xref: /openbmc/linux/drivers/s390/crypto/ap_bus.c (revision 22fc4c4c9fd60427bcda00878cee94e7622cfa7a)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright IBM Corp. 2006, 2012
4  * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
5  *	      Martin Schwidefsky <schwidefsky@de.ibm.com>
6  *	      Ralph Wuerthner <rwuerthn@de.ibm.com>
7  *	      Felix Beck <felix.beck@de.ibm.com>
8  *	      Holger Dengler <hd@linux.vnet.ibm.com>
9  *
10  * Adjunct processor bus.
11  */
12 
13 #define KMSG_COMPONENT "ap"
14 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
15 
16 #include <linux/kernel_stat.h>
17 #include <linux/moduleparam.h>
18 #include <linux/init.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/interrupt.h>
22 #include <linux/workqueue.h>
23 #include <linux/slab.h>
24 #include <linux/notifier.h>
25 #include <linux/kthread.h>
26 #include <linux/mutex.h>
27 #include <linux/suspend.h>
28 #include <asm/airq.h>
29 #include <linux/atomic.h>
30 #include <asm/isc.h>
31 #include <linux/hrtimer.h>
32 #include <linux/ktime.h>
33 #include <asm/facility.h>
34 #include <linux/crypto.h>
35 #include <linux/mod_devicetable.h>
36 #include <linux/debugfs.h>
37 #include <linux/ctype.h>
38 
39 #include "ap_bus.h"
40 #include "ap_debug.h"
41 
42 /*
43  * Module parameters; note though this file itself isn't modular.
44  */
45 int ap_domain_index = -1;	/* Adjunct Processor Domain Index */
46 static DEFINE_SPINLOCK(ap_domain_lock);
47 module_param_named(domain, ap_domain_index, int, 0440);
48 MODULE_PARM_DESC(domain, "domain index for ap devices");
49 EXPORT_SYMBOL(ap_domain_index);
50 
51 static int ap_thread_flag;
52 module_param_named(poll_thread, ap_thread_flag, int, 0440);
53 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
54 
55 static char *apm_str;
56 module_param_named(apmask, apm_str, charp, 0440);
57 MODULE_PARM_DESC(apmask, "AP bus adapter mask.");
58 
59 static char *aqm_str;
60 module_param_named(aqmask, aqm_str, charp, 0440);
61 MODULE_PARM_DESC(aqmask, "AP bus domain mask.");
62 
63 static struct device *ap_root_device;
64 
65 DEFINE_SPINLOCK(ap_list_lock);
66 LIST_HEAD(ap_card_list);
67 
68 /* Default permissions (ioctl, card and domain masking) */
69 struct ap_perms ap_perms;
70 EXPORT_SYMBOL(ap_perms);
71 DEFINE_MUTEX(ap_perms_mutex);
72 EXPORT_SYMBOL(ap_perms_mutex);
73 
74 static struct ap_config_info *ap_configuration;
75 static bool initialised;
76 
77 /*
78  * AP bus related debug feature things.
79  */
80 debug_info_t *ap_dbf_info;
81 
82 /*
83  * Workqueue timer for bus rescan.
84  */
85 static struct timer_list ap_config_timer;
86 static int ap_config_time = AP_CONFIG_TIME;
87 static void ap_scan_bus(struct work_struct *);
88 static DECLARE_WORK(ap_scan_work, ap_scan_bus);
89 
90 /*
91  * Tasklet & timer for AP request polling and interrupts
92  */
93 static void ap_tasklet_fn(unsigned long);
94 static DECLARE_TASKLET(ap_tasklet, ap_tasklet_fn, 0);
95 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
96 static struct task_struct *ap_poll_kthread;
97 static DEFINE_MUTEX(ap_poll_thread_mutex);
98 static DEFINE_SPINLOCK(ap_poll_timer_lock);
99 static struct hrtimer ap_poll_timer;
100 /*
101  * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
102  * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.
103  */
104 static unsigned long long poll_timeout = 250000;
105 
106 /* Suspend flag */
107 static int ap_suspend_flag;
108 /* Maximum domain id */
109 static int ap_max_domain_id;
110 /*
111  * Flag to check if domain was set through module parameter domain=. This is
112  * important when supsend and resume is done in a z/VM environment where the
113  * domain might change.
114  */
115 static int user_set_domain;
116 static struct bus_type ap_bus_type;
117 
118 /* Adapter interrupt definitions */
119 static void ap_interrupt_handler(struct airq_struct *airq);
120 
121 static int ap_airq_flag;
122 
123 static struct airq_struct ap_airq = {
124 	.handler = ap_interrupt_handler,
125 	.isc = AP_ISC,
126 };
127 
128 /**
129  * ap_using_interrupts() - Returns non-zero if interrupt support is
130  * available.
131  */
132 static inline int ap_using_interrupts(void)
133 {
134 	return ap_airq_flag;
135 }
136 
137 /**
138  * ap_airq_ptr() - Get the address of the adapter interrupt indicator
139  *
140  * Returns the address of the local-summary-indicator of the adapter
141  * interrupt handler for AP, or NULL if adapter interrupts are not
142  * available.
143  */
144 void *ap_airq_ptr(void)
145 {
146 	if (ap_using_interrupts())
147 		return ap_airq.lsi_ptr;
148 	return NULL;
149 }
150 
151 /**
152  * ap_interrupts_available(): Test if AP interrupts are available.
153  *
154  * Returns 1 if AP interrupts are available.
155  */
156 static int ap_interrupts_available(void)
157 {
158 	return test_facility(65);
159 }
160 
161 /**
162  * ap_configuration_available(): Test if AP configuration
163  * information is available.
164  *
165  * Returns 1 if AP configuration information is available.
166  */
167 static int ap_configuration_available(void)
168 {
169 	return test_facility(12);
170 }
171 
172 /**
173  * ap_apft_available(): Test if AP facilities test (APFT)
174  * facility is available.
175  *
176  * Returns 1 if APFT is is available.
177  */
178 static int ap_apft_available(void)
179 {
180 	return test_facility(15);
181 }
182 
183 /*
184  * ap_qact_available(): Test if the PQAP(QACT) subfunction is available.
185  *
186  * Returns 1 if the QACT subfunction is available.
187  */
188 static inline int ap_qact_available(void)
189 {
190 	if (ap_configuration)
191 		return ap_configuration->qact;
192 	return 0;
193 }
194 
195 /*
196  * ap_query_configuration(): Fetch cryptographic config info
197  *
198  * Returns the ap configuration info fetched via PQAP(QCI).
199  * On success 0 is returned, on failure a negative errno
200  * is returned, e.g. if the PQAP(QCI) instruction is not
201  * available, the return value will be -EOPNOTSUPP.
202  */
203 static inline int ap_query_configuration(struct ap_config_info *info)
204 {
205 	if (!ap_configuration_available())
206 		return -EOPNOTSUPP;
207 	if (!info)
208 		return -EINVAL;
209 	return ap_qci(info);
210 }
211 EXPORT_SYMBOL(ap_query_configuration);
212 
213 /**
214  * ap_init_configuration(): Allocate and query configuration array.
