_bus);
90 
91 /*
92  * Tasklet & timer for AP request polling and interrupts
93  */
94 static void ap_tasklet_fn(unsigned long);
95 static DECLARE_TASKLET(ap_tasklet, ap_tasklet_fn, 0);
96 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
97 static struct task_struct *ap_poll_kthread;
98 static DEFINE_MUTEX(ap_poll_thread_mutex);
99 static DEFINE_SPINLOCK(ap_poll_timer_lock);
100 static struct hrtimer ap_poll_timer;
101 /*
102  * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
103  * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.
104  */
105 static unsigned long long poll_timeout = 250000;
106 
107 /* Suspend flag */
108 static int ap_suspend_flag;
109 /* Maximum domain id */
110 static int ap_max_domain_id;
111 /*
112  * Flag to check if domain was set through module parameter domain=. This is
113  * important when supsend and resume is done in a z/VM environment where the
114  * domain might change.
115  */
116 static int user_set_domain;
117 static struct bus_type ap_bus_type;
118 
119 /* Adapter interrupt definitions */
120 static void ap_interrupt_handler(struct airq_struct *airq);
121 
122 static int ap_airq_flag;
123 
124 static struct airq_struct ap_airq = {
125 	.handler = ap_interrupt_handler,
126 	.isc = AP_ISC,
127 };
128 
129 /**
130  * ap_using_interrupts() - Returns non-zero if interrupt support is
131  * available.
132  */
133 static inline int ap_using_interrupts(void)
134 {
135 	return ap_airq_flag;
136 }
137 
138 /**
139  * ap_airq_ptr() - Get the address of the adapter interrupt indicator
140  *
141  * Returns the address of the local-summary-indicator of the adapter
142  * interrupt handler for AP, or NULL if adapter interrupts are not
143  * available.
144  */
145 void *ap_airq_ptr(void)
146 {
147 	if (ap_using_interrupts())
148 		return ap_airq.lsi_ptr;
149 	return NULL;
150 }
151 
152 /**
153  * ap_interrupts_available(): Test if AP interrupts are available.
154  *
155  * Returns 1 if AP interrupts are available.
156  */
157 static int ap_interrupts_available(void)
158 {
159 	return test_facility(65);
160 }
161 
162 /**
163  * ap_configuration_available(): Test if AP configuration
164  * information is available.
165  *
166  * Returns 1 if AP configuration information is available.
167  */
168 static int ap_configuration_available(void)
169 {
170 	return test_facility(12);
171 }
172 
173 /**
174  * ap_apft_available(): Test if AP facilities test (APFT)
175  * facility is available.
176  *
177  * Returns 1 if APFT is is available.
178  */
179 static int ap_apft_available(void)
180 {
181 	return test_facility(15);
182 }
183 
184 /*
185  * ap_qact_available(): Test if the PQAP(QACT) subfunction is available.
186  *
187  * Returns 1 if the QACT subfunction is available.
188  */
189 static inline int ap_qact_available(void)
190 {
191 	if (ap_configuration)
192 		return ap_configuration->qact;
193 	return 0;
194 }
195 
196 /*
197  * ap_query_configuration(): Fetch cryptographic config info
198  *
199  * Returns the ap configuration info fetched via PQAP(QCI).
200  * On success 0 is returned, on failure a negative errno
201  * is returned, e.g. if the PQAP(QCI) instruction is not
202  * available, the return value will be -EOPNOTSUPP.
203  */
204 static inline int ap_query_configuration(struct ap_config_info *info)
205 {
206 	if (!ap_configuration_available())
207 		return -EOPNOTSUPP;
208 	if (!info)
209 		return -EINVAL;
210 	return ap_qci(info);
211 }
212 EXPORT_SYMBOL(ap_query_configuration);
213 
214 /**
215  * ap_init_configuration(): Allocate and query configuration array.
216  */
217 static void ap_init_configuration(void)
218 {
219 	if (!ap_configuration_available())
220 		return;
221 
222 	ap_configuration = kzalloc(sizeof(*ap_configuration), GFP_KERNEL);
223 	if (!ap_configuration)
224 		return;
225 	if (ap_query_configuration(ap_configuration) != 0) {
226 		kfree(ap_configuration);
227 		ap_configuration = NULL;
228 		return;
229 	}
230 }
231 
232 /*
233  * ap_test_config(): helper function to extract the nrth bit
234  *		     within the unsigned int array field.
235  */
236 static inline int ap_test_config(unsigned int *field, unsigned int nr)
237 {
238 	return ap_test_bit((field + (nr >> 5)), (nr & 0x1f));
239 }
240 
241 /*
242  * ap_test_config_card_id(): Test, whether an AP card ID is configured.
243  * @id AP card ID
244  *
245  * Returns 0 if the card is not configured
246  *	   1 if the card is configured or
247  *	     if the configuration information is not available
248  */
249 static inline int ap_test_config_card_id(unsigned int id)
250 {
251 	if (!ap_configuration)	/* QCI not supported */
252 		return 1;
253 	return ap_test_config(ap_configuration->apm, id);
254 }
255 
256 /*
257  * ap_test_config_domain(): Test, whether an AP usage domain is configured.
258  * @domain AP usage domain ID
259  *
260  * Returns 0 if the usage domain is not configured
261  *	   1 if the usage domain is configured or
262  *	     if the configuration information is not available
263  */
264 static inline int ap_test_config_domain(unsigned int domain)
265 {
266 	if (!ap_configuration)	/* QCI not supported */
267 		return domain < 16;
268 	return ap_test_config(ap_configuration->aqm, domain);
269 }
270 
271 /**
272  * ap_query_queue(): Check if an AP queue is available.
273  * @qid: The AP queue number
274  * @queue_depth: Pointer to queue depth value
275  * @device_type: Pointer to device type value
276  * @facilities: Pointer to facility indicator
277  */
278 static int ap_query_queue(ap_qid_t qid, int *queue_depth, int *device_type,
279 			  unsigned int *facilities)
280 {
281 	struct ap_queue_status status;
282 	unsigned long info;
283 	int nd;
284 
285 	if (!ap_test_config_card_id(AP_QID_CARD(qid)))
286 		return -ENODEV;
287 
288 	status = ap_test_queue(qid, ap_apft_available(), &info);
289 	switch (status.response_code) {
290 	case AP_RESPONSE_NORMAL:
291 		*queue_depth = (int)(info & 0xff);
292 		*device_type = (int)((info >> 24) & 0xff);
293 		*facilities = (unsigned int)(info >> 32);
294 		/* Update maximum domain id */
295 		nd = (info >> 16) & 0xff;
296 		/* if N bit is available, z13 and newer */
297 		if ((info & (1UL << 57)) && nd > 0)
298 			ap_max_domain_id = nd;
299 		else /* older machine types */
300 			ap_max_domain_id = 15;
301 		switch (*device_type) {
302 			/* For CEX2 and CEX3 the available functions
303 			 * are not refrected by the facilities bits.
