xref: /openbmc/linux/drivers/s390/crypto/ap_bus.c (revision 106e0121)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright IBM Corp. 2006, 2021
4  * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
5  *	      Martin Schwidefsky <schwidefsky@de.ibm.com>
6  *	      Ralph Wuerthner <rwuerthn@de.ibm.com>
7  *	      Felix Beck <felix.beck@de.ibm.com>
8  *	      Holger Dengler <hd@linux.vnet.ibm.com>
9  *	      Harald Freudenberger <freude@linux.ibm.com>
10  *
11  * Adjunct processor bus.
12  */
13 
14 #define KMSG_COMPONENT "ap"
15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
16 
17 #include <linux/kernel_stat.h>
18 #include <linux/moduleparam.h>
19 #include <linux/init.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/freezer.h>
23 #include <linux/interrupt.h>
24 #include <linux/workqueue.h>
25 #include <linux/slab.h>
26 #include <linux/notifier.h>
27 #include <linux/kthread.h>
28 #include <linux/mutex.h>
29 #include <asm/airq.h>
30 #include <linux/atomic.h>
31 #include <asm/isc.h>
32 #include <linux/hrtimer.h>
33 #include <linux/ktime.h>
34 #include <asm/facility.h>
35 #include <linux/crypto.h>
36 #include <linux/mod_devicetable.h>
37 #include <linux/debugfs.h>
38 #include <linux/ctype.h>
39 #include <linux/module.h>
40 
41 #include "ap_bus.h"
42 #include "ap_debug.h"
43 
44 /*
45  * Module parameters; note though this file itself isn't modular.
46  */
47 int ap_domain_index = -1;	/* Adjunct Processor Domain Index */
48 static DEFINE_SPINLOCK(ap_domain_lock);
49 module_param_named(domain, ap_domain_index, int, 0440);
50 MODULE_PARM_DESC(domain, "domain index for ap devices");
51 EXPORT_SYMBOL(ap_domain_index);
52 
53 static int ap_thread_flag;
54 module_param_named(poll_thread, ap_thread_flag, int, 0440);
55 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
56 
57 static char *apm_str;
58 module_param_named(apmask, apm_str, charp, 0440);
59 MODULE_PARM_DESC(apmask, "AP bus adapter mask.");
60 
61 static char *aqm_str;
62 module_param_named(aqmask, aqm_str, charp, 0440);
63 MODULE_PARM_DESC(aqmask, "AP bus domain mask.");
64 
65 static int ap_useirq = 1;
66 module_param_named(useirq, ap_useirq, int, 0440);
67 MODULE_PARM_DESC(useirq, "Use interrupt if available, default is 1 (on).");
68 
69 atomic_t ap_max_msg_size = ATOMIC_INIT(AP_DEFAULT_MAX_MSG_SIZE);
70 EXPORT_SYMBOL(ap_max_msg_size);
71 
72 static struct device *ap_root_device;
73 
74 /* Hashtable of all queue devices on the AP bus */
75 DEFINE_HASHTABLE(ap_queues, 8);
76 /* lock used for the ap_queues hashtable */
77 DEFINE_SPINLOCK(ap_queues_lock);
78 
79 /* Default permissions (ioctl, card and domain masking) */
80 struct ap_perms ap_perms;
81 EXPORT_SYMBOL(ap_perms);
82 DEFINE_MUTEX(ap_perms_mutex);
83 EXPORT_SYMBOL(ap_perms_mutex);
84 
85 /* # of bus scans since init */
86 static atomic64_t ap_scan_bus_count;
87 
88 /* # of bindings complete since init */
89 static atomic64_t ap_bindings_complete_count = ATOMIC64_INIT(0);
90 
91 /* completion for initial APQN bindings complete */
92 static DECLARE_COMPLETION(ap_init_apqn_bindings_complete);
93 
94 static struct ap_config_info *ap_qci_info;
95 static struct ap_config_info *ap_qci_info_old;
96 
97 /*
98  * AP bus related debug feature things.
99  */
100 debug_info_t *ap_dbf_info;
101 
102 /*
103  * Workqueue timer for bus rescan.
104  */
105 static struct timer_list ap_config_timer;
106 static int ap_config_time = AP_CONFIG_TIME;
107 static void ap_scan_bus(struct work_struct *);
108 static DECLARE_WORK(ap_scan_work, ap_scan_bus);
109 
110 /*
111  * Tasklet & timer for AP request polling and interrupts
112  */
113 static void ap_tasklet_fn(unsigned long);
114 static DECLARE_TASKLET_OLD(ap_tasklet, ap_tasklet_fn);
115 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
116 static struct task_struct *ap_poll_kthread;
117 static DEFINE_MUTEX(ap_poll_thread_mutex);
118 static DEFINE_SPINLOCK(ap_poll_timer_lock);
119 static struct hrtimer ap_poll_timer;
120 /*
121  * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
122  * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.
123  */
124 static unsigned long long poll_timeout = 250000;
125 
126 /* Maximum domain id, if not given via qci */
127 static int ap_max_domain_id = 15;
128 /* Maximum adapter id, if not given via qci */
129 static int ap_max_adapter_id = 63;
130 
131 static struct bus_type ap_bus_type;
132 
133 /* Adapter interrupt definitions */
134 static void ap_interrupt_handler(struct airq_struct *airq, bool floating);
135 
136 static bool ap_irq_flag;
137 
138 static struct airq_struct ap_airq = {
139 	.handler = ap_interrupt_handler,
140 	.isc = AP_ISC,
141 };
142 
143 /**
144  * ap_airq_ptr() - Get the address of the adapter interrupt indicator
145  *
146  * Returns the address of the local-summary-indicator of the adapter
147  * interrupt handler for AP, or NULL if adapter interrupts are not
148  * available.
149  */
150 void *ap_airq_ptr(void)
151 {
152 	if (ap_irq_flag)
153 		return ap_airq.lsi_ptr;
154 	return NULL;
155 }
156 
157 /**
158  * ap_interrupts_available(): Test if AP interrupts are available.
159  *
160  * Returns 1 if AP interrupts are available.