215  */
216 static void ap_init_configuration(void)
217 {
218 	if (!ap_configuration_available())
219 		return;
220 
221 	ap_configuration = kzalloc(sizeof(*ap_configuration), GFP_KERNEL);
222 	if (!ap_configuration)
223 		return;
224 	if (ap_query_configuration(ap_configuration) != 0) {
225 		kfree(ap_configuration);
226 		ap_configuration = NULL;
227 		return;
228 	}
229 }
230 
231 /*
232  * ap_test_config(): helper function to extract the nrth bit
233  *		     within the unsigned int array field.
234  */
235 static inline int ap_test_config(unsigned int *field, unsigned int nr)
236 {
237 	return ap_test_bit((field + (nr >> 5)), (nr & 0x1f));
238 }
239 
240 /*
241  * ap_test_config_card_id(): Test, whether an AP card ID is configured.
242  * @id AP card ID
243  *
244  * Returns 0 if the card is not configured
245  *	   1 if the card is configured or
246  *	     if the configuration information is not available
247  */
248 static inline int ap_test_config_card_id(unsigned int id)
249 {
250 	if (!ap_configuration)	/* QCI not supported */
251 		return 1;
252 	return ap_test_config(ap_configuration->apm, id);
253 }
254 
255 /*
256  * ap_test_config_domain(): Test, whether an AP usage domain is configured.
257  * @domain AP usage domain ID
258  *
259  * Returns 0 if the usage domain is not configured
260  *	   1 if the usage domain is configured or
261  *	     if the configuration information is not available
262  */
263 static inline int ap_test_config_domain(unsigned int domain)
264 {
265 	if (!ap_configuration)	/* QCI not supported */
266 		return domain < 16;
267 	return ap_test_config(ap_configuration->aqm, domain);
268 }
269 
270 /**
271  * ap_query_queue(): Check if an AP queue is available.
272  * @qid: The AP queue number
273  * @queue_depth: Pointer to queue depth value
274  * @device_type: Pointer to device type value
275  * @facilities: Pointer to facility indicator
276  */
277 static int ap_query_queue(ap_qid_t qid, int *queue_depth, int *device_type,
278 			  unsigned int *facilities)
279 {
280 	struct ap_queue_status status;
281 	unsigned long info;
282 	int nd;
283 
284 	if (!ap_test_config_card_id(AP_QID_CARD(qid)))
285 		return -ENODEV;
286 
287 	status = ap_test_queue(qid, ap_apft_available(), &info);
288 	switch (status.response_code) {
289 	case AP_RESPONSE_NORMAL:
290 		*queue_depth = (int)(info & 0xff);
291 		*device_type = (int)((info >> 24) & 0xff);
292 		*facilities = (unsigned int)(info >> 32);
293 		/* Update maximum domain id */
294 		nd = (info >> 16) & 0xff;
295 		/* if N bit is available, z13 and newer */
296 		if ((info & (1UL << 57)) && nd > 0)
297 			ap_max_domain_id = nd;
298 		else /* older machine types */
299 			ap_max_domain_id = 15;
300 		switch (*device_type) {
301 			/* For CEX2 and CEX3 the available functions
302 			 * are not reflected by the facilities bits.
303 			 * Instead it is coded into the type. So here
304 			 * modify the function bits based on the type.
305 			 */
306 		case AP_DEVICE_TYPE_CEX2A:
307 		case AP_DEVICE_TYPE_CEX3A:
308 			*facilities |= 0x08000000;
309 			break;
310 		case AP_DEVICE_TYPE_CEX2C:
311 		case AP_DEVICE_TYPE_CEX3C:
312 			*facilities |= 0x10000000;
313 			break;
314 		default:
315 			break;
316 		}
317 		return 0;
318 	case AP_RESPONSE_Q_NOT_AVAIL:
319 	case AP_RESPONSE_DECONFIGURED:
320 	case AP_RESPONSE_CHECKSTOPPED:
321 	case AP_RESPONSE_INVALID_ADDRESS:
322 		return -ENODEV;
323 	case AP_RESPONSE_RESET_IN_PROGRESS:
324 	case AP_RESPONSE_OTHERWISE_CHANGED:
325 	case AP_RESPONSE_BUSY:
326 		return -EBUSY;
327 	default:
328 		BUG();
329 	}
330 }
331 
332 void ap_wait(enum ap_wait wait)
333 {
334 	ktime_t hr_time;
335 
336 	switch (wait) {
337 	case AP_WAIT_AGAIN:
338 	case AP_WAIT_INTERRUPT:
339 		if (ap_using_interrupts())
340 			break;
341 		if (ap_poll_kthread) {
342 			wake_up(&ap_poll_wait);
343 			break;
344 		}
345 		/* Fall through */
346 	case AP_WAIT_TIMEOUT:
347 		spin_lock_bh(&ap_poll_timer_lock);
348 		if (!hrtimer_is_queued(&ap_poll_timer)) {
349 			hr_time = poll_timeout;
350 			hrtimer_forward_now(&ap_poll_timer, hr_time);
351 			hrtimer_restart(&ap_poll_timer);
352 		}
353 		spin_unlock_bh(&ap_poll_timer_lock);
354 		break;
355 	case AP_WAIT_NONE:
356 	default:
357 		break;
358 	}
359 }
360 
361 /**
362  * ap_request_timeout(): Handling of request timeouts
363  * @t: timer making this callback
364  *
365  * Handles request timeouts.
366  */
367 void ap_request_timeout(struct timer_list *t)
368 {
369 	struct ap_queue *aq = from_timer(aq, t, timeout);
370 
371 	if (ap_suspend_flag)
372 		return;
373 	spin_lock_bh(&aq->lock);
374 	ap_wait(ap_sm_event(aq, AP_EVENT_TIMEOUT));
375 	spin_unlock_bh(&aq->lock);
376 }
377 
378 /**
379  * ap_poll_timeout(): AP receive polling for finished AP requests.
380  * @unused: Unused pointer.
381  *
382  * Schedules the AP tasklet using a high resolution timer.
383  */
384 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
385 {
386 	if (!ap_suspend_flag)
387 		tasklet_schedule(&ap_tasklet);
388 	return HRTIMER_NORESTART;
389 }
390 
391 /**
392  * ap_interrupt_handler() - Schedule ap_tasklet on interrupt
393  * @airq: pointer to adapter interrupt descriptor
394  */
395 static void ap_interrupt_handler(struct airq_struct *airq)
396 {
397 	inc_irq_stat(IRQIO_APB);
398 	if (!ap_suspend_flag)
399 		tasklet_schedule(&ap_tasklet);
400 }
401 
402 /**
403  * ap_tasklet_fn(): Tasklet to poll all AP devices.
404  * @dummy: Unused variable
405  *
406  * Poll all AP devices on the bus.
407  */
408 static void ap_tasklet_fn(unsigned long dummy)
409 {
410 	struct ap_card *ac;
411 	struct ap_queue *aq;
412 	enum ap_wait wait = AP_WAIT_NONE;
413 
414 	/* Reset the indicator if interrupts are used. Thus new interrupts can
415 	 * be received. Doing it in the beginning of the tasklet is therefor
416 	 * important that no requests on any AP get lost.