304 			 * Instead it is coded into the type. So here
305 			 * modify the function bits based on the type.
306 			 */
307 		case AP_DEVICE_TYPE_CEX2A:
308 		case AP_DEVICE_TYPE_CEX3A:
309 			*facilities |= 0x08000000;
310 			break;
311 		case AP_DEVICE_TYPE_CEX2C:
312 		case AP_DEVICE_TYPE_CEX3C:
313 			*facilities |= 0x10000000;
314 			break;
315 		default:
316 			break;
317 		}
318 		return 0;
319 	case AP_RESPONSE_Q_NOT_AVAIL:
320 	case AP_RESPONSE_DECONFIGURED:
321 	case AP_RESPONSE_CHECKSTOPPED:
322 	case AP_RESPONSE_INVALID_ADDRESS:
323 		return -ENODEV;
324 	case AP_RESPONSE_RESET_IN_PROGRESS:
325 	case AP_RESPONSE_OTHERWISE_CHANGED:
326 	case AP_RESPONSE_BUSY:
327 		return -EBUSY;
328 	default:
329 		BUG();
330 	}
331 }
332 
333 void ap_wait(enum ap_wait wait)
334 {
335 	ktime_t hr_time;
336 
337 	switch (wait) {
338 	case AP_WAIT_AGAIN:
339 	case AP_WAIT_INTERRUPT:
340 		if (ap_using_interrupts())
341 			break;
342 		if (ap_poll_kthread) {
343 			wake_up(&ap_poll_wait);
344 			break;
345 		}
346 		/* Fall through */
347 	case AP_WAIT_TIMEOUT:
348 		spin_lock_bh(&ap_poll_timer_lock);
349 		if (!hrtimer_is_queued(&ap_poll_timer)) {
350 			hr_time = poll_timeout;
351 			hrtimer_forward_now(&ap_poll_timer, hr_time);
352 			hrtimer_restart(&ap_poll_timer);
353 		}
354 		spin_unlock_bh(&ap_poll_timer_lock);
355 		break;
356 	case AP_WAIT_NONE:
357 	default:
358 		break;
359 	}
360 }
361 
362 /**
363  * ap_request_timeout(): Handling of request timeouts
364  * @t: timer making this callback
365  *
366  * Handles request timeouts.
367  */
368 void ap_request_timeout(struct timer_list *t)
369 {
370 	struct ap_queue *aq = from_timer(aq, t, timeout);
371 
372 	if (ap_suspend_flag)
373 		return;
374 	spin_lock_bh(&aq->lock);
375 	ap_wait(ap_sm_event(aq, AP_EVENT_TIMEOUT));
376 	spin_unlock_bh(&aq->lock);
377 }
378 
379 /**
380  * ap_poll_timeout(): AP receive polling for finished AP requests.
381  * @unused: Unused pointer.
382  *
383  * Schedules the AP tasklet using a high resolution timer.
384  */
385 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
386 {
387 	if (!ap_suspend_flag)
388 		tasklet_schedule(&ap_tasklet);
389 	return HRTIMER_NORESTART;
390 }
391 
392 /**
393  * ap_interrupt_handler() - Schedule ap_tasklet on interrupt
394  * @airq: pointer to adapter interrupt descriptor
395  */
396 static void ap_interrupt_handler(struct airq_struct *airq)
397 {
398 	inc_irq_stat(IRQIO_APB);
399 	if (!ap_suspend_flag)
400 		tasklet_schedule(&ap_tasklet);
401 }
402 
403 /**
404  * ap_tasklet_fn(): Tasklet to poll all AP devices.
405  * @dummy: Unused variable
406  *
407  * Poll all AP devices on the bus.
408  */
409 static void ap_tasklet_fn(unsigned long dummy)
410 {
411 	struct ap_card *ac;
412 	struct ap_queue *aq;
413 	enum ap_wait wait = AP_WAIT_NONE;
414 
415 	/* Reset the indicator if interrupts are used. Thus new interrupts can
416 	 * be received. Doing it in the beginning of the tasklet is therefor
417 	 * important that no requests on any AP get lost.
418 	 */
419 	if (ap_using_interrupts())
420 		xchg(ap_airq.lsi_ptr, 0);
421 
422 	spin_lock_bh(&ap_list_lock);
423 	for_each_ap_card(ac) {
424 		for_each_ap_queue(aq, ac) {
425 			spin_lock_bh(&aq->lock);
426 			wait = min(wait, ap_sm_event_loop(aq, AP_EVENT_POLL));
427 			spin_unlock_bh(&aq->lock);
428 		}
429 	}
430 	spin_unlock_bh(&ap_list_lock);
431 
432 	ap_wait(wait);
433 }
434 
435 static int ap_pending_requests(void)
436 {
437 	struct ap_card *ac;
438 	struct ap_queue *aq;
439 
440 	spin_lock_bh(&ap_list_lock);
441 	for_each_ap_card(ac) {
442 		for_each_ap_queue(aq, ac) {
443 			if (aq->queue_count == 0)
444 				continue;
445 			spin_unlock_bh(&ap_list_lock);
446 			return 1;
447 		}
448 	}
449 	spin_unlock_bh(&ap_list_lock);
450 	return 0;
451 }
452 
453 /**
454  * ap_poll_thread(): Thread that polls for finished requests.
455  * @data: Unused pointer
456  *
457  * AP bus poll thread. The purpose of this thread is to poll for
458  * finished requests in a loop if there is a "free" cpu - that is
459  * a cpu that doesn't have anything better to do. The polling stops
460  * as soon as there is another task or if all messages have been
461  * delivered.
462  */
463 static int ap_poll_thread(void *data)
464 {
465 	DECLARE_WAITQUEUE(wait, current);
466 
467 	set_user_nice(current, MAX_NICE);
468 	set_freezable();
469 	while (!kthread_should_stop()) {
470 		add_wait_queue(&ap_poll_wait, &wait);
471 		set_current_state(TASK_INTERRUPTIBLE);
472 		if (ap_suspend_flag || !ap_pending_requests()) {
473 			schedule();
474 			try_to_freeze();
475 		}
476 		set_current_state(TASK_RUNNING);
477 		remove_wait_queue(&ap_poll_wait, &wait);
478 		if (need_resched()) {
479 			schedule();
480 			try_to_freeze();
481 			continue;
482 		}
483 		ap_tasklet_fn(0);
484 	}
485 
486 	return 0;
487 }
488 
489 static int ap_poll_thread_start(void)
490 {
491 	int rc;
492 
493 	if (ap_using_interrupts() || ap_poll_kthread)
494 		return 0;
495 	mutex_lock(&ap_poll_thread_mutex);
496 	ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
497 	rc = PTR_ERR_OR_ZERO(ap_poll_kthread);
498 	if (rc)
499 		ap_poll_kthread = NULL;
500 	mutex_unlock(&ap_poll_thread_mutex);
501 	return rc;
502 }
503 
504 static void ap_poll_thread_stop(void)
505 {
506 	if (!ap_poll_kthread)
507 		return;
508 	mutex_lock(&ap_poll_thread_mutex);
509 	kthread_stop(ap_poll_kthread);
510 	ap_poll_kthread = NULL;
511 	mutex_unlock(&ap_poll_thread_mutex);
512 }
513 
514 #define is_card_dev(x) ((x)->parent == ap_root_device)
515 #define is_queue_dev(x) ((x)->parent != ap_root_device)
516 
517 /**
518  * ap_bus_match()
519  * @dev: Pointer to device
520  * @drv: Pointer to device_driver
521  *
522  * AP bus driver registration/unregistration.