161  */
162 static int ap_interrupts_available(void)
163 {
164 	return test_facility(65);
165 }
166 
167 /**
168  * ap_qci_available(): Test if AP configuration
169  * information can be queried via QCI subfunction.
170  *
171  * Returns 1 if subfunction PQAP(QCI) is available.
172  */
173 static int ap_qci_available(void)
174 {
175 	return test_facility(12);
176 }
177 
178 /**
179  * ap_apft_available(): Test if AP facilities test (APFT)
180  * facility is available.
181  *
182  * Returns 1 if APFT is is available.
183  */
184 static int ap_apft_available(void)
185 {
186 	return test_facility(15);
187 }
188 
189 /*
190  * ap_qact_available(): Test if the PQAP(QACT) subfunction is available.
191  *
192  * Returns 1 if the QACT subfunction is available.
193  */
194 static inline int ap_qact_available(void)
195 {
196 	if (ap_qci_info)
197 		return ap_qci_info->qact;
198 	return 0;
199 }
200 
201 /*
202  * ap_fetch_qci_info(): Fetch cryptographic config info
203  *
204  * Returns the ap configuration info fetched via PQAP(QCI).
205  * On success 0 is returned, on failure a negative errno
206  * is returned, e.g. if the PQAP(QCI) instruction is not
207  * available, the return value will be -EOPNOTSUPP.
208  */
209 static inline int ap_fetch_qci_info(struct ap_config_info *info)
210 {
211 	if (!ap_qci_available())
212 		return -EOPNOTSUPP;
213 	if (!info)
214 		return -EINVAL;
215 	return ap_qci(info);
216 }
217 
218 /**
219  * ap_init_qci_info(): Allocate and query qci config info.
220  * Does also update the static variables ap_max_domain_id
221  * and ap_max_adapter_id if this info is available.
222  */
223 static void __init ap_init_qci_info(void)
224 {
225 	if (!ap_qci_available()) {
226 		AP_DBF_INFO("%s QCI not supported\n", __func__);
227 		return;
228 	}
229 
230 	ap_qci_info = kzalloc(sizeof(*ap_qci_info), GFP_KERNEL);
231 	if (!ap_qci_info)
232 		return;
233 	ap_qci_info_old = kzalloc(sizeof(*ap_qci_info_old), GFP_KERNEL);
234 	if (!ap_qci_info_old)
235 		return;
236 	if (ap_fetch_qci_info(ap_qci_info) != 0) {
237 		kfree(ap_qci_info);
238 		kfree(ap_qci_info_old);
239 		ap_qci_info = NULL;
240 		ap_qci_info_old = NULL;
241 		return;
242 	}
243 	AP_DBF_INFO("%s successful fetched initial qci info\n", __func__);
244 
245 	if (ap_qci_info->apxa) {
246 		if (ap_qci_info->Na) {
247 			ap_max_adapter_id = ap_qci_info->Na;
248 			AP_DBF_INFO("%s new ap_max_adapter_id is %d\n",
249 				    __func__, ap_max_adapter_id);
250 		}
251 		if (ap_qci_info->Nd) {
252 			ap_max_domain_id = ap_qci_info->Nd;
253 			AP_DBF_INFO("%s new ap_max_domain_id is %d\n",
254 				    __func__, ap_max_domain_id);
255 		}
256 	}
257 
258 	memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info));
259 }
260 
261 /*
262  * ap_test_config(): helper function to extract the nrth bit
263  *		     within the unsigned int array field.
264  */
265 static inline int ap_test_config(unsigned int *field, unsigned int nr)
266 {
267 	return ap_test_bit((field + (nr >> 5)), (nr & 0x1f));
268 }
269 
270 /*
271  * ap_test_config_card_id(): Test, whether an AP card ID is configured.
272  *
273  * Returns 0 if the card is not configured
274  *	   1 if the card is configured or
275  *	     if the configuration information is not available
276  */
277 static inline int ap_test_config_card_id(unsigned int id)
278 {
279 	if (id > ap_max_adapter_id)
280 		return 0;
281 	if (ap_qci_info)
282 		return ap_test_config(ap_qci_info->apm, id);
283 	return 1;
284 }
285 
286 /*
287  * ap_test_config_usage_domain(): Test, whether an AP usage domain
288  * is configured.
289  *
290  * Returns 0 if the usage domain is not configured
291  *	   1 if the usage domain is configured or
292  *	     if the configuration information is not available
293  */
294 int ap_test_config_usage_domain(unsigned int domain)
295 {
296 	if (domain > ap_max_domain_id)
297 		return 0;
298 	if (ap_qci_info)
299 		return ap_test_config(ap_qci_info->aqm, domain);
300 	return 1;
301 }
302 EXPORT_SYMBOL(ap_test_config_usage_domain);
303 
304 /*
305  * ap_test_config_ctrl_domain(): Test, whether an AP control domain
306  * is configured.
307  * @domain AP control domain ID
308  *
309  * Returns 1 if the control domain is configured
310  *	   0 in all other cases
311  */
312 int ap_test_config_ctrl_domain(unsigned int domain)
313 {
314 	if (!ap_qci_info || domain > ap_max_domain_id)
315 		return 0;
316 	return ap_test_config(ap_qci_info->adm, domain);
317 }
318 EXPORT_SYMBOL(ap_test_config_ctrl_domain);
319 
320 /*
321  * ap_queue_info(): Check and get AP queue info.
322  * Returns true if TAPQ succeeded and the info is filled or
323  * false otherwise.