417 	 */
418 	if (ap_using_interrupts())
419 		xchg(ap_airq.lsi_ptr, 0);
420 
421 	spin_lock_bh(&ap_list_lock);
422 	for_each_ap_card(ac) {
423 		for_each_ap_queue(aq, ac) {
424 			spin_lock_bh(&aq->lock);
425 			wait = min(wait, ap_sm_event_loop(aq, AP_EVENT_POLL));
426 			spin_unlock_bh(&aq->lock);
427 		}
428 	}
429 	spin_unlock_bh(&ap_list_lock);
430 
431 	ap_wait(wait);
432 }
433 
434 static int ap_pending_requests(void)
435 {
436 	struct ap_card *ac;
437 	struct ap_queue *aq;
438 
439 	spin_lock_bh(&ap_list_lock);
440 	for_each_ap_card(ac) {
441 		for_each_ap_queue(aq, ac) {
442 			if (aq->queue_count == 0)
443 				continue;
444 			spin_unlock_bh(&ap_list_lock);
445 			return 1;
446 		}
447 	}
448 	spin_unlock_bh(&ap_list_lock);
449 	return 0;
450 }
451 
452 /**
453  * ap_poll_thread(): Thread that polls for finished requests.
454  * @data: Unused pointer
455  *
456  * AP bus poll thread. The purpose of this thread is to poll for
457  * finished requests in a loop if there is a "free" cpu - that is
458  * a cpu that doesn't have anything better to do. The polling stops
459  * as soon as there is another task or if all messages have been
460  * delivered.
461  */
462 static int ap_poll_thread(void *data)
463 {
464 	DECLARE_WAITQUEUE(wait, current);
465 
466 	set_user_nice(current, MAX_NICE);
467 	set_freezable();
468 	while (!kthread_should_stop()) {
469 		add_wait_queue(&ap_poll_wait, &wait);
470 		set_current_state(TASK_INTERRUPTIBLE);
471 		if (ap_suspend_flag || !ap_pending_requests()) {
472 			schedule();
473 			try_to_freeze();
474 		}
475 		set_current_state(TASK_RUNNING);
476 		remove_wait_queue(&ap_poll_wait, &wait);
477 		if (need_resched()) {
478 			schedule();
479 			try_to_freeze();
480 			continue;
481 		}
482 		ap_tasklet_fn(0);
483 	}
484 
485 	return 0;
486 }
487 
488 static int ap_poll_thread_start(void)
489 {
490 	int rc;
491 
492 	if (ap_using_interrupts() || ap_poll_kthread)
493 		return 0;
494 	mutex_lock(&ap_poll_thread_mutex);
495 	ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
496 	rc = PTR_ERR_OR_ZERO(ap_poll_kthread);
497 	if (rc)
498 		ap_poll_kthread = NULL;
499 	mutex_unlock(&ap_poll_thread_mutex);
500 	return rc;
501 }
502 
503 static void ap_poll_thread_stop(void)
504 {
505 	if (!ap_poll_kthread)
506 		return;
507 	mutex_lock(&ap_poll_thread_mutex);
508 	kthread_stop(ap_poll_kthread);
509 	ap_poll_kthread = NULL;
510 	mutex_unlock(&ap_poll_thread_mutex);
511 }
512 
513 #define is_card_dev(x) ((x)->parent == ap_root_device)
514 #define is_queue_dev(x) ((x)->parent != ap_root_device)
515 
516 /**
517  * ap_bus_match()
518  * @dev: Pointer to device
519  * @drv: Pointer to device_driver
520  *
521  * AP bus driver registration/unregistration.
522  */
523 static int ap_bus_match(struct device *dev, struct device_driver *drv)
524 {
525 	struct ap_driver *ap_drv = to_ap_drv(drv);
526 	struct ap_device_id *id;
527 
528 	/*
529 	 * Compare device type of the device with the list of
530 	 * supported types of the device_driver.
531 	 */
532 	for (id = ap_drv->ids; id->match_flags; id++) {
533 		if (is_card_dev(dev) &&
534 		    id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE &&
535 		    id->dev_type == to_ap_dev(dev)->device_type)
536 			return 1;
537 		if (is_queue_dev(dev) &&
538 		    id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE &&
539 		    id->dev_type == to_ap_dev(dev)->device_type)
540 			return 1;
541 	}
542 	return 0;
543 }
544 
545 /**
546  * ap_uevent(): Uevent function for AP devices.
547  * @dev: Pointer to device
548  * @env: Pointer to kobj_uevent_env
549  *
550  * It sets up a single environment variable DEV_TYPE which contains the
551  * hardware device type.
552  */
553 static int ap_uevent(struct device *dev, struct kobj_uevent_env *env)
554 {
555 	struct ap_device *ap_dev = to_ap_dev(dev);
556 	int retval = 0;
557 
558 	if (!ap_dev)
559 		return -ENODEV;
560 
561 	/* Set up DEV_TYPE environment variable. */
562 	retval = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
563 	if (retval)
564 		return retval;
565 
566 	/* Add MODALIAS= */
567 	retval = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
568 
569 	return retval;
570 }
571 
572 static int ap_dev_suspend(struct device *dev)
573 {
574 	struct ap_device *ap_dev = to_ap_dev(dev);
575 
576 	if (ap_dev->drv && ap_dev->drv->suspend)
577 		ap_dev->drv->suspend(ap_dev);
578 	return 0;
579 }
580 
581 static int ap_dev_resume(struct device *dev)
582 {
583 	struct ap_device *ap_dev = to_ap_dev(dev);
584 
585 	if (ap_dev->drv && ap_dev->drv->resume)
586 		ap_dev->drv->resume(ap_dev);
587 	return 0;
588 }
589 
590 static void ap_bus_suspend(void)
591 {
592 	AP_DBF(DBF_DEBUG, "%s running\n", __func__);
593 
594 	ap_suspend_flag = 1;
595 	/*
596 	 * Disable scanning for devices, thus we do not want to scan
597 	 * for them after removing.