523  */
524 static int ap_bus_match(struct device *dev, struct device_driver *drv)
525 {
526 	struct ap_driver *ap_drv = to_ap_drv(drv);
527 	struct ap_device_id *id;
528 
529 	/*
530 	 * Compare device type of the device with the list of
531 	 * supported types of the device_driver.
532 	 */
533 	for (id = ap_drv->ids; id->match_flags; id++) {
534 		if (is_card_dev(dev) &&
535 		    id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE &&
536 		    id->dev_type == to_ap_dev(dev)->device_type)
537 			return 1;
538 		if (is_queue_dev(dev) &&
539 		    id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE &&
540 		    id->dev_type == to_ap_dev(dev)->device_type)
541 			return 1;
542 	}
543 	return 0;
544 }
545 
546 /**
547  * ap_uevent(): Uevent function for AP devices.
548  * @dev: Pointer to device
549  * @env: Pointer to kobj_uevent_env
550  *
551  * It sets up a single environment variable DEV_TYPE which contains the
552  * hardware device type.
553  */
554 static int ap_uevent(struct device *dev, struct kobj_uevent_env *env)
555 {
556 	struct ap_device *ap_dev = to_ap_dev(dev);
557 	int retval = 0;
558 
559 	if (!ap_dev)
560 		return -ENODEV;
561 
562 	/* Set up DEV_TYPE environment variable. */
563 	retval = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
564 	if (retval)
565 		return retval;
566 
567 	/* Add MODALIAS= */
568 	retval = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
569 
570 	return retval;
571 }
572 
573 static int ap_dev_suspend(struct device *dev)
574 {
575 	struct ap_device *ap_dev = to_ap_dev(dev);
576 
577 	if (ap_dev->drv && ap_dev->drv->suspend)
578 		ap_dev->drv->suspend(ap_dev);
579 	return 0;
580 }
581 
582 static int ap_dev_resume(struct device *dev)
583 {
584 	struct ap_device *ap_dev = to_ap_dev(dev);
585 
586 	if (ap_dev->drv && ap_dev->drv->resume)
587 		ap_dev->drv->resume(ap_dev);
588 	return 0;
589 }
590 
591 static void ap_bus_suspend(void)
592 {
593 	AP_DBF(DBF_DEBUG, "%s running\n", __func__);
594 
595 	ap_suspend_flag = 1;
596 	/*
597 	 * Disable scanning for devices, thus we do not want to scan
598 	 * for them after removing.
599 	 */
600 	flush_work(&ap_scan_work);
601 	tasklet_disable(&ap_tasklet);
602 }
603 
604 static int __ap_card_devices_unregister(struct device *dev, void *dummy)
605 {
606 	if (is_card_dev(dev))
607 		device_unregister(dev);
608 	return 0;
609 }
610 
611 static int __ap_queue_devices_unregister(struct device *dev, void *dummy)
612 {
613 	if (is_queue_dev(dev))
614 		device_unregister(dev);
615 	return 0;
616 }
617 
618 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data)
619 {
620 	if (is_queue_dev(dev) &&
621 	    AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long) data)
622 		device_unregister(dev);
623 	return 0;
624 }
625 
626 static void ap_bus_resume(void)
627 {
628 	int rc;
629 
630 	AP_DBF(DBF_DEBUG, "%s running\n", __func__);
631 
632 	/* remove all queue devices */
633 	bus_for_each_dev(&ap_bus_type, NULL, NULL,
634 			 __ap_queue_devices_unregister);
635 	/* remove all card devices */
636 	bus_for_each_dev(&ap_bus_type, NULL, NULL,
637 			 __ap_card_devices_unregister);
638 
639 	/* Reset thin interrupt setting */
640 	if (ap_interrupts_available() && !ap_using_interrupts()) {
641 		rc = register_adapter_interrupt(&ap_airq);
642 		ap_airq_flag = (rc == 0);
643 	}
644 	if (!ap_interrupts_available() && ap_using_interrupts()) {
645 		unregister_adapter_interrupt(&ap_airq);
646 		ap_airq_flag = 0;
647 	}
648 	/* Reset domain */
649 	if (!user_set_domain)
650 		ap_domain_index = -1;
651 	/* Get things going again */
652 	ap_suspend_flag = 0;
653 	if (ap_airq_flag)
654 		xchg(ap_airq.lsi_ptr, 0);
655 	tasklet_enable(&ap_tasklet);
656 	queue_work(system_long_wq, &ap_scan_work);
657 }
658 
659 static int ap_power_event(struct notifier_block *this, unsigned long event,
660 			  void *ptr)
661 {
662 	switch (event) {
663 	case PM_HIBERNATION_PREPARE:
664 	case PM_SUSPEND_PREPARE:
665 		ap_bus_suspend();
666 		break;
667 	case PM_POST_HIBERNATION:
668 	case PM_POST_SUSPEND:
669 		ap_bus_resume();
670 		break;
671 	default:
672 		break;
673 	}
674 	return NOTIFY_DONE;
675 }
676 static struct notifier_block ap_power_notifier = {
677 	.notifier_call = ap_power_event,
678 };
679 
680 static SIMPLE_DEV_PM_OPS(ap_bus_pm_ops, ap_dev_suspend, ap_dev_resume);
681 
682 static struct bus_type ap_bus_type = {
683 	.name = "ap",
684 	.match = &ap_bus_match,
685 	.uevent = &ap_uevent,
686 	.pm = &ap_bus_pm_ops,
687 };
688 
689 static int __ap_revise_reserved(struct device *dev, void *dummy)
690 {
691 	int rc, card, queue, devres, drvres;
692 
693 	if (is_queue_dev(dev)) {
694 		card = AP_QID_CARD(to_ap_queue(dev)->qid);
695 		queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
696 		mutex_lock(&ap_perms_mutex);
697 		devres = test_bit_inv(card, ap_perms.apm)
698 			&& test_bit_inv(queue, ap_perms.aqm);
699 		mutex_unlock(&ap_perms_mutex);
700 		drvres = to_ap_drv(dev->driver)->flags
701 			& AP_DRIVER_FLAG_DEFAULT;
702 		if (!!devres != !!drvres) {
703 			AP_DBF(DBF_DEBUG, "reprobing queue=%02x.%04x\n",
704 			       card, queue);
705 			rc = device_reprobe(dev);
706 		}
707 	}
708 
709 	return 0;
710 }
711 
712 static void ap_bus_revise_bindings(void)
713 {
714 	bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved);
715 }
716 
717 int ap_owned_by_def_drv(int card, int queue)
718 {
719 	int rc = 0;
720 
721 	if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS)
722 		return -EINVAL;
723 
724 	mutex_lock(&ap_perms_mutex);
725 
726 	if (test_bit_inv(card, ap_perms.apm)
727 	    && test_bit_inv(queue, ap_perms.aqm))