324  */
325 static bool ap_queue_info(ap_qid_t qid, int *q_type, unsigned int *q_fac,
326 			  int *q_depth, int *q_ml, bool *q_decfg, bool *q_cstop)
327 {
328 	struct ap_queue_status status;
329 	union {
330 		unsigned long value;
331 		struct {
332 			unsigned int fac   : 32; /* facility bits */
333 			unsigned int at	   :  8; /* ap type */
334 			unsigned int _res1 :  8;
335 			unsigned int _res2 :  4;
336 			unsigned int ml	   :  4; /* apxl ml */
337 			unsigned int _res3 :  4;
338 			unsigned int qd	   :  4; /* queue depth */
339 		} tapq_gr2;
340 	} tapq_info;
341 
342 	tapq_info.value = 0;
343 
344 	/* make sure we don't run into a specifiation exception */
345 	if (AP_QID_CARD(qid) > ap_max_adapter_id ||
346 	    AP_QID_QUEUE(qid) > ap_max_domain_id)
347 		return false;
348 
349 	/* call TAPQ on this APQN */
350 	status = ap_test_queue(qid, ap_apft_available(), &tapq_info.value);
351 	switch (status.response_code) {
352 	case AP_RESPONSE_NORMAL:
353 	case AP_RESPONSE_RESET_IN_PROGRESS:
354 	case AP_RESPONSE_DECONFIGURED:
355 	case AP_RESPONSE_CHECKSTOPPED:
356 	case AP_RESPONSE_BUSY:
357 		/*
358 		 * According to the architecture in all these cases the
359 		 * info should be filled. All bits 0 is not possible as
360 		 * there is at least one of the mode bits set.
361 		 */
362 		if (WARN_ON_ONCE(!tapq_info.value))
363 			return false;
364 		*q_type = tapq_info.tapq_gr2.at;
365 		*q_fac = tapq_info.tapq_gr2.fac;
366 		*q_depth = tapq_info.tapq_gr2.qd;
367 		*q_ml = tapq_info.tapq_gr2.ml;
368 		*q_decfg = status.response_code == AP_RESPONSE_DECONFIGURED;
369 		*q_cstop = status.response_code == AP_RESPONSE_CHECKSTOPPED;
370 		switch (*q_type) {
371 			/* For CEX2 and CEX3 the available functions
372 			 * are not reflected by the facilities bits.
373 			 * Instead it is coded into the type. So here
374 			 * modify the function bits based on the type.
375 			 */
376 		case AP_DEVICE_TYPE_CEX2A:
377 		case AP_DEVICE_TYPE_CEX3A:
378 			*q_fac |= 0x08000000;
379 			break;
380 		case AP_DEVICE_TYPE_CEX2C:
381 		case AP_DEVICE_TYPE_CEX3C:
382 			*q_fac |= 0x10000000;
383 			break;
384 		default:
385 			break;
386 		}
387 		return true;
388 	default:
389 		/*
390 		 * A response code which indicates, there is no info available.
391 		 */
392 		return false;
393 	}
394 }
395 
396 void ap_wait(enum ap_sm_wait wait)
397 {
398 	ktime_t hr_time;
399 
400 	switch (wait) {
401 	case AP_SM_WAIT_AGAIN:
402 	case AP_SM_WAIT_INTERRUPT:
403 		if (ap_irq_flag)
404 			break;
405 		if (ap_poll_kthread) {
406 			wake_up(&ap_poll_wait);
407 			break;
408 		}
409 		fallthrough;
410 	case AP_SM_WAIT_TIMEOUT:
411 		spin_lock_bh(&ap_poll_timer_lock);
412 		if (!hrtimer_is_queued(&ap_poll_timer)) {
413 			hr_time = poll_timeout;
414 			hrtimer_forward_now(&ap_poll_timer, hr_time);
415 			hrtimer_restart(&ap_poll_timer);
416 		}
417 		spin_unlock_bh(&ap_poll_timer_lock);
418 		break;
419 	case AP_SM_WAIT_NONE:
420 	default:
421 		break;
422 	}
423 }
424 
425 /**
426  * ap_request_timeout(): Handling of request timeouts
427  * @t: timer making this callback
428  *
429  * Handles request timeouts.
430  */
431 void ap_request_timeout(struct timer_list *t)
432 {
433 	struct ap_queue *aq = from_timer(aq, t, timeout);
434 
435 	spin_lock_bh(&aq->lock);
436 	ap_wait(ap_sm_event(aq, AP_SM_EVENT_TIMEOUT));
437 	spin_unlock_bh(&aq->lock);
438 }
439 
440 /**
441  * ap_poll_timeout(): AP receive polling for finished AP requests.
442  * @unused: Unused pointer.
443  *
444  * Schedules the AP tasklet using a high resolution timer.
445  */
446 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
447 {
448 	tasklet_schedule(&ap_tasklet);
449 	return HRTIMER_NORESTART;
450 }
451 
452 /**
453  * ap_interrupt_handler() - Schedule ap_tasklet on interrupt
454  * @airq: pointer to adapter interrupt descriptor
455  * @floating: ignored
456  */
457 static void ap_interrupt_handler(struct airq_struct *airq, bool floating)
458 {
459 	inc_irq_stat(IRQIO_APB);
460 	tasklet_schedule(&ap_tasklet);
461 }
462 
463 /**
464  * ap_tasklet_fn(): Tasklet to poll all AP devices.
465  * @dummy: Unused variable
466  *
467  * Poll all AP devices on the bus.
468  */
469 static void ap_tasklet_fn(unsigned long dummy)
470 {
471 	int bkt;
472 	struct ap_queue *aq;
473 	enum ap_sm_wait wait = AP_SM_WAIT_NONE;
474 
475 	/* Reset the indicator if interrupts are used. Thus new interrupts can
476 	 * be received. Doing it in the beginning of the tasklet is therefor
477 	 * important that no requests on any AP get lost.
478 	 */
479 	if (ap_irq_flag)
480 		xchg(ap_airq.lsi_ptr, 0);
481 
482 	spin_lock_bh(&ap_queues_lock);
483 	hash_for_each(ap_queues, bkt, aq, hnode) {
484 		spin_lock_bh(&aq->lock);
485 		wait = min(wait, ap_sm_event_loop(aq, AP_SM_EVENT_POLL));
486 		spin_unlock_bh(&aq->lock);
487 	}
488 	spin_unlock_bh(&ap_queues_lock);
489 
490 	ap_wait(wait);
491 }
492 
493 static int ap_pending_requests(void)
494 {
495 	int bkt;
496 	struct ap_queue *aq;
497 
498 	spin_lock_bh(&ap_queues_lock);
499 	hash_for_each(ap_queues, bkt, aq, hnode) {
500 		if (aq->queue_count == 0)
501 			continue;
502 		spin_unlock_bh(&ap_queues_lock);
503 		return 1;
504 	}
505 	spin_unlock_bh(&ap_queues_lock);
506 	return 0;
507 }
508 
509 /**
510  * ap_poll_thread(): Thread that polls for finished requests.