598 	 */
599 	flush_work(&ap_scan_work);
600 	tasklet_disable(&ap_tasklet);
601 }
602 
603 static int __ap_card_devices_unregister(struct device *dev, void *dummy)
604 {
605 	if (is_card_dev(dev))
606 		device_unregister(dev);
607 	return 0;
608 }
609 
610 static int __ap_queue_devices_unregister(struct device *dev, void *dummy)
611 {
612 	if (is_queue_dev(dev))
613 		device_unregister(dev);
614 	return 0;
615 }
616 
617 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data)
618 {
619 	if (is_queue_dev(dev) &&
620 	    AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long) data)
621 		device_unregister(dev);
622 	return 0;
623 }
624 
625 static void ap_bus_resume(void)
626 {
627 	int rc;
628 
629 	AP_DBF(DBF_DEBUG, "%s running\n", __func__);
630 
631 	/* remove all queue devices */
632 	bus_for_each_dev(&ap_bus_type, NULL, NULL,
633 			 __ap_queue_devices_unregister);
634 	/* remove all card devices */
635 	bus_for_each_dev(&ap_bus_type, NULL, NULL,
636 			 __ap_card_devices_unregister);
637 
638 	/* Reset thin interrupt setting */
639 	if (ap_interrupts_available() && !ap_using_interrupts()) {
640 		rc = register_adapter_interrupt(&ap_airq);
641 		ap_airq_flag = (rc == 0);
642 	}
643 	if (!ap_interrupts_available() && ap_using_interrupts()) {
644 		unregister_adapter_interrupt(&ap_airq);
645 		ap_airq_flag = 0;
646 	}
647 	/* Reset domain */
648 	if (!user_set_domain)
649 		ap_domain_index = -1;
650 	/* Get things going again */
651 	ap_suspend_flag = 0;
652 	if (ap_airq_flag)
653 		xchg(ap_airq.lsi_ptr, 0);
654 	tasklet_enable(&ap_tasklet);
655 	queue_work(system_long_wq, &ap_scan_work);
656 }
657 
658 static int ap_power_event(struct notifier_block *this, unsigned long event,
659 			  void *ptr)
660 {
661 	switch (event) {
662 	case PM_HIBERNATION_PREPARE:
663 	case PM_SUSPEND_PREPARE:
664 		ap_bus_suspend();
665 		break;
666 	case PM_POST_HIBERNATION:
667 	case PM_POST_SUSPEND:
668 		ap_bus_resume();
669 		break;
670 	default:
671 		break;
672 	}
673 	return NOTIFY_DONE;
674 }
675 static struct notifier_block ap_power_notifier = {
676 	.notifier_call = ap_power_event,
677 };
678 
679 static SIMPLE_DEV_PM_OPS(ap_bus_pm_ops, ap_dev_suspend, ap_dev_resume);
680 
681 static struct bus_type ap_bus_type = {
682 	.name = "ap",
683 	.match = &ap_bus_match,
684 	.uevent = &ap_uevent,
685 	.pm = &ap_bus_pm_ops,
686 };
687 
688 static int __ap_revise_reserved(struct device *dev, void *dummy)
689 {
690 	int rc, card, queue, devres, drvres;
691 
692 	if (is_queue_dev(dev)) {
693 		card = AP_QID_CARD(to_ap_queue(dev)->qid);
694 		queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
695 		mutex_lock(&ap_perms_mutex);
696 		devres = test_bit_inv(card, ap_perms.apm)
697 			&& test_bit_inv(queue, ap_perms.aqm);
698 		mutex_unlock(&ap_perms_mutex);
699 		drvres = to_ap_drv(dev->driver)->flags
700 			& AP_DRIVER_FLAG_DEFAULT;
701 		if (!!devres != !!drvres) {
702 			AP_DBF(DBF_DEBUG, "reprobing queue=%02x.%04x\n",
703 			       card, queue);
704 			rc = device_reprobe(dev);
705 		}
706 	}
707 
708 	return 0;
709 }
710 
711 static void ap_bus_revise_bindings(void)
712 {
713 	bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved);
714 }
715 
716 int ap_owned_by_def_drv(int card, int queue)
717 {
718 	int rc = 0;
719 
720 	if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS)
721 		return -EINVAL;
722 
723 	mutex_lock(&ap_perms_mutex);
724 
725 	if (test_bit_inv(card, ap_perms.apm)
726 	    && test_bit_inv(queue, ap_perms.aqm))
727 		rc = 1;
728 
729 	mutex_unlock(&ap_perms_mutex);
730 
731 	return rc;
732 }
733 EXPORT_SYMBOL(ap_owned_by_def_drv);
734 
735 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm,
736 				       unsigned long *aqm)
737 {
738 	int card, queue, rc = 0;
739 
740 	mutex_lock(&ap_perms_mutex);
741 
742 	for (card = 0; !rc && card < AP_DEVICES; card++)
743 		if (test_bit_inv(card, apm) &&
744 		    test_bit_inv(card, ap_perms.apm))
745 			for (queue = 0; !rc && queue < AP_DOMAINS; queue++)
746 				if (test_bit_inv(queue, aqm) &&
747 				    test_bit_inv(queue, ap_perms.aqm))
748 					rc = 1;
749 
750 	mutex_unlock(&ap_perms_mutex);
751 
752 	return rc;
753 }
754 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv);
755 
756 static int ap_device_probe(struct device *dev)
757 {
758 	struct ap_device *ap_dev = to_ap_dev(dev);
759 	struct ap_driver *ap_drv = to_ap_drv(dev->driver);
760 	int card, queue, devres, drvres, rc;
761 
762 	if (is_queue_dev(dev)) {
763 		/*
764 		 * If the apqn is marked as reserved/used by ap bus and
765 		 * default drivers, only probe with drivers with the default
766 		 * flag set. If it is not marked, only probe with drivers
767 		 * with the default flag not set.
768 		 */
769 		card = AP_QID_CARD(to_ap_queue(dev)->qid);
770 		queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
771 		mutex_lock(&ap_perms_mutex);
772 		devres = test_bit_inv(card, ap_perms.apm)
773 			&& test_bit_inv(queue, ap_perms.aqm);
774 		mutex_unlock(&ap_perms_mutex);
775 		drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT;
776 		if (!!devres != !!drvres)
777 			return -ENODEV;
778 		/* (re-)init queue's state machine */
779 		ap_queue_reinit_state(to_ap_queue(dev));
780 	}
781 
782 	/* Add queue/card to list of active queues/cards */
783 	spin_lock_bh(&ap_list_lock);
784 	if (is_card_dev(dev))
785 		list_add(&to_ap_card(dev)->list, &ap_card_list);
786 	else
787 		list_add(&to_ap_queue(dev)->list,
788 			 &to_ap_queue(dev)->card->queues);
789 	spin_unlock_bh(&ap_list_lock);
790 
791 	ap_dev->drv = ap_drv;
792 	rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
793 
794 	if (rc) {
795 		spin_lock_bh(&ap_list_lock);
796 		if (is_card_dev(dev))
797 			list_del_init(&to_ap_card(dev)->list);
798 		else
799 			list_del_init(&to_ap_queue(dev)->list);
800 		spin_unlock_bh(&ap_list_lock);
801 		ap_dev->drv = NULL;
802 	}
803 
804 	return rc;
805 }
806 
807 static int ap_device_remove(struct device *dev)
808 {
809 	struct ap_device *ap_dev = to_ap_dev(dev);
810 	struct ap_driver *ap_drv = ap_dev->drv;
811 
812 	if (is_queue_dev(dev))
813 		ap_queue_remove(to_ap_queue(dev));
814 	if (ap_drv->remove)
815 		ap_drv->remove(ap_dev);
816 
817 	/* Remove queue/card from list of active queues/cards */
818 	spin_lock_bh(&ap_list_lock);
819 	if (is_card_dev(dev))
820 		list_del_init(&to_ap_card(dev)->list);
821 	else
822 		list_del_init(&to_ap_queue(dev)->list);
823 	spin_unlock_bh(&ap_list_lock);
824 
825 	return 0;
826 }
827 
828 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
829 		       char *name)
830 {
831 	struct device_driver *drv = &ap_drv->driver;
832 
833 	if (!initialised)
834 		return -ENODEV;
835 
836 	drv->bus = &ap_bus_type;
837 	drv->probe = ap_device_probe;
838 	drv->remove = ap_device_remove;
839 	drv->owner = owner;
840 	drv->name = name;
841 	return driver_register(drv);
842 }
843 EXPORT_SYMBOL(ap_driver_register);
844 
845 void ap_driver_unregister(struct ap_driver *ap_drv)
846 {
847 	driver_unregister(&ap_drv->driver);
848 }
849 EXPORT_SYMBOL(ap_driver_unregister);
850 
851 void ap_bus_force_rescan(void)
852 {
853 	if (ap_suspend_flag)
854 		return;
855 	/* processing a asynchronous bus rescan */
856 	del_timer(&ap_config_timer);
857 	queue_work(system_long_wq, &ap_scan_work);
858 	flush_work(&ap_scan_work);
859 }
860 EXPORT_SYMBOL(ap_bus_force_rescan);
861 
862 /*
863  * hex2bitmap() - parse hex mask string and set bitmap.