728 		rc = 1;
729 
730 	mutex_unlock(&ap_perms_mutex);
731 
732 	return rc;
733 }
734 EXPORT_SYMBOL(ap_owned_by_def_drv);
735 
736 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm,
737 				       unsigned long *aqm)
738 {
739 	int card, queue, rc = 0;
740 
741 	mutex_lock(&ap_perms_mutex);
742 
743 	for (card = 0; !rc && card < AP_DEVICES; card++)
744 		if (test_bit_inv(card, apm) &&
745 		    test_bit_inv(card, ap_perms.apm))
746 			for (queue = 0; !rc && queue < AP_DOMAINS; queue++)
747 				if (test_bit_inv(queue, aqm) &&
748 				    test_bit_inv(queue, ap_perms.aqm))
749 					rc = 1;
750 
751 	mutex_unlock(&ap_perms_mutex);
752 
753 	return rc;
754 }
755 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv);
756 
757 static int ap_device_probe(struct device *dev)
758 {
759 	struct ap_device *ap_dev = to_ap_dev(dev);
760 	struct ap_driver *ap_drv = to_ap_drv(dev->driver);
761 	int card, queue, devres, drvres, rc;
762 
763 	if (is_queue_dev(dev)) {
764 		/*
765 		 * If the apqn is marked as reserved/used by ap bus and
766 		 * default drivers, only probe with drivers with the default
767 		 * flag set. If it is not marked, only probe with drivers
768 		 * with the default flag not set.
769 		 */
770 		card = AP_QID_CARD(to_ap_queue(dev)->qid);
771 		queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
772 		mutex_lock(&ap_perms_mutex);
773 		devres = test_bit_inv(card, ap_perms.apm)
774 			&& test_bit_inv(queue, ap_perms.aqm);
775 		mutex_unlock(&ap_perms_mutex);
776 		drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT;
777 		if (!!devres != !!drvres)
778 			return -ENODEV;
779 	}
780 
781 	/* Add queue/card to list of active queues/cards */
782 	spin_lock_bh(&ap_list_lock);
783 	if (is_card_dev(dev))
784 		list_add(&to_ap_card(dev)->list, &ap_card_list);
785 	else
786 		list_add(&to_ap_queue(dev)->list,
787 			 &to_ap_queue(dev)->card->queues);
788 	spin_unlock_bh(&ap_list_lock);
789 
790 	ap_dev->drv = ap_drv;
791 	rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
792 
793 	if (rc) {
794 		spin_lock_bh(&ap_list_lock);
795 		if (is_card_dev(dev))
796 			list_del_init(&to_ap_card(dev)->list);
797 		else
798 			list_del_init(&to_ap_queue(dev)->list);
799 		spin_unlock_bh(&ap_list_lock);
800 		ap_dev->drv = NULL;
801 	}
802 
803 	return rc;
804 }
805 
806 static int ap_device_remove(struct device *dev)
807 {
808 	struct ap_device *ap_dev = to_ap_dev(dev);
809 	struct ap_driver *ap_drv = ap_dev->drv;
810 
811 	if (ap_drv->remove)
812 		ap_drv->remove(ap_dev);
813 
814 	/* Remove queue/card from list of active queues/cards */
815 	spin_lock_bh(&ap_list_lock);
816 	if (is_card_dev(dev))
817 		list_del_init(&to_ap_card(dev)->list);
818 	else
819 		list_del_init(&to_ap_queue(dev)->list);
820 	spin_unlock_bh(&ap_list_lock);
821 
822 	return 0;
823 }
824 
825 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
826 		       char *name)
827 {
828 	struct device_driver *drv = &ap_drv->driver;
829 
830 	if (!initialised)
831 		return -ENODEV;
832 
833 	drv->bus = &ap_bus_type;
834 	drv->probe = ap_device_probe;
835 	drv->remove = ap_device_remove;
836 	drv->owner = owner;
837 	drv->name = name;
838 	return driver_register(drv);
839 }
840 EXPORT_SYMBOL(ap_driver_register);
841 
842 void ap_driver_unregister(struct ap_driver *ap_drv)
843 {
844 	driver_unregister(&ap_drv->driver);
845 }
846 EXPORT_SYMBOL(ap_driver_unregister);
847 
848 void ap_bus_force_rescan(void)
849 {
850 	if (ap_suspend_flag)
851 		return;
852 	/* processing a asynchronous bus rescan */
853 	del_timer(&ap_config_timer);
854 	queue_work(system_long_wq, &ap_scan_work);
855 	flush_work(&ap_scan_work);
856 }
857 EXPORT_SYMBOL(ap_bus_force_rescan);
858 
859 /*
860  * hex2bitmap() - parse hex mask string and set bitmap.
861  * Valid strings are "0x012345678" with at least one valid hex number.
862  * Rest of the bitmap to the right is padded with 0. No spaces allowed
863  * within the string, the leading 0x may be omitted.
864  * Returns the bitmask with exactly the bits set as given by the hex
865  * string (both in big endian order).
866  */
867 static int hex2bitmap(const char *str, unsigned long *bitmap, int bits)
868 {
869 	int i, n, b;
870 
871 	/* bits needs to be a multiple of 8 */
872 	if (bits & 0x07)
873 		return -EINVAL;
874 
875 	memset(bitmap, 0, bits / 8);
876 
877 	if (str[0] == '0' && str[1] == 'x')
878 		str++;
879 	if (*str == 'x')
880 		str++;
881 
882 	for (i = 0; isxdigit(*str) && i < bits; str++) {
883 		b = hex_to_bin(*str);
884 		for (n = 0; n < 4; n++)
885 			if (b & (0x08 >> n))
886 				set_bit_inv(i + n, bitmap);
887 		i += 4;
888 	}
889 
890 	if (*str == '\n')
891 		str++;
892 	if (*str)
893 		return -EINVAL;
894 	return 0;
895 }
896 
897 /*
898  * str2clrsetmasks() - parse bitmask argument and set the clear and
899  * the set bitmap mask. A concatenation (done with ',') of these terms
900  * is recognized:
901  *   +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>]
902  * <bitnr> may be any valid number (hex, decimal or octal) in the range
903  * 0...bits-1; the leading + or - is required. Here are some examples:
904  *   +0-15,+32,-128,-0xFF
905  *   -0-255,+1-16,+0x128
906  *   +1,+2,+3,+4,-5,-7-10
907  * Returns a clear and a set bitmask. Every positive value in the string
908  * results in a bit set in the set mask and every negative value in the
909  * string results in a bit SET in the clear mask. As a bit may be touched
910  * more than once, the last 'operation' wins: +0-255,-128 = all but bit
911  * 128 set in the set mask, only bit 128 set in the clear mask.