511  * @data: Unused pointer
512  *
513  * AP bus poll thread. The purpose of this thread is to poll for
514  * finished requests in a loop if there is a "free" cpu - that is
515  * a cpu that doesn't have anything better to do. The polling stops
516  * as soon as there is another task or if all messages have been
517  * delivered.
518  */
519 static int ap_poll_thread(void *data)
520 {
521 	DECLARE_WAITQUEUE(wait, current);
522 
523 	set_user_nice(current, MAX_NICE);
524 	set_freezable();
525 	while (!kthread_should_stop()) {
526 		add_wait_queue(&ap_poll_wait, &wait);
527 		set_current_state(TASK_INTERRUPTIBLE);
528 		if (!ap_pending_requests()) {
529 			schedule();
530 			try_to_freeze();
531 		}
532 		set_current_state(TASK_RUNNING);
533 		remove_wait_queue(&ap_poll_wait, &wait);
534 		if (need_resched()) {
535 			schedule();
536 			try_to_freeze();
537 			continue;
538 		}
539 		ap_tasklet_fn(0);
540 	}
541 
542 	return 0;
543 }
544 
545 static int ap_poll_thread_start(void)
546 {
547 	int rc;
548 
549 	if (ap_irq_flag || ap_poll_kthread)
550 		return 0;
551 	mutex_lock(&ap_poll_thread_mutex);
552 	ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
553 	rc = PTR_ERR_OR_ZERO(ap_poll_kthread);
554 	if (rc)
555 		ap_poll_kthread = NULL;
556 	mutex_unlock(&ap_poll_thread_mutex);
557 	return rc;
558 }
559 
560 static void ap_poll_thread_stop(void)
561 {
562 	if (!ap_poll_kthread)
563 		return;
564 	mutex_lock(&ap_poll_thread_mutex);
565 	kthread_stop(ap_poll_kthread);
566 	ap_poll_kthread = NULL;
567 	mutex_unlock(&ap_poll_thread_mutex);
568 }
569 
570 #define is_card_dev(x) ((x)->parent == ap_root_device)
571 #define is_queue_dev(x) ((x)->parent != ap_root_device)
572 
573 /**
574  * ap_bus_match()
575  * @dev: Pointer to device
576  * @drv: Pointer to device_driver
577  *
578  * AP bus driver registration/unregistration.
579  */
580 static int ap_bus_match(struct device *dev, struct device_driver *drv)
581 {
582 	struct ap_driver *ap_drv = to_ap_drv(drv);
583 	struct ap_device_id *id;
584 
585 	/*
586 	 * Compare device type of the device with the list of
587 	 * supported types of the device_driver.
588 	 */
589 	for (id = ap_drv->ids; id->match_flags; id++) {
590 		if (is_card_dev(dev) &&
591 		    id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE &&
592 		    id->dev_type == to_ap_dev(dev)->device_type)
593 			return 1;
594 		if (is_queue_dev(dev) &&
595 		    id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE &&
596 		    id->dev_type == to_ap_dev(dev)->device_type)
597 			return 1;
598 	}
599 	return 0;
600 }
601 
602 /**
603  * ap_uevent(): Uevent function for AP devices.
604  * @dev: Pointer to device
605  * @env: Pointer to kobj_uevent_env
606  *
607  * It sets up a single environment variable DEV_TYPE which contains the
608  * hardware device type.
609  */
610 static int ap_uevent(struct device *dev, struct kobj_uevent_env *env)
611 {
612 	int rc = 0;
613 	struct ap_device *ap_dev = to_ap_dev(dev);
614 
615 	/* Uevents from ap bus core don't need extensions to the env */
616 	if (dev == ap_root_device)
617 		return 0;
618 
619 	if (is_card_dev(dev)) {
620 		struct ap_card *ac = to_ap_card(&ap_dev->device);
621 
622 		/* Set up DEV_TYPE environment variable. */
623 		rc = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
624 		if (rc)
625 			return rc;
626 		/* Add MODALIAS= */
627 		rc = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
628 		if (rc)
629 			return rc;
630 
631 		/* Add MODE=<accel|cca|ep11> */
632 		if (ap_test_bit(&ac->functions, AP_FUNC_ACCEL))
633 			rc = add_uevent_var(env, "MODE=accel");
634 		else if (ap_test_bit(&ac->functions, AP_FUNC_COPRO))
635 			rc = add_uevent_var(env, "MODE=cca");
636 		else if (ap_test_bit(&ac->functions, AP_FUNC_EP11))
637 			rc = add_uevent_var(env, "MODE=ep11");
638 		if (rc)
639 			return rc;
640 	} else {
641 		struct ap_queue *aq = to_ap_queue(&ap_dev->device);
642 
643 		/* Add MODE=<accel|cca|ep11> */
644 		if (ap_test_bit(&aq->card->functions, AP_FUNC_ACCEL))
645 			rc = add_uevent_var(env, "MODE=accel");
646 		else if (ap_test_bit(&aq->card->functions, AP_FUNC_COPRO))
647 			rc = add_uevent_var(env, "MODE=cca");
648 		else if (ap_test_bit(&aq->card->functions, AP_FUNC_EP11))
649 			rc = add_uevent_var(env, "MODE=ep11");
650 		if (rc)
651 			return rc;
652 	}
653 
654 	return 0;
655 }
656 
657 static void ap_send_init_scan_done_uevent(void)
658 {
659 	char *envp[] = { "INITSCAN=done", NULL };
660 
661 	kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
662 }
663 
664 static void ap_send_bindings_complete_uevent(void)
665 {
666 	char buf[32];
667 	char *envp[] = { "BINDINGS=complete", buf, NULL };
668 
669 	snprintf(buf, sizeof(buf), "COMPLETECOUNT=%llu",
670 		 atomic64_inc_return(&ap_bindings_complete_count));
671 	kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
672 }
673 
674 void ap_send_config_uevent(struct ap_device *ap_dev, bool cfg)
675 {
676 	char buf[16];
677 	char *envp[] = { buf, NULL };
678 
679 	snprintf(buf, sizeof(buf), "CONFIG=%d", cfg ? 1 : 0);
680 
681 	kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp);
682 }
683 EXPORT_SYMBOL(ap_send_config_uevent);
684 
685 void ap_send_online_uevent(struct ap_device *ap_dev, int online)
686 {
687 	char buf[16];
688 	char *envp[] = { buf, NULL };
689 
690 	snprintf(buf, sizeof(buf), "ONLINE=%d", online ? 1 : 0);
691 
692 	kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp);
693 }
694 EXPORT_SYMBOL(ap_send_online_uevent);
695 
696 /*
697  * calc # of bound APQNs
698  */
699 
700 struct __ap_calc_ctrs {
701 	unsigned int apqns;
702 	unsigned int bound;
703 };
704 
705 static int __ap_calc_helper(struct device *dev, void *arg)
706 {
707 	struct __ap_calc_ctrs *pctrs = (struct __ap_calc_ctrs *) arg;
708 
709 	if (is_queue_dev(dev)) {
710 		pctrs->apqns++;
711 		if (dev->driver)
712 			pctrs->bound++;
713 	}
714 
715 	return 0;
716 }
717 
718 static void ap_calc_bound_apqns(unsigned int *apqns, unsigned int *bound)
719 {
720 	struct __ap_calc_ctrs ctrs;
721 
722 	memset(&ctrs, 0, sizeof(ctrs));
723 	bus_for_each_dev(&ap_bus_type, NULL, (void *) &ctrs, __ap_calc_helper);
724 
725 	*apqns = ctrs.apqns;
726 	*bound = ctrs.bound;
727 }
728 
729 /*
730  * After initial ap bus scan do check if all existing APQNs are
731  * bound to device drivers.