864  * Valid strings are "0x012345678" with at least one valid hex number.
865  * Rest of the bitmap to the right is padded with 0. No spaces allowed
866  * within the string, the leading 0x may be omitted.
867  * Returns the bitmask with exactly the bits set as given by the hex
868  * string (both in big endian order).
869  */
870 static int hex2bitmap(const char *str, unsigned long *bitmap, int bits)
871 {
872 	int i, n, b;
873 
874 	/* bits needs to be a multiple of 8 */
875 	if (bits & 0x07)
876 		return -EINVAL;
877 
878 	if (str[0] == '0' && str[1] == 'x')
879 		str++;
880 	if (*str == 'x')
881 		str++;
882 
883 	for (i = 0; isxdigit(*str) && i < bits; str++) {
884 		b = hex_to_bin(*str);
885 		for (n = 0; n < 4; n++)
886 			if (b & (0x08 >> n))
887 				set_bit_inv(i + n, bitmap);
888 		i += 4;
889 	}
890 
891 	if (*str == '\n')
892 		str++;
893 	if (*str)
894 		return -EINVAL;
895 	return 0;
896 }
897 
898 /*
899  * modify_bitmap() - parse bitmask argument and modify an existing
900  * bit mask accordingly. A concatenation (done with ',') of these
901  * terms is recognized:
902  *   +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>]
903  * <bitnr> may be any valid number (hex, decimal or octal) in the range
904  * 0...bits-1; the leading + or - is required. Here are some examples:
905  *   +0-15,+32,-128,-0xFF
906  *   -0-255,+1-16,+0x128
907  *   +1,+2,+3,+4,-5,-7-10
908  * Returns the new bitmap after all changes have been applied. Every
909  * positive value in the string will set a bit and every negative value
910  * in the string will clear a bit. As a bit may be touched more than once,
911  * the last 'operation' wins:
912  * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be
913  * cleared again. All other bits are unmodified.
914  */
915 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits)
916 {
917 	int a, i, z;
918 	char *np, sign;
919 
920 	/* bits needs to be a multiple of 8 */
921 	if (bits & 0x07)
922 		return -EINVAL;
923 
924 	while (*str) {
925 		sign = *str++;
926 		if (sign != '+' && sign != '-')
927 			return -EINVAL;
928 		a = z = simple_strtoul(str, &np, 0);
929 		if (str == np || a >= bits)
930 			return -EINVAL;
931 		str = np;
932 		if (*str == '-') {
933 			z = simple_strtoul(++str, &np, 0);
934 			if (str == np || a > z || z >= bits)
935 				return -EINVAL;
936 			str = np;
937 		}
938 		for (i = a; i <= z; i++)
939 			if (sign == '+')
940 				set_bit_inv(i, bitmap);
941 			else
942 				clear_bit_inv(i, bitmap);
943 		while (*str == ',' || *str == '\n')
944 			str++;
945 	}
946 
947 	return 0;
948 }
949 
950 int ap_parse_mask_str(const char *str,
951 		      unsigned long *bitmap, int bits,
952 		      struct mutex *lock)
953 {
954 	unsigned long *newmap, size;
955 	int rc;
956 
957 	/* bits needs to be a multiple of 8 */
958 	if (bits & 0x07)
959 		return -EINVAL;
960 
961 	size = BITS_TO_LONGS(bits)*sizeof(unsigned long);
962 	newmap = kmalloc(size, GFP_KERNEL);
963 	if (!newmap)
964 		return -ENOMEM;
965 	if (mutex_lock_interruptible(lock)) {
966 		kfree(newmap);
967 		return -ERESTARTSYS;
968 	}
969 
970 	if (*str == '+' || *str == '-') {
971 		memcpy(newmap, bitmap, size);
972 		rc = modify_bitmap(str, newmap, bits);
973 	} else {
974 		memset(newmap, 0, size);
975 		rc = hex2bitmap(str, newmap, bits);
976 	}
977 	if (rc == 0)
978 		memcpy(bitmap, newmap, size);
979 	mutex_unlock(lock);
980 	kfree(newmap);
981 	return rc;
982 }
983 EXPORT_SYMBOL(ap_parse_mask_str);
984 
985 /*
986  * AP bus attributes.
987  */
988 
989 static ssize_t ap_domain_show(struct bus_type *bus, char *buf)
990 {
991 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index);
992 }
993 
994 static ssize_t ap_domain_store(struct bus_type *bus,
995 			       const char *buf, size_t count)
996 {
997 	int domain;
998 
999 	if (sscanf(buf, "%i\n", &domain) != 1 ||
1000 	    domain < 0 || domain > ap_max_domain_id ||
1001 	    !test_bit_inv(domain, ap_perms.aqm))
1002 		return -EINVAL;
1003 	spin_lock_bh(&ap_domain_lock);
1004 	ap_domain_index = domain;
1005 	spin_unlock_bh(&ap_domain_lock);
1006 
1007 	AP_DBF(DBF_DEBUG, "stored new default domain=%d\n", domain);
1008 
1009 	return count;
1010 }
1011 
1012 static BUS_ATTR_RW(ap_domain);
1013 
1014 static ssize_t ap_control_domain_mask_show(struct bus_type *bus, char *buf)
1015 {
1016 	if (!ap_configuration)	/* QCI not supported */
1017 		return snprintf(buf, PAGE_SIZE, "not supported\n");
1018 
1019 	return snprintf(buf, PAGE_SIZE,
1020 			"0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1021 			ap_configuration->adm[0], ap_configuration->adm[1],
1022 			ap_configuration->adm[2], ap_configuration->adm[3],
1023 			ap_configuration->adm[4], ap_configuration->adm[5],
1024 			ap_configuration->adm[6], ap_configuration->adm[7]);
1025 }
1026 
1027 static BUS_ATTR_RO(ap_control_domain_mask);
1028 
1029 static ssize_t ap_usage_domain_mask_show(struct bus_type *bus, char *buf)
1030 {
1031 	if (!ap_configuration)	/* QCI not supported */
1032 		return snprintf(buf, PAGE_SIZE, "not supported\n");
1033 
1034 	return snprintf(buf, PAGE_SIZE,
1035 			"0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1036 			ap_configuration->aqm[0], ap_configuration->aqm[1],
1037 			ap_configuration->aqm[2], ap_configuration->aqm[3],
1038 			ap_configuration->aqm[4], ap_configuration->aqm[5],
1039 			ap_configuration->aqm[6], ap_configuration->aqm[7]);
1040 }
1041 
1042 static BUS_ATTR_RO(ap_usage_domain_mask);
1043 
1044 static ssize_t ap_adapter_mask_show(struct bus_type *bus, char *buf)
1045 {
1046 	if (!ap_configuration)	/* QCI not supported */
1047 		return snprintf(buf, PAGE_SIZE, "not supported\n");
1048 
1049 	return snprintf(buf, PAGE_SIZE,
1050 			"0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1051 			ap_configuration->apm[0], ap_configuration->apm[1],
1052 			ap_configuration->apm[2], ap_configuration->apm[3],
1053 			ap_configuration->apm[4], ap_configuration->apm[5],
1054 			ap_configuration->apm[6], ap_configuration->apm[7]);
1055 }
1056 
1057 static BUS_ATTR_RO(ap_adapter_mask);
1058 
1059 static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf)