912  */
913 static int str2clrsetmasks(const char *str,
914 			   unsigned long *clrmap,
915 			   unsigned long *setmap,
916 			   int bits)
917 {
918 	int a, i, z;
919 	char *np, sign;
920 
921 	/* bits needs to be a multiple of 8 */
922 	if (bits & 0x07)
923 		return -EINVAL;
924 
925 	memset(clrmap, 0, bits / 8);
926 	memset(setmap, 0, bits / 8);
927 
928 	while (*str) {
929 		sign = *str++;
930 		if (sign != '+' && sign != '-')
931 			return -EINVAL;
932 		a = z = simple_strtoul(str, &np, 0);
933 		if (str == np || a >= bits)
934 			return -EINVAL;
935 		str = np;
936 		if (*str == '-') {
937 			z = simple_strtoul(++str, &np, 0);
938 			if (str == np || a > z || z >= bits)
939 				return -EINVAL;
940 			str = np;
941 		}
942 		for (i = a; i <= z; i++)
943 			if (sign == '+') {
944 				set_bit_inv(i, setmap);
945 				clear_bit_inv(i, clrmap);
946 			} else {
947 				clear_bit_inv(i, setmap);
948 				set_bit_inv(i, clrmap);
949 			}
950 		while (*str == ',' || *str == '\n')
951 			str++;
952 	}
953 
954 	return 0;
955 }
956 
957 /*
958  * process_mask_arg() - parse a bitmap string and clear/set the
959  * bits in the bitmap accordingly. The string may be given as
960  * absolute value, a hex string like 0x1F2E3D4C5B6A" simple over-
961  * writing the current content of the bitmap. Or as relative string
962  * like "+1-16,-32,-0x40,+128" where only single bits or ranges of
963  * bits are cleared or set. Distinction is done based on the very
964  * first character which may be '+' or '-' for the relative string
965  * and othewise assume to be an absolute value string. If parsing fails
966  * a negative errno value is returned. All arguments and bitmaps are
967  * big endian order.
968  */
969 static int process_mask_arg(const char *str,
970 			    unsigned long *bitmap, int bits,
971 			    struct mutex *lock)
972 {
973 	int i;
974 
975 	/* bits needs to be a multiple of 8 */
976 	if (bits & 0x07)
977 		return -EINVAL;
978 
979 	if (*str == '+' || *str == '-') {
980 		DECLARE_BITMAP(clrm, bits);
981 		DECLARE_BITMAP(setm, bits);
982 
983 		i = str2clrsetmasks(str, clrm, setm, bits);
984 		if (i)
985 			return i;
986 		if (mutex_lock_interruptible(lock))
987 			return -ERESTARTSYS;
988 		for (i = 0; i < bits; i++) {
989 			if (test_bit_inv(i, clrm))
990 				clear_bit_inv(i, bitmap);
991 			if (test_bit_inv(i, setm))
992 				set_bit_inv(i, bitmap);
993 		}
994 	} else {
995 		DECLARE_BITMAP(setm, bits);
996 
997 		i = hex2bitmap(str, setm, bits);
998 		if (i)
999 			return i;
1000 		if (mutex_lock_interruptible(lock))
1001 			return -ERESTARTSYS;
1002 		for (i = 0; i < bits; i++)
1003 			if (test_bit_inv(i, setm))
1004 				set_bit_inv(i, bitmap);
1005 			else
1006 				clear_bit_inv(i, bitmap);
1007 	}
1008 	mutex_unlock(lock);
1009 
1010 	return 0;
1011 }
1012 
1013 /*
1014  * AP bus attributes.
1015  */
1016 
1017 static ssize_t ap_domain_show(struct bus_type *bus, char *buf)
1018 {
1019 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index);
1020 }
1021 
1022 static ssize_t ap_domain_store(struct bus_type *bus,
1023 			       const char *buf, size_t count)
1024 {
1025 	int domain;
1026 
1027 	if (sscanf(buf, "%i\n", &domain) != 1 ||
1028 	    domain < 0 || domain > ap_max_domain_id ||
1029 	    !test_bit_inv(domain, ap_perms.aqm))
1030 		return -EINVAL;
1031 	spin_lock_bh(&ap_domain_lock);
1032 	ap_domain_index = domain;
1033 	spin_unlock_bh(&ap_domain_lock);
1034 
1035 	AP_DBF(DBF_DEBUG, "stored new default domain=%d\n", domain);
1036 
1037 	return count;
1038 }
1039 
1040 static BUS_ATTR_RW(ap_domain);
1041 
1042 static ssize_t ap_control_domain_mask_show(struct bus_type *bus, char *buf)
1043 {
1044 	if (!ap_configuration)	/* QCI not supported */
1045 		return snprintf(buf, PAGE_SIZE, "not supported\n");
1046 
1047 	return snprintf(buf, PAGE_SIZE,
1048 			"0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1049 			ap_configuration->adm[0], ap_configuration->adm[1],
1050 			ap_configuration->adm[2], ap_configuration->adm[3],
1051 			ap_configuration->adm[4], ap_configuration->adm[5],
1052 			ap_configuration->adm[6], ap_configuration->adm[7]);
1053 }
1054 
1055 static BUS_ATTR_RO(ap_control_domain_mask);
1056 
1057 static ssize_t ap_usage_domain_mask_show(struct bus_type *bus, char *buf)
1058 {
1059 	if (!ap_configuration)	/* QCI not supported */
1060 		return snprintf(buf, PAGE_SIZE, "not supported\n");
1061 
1062 	return snprintf(buf, PAGE_SIZE,
1063 			"0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1064 			ap_configuration->aqm[0], ap_configuration->aqm[1],
1065 			ap_configuration->aqm[2], ap_configuration->aqm[3],
1066 			ap_configuration->aqm[4], ap_configuration->aqm[5],
1067 			ap_configuration->aqm[6], ap_configuration->aqm[7]);
1068 }
1069 
1070 static BUS_ATTR_RO(ap_usage_domain_mask);
1071 
1072 static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf)
1073 {
1074 	return snprintf(buf, PAGE_SIZE, "%d\n",
1075 			ap_using_interrupts() ? 1 : 0);
1076 }
1077 
1078 static BUS_ATTR_RO(ap_interrupts);
1079 
1080 static ssize_t config_time_show(struct bus_type *bus, char *buf)
1081 {
1082 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_config_time);
1083 }
1084 
1085 static ssize_t config_time_store(struct bus_type *bus,
1086 				 const char *buf, size_t count)
1087 {
1088 	int time;
1089 
1090 	if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
1091 		return -EINVAL;
1092 	ap_config_time = time;
1093 	mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1094 	return count;