732  */
733 static void ap_check_bindings_complete(void)
734 {
735 	unsigned int apqns, bound;
736 
737 	if (atomic64_read(&ap_scan_bus_count) >= 1) {
738 		ap_calc_bound_apqns(&apqns, &bound);
739 		if (bound == apqns) {
740 			if (!completion_done(&ap_init_apqn_bindings_complete)) {
741 				complete_all(&ap_init_apqn_bindings_complete);
742 				AP_DBF_INFO("%s complete\n", __func__);
743 			}
744 			ap_send_bindings_complete_uevent();
745 		}
746 	}
747 }
748 
749 /*
750  * Interface to wait for the AP bus to have done one initial ap bus
751  * scan and all detected APQNs have been bound to device drivers.
752  * If these both conditions are not fulfilled, this function blocks
753  * on a condition with wait_for_completion_interruptible_timeout().
754  * If these both conditions are fulfilled (before the timeout hits)
755  * the return value is 0. If the timeout (in jiffies) hits instead
756  * -ETIME is returned. On failures negative return values are
757  * returned to the caller.
758  */
759 int ap_wait_init_apqn_bindings_complete(unsigned long timeout)
760 {
761 	long l;
762 
763 	if (completion_done(&ap_init_apqn_bindings_complete))
764 		return 0;
765 
766 	if (timeout)
767 		l = wait_for_completion_interruptible_timeout(
768 			&ap_init_apqn_bindings_complete, timeout);
769 	else
770 		l = wait_for_completion_interruptible(
771 			&ap_init_apqn_bindings_complete);
772 	if (l < 0)
773 		return l == -ERESTARTSYS ? -EINTR : l;
774 	else if (l == 0 && timeout)
775 		return -ETIME;
776 
777 	return 0;
778 }
779 EXPORT_SYMBOL(ap_wait_init_apqn_bindings_complete);
780 
781 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data)
782 {
783 	if (is_queue_dev(dev) &&
784 	    AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long) data)
785 		device_unregister(dev);
786 	return 0;
787 }
788 
789 static int __ap_revise_reserved(struct device *dev, void *dummy)
790 {
791 	int rc, card, queue, devres, drvres;
792 
793 	if (is_queue_dev(dev)) {
794 		card = AP_QID_CARD(to_ap_queue(dev)->qid);
795 		queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
796 		mutex_lock(&ap_perms_mutex);
797 		devres = test_bit_inv(card, ap_perms.apm)
798 			&& test_bit_inv(queue, ap_perms.aqm);
799 		mutex_unlock(&ap_perms_mutex);
800 		drvres = to_ap_drv(dev->driver)->flags
801 			& AP_DRIVER_FLAG_DEFAULT;
802 		if (!!devres != !!drvres) {
803 			AP_DBF_DBG("%s reprobing queue=%02x.%04x\n",
804 				   __func__, card, queue);
805 			rc = device_reprobe(dev);
806 			if (rc)
807 				AP_DBF_WARN("%s reprobing queue=%02x.%04x failed\n",
808 					    __func__, card, queue);
809 		}
810 	}
811 
812 	return 0;
813 }
814 
815 static void ap_bus_revise_bindings(void)
816 {
817 	bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved);
818 }
819 
820 int ap_owned_by_def_drv(int card, int queue)
821 {
822 	int rc = 0;
823 
824 	if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS)
825 		return -EINVAL;
826 
827 	mutex_lock(&ap_perms_mutex);
828 
829 	if (test_bit_inv(card, ap_perms.apm)
830 	    && test_bit_inv(queue, ap_perms.aqm))
831 		rc = 1;
832 
833 	mutex_unlock(&ap_perms_mutex);
834 
835 	return rc;
836 }
837 EXPORT_SYMBOL(ap_owned_by_def_drv);
838 
839 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm,
840 				       unsigned long *aqm)
841 {
842 	int card, queue, rc = 0;
843 
844 	mutex_lock(&ap_perms_mutex);
845 
846 	for (card = 0; !rc && card < AP_DEVICES; card++)
847 		if (test_bit_inv(card, apm) &&
848 		    test_bit_inv(card, ap_perms.apm))
849 			for (queue = 0; !rc && queue < AP_DOMAINS; queue++)
850 				if (test_bit_inv(queue, aqm) &&
851 				    test_bit_inv(queue, ap_perms.aqm))
852 					rc = 1;
853 
854 	mutex_unlock(&ap_perms_mutex);
855 
856 	return rc;
857 }
858 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv);
859 
860 static int ap_device_probe(struct device *dev)
861 {
862 	struct ap_device *ap_dev = to_ap_dev(dev);
863 	struct ap_driver *ap_drv = to_ap_drv(dev->driver);
864 	int card, queue, devres, drvres, rc = -ENODEV;
865 
866 	if (!get_device(dev))
867 		return rc;
868 
869 	if (is_queue_dev(dev)) {
870 		/*
871 		 * If the apqn is marked as reserved/used by ap bus and
872 		 * default drivers, only probe with drivers with the default
873 		 * flag set. If it is not marked, only probe with drivers
874 		 * with the default flag not set.