1060 {
1061 	return snprintf(buf, PAGE_SIZE, "%d\n",
1062 			ap_using_interrupts() ? 1 : 0);
1063 }
1064 
1065 static BUS_ATTR_RO(ap_interrupts);
1066 
1067 static ssize_t config_time_show(struct bus_type *bus, char *buf)
1068 {
1069 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_config_time);
1070 }
1071 
1072 static ssize_t config_time_store(struct bus_type *bus,
1073 				 const char *buf, size_t count)
1074 {
1075 	int time;
1076 
1077 	if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
1078 		return -EINVAL;
1079 	ap_config_time = time;
1080 	mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1081 	return count;
1082 }
1083 
1084 static BUS_ATTR_RW(config_time);
1085 
1086 static ssize_t poll_thread_show(struct bus_type *bus, char *buf)
1087 {
1088 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0);
1089 }
1090 
1091 static ssize_t poll_thread_store(struct bus_type *bus,
1092 				 const char *buf, size_t count)
1093 {
1094 	int flag, rc;
1095 
1096 	if (sscanf(buf, "%d\n", &flag) != 1)
1097 		return -EINVAL;
1098 	if (flag) {
1099 		rc = ap_poll_thread_start();
1100 		if (rc)
1101 			count = rc;
1102 	} else
1103 		ap_poll_thread_stop();
1104 	return count;
1105 }
1106 
1107 static BUS_ATTR_RW(poll_thread);
1108 
1109 static ssize_t poll_timeout_show(struct bus_type *bus, char *buf)
1110 {
1111 	return snprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout);
1112 }
1113 
1114 static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf,
1115 				  size_t count)
1116 {
1117 	unsigned long long time;
1118 	ktime_t hr_time;
1119 
1120 	/* 120 seconds = maximum poll interval */
1121 	if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 ||
1122 	    time > 120000000000ULL)
1123 		return -EINVAL;
1124 	poll_timeout = time;
1125 	hr_time = poll_timeout;
1126 
1127 	spin_lock_bh(&ap_poll_timer_lock);
1128 	hrtimer_cancel(&ap_poll_timer);
1129 	hrtimer_set_expires(&ap_poll_timer, hr_time);
1130 	hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
1131 	spin_unlock_bh(&ap_poll_timer_lock);
1132 
1133 	return count;
1134 }
1135 
1136 static BUS_ATTR_RW(poll_timeout);
1137 
1138 static ssize_t ap_max_domain_id_show(struct bus_type *bus, char *buf)
1139 {
1140 	int max_domain_id;
1141 
1142 	if (ap_configuration)
1143 		max_domain_id = ap_max_domain_id ? : -1;
1144 	else
1145 		max_domain_id = 15;
1146 	return snprintf(buf, PAGE_SIZE, "%d\n", max_domain_id);
1147 }
1148 
1149 static BUS_ATTR_RO(ap_max_domain_id);
1150 
1151 static ssize_t apmask_show(struct bus_type *bus, char *buf)
1152 {
1153 	int rc;
1154 
1155 	if (mutex_lock_interruptible(&ap_perms_mutex))
1156 		return -ERESTARTSYS;
1157 	rc = snprintf(buf, PAGE_SIZE,
1158 		      "0x%016lx%016lx%016lx%016lx\n",
1159 		      ap_perms.apm[0], ap_perms.apm[1],
1160 		      ap_perms.apm[2], ap_perms.apm[3]);
1161 	mutex_unlock(&ap_perms_mutex);
1162 
1163 	return rc;
1164 }
1165 
1166 static ssize_t apmask_store(struct bus_type *bus, const char *buf,
1167 			    size_t count)
1168 {
1169 	int rc;
1170 
1171 	rc = ap_parse_mask_str(buf, ap_perms.apm, AP_DEVICES, &ap_perms_mutex);
1172 	if (rc)
1173 		return rc;
1174 
1175 	ap_bus_revise_bindings();
1176 
1177 	return count;
1178 }
1179 
1180 static BUS_ATTR_RW(apmask);
1181 
1182 static ssize_t aqmask_show(struct bus_type *bus, char *buf)
1183 {
1184 	int rc;
1185 
1186 	if (mutex_lock_interruptible(&ap_perms_mutex))
1187 		return -ERESTARTSYS;
1188 	rc = snprintf(buf, PAGE_SIZE,
1189 		      "0x%016lx%016lx%016lx%016lx\n",
1190 		      ap_perms.aqm[0], ap_perms.aqm[1],
1191 		      ap_perms.aqm[2], ap_perms.aqm[3]);
1192 	mutex_unlock(&ap_perms_mutex);
1193 
1194 	return rc;
1195 }
1196 
1197 static ssize_t aqmask_store(struct bus_type *bus, const char *buf,
1198 			    size_t count)
1199 {
1200 	int rc;
1201 
1202 	rc = ap_parse_mask_str(buf, ap_perms.aqm, AP_DOMAINS, &ap_perms_mutex);
1203 	if (rc)
1204 		return rc;
1205 
1206 	ap_bus_revise_bindings();
1207 
1208 	return count;
1209 }
1210 
1211 static BUS_ATTR_RW(aqmask);
1212 
1213 static struct bus_attribute *const ap_bus_attrs[] = {
1214 	&bus_attr_ap_domain,
1215 	&bus_attr_ap_control_domain_mask,
1216 	&bus_attr_ap_usage_domain_mask,
1217 	&bus_attr_ap_adapter_mask,
1218 	&bus_attr_config_time,
1219 	&bus_attr_poll_thread,
1220 	&bus_attr_ap_interrupts,
1221 	&bus_attr_poll_timeout,
1222 	&bus_attr_ap_max_domain_id,
1223 	&bus_attr_apmask,
1224 	&bus_attr_aqmask,
1225 	NULL,
1226 };
1227 
1228 /**
1229  * ap_select_domain(): Select an AP domain if possible and we haven't
1230  * already done so before.
1231  */
1232 static void ap_select_domain(void)
1233 {
1234 	int count, max_count, best_domain;
1235 	struct ap_queue_status status;
1236 	int i, j;
1237 
1238 	/*
1239 	 * We want to use a single domain. Either the one specified with
1240 	 * the "domain=" parameter or the domain with the maximum number
1241 	 * of devices.
1242 	 */
1243 	spin_lock_bh(&ap_domain_lock);
1244 	if (ap_domain_index >= 0) {
1245 		/* Domain has already been selected. */
1246 		spin_unlock_bh(&ap_domain_lock);
1247 		return;
1248 	}
1249 	best_domain = -1;
1250 	max_count = 0;
1251 	for (i = 0; i < AP_DOMAINS; i++) {
1252 		if (!ap_test_config_domain(i) ||
1253 		    !test_bit_inv(i, ap_perms.aqm))
1254 			continue;
1255 		count = 0;
1256 		for (j = 0; j < AP_DEVICES; j++) {
1257 			if (!ap_test_config_card_id(j))
1258 				continue;
1259 			status = ap_test_queue(AP_MKQID(j, i),
1260 					       ap_apft_available(),
1261 					       NULL);
1262 			if (status.response_code != AP_RESPONSE_NORMAL)
1263 				continue;
1264 			count++;
1265 		}
1266 		if (count > max_count) {
1267 			max_count = count;
1268 			best_domain = i;
1269 		}
1270 	}
1271 	if (best_domain >= 0) {
1272 		ap_domain_index = best_domain;
1273 		AP_DBF(DBF_DEBUG, "new ap_domain_index=%d\n", ap_domain_index);
1274 	}
1275 	spin_unlock_bh(&ap_domain_lock);
1276 }
1277 
1278 /*
1279  * This function checks the type and returns either 0 for not
1280  * supported or the highest compatible type value (which may
1281  * include the input type value).