1095 }
1096 
1097 static BUS_ATTR_RW(config_time);
1098 
1099 static ssize_t poll_thread_show(struct bus_type *bus, char *buf)
1100 {
1101 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0);
1102 }
1103 
1104 static ssize_t poll_thread_store(struct bus_type *bus,
1105 				 const char *buf, size_t count)
1106 {
1107 	int flag, rc;
1108 
1109 	if (sscanf(buf, "%d\n", &flag) != 1)
1110 		return -EINVAL;
1111 	if (flag) {
1112 		rc = ap_poll_thread_start();
1113 		if (rc)
1114 			count = rc;
1115 	} else
1116 		ap_poll_thread_stop();
1117 	return count;
1118 }
1119 
1120 static BUS_ATTR_RW(poll_thread);
1121 
1122 static ssize_t poll_timeout_show(struct bus_type *bus, char *buf)
1123 {
1124 	return snprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout);
1125 }
1126 
1127 static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf,
1128 				  size_t count)
1129 {
1130 	unsigned long long time;
1131 	ktime_t hr_time;
1132 
1133 	/* 120 seconds = maximum poll interval */
1134 	if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 ||
1135 	    time > 120000000000ULL)
1136 		return -EINVAL;
1137 	poll_timeout = time;
1138 	hr_time = poll_timeout;
1139 
1140 	spin_lock_bh(&ap_poll_timer_lock);
1141 	hrtimer_cancel(&ap_poll_timer);
1142 	hrtimer_set_expires(&ap_poll_timer, hr_time);
1143 	hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
1144 	spin_unlock_bh(&ap_poll_timer_lock);
1145 
1146 	return count;
1147 }
1148 
1149 static BUS_ATTR_RW(poll_timeout);
1150 
1151 static ssize_t ap_max_domain_id_show(struct bus_type *bus, char *buf)
1152 {
1153 	int max_domain_id;
1154 
1155 	if (ap_configuration)
1156 		max_domain_id = ap_max_domain_id ? : -1;
1157 	else
1158 		max_domain_id = 15;
1159 	return snprintf(buf, PAGE_SIZE, "%d\n", max_domain_id);
1160 }
1161 
1162 static BUS_ATTR_RO(ap_max_domain_id);
1163 
1164 static ssize_t apmask_show(struct bus_type *bus, char *buf)
1165 {
1166 	int rc;
1167 
1168 	if (mutex_lock_interruptible(&ap_perms_mutex))
1169 		return -ERESTARTSYS;
1170 	rc = snprintf(buf, PAGE_SIZE,
1171 		      "0x%016lx%016lx%016lx%016lx\n",
1172 		      ap_perms.apm[0], ap_perms.apm[1],
1173 		      ap_perms.apm[2], ap_perms.apm[3]);
1174 	mutex_unlock(&ap_perms_mutex);
1175 
1176 	return rc;
1177 }
1178 
1179 static ssize_t apmask_store(struct bus_type *bus, const char *buf,
1180 			    size_t count)
1181 {
1182 	int rc;
1183 
1184 	rc = process_mask_arg(buf, ap_perms.apm, AP_DEVICES, &ap_perms_mutex);
1185 	if (rc)
1186 		return rc;
1187 
1188 	ap_bus_revise_bindings();
1189 
1190 	return count;
1191 }
1192 
1193 static BUS_ATTR_RW(apmask);
1194 
1195 static ssize_t aqmask_show(struct bus_type *bus, char *buf)
1196 {
1197 	int rc;
1198 
1199 	if (mutex_lock_interruptible(&ap_perms_mutex))
1200 		return -ERESTARTSYS;
1201 	rc = snprintf(buf, PAGE_SIZE,
1202 		      "0x%016lx%016lx%016lx%016lx\n",
1203 		      ap_perms.aqm[0], ap_perms.aqm[1],
1204 		      ap_perms.aqm[2], ap_perms.aqm[3]);
1205 	mutex_unlock(&ap_perms_mutex);
1206 
1207 	return rc;
1208 }
1209 
1210 static ssize_t aqmask_store(struct bus_type *bus, const char *buf,
1211 			    size_t count)
1212 {
1213 	int rc;
1214 
1215 	rc = process_mask_arg(buf, ap_perms.aqm, AP_DOMAINS, &ap_perms_mutex);
1216 	if (rc)
1217 		return rc;
1218 
1219 	ap_bus_revise_bindings();
1220 
1221 	return count;
1222 }
1223 
1224 static BUS_ATTR_RW(aqmask);
1225 
1226 static struct bus_attribute *const ap_bus_attrs[] = {
1227 	&bus_attr_ap_domain,
1228 	&bus_attr_ap_control_domain_mask,
1229 	&bus_attr_ap_usage_domain_mask,
1230 	&bus_attr_config_time,
1231 	&bus_attr_poll_thread,
1232 	&bus_attr_ap_interrupts,
1233 	&bus_attr_poll_timeout,
1234 	&bus_attr_ap_max_domain_id,
1235 	&bus_attr_apmask,
1236 	&bus_attr_aqmask,
1237 	NULL,
1238 };
1239 
1240 /**
1241  * ap_select_domain(): Select an AP domain.
1242  *
1243  * Pick one of the 16 AP domains.
1244  */
1245 static int ap_select_domain(void)
1246 {
1247 	int count, max_count, best_domain;
1248 	struct ap_queue_status status;
1249 	int i, j;
1250 
1251 	/*
1252 	 * We want to use a single domain. Either the one specified with
1253 	 * the "domain=" parameter or the domain with the maximum number
1254 	 * of devices.
1255 	 */
1256 	spin_lock_bh(&ap_domain_lock);
1257 	if (ap_domain_index >= 0) {
1258 		/* Domain has already been selected. */
1259 		spin_unlock_bh(&ap_domain_lock);
1260 		return 0;
1261 	}
1262 	best_domain = -1;
1263 	max_count = 0;
1264 	for (i = 0; i < AP_DOMAINS; i++) {
1265 		if (!ap_test_config_domain(i) ||
1266 		    !test_bit_inv(i, ap_perms.aqm))
1267 			continue;
1268 		count = 0;
1269 		for (j = 0; j < AP_DEVICES; j++) {
1270 			if (!ap_test_config_card_id(j))
1271 				continue;
1272 			status = ap_test_queue(AP_MKQID(j, i),
1273 					       ap_apft_available(),
1274 					       NULL);
1275 			if (status.response_code != AP_RESPONSE_NORMAL)
1276 				continue;
1277 			count++;
1278 		}
1279 		if (count > max_count) {
1280 			max_count = count;
1281 			best_domain = i;
1282 		}
1283 	}
1284 	if (best_domain >= 0) {
1285 		ap_domain_index = best_domain;
1286 		AP_DBF(DBF_DEBUG, "new ap_domain_index=%d\n", ap_domain_index);
1287 		spin_unlock_bh(&ap_domain_lock);
1288 		return 0;
1289 	}
1290 	spin_unlock_bh(&ap_domain_lock);
1291 	return -ENODEV;
1292 }
1293 
1294 /*
1295  * This function checks the type and returns either 0 for not
1296  * supported or the highest compatible type value (which may
1297  * include the input type value).