875 		 */
876 		card = AP_QID_CARD(to_ap_queue(dev)->qid);
877 		queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
878 		mutex_lock(&ap_perms_mutex);
879 		devres = test_bit_inv(card, ap_perms.apm)
880 			&& test_bit_inv(queue, ap_perms.aqm);
881 		mutex_unlock(&ap_perms_mutex);
882 		drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT;
883 		if (!!devres != !!drvres)
884 			goto out;
885 	}
886 
887 	/* Add queue/card to list of active queues/cards */
888 	spin_lock_bh(&ap_queues_lock);
889 	if (is_queue_dev(dev))
890 		hash_add(ap_queues, &to_ap_queue(dev)->hnode,
891 			 to_ap_queue(dev)->qid);
892 	spin_unlock_bh(&ap_queues_lock);
893 
894 	rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
895 
896 	if (rc) {
897 		spin_lock_bh(&ap_queues_lock);
898 		if (is_queue_dev(dev))
899 			hash_del(&to_ap_queue(dev)->hnode);
900 		spin_unlock_bh(&ap_queues_lock);
901 	} else
902 		ap_check_bindings_complete();
903 
904 out:
905 	if (rc)
906 		put_device(dev);
907 	return rc;
908 }
909 
910 static void ap_device_remove(struct device *dev)
911 {
912 	struct ap_device *ap_dev = to_ap_dev(dev);
913 	struct ap_driver *ap_drv = to_ap_drv(dev->driver);
914 
915 	/* prepare ap queue device removal */
916 	if (is_queue_dev(dev))
917 		ap_queue_prepare_remove(to_ap_queue(dev));
918 
919 	/* driver's chance to clean up gracefully */
920 	if (ap_drv->remove)
921 		ap_drv->remove(ap_dev);
922 
923 	/* now do the ap queue device remove */
924 	if (is_queue_dev(dev))
925 		ap_queue_remove(to_ap_queue(dev));
926 
927 	/* Remove queue/card from list of active queues/cards */
928 	spin_lock_bh(&ap_queues_lock);
929 	if (is_queue_dev(dev))
930 		hash_del(&to_ap_queue(dev)->hnode);
931 	spin_unlock_bh(&ap_queues_lock);
932 
933 	put_device(dev);
934 }
935 
936 struct ap_queue *ap_get_qdev(ap_qid_t qid)
937 {
938 	int bkt;
939 	struct ap_queue *aq;
940 
941 	spin_lock_bh(&ap_queues_lock);
942 	hash_for_each(ap_queues, bkt, aq, hnode) {
943 		if (aq->qid == qid) {
944 			get_device(&aq->ap_dev.device);
945 			spin_unlock_bh(&ap_queues_lock);
946 			return aq;
947 		}
948 	}
949 	spin_unlock_bh(&ap_queues_lock);
950 
951 	return NULL;
952 }
953 EXPORT_SYMBOL(ap_get_qdev);
954 
955 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
956 		       char *name)
957 {
958 	struct device_driver *drv = &ap_drv->driver;
959 
960 	drv->bus = &ap_bus_type;
961 	drv->owner = owner;
962 	drv->name = name;
963 	return driver_register(drv);
964 }
965 EXPORT_SYMBOL(ap_driver_register);
966 
967 void ap_driver_unregister(struct ap_driver *ap_drv)
968 {
969 	driver_unregister(&ap_drv->driver);
970 }
971 EXPORT_SYMBOL(ap_driver_unregister);
972 
973 void ap_bus_force_rescan(void)
974 {
975 	/* processing a asynchronous bus rescan */
976 	del_timer(&ap_config_timer);
977 	queue_work(system_long_wq, &ap_scan_work);
978 	flush_work(&ap_scan_work);
979 }
980 EXPORT_SYMBOL(ap_bus_force_rescan);
981 
982 /*
983 * A config change has happened, force an ap bus rescan.
984 */
985 void ap_bus_cfg_chg(void)
986 {
987 	AP_DBF_DBG("%s config change, forcing bus rescan\n", __func__);
988 
989 	ap_bus_force_rescan();
990 }
991 
992 /*
993  * hex2bitmap() - parse hex mask string and set bitmap.
994  * Valid strings are "0x012345678" with at least one valid hex number.
995  * Rest of the bitmap to the right is padded with 0. No spaces allowed
996  * within the string, the leading 0x may be omitted.
997  * Returns the bitmask with exactly the bits set as given by the hex
998  * string (both in big endian order).
999  */
1000 static int hex2bitmap(const char *str, unsigned long *bitmap, int bits)
1001 {
1002 	int i, n, b;
1003 
1004 	/* bits needs to be a multiple of 8 */
1005 	if (bits & 0x07)
1006 		return -EINVAL;
1007 
1008 	if (str[0] == '0' && str[1] == 'x')
1009 		str++;
1010 	if (*str == 'x')
1011 		str++;
1012 
1013 	for (i = 0; isxdigit(*str) && i < bits; str++) {
1014 		b = hex_to_bin(*str);
1015 		for (n = 0; n < 4; n++)
1016 			if (b & (0x08 >> n))
1017 				set_bit_inv(i + n, bitmap);
1018 		i += 4;
1019 	}
1020 
1021 	if (*str == '\n')
1022 		str++;
1023 	if (*str)
1024 		return -EINVAL;
1025 	return 0;
1026 }
1027 
1028 /*
1029  * modify_bitmap() - parse bitmask argument and modify an existing
1030  * bit mask accordingly. A concatenation (done with ',') of these
1031  * terms is recognized:
1032  *   +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>]
1033  * <bitnr> may be any valid number (hex, decimal or octal) in the range
1034  * 0...bits-1; the leading + or - is required. Here are some examples:
1035  *   +0-15,+32,-128,-0xFF
1036  *   -0-255,+1-16,+0x128
1037  *   +1,+2,+3,+4,-5,-7-10
1038  * Returns the new bitmap after all changes have been applied. Every
1039  * positive value in the string will set a bit and every negative value
1040  * in the string will clear a bit. As a bit may be touched more than once,
1041  * the last 'operation' wins:
1042  * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be
1043  * cleared again. All other bits are unmodified.