1282  */
1283 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func)
1284 {
1285 	int comp_type = 0;
1286 
1287 	/* < CEX2A is not supported */
1288 	if (rawtype < AP_DEVICE_TYPE_CEX2A)
1289 		return 0;
1290 	/* up to CEX6 known and fully supported */
1291 	if (rawtype <= AP_DEVICE_TYPE_CEX6)
1292 		return rawtype;
1293 	/*
1294 	 * unknown new type > CEX6, check for compatibility
1295 	 * to the highest known and supported type which is
1296 	 * currently CEX6 with the help of the QACT function.
1297 	 */
1298 	if (ap_qact_available()) {
1299 		struct ap_queue_status status;
1300 		union ap_qact_ap_info apinfo = {0};
1301 
1302 		apinfo.mode = (func >> 26) & 0x07;
1303 		apinfo.cat = AP_DEVICE_TYPE_CEX6;
1304 		status = ap_qact(qid, 0, &apinfo);
1305 		if (status.response_code == AP_RESPONSE_NORMAL
1306 		    && apinfo.cat >= AP_DEVICE_TYPE_CEX2A
1307 		    && apinfo.cat <= AP_DEVICE_TYPE_CEX6)
1308 			comp_type = apinfo.cat;
1309 	}
1310 	if (!comp_type)
1311 		AP_DBF(DBF_WARN, "queue=%02x.%04x unable to map type %d\n",
1312 		       AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype);
1313 	else if (comp_type != rawtype)
1314 		AP_DBF(DBF_INFO, "queue=%02x.%04x map type %d to %d\n",
1315 		       AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype, comp_type);
1316 	return comp_type;
1317 }
1318 
1319 /*
1320  * Helper function to be used with bus_find_dev
1321  * matches for the card device with the given id
1322  */
1323 static int __match_card_device_with_id(struct device *dev, void *data)
1324 {
1325 	return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long) data;
1326 }
1327 
1328 /*
1329  * Helper function to be used with bus_find_dev
1330  * matches for the queue device with a given qid
1331  */
1332 static int __match_queue_device_with_qid(struct device *dev, void *data)
1333 {
1334 	return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long) data;
1335 }
1336 
1337 /*
1338  * Helper function for ap_scan_bus().
1339  * Does the scan bus job for the given adapter id.
1340  */
1341 static void _ap_scan_bus_adapter(int id)
1342 {
1343 	ap_qid_t qid;
1344 	unsigned int func;
1345 	struct ap_card *ac;
1346 	struct device *dev;
1347 	struct ap_queue *aq;
1348 	int rc, dom, depth, type, comp_type, borked;
1349 
1350 	/* check if there is a card device registered with this id */
1351 	dev = bus_find_device(&ap_bus_type, NULL,
1352 			      (void *)(long) id,
1353 			      __match_card_device_with_id);
1354 	ac = dev ? to_ap_card(dev) : NULL;
1355 	if (!ap_test_config_card_id(id)) {
1356 		if (dev) {
1357 			/* Card device has been removed from configuration */
1358 			bus_for_each_dev(&ap_bus_type, NULL,
1359 					 (void *)(long) id,
1360 					 __ap_queue_devices_with_id_unregister);
1361 			device_unregister(dev);
1362 			put_device(dev);
1363 		}
1364 		return;
1365 	}
1366 
1367 	/*
1368 	 * This card id is enabled in the configuration. If we already have
1369 	 * a card device with this id, check if type and functions are still
1370 	 * the very same. Also verify that at least one queue is available.
1371 	 */
1372 	if (ac) {
1373 		/* find the first valid queue */
1374 		for (dom = 0; dom < AP_DOMAINS; dom++) {
1375 			qid = AP_MKQID(id, dom);
1376 			if (ap_query_queue(qid, &depth, &type, &func) == 0)
1377 				break;
1378 		}
1379 		borked = 0;
1380 		if (dom >= AP_DOMAINS) {
1381 			/* no accessible queue on this card */
1382 			borked = 1;
1383 		} else if (ac->raw_hwtype != type) {
1384 			/* card type has changed */
1385 			AP_DBF(DBF_INFO, "card=%02x type changed.\n", id);
1386 			borked = 1;
1387 		} else if (ac->functions != func) {
1388 			/* card functions have changed */
1389 			AP_DBF(DBF_INFO, "card=%02x functions changed.\n", id);
1390 			borked = 1;
1391 		}
1392 		if (borked) {
1393 			/* unregister card device and associated queues */
1394 			bus_for_each_dev(&ap_bus_type, NULL,
1395 					 (void *)(long) id,
1396 					 __ap_queue_devices_with_id_unregister);
1397 			device_unregister(dev);
1398 			put_device(dev);
1399 			/* go back if there is no valid queue on this card */
1400 			if (dom >= AP_DOMAINS)
1401 				return;
1402 			ac = NULL;
1403 		}
1404 	}
1405 
1406 	/*
1407 	 * Go through all possible queue ids. Check and maybe create or release
1408 	 * queue devices for this card. If there exists no card device yet,
1409 	 * create a card device also.
1410 	 */
1411 	for (dom = 0; dom < AP_DOMAINS; dom++) {
1412 		qid = AP_MKQID(id, dom);
1413 		dev = bus_find_device(&ap_bus_type, NULL,
1414 				      (void *)(long) qid,
1415 				      __match_queue_device_with_qid);
1416 		aq = dev ? to_ap_queue(dev) : NULL;
1417 		if (!ap_test_config_domain(dom)) {
1418 			if (dev) {
1419 				/* Queue device exists but has been
1420 				 * removed from configuration.