1298  */
1299 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func)
1300 {
1301 	int comp_type = 0;
1302 
1303 	/* < CEX2A is not supported */
1304 	if (rawtype < AP_DEVICE_TYPE_CEX2A)
1305 		return 0;
1306 	/* up to CEX6 known and fully supported */
1307 	if (rawtype <= AP_DEVICE_TYPE_CEX6)
1308 		return rawtype;
1309 	/*
1310 	 * unknown new type > CEX6, check for compatibility
1311 	 * to the highest known and supported type which is
1312 	 * currently CEX6 with the help of the QACT function.
1313 	 */
1314 	if (ap_qact_available()) {
1315 		struct ap_queue_status status;
1316 		union ap_qact_ap_info apinfo = {0};
1317 
1318 		apinfo.mode = (func >> 26) & 0x07;
1319 		apinfo.cat = AP_DEVICE_TYPE_CEX6;
1320 		status = ap_qact(qid, 0, &apinfo);
1321 		if (status.response_code == AP_RESPONSE_NORMAL
1322 		    && apinfo.cat >= AP_DEVICE_TYPE_CEX2A
1323 		    && apinfo.cat <= AP_DEVICE_TYPE_CEX6)
1324 			comp_type = apinfo.cat;
1325 	}
1326 	if (!comp_type)
1327 		AP_DBF(DBF_WARN, "queue=%02x.%04x unable to map type %d\n",
1328 		       AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype);
1329 	else if (comp_type != rawtype)
1330 		AP_DBF(DBF_INFO, "queue=%02x.%04x map type %d to %d\n",
1331 		       AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype, comp_type);
1332 	return comp_type;
1333 }
1334 
1335 /*
1336  * helper function to be used with bus_find_dev
1337  * matches for the card device with the given id
1338  */
1339 static int __match_card_device_with_id(struct device *dev, void *data)
1340 {
1341 	return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long) data;
1342 }
1343 
1344 /* helper function to be used with bus_find_dev
1345  * matches for the queue device with a given qid
1346  */
1347 static int __match_queue_device_with_qid(struct device *dev, void *data)
1348 {
1349 	return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long) data;
1350 }
1351 
1352 /**
1353  * ap_scan_bus(): Scan the AP bus for new devices
1354  * Runs periodically, workqueue timer (ap_config_time)
1355  */
1356 static void ap_scan_bus(struct work_struct *unused)
1357 {
1358 	struct ap_queue *aq;
1359 	struct ap_card *ac;
1360 	struct device *dev;
1361 	ap_qid_t qid;
1362 	int comp_type, depth = 0, type = 0;
1363 	unsigned int func = 0;
1364 	int rc, id, dom, borked, domains, defdomdevs = 0;
1365 
1366 	AP_DBF(DBF_DEBUG, "%s running\n", __func__);
1367 
1368 	ap_query_configuration(ap_configuration);
1369 	if (ap_select_domain() != 0)
1370 		goto out;
1371 
1372 	for (id = 0; id < AP_DEVICES; id++) {
1373 		/* check if device is registered */
1374 		dev = bus_find_device(&ap_bus_type, NULL,
1375 				      (void *)(long) id,
1376 				      __match_card_device_with_id);
1377 		ac = dev ? to_ap_card(dev) : NULL;
1378 		if (!ap_test_config_card_id(id)) {
1379 			if (dev) {
1380 				/* Card device has been removed from
1381 				 * configuration, remove the belonging
1382 				 * queue devices.
1383 				 */
1384 				bus_for_each_dev(&ap_bus_type, NULL,
1385 					(void *)(long) id,
1386 					__ap_queue_devices_with_id_unregister);
1387 				/* now remove the card device */
1388 				device_unregister(dev);
1389 				put_device(dev);
1390 			}
1391 			continue;
1392 		}
1393 		/* According to the configuration there should be a card
1394 		 * device, so check if there is at least one valid queue
1395 		 * and maybe create queue devices and the card device.
1396 		 */
1397 		domains = 0;
1398 		for (dom = 0; dom < AP_DOMAINS; dom++) {
1399 			qid = AP_MKQID(id, dom);
1400 			dev = bus_find_device(&ap_bus_type, NULL,
1401 					      (void *)(long) qid,
1402 					      __match_queue_device_with_qid);
1403 			aq = dev ? to_ap_queue(dev) : NULL;
1404 			if (!ap_test_config_domain(dom)) {
1405 				if (dev) {
1406 					/* Queue device exists but has been
1407 					 * removed from configuration.