1044  */
1045 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits)
1046 {
1047 	int a, i, z;
1048 	char *np, sign;
1049 
1050 	/* bits needs to be a multiple of 8 */
1051 	if (bits & 0x07)
1052 		return -EINVAL;
1053 
1054 	while (*str) {
1055 		sign = *str++;
1056 		if (sign != '+' && sign != '-')
1057 			return -EINVAL;
1058 		a = z = simple_strtoul(str, &np, 0);
1059 		if (str == np || a >= bits)
1060 			return -EINVAL;
1061 		str = np;
1062 		if (*str == '-') {
1063 			z = simple_strtoul(++str, &np, 0);
1064 			if (str == np || a > z || z >= bits)
1065 				return -EINVAL;
1066 			str = np;
1067 		}
1068 		for (i = a; i <= z; i++)
1069 			if (sign == '+')
1070 				set_bit_inv(i, bitmap);
1071 			else
1072 				clear_bit_inv(i, bitmap);
1073 		while (*str == ',' || *str == '\n')
1074 			str++;
1075 	}
1076 
1077 	return 0;
1078 }
1079 
1080 static int ap_parse_bitmap_str(const char *str, unsigned long *bitmap, int bits,
1081 			       unsigned long *newmap)
1082 {
1083 	unsigned long size;
1084 	int rc;
1085 
1086 	size = BITS_TO_LONGS(bits) * sizeof(unsigned long);
1087 	if (*str == '+' || *str == '-') {
1088 		memcpy(newmap, bitmap, size);
1089 		rc = modify_bitmap(str, newmap, bits);
1090 	} else {
1091 		memset(newmap, 0, size);
1092 		rc = hex2bitmap(str, newmap, bits);
1093 	}
1094 	return rc;
1095 }
1096 
1097 int ap_parse_mask_str(const char *str,
1098 		      unsigned long *bitmap, int bits,
1099 		      struct mutex *lock)
1100 {
1101 	unsigned long *newmap, size;
1102 	int rc;
1103 
1104 	/* bits needs to be a multiple of 8 */
1105 	if (bits & 0x07)
1106 		return -EINVAL;
1107 
1108 	size = BITS_TO_LONGS(bits)*sizeof(unsigned long);
1109 	newmap = kmalloc(size, GFP_KERNEL);
1110 	if (!newmap)
1111 		return -ENOMEM;
1112 	if (mutex_lock_interruptible(lock)) {
1113 		kfree(newmap);
1114 		return -ERESTARTSYS;
1115 	}
1116 	rc = ap_parse_bitmap_str(str, bitmap, bits, newmap);
1117 	if (rc == 0)
1118 		memcpy(bitmap, newmap, size);
1119 	mutex_unlock(lock);
1120 	kfree(newmap);
1121 	return rc;
1122 }
1123 EXPORT_SYMBOL(ap_parse_mask_str);
1124 
1125 /*
1126  * AP bus attributes.
1127  */
1128 
1129 static ssize_t ap_domain_show(struct bus_type *bus, char *buf)
1130 {
1131 	return scnprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index);
1132 }
1133 
1134 static ssize_t ap_domain_store(struct bus_type *bus,
1135 			       const char *buf, size_t count)
1136 {
1137 	int domain;
1138 
1139 	if (sscanf(buf, "%i\n", &domain) != 1 ||
1140 	    domain < 0 || domain > ap_max_domain_id ||
1141 	    !test_bit_inv(domain, ap_perms.aqm))
1142 		return -EINVAL;
1143 
1144 	spin_lock_bh(&ap_domain_lock);
1145 	ap_domain_index = domain;
1146 	spin_unlock_bh(&ap_domain_lock);
1147 
1148 	AP_DBF_INFO("%s stored new default domain=%d\n",
1149 		    __func__, domain);
1150 
1151 	return count;
1152 }
1153 
1154 static BUS_ATTR_RW(ap_domain);
1155 
1156 static ssize_t ap_control_domain_mask_show(struct bus_type *bus, char *buf)
1157 {
1158 	if (!ap_qci_info)	/* QCI not supported */
1159 		return scnprintf(buf, PAGE_SIZE, "not supported\n");
1160 
1161 	return scnprintf(buf, PAGE_SIZE,
1162 			 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1163 			 ap_qci_info->adm[0], ap_qci_info->adm[1],
1164 			 ap_qci_info->adm[2], ap_qci_info->adm[3],
1165 			 ap_qci_info->adm[4], ap_qci_info->adm[5],
1166 			 ap_qci_info->adm[6], ap_qci_info->adm[7]);
1167 }
1168 
1169 static BUS_ATTR_RO(ap_control_domain_mask);
1170 
1171 static ssize_t ap_usage_domain_mask_show(struct bus_type *bus, char *buf)
1172 {
1173 	if (!ap_qci_info)	/* QCI not supported */
1174 		return scnprintf(buf, PAGE_SIZE, "not supported\n");
1175 
1176 	return scnprintf(buf, PAGE_SIZE,
1177 			 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1178 			 ap_qci_info->aqm[0], ap_qci_info->aqm[1],
1179 			 ap_qci_info->aqm[2], ap_qci_info->aqm[3],
1180 			 ap_qci_info->aqm[4], ap_qci_info->aqm[5],
1181 			 ap_qci_info->aqm[6], ap_qci_info->aqm[7]);
1182 }
1183 
1184 static BUS_ATTR_RO(ap_usage_domain_mask);
1185 
1186 static ssize_t ap_adapter_mask_show(struct bus_type *bus, char *buf)
1187 {
1188 	if (!ap_qci_info)	/* QCI not supported */
1189 		return scnprintf(buf, PAGE_SIZE, "not supported\n");
1190 
1191 	return scnprintf(buf, PAGE_SIZE,
1192 			 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1193 			 ap_qci_info->apm[0], ap_qci_info->apm[1],
1194 			 ap_qci_info->apm[2], ap_qci_info->apm[3],