1421 				 */
1422 				device_unregister(dev);
1423 				put_device(dev);
1424 			}
1425 			continue;
1426 		}
1427 		/* try to fetch infos about this queue */
1428 		rc = ap_query_queue(qid, &depth, &type, &func);
1429 		if (dev) {
1430 			if (rc == -ENODEV)
1431 				borked = 1;
1432 			else {
1433 				spin_lock_bh(&aq->lock);
1434 				borked = aq->state == AP_STATE_BORKED;
1435 				spin_unlock_bh(&aq->lock);
1436 			}
1437 			if (borked)	/* Remove broken device */
1438 				device_unregister(dev);
1439 			put_device(dev);
1440 			continue;
1441 		}
1442 		if (rc)
1443 			continue;
1444 		/* a new queue device is needed, check out comp type */
1445 		comp_type = ap_get_compatible_type(qid, type, func);
1446 		if (!comp_type)
1447 			continue;
1448 		/* maybe a card device needs to be created first */
1449 		if (!ac) {
1450 			ac = ap_card_create(id, depth, type, comp_type, func);
1451 			if (!ac)
1452 				continue;
1453 			ac->ap_dev.device.bus = &ap_bus_type;
1454 			ac->ap_dev.device.parent = ap_root_device;
1455 			dev_set_name(&ac->ap_dev.device, "card%02x", id);
1456 			/* Register card device with AP bus */
1457 			rc = device_register(&ac->ap_dev.device);
1458 			if (rc) {
1459 				put_device(&ac->ap_dev.device);
1460 				ac = NULL;
1461 				break;
1462 			}
1463 			/* get it and thus adjust reference counter */
1464 			get_device(&ac->ap_dev.device);
1465 		}
1466 		/* now create the new queue device */
1467 		aq = ap_queue_create(qid, comp_type);
1468 		if (!aq)
1469 			continue;
1470 		aq->card = ac;
1471 		aq->ap_dev.device.bus = &ap_bus_type;
1472 		aq->ap_dev.device.parent = &ac->ap_dev.device;
1473 		dev_set_name(&aq->ap_dev.device, "%02x.%04x", id, dom);
1474 		/* Register queue device */
1475 		rc = device_register(&aq->ap_dev.device);
1476 		if (rc) {
1477 			put_device(&aq->ap_dev.device);
1478 			continue;
1479 		}
1480 	} /* end domain loop */
1481 
1482 	if (ac)
1483 		put_device(&ac->ap_dev.device);
1484 }
1485 
1486 /**
1487  * ap_scan_bus(): Scan the AP bus for new devices
1488  * Runs periodically, workqueue timer (ap_config_time)
1489  */
1490 static void ap_scan_bus(struct work_struct *unused)
1491 {
1492 	int id;
1493 
1494 	AP_DBF(DBF_DEBUG, "%s running\n", __func__);
1495 
1496 	ap_query_configuration(ap_configuration);
1497 	ap_select_domain();
1498 
1499 	/* loop over all possible adapters */
1500 	for (id = 0; id < AP_DEVICES; id++)
1501 		_ap_scan_bus_adapter(id);
1502 
1503 	/* check if there is at least one queue available with default domain */
1504 	if (ap_domain_index >= 0) {
1505 		struct device *dev =
1506 			bus_find_device(&ap_bus_type, NULL,
1507 					(void *)(long) ap_domain_index,
1508 					__match_queue_device_with_qid);
1509 		if (dev)
1510 			put_device(dev);
1511 		else
1512 			AP_DBF(DBF_INFO,
1513 			       "no queue device with default domain %d available\n",
1514 			       ap_domain_index);
1515 	}
1516 
1517 	mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1518 }
1519 
1520 static void ap_config_timeout(struct timer_list *unused)
1521 {
1522 	if (ap_suspend_flag)
1523 		return;
1524 	queue_work(system_long_wq, &ap_scan_work);
1525 }
1526 
1527 static int __init ap_debug_init(void)
1528 {
1529 	ap_dbf_info = debug_register("ap", 1, 1,
1530 				     DBF_MAX_SPRINTF_ARGS * sizeof(long));
1531 	debug_register_view(ap_dbf_info, &debug_sprintf_view);
1532 	debug_set_level(ap_dbf_info, DBF_ERR);
1533 
1534 	return 0;
1535 }
1536 
1537 static void __init ap_perms_init(void)
1538 {
1539 	/* all resources useable if no kernel parameter string given */
1540 	memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm));
1541 	memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm));
1542 	memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm));
1543 
1544 	/* apm kernel parameter string */
1545 	if (apm_str) {
1546 		memset(&ap_perms.apm, 0, sizeof(ap_perms.apm));
1547 		ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES,
1548 				  &ap_perms_mutex);
1549 	}
1550 
1551 	/* aqm kernel parameter string */
1552 	if (aqm_str) {
1553 		memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm));
1554 		ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS,
1555 				  &ap_perms_mutex);
1556 	}
1557 }
1558 
1559 /**
1560  * ap_module_init(): The module initialization code.
1561  *
1562  * Initializes the module.
1563  */
1564 static int __init ap_module_init(void)
1565 {
1566 	int max_domain_id;
1567 	int rc, i;
1568 
1569 	rc = ap_debug_init();
1570 	if (rc)
1571 		return rc;
1572 
1573 	if (!ap_instructions_available()) {
1574 		pr_warn("The hardware system does not support AP instructions\n");
1575 		return -ENODEV;
1576 	}
1577 
1578 	/* set up the AP permissions (ioctls, ap and aq masks) */
1579 	ap_perms_init();
1580 
1581 	/* Get AP configuration data if available */
1582 	ap_init_configuration();
1583 
1584 	if (ap_configuration)
1585 		max_domain_id =
1586 			ap_max_domain_id ? ap_max_domain_id : AP_DOMAINS - 1;
1587 	else
1588 		max_domain_id = 15;
1589 	if (ap_domain_index < -1 || ap_domain_index > max_domain_id ||
1590 	    (ap_domain_index >= 0 &&
1591 	     !test_bit_inv(ap_domain_index, ap_perms.aqm))) {
1592 		pr_warn("%d is not a valid cryptographic domain\n",
1593 			ap_domain_index);
1594 		ap_domain_index = -1;
1595 	}
1596 	/* In resume callback we need to know if the user had set the domain.
1597 	 * If so, we can not just reset it.
1598 	 */
1599 	if (ap_domain_index >= 0)
1600 		user_set_domain = 1;
1601 
1602 	if (ap_interrupts_available()) {
1603 		rc = register_adapter_interrupt(&ap_airq);
1604 		ap_airq_flag = (rc == 0);
1605 	}
1606 
1607 	/* Create /sys/bus/ap. */
1608 	rc = bus_register(&ap_bus_type);
1609 	if (rc)
1610 		goto out;
1611 	for (i = 0; ap_bus_attrs[i]; i++) {
1612 		rc = bus_create_file(&ap_bus_type, ap_bus_attrs[i]);
1613 		if (rc)
1614 			goto out_bus;
1615 	}
1616 
1617 	/* Create /sys/devices/ap. */
1618 	ap_root_device = root_device_register("ap");
1619 	rc = PTR_ERR_OR_ZERO(ap_root_device);
1620 	if (rc)
1621 		goto out_bus;
1622 
1623 	/* Setup the AP bus rescan timer. */
1624 	timer_setup(&ap_config_timer, ap_config_timeout, 0);
1625 
1626 	/*
1627 	 * Setup the high resultion poll timer.
1628 	 * If we are running under z/VM adjust polling to z/VM polling rate.
1629 	 */
1630 	if (MACHINE_IS_VM)
1631 		poll_timeout = 1500000;
1632 	spin_lock_init(&ap_poll_timer_lock);
1633 	hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1634 	ap_poll_timer.function = ap_poll_timeout;
1635 
1636 	/* Start the low priority AP bus poll thread. */
1637 	if (ap_thread_flag) {
1638 		rc = ap_poll_thread_start();
1639 		if (rc)
1640 			goto out_work;
1641 	}
1642 
1643 	rc = register_pm_notifier(&ap_power_notifier);
1644 	if (rc)
1645 		goto out_pm;
1646 
1647 	queue_work(system_long_wq, &ap_scan_work);
1648 	initialised = true;
1649 
1650 	return 0;
1651 
1652 out_pm:
1653 	ap_poll_thread_stop();
1654 out_work:
1655 	hrtimer_cancel(&ap_poll_timer);
1656 	root_device_unregister(ap_root_device);
1657 out_bus:
1658 	while (i--)
1659 		bus_remove_file(&ap_bus_type, ap_bus_attrs[i]);
1660 	bus_unregister(&ap_bus_type);
1661 out:
1662 	if (ap_using_interrupts())
1663 		unregister_adapter_interrupt(&ap_airq);
1664 	kfree(ap_configuration);
1665 	return rc;
1666 }
1667 device_initcall(ap_module_init);
1668