1408 					 */
1409 					device_unregister(dev);
1410 					put_device(dev);
1411 				}
1412 				continue;
1413 			}
1414 			rc = ap_query_queue(qid, &depth, &type, &func);
1415 			if (dev) {
1416 				spin_lock_bh(&aq->lock);
1417 				if (rc == -ENODEV ||
1418 				    /* adapter reconfiguration */
1419 				    (ac && ac->functions != func))
1420 					aq->state = AP_STATE_BORKED;
1421 				borked = aq->state == AP_STATE_BORKED;
1422 				spin_unlock_bh(&aq->lock);
1423 				if (borked)	/* Remove broken device */
1424 					device_unregister(dev);
1425 				put_device(dev);
1426 				if (!borked) {
1427 					domains++;
1428 					if (dom == ap_domain_index)
1429 						defdomdevs++;
1430 					continue;
1431 				}
1432 			}
1433 			if (rc)
1434 				continue;
1435 			/* a new queue device is needed, check out comp type */
1436 			comp_type = ap_get_compatible_type(qid, type, func);
1437 			if (!comp_type)
1438 				continue;
1439 			/* maybe a card device needs to be created first */
1440 			if (!ac) {
1441 				ac = ap_card_create(id, depth, type,
1442 						    comp_type, func);
1443 				if (!ac)
1444 					continue;
1445 				ac->ap_dev.device.bus = &ap_bus_type;
1446 				ac->ap_dev.device.parent = ap_root_device;
1447 				dev_set_name(&ac->ap_dev.device,
1448 					     "card%02x", id);
1449 				/* Register card with AP bus */
1450 				rc = device_register(&ac->ap_dev.device);
1451 				if (rc) {
1452 					put_device(&ac->ap_dev.device);
1453 					ac = NULL;
1454 					break;
1455 				}
1456 				/* get it and thus adjust reference counter */
1457 				get_device(&ac->ap_dev.device);
1458 			}
1459 			/* now create the new queue device */
1460 			aq = ap_queue_create(qid, comp_type);
1461 			if (!aq)
1462 				continue;
1463 			aq->card = ac;
1464 			aq->ap_dev.device.bus = &ap_bus_type;
1465 			aq->ap_dev.device.parent = &ac->ap_dev.device;
1466 			dev_set_name(&aq->ap_dev.device,
1467 				     "%02x.%04x", id, dom);
1468 			/* Start with a device reset */
1469 			spin_lock_bh(&aq->lock);
1470 			ap_wait(ap_sm_event(aq, AP_EVENT_POLL));
1471 			spin_unlock_bh(&aq->lock);
1472 			/* Register device */
1473 			rc = device_register(&aq->ap_dev.device);
1474 			if (rc) {
1475 				put_device(&aq->ap_dev.device);
1476 				continue;
1477 			}
1478 			domains++;
1479 			if (dom == ap_domain_index)
1480 				defdomdevs++;
1481 		} /* end domain loop */
1482 		if (ac) {
1483 			/* remove card dev if there are no queue devices */
1484 			if (!domains)
1485 				device_unregister(&ac->ap_dev.device);
1486 			put_device(&ac->ap_dev.device);
1487 		}
1488 	} /* end device loop */
1489 
1490 	if (defdomdevs < 1)
1491 		AP_DBF(DBF_INFO,
1492 		       "no queue device with default domain %d available\n",
1493 		       ap_domain_index);
1494 
1495 out:
1496 	mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1497 }
1498 
1499 static void ap_config_timeout(struct timer_list *unused)
1500 {
1501 	if (ap_suspend_flag)
1502 		return;
1503 	queue_work(system_long_wq, &ap_scan_work);
1504 }
1505 
1506 static int __init ap_debug_init(void)
1507 {
1508 	ap_dbf_info = debug_register("ap", 1, 1,
1509 				     DBF_MAX_SPRINTF_ARGS * sizeof(long));
1510 	debug_register_view(ap_dbf_info, &debug_sprintf_view);
1511 	debug_set_level(ap_dbf_info, DBF_ERR);
1512 
1513 	return 0;
1514 }
1515 
1516 static void __init ap_perms_init(void)
1517 {
1518 	/* all resources useable if no kernel parameter string given */
1519 	memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm));
1520 	memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm));
1521 
1522 	/* apm kernel parameter string */
1523 	if (apm_str) {
1524 		memset(&ap_perms.apm, 0, sizeof(ap_perms.apm));
1525 		process_mask_arg(apm_str, ap_perms.apm, AP_DEVICES,
1526 				 &ap_perms_mutex);
1527 	}
1528 
1529 	/* aqm kernel parameter string */
1530 	if (aqm_str) {
1531 		memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm));
1532 		process_mask_arg(aqm_str, ap_perms.aqm, AP_DOMAINS,
1533 				 &ap_perms_mutex);
1534 	}
1535 }
1536 
1537 /**
1538  * ap_module_init(): The module initialization code.
1539  *
1540  * Initializes the module.
1541  */
1542 static int __init ap_module_init(void)
1543 {
1544 	int max_domain_id;
1545 	int rc, i;
1546 
1547 	rc = ap_debug_init();
1548 	if (rc)
1549 		return rc;
1550 
1551 	if (!ap_instructions_available()) {
1552 		pr_warn("The hardware system does not support AP instructions\n");
1553 		return -ENODEV;
1554 	}
1555 
1556 	/* set up the AP permissions (ap and aq masks) */
1557 	ap_perms_init();
1558 
1559 	/* Get AP configuration data if available */
1560 	ap_init_configuration();
1561 
1562 	if (ap_configuration)
1563 		max_domain_id =
1564 			ap_max_domain_id ? ap_max_domain_id : AP_DOMAINS - 1;
1565 	else
1566 		max_domain_id = 15;
1567 	if (ap_domain_index < -1 || ap_domain_index > max_domain_id ||
1568 	    (ap_domain_index >= 0 &&
1569 	     !test_bit_inv(ap_domain_index, ap_perms.aqm))) {
1570 		pr_warn("%d is not a valid cryptographic domain\n",
1571 			ap_domain_index);
1572 		ap_domain_index = -1;
1573 	}
1574 	/* In resume callback we need to know if the user had set the domain.
1575 	 * If so, we can not just reset it.
1576 	 */
1577 	if (ap_domain_index >= 0)
1578 		user_set_domain = 1;
1579 
1580 	if (ap_interrupts_available()) {
1581 		rc = register_adapter_interrupt(&ap_airq);
1582 		ap_airq_flag = (rc == 0);
1583 	}
1584 
1585 	/* Create /sys/bus/ap. */
1586 	rc = bus_register(&ap_bus_type);
1587 	if (rc)
1588 		goto out;
1589 	for (i = 0; ap_bus_attrs[i]; i++) {
1590 		rc = bus_create_file(&ap_bus_type, ap_bus_attrs[i]);
1591 		if (rc)
1592 			goto out_bus;
1593 	}
1594 
1595 	/* Create /sys/devices/ap. */
1596 	ap_root_device = root_device_register("ap");
1597 	rc = PTR_ERR_OR_ZERO(ap_root_device);
1598 	if (rc)
1599 		goto out_bus;
1600 
1601 	/* Setup the AP bus rescan timer. */
1602 	timer_setup(&ap_config_timer, ap_config_timeout, 0);
1603 
1604 	/*
1605 	 * Setup the high resultion poll timer.
1606 	 * If we are running under z/VM adjust polling to z/VM polling rate.
1607 	 */
1608 	if (MACHINE_IS_VM)
1609 		poll_timeout = 1500000;
1610 	spin_lock_init(&ap_poll_timer_lock);
1611 	hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1612 	ap_poll_timer.function = ap_poll_timeout;
1613 
1614 	/* Start the low priority AP bus poll thread. */
1615 	if (ap_thread_flag) {
1616 		rc = ap_poll_thread_start();
1617 		if (rc)
1618 			goto out_work;
1619 	}
1620 
1621 	rc = register_pm_notifier(&ap_power_notifier);
1622 	if (rc)
1623 		goto out_pm;
1624 
1625 	queue_work(system_long_wq, &ap_scan_work);
1626 	initialised = true;
1627 
1628 	return 0;
1629 
1630 out_pm:
1631 	ap_poll_thread_stop();
1632 out_work:
1633 	hrtimer_cancel(&ap_poll_timer);
1634 	root_device_unregister(ap_root_device);
1635 out_bus:
1636 	while (i--)
1637 		bus_remove_file(&ap_bus_type, ap_bus_attrs[i]);
1638 	bus_unregister(&ap_bus_type);
1639 out:
1640 	if (ap_using_interrupts())
1641 		unregister_adapter_interrupt(&ap_airq);
1642 	kfree(ap_configuration);
1643 	return rc;
1644 }
1645 device_initcall(ap_module_init);
1646