1195 			 ap_qci_info->apm[4], ap_qci_info->apm[5],
1196 			 ap_qci_info->apm[6], ap_qci_info->apm[7]);
1197 }
1198 
1199 static BUS_ATTR_RO(ap_adapter_mask);
1200 
1201 static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf)
1202 {
1203 	return scnprintf(buf, PAGE_SIZE, "%d\n",
1204 			 ap_irq_flag ? 1 : 0);
1205 }
1206 
1207 static BUS_ATTR_RO(ap_interrupts);
1208 
1209 static ssize_t config_time_show(struct bus_type *bus, char *buf)
1210 {
1211 	return scnprintf(buf, PAGE_SIZE, "%d\n", ap_config_time);
1212 }
1213 
1214 static ssize_t config_time_store(struct bus_type *bus,
1215 				 const char *buf, size_t count)
1216 {
1217 	int time;
1218 
1219 	if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
1220 		return -EINVAL;
1221 	ap_config_time = time;
1222 	mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1223 	return count;
1224 }
1225 
1226 static BUS_ATTR_RW(config_time);
1227 
1228 static ssize_t poll_thread_show(struct bus_type *bus, char *buf)
1229 {
1230 	return scnprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0);
1231 }
1232 
1233 static ssize_t poll_thread_store(struct bus_type *bus,
1234 				 const char *buf, size_t count)
1235 {
1236 	int flag, rc;
1237 
1238 	if (sscanf(buf, "%d\n", &flag) != 1)
1239 		return -EINVAL;
1240 	if (flag) {
1241 		rc = ap_poll_thread_start();
1242 		if (rc)
1243 			count = rc;
1244 	} else
1245 		ap_poll_thread_stop();
1246 	return count;
1247 }
1248 
1249 static BUS_ATTR_RW(poll_thread);
1250 
1251 static ssize_t poll_timeout_show(struct bus_type *bus, char *buf)
1252 {
1253 	return scnprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout);
1254 }
1255 
1256 static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf,
1257 				  size_t count)
1258 {
1259 	unsigned long long time;
1260 	ktime_t hr_time;
1261 
1262 	/* 120 seconds = maximum poll interval */
1263 	if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 ||
1264 	    time > 120000000000ULL)
1265 		return -EINVAL;
1266 	poll_timeout = time;
1267 	hr_time = poll_timeout;
1268 
1269 	spin_lock_bh(&ap_poll_timer_lock);
1270 	hrtimer_cancel(&ap_poll_timer);
1271 	hrtimer_set_expires(&ap_poll_timer, hr_time);
1272 	hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
1273 	spin_unlock_bh(&ap_poll_timer_lock);
1274 
1275 	return count;
1276 }
1277 
1278 static BUS_ATTR_RW(poll_timeout);
1279 
1280 static ssize_t ap_max_domain_id_show(struct bus_type *bus, char *buf)
1281 {
1282 	return scnprintf(buf, PAGE_SIZE, "%d\n", ap_max_domain_id);
1283 }
1284 
1285 static BUS_ATTR_RO(ap_max_domain_id);
1286 
1287 static ssize_t ap_max_adapter_id_show(struct bus_type *bus, char *buf)
1288 {
1289 	return scnprintf(buf, PAGE_SIZE, "%d\n", ap_max_adapter_id);
1290 }
1291 
1292 static BUS_ATTR_RO(ap_max_adapter_id);
1293 
1294 static ssize_t apmask_show(struct bus_type *bus, char *buf)
1295 {
1296 	int rc;
1297 
1298 	if (mutex_lock_interruptible(&ap_perms_mutex))
1299 		return -ERESTARTSYS;
1300 	rc = scnprintf(buf, PAGE_SIZE,
1301 		       "0x%016lx%016lx%016lx%016lx\n",
1302 		       ap_perms.apm[0], ap_perms.apm[1],
1303 		       ap_perms.apm[2], ap_perms.apm[3]);
1304 	mutex_unlock(&ap_perms_mutex);
1305 
1306 	return rc;
1307 }
1308 
1309 static int __verify_card_reservations(struct device_driver *drv, void *data)
1310 {
1311 	int rc = 0;
1312 	struct ap_driver *ap_drv = to_ap_drv(drv);
1313 	unsigned long *newapm = (unsigned long *)data;
1314 
1315 	/*
1316 	 * increase the driver's module refcounter to be sure it is not
1317 	 * going away when we invoke the callback function.
1318 	 */
1319 	if (!try_module_get(drv->owner))
1320 		return 0;
1321 
1322 	if (ap_drv->in_use) {
1323 		rc = ap_drv->in_use(newapm, ap_perms.aqm);
1324 		if (rc)
1325 			rc = -EBUSY;
1326 	}
1327 
1328 	/* release the driver's module */
1329 	module_put(drv->owner);
1330 
1331 	return rc;
1332 }
1333 
1334 static int apmask_commit(unsigned long *newapm)
1335 {
1336 	int rc;
1337 	unsigned long reserved[BITS_TO_LONGS(AP_DEVICES)];
1338 
1339 	/*
1340 	 * Check if any bits in the apmask have been set which will
1341 	 * result in queues being removed from non-default drivers
1342 	 */
1343 	if (bitmap_andnot(reserved, newapm, ap_perms.apm, AP_DEVICES)) {
1344 		rc = bus_for_each_drv(&ap_bus_type, NULL, reserved,
1345 				      __verify_card_reservations);
1346 		if (rc)
1347 			return rc;
1348 	}
1349 
1350 	memcpy(ap_perms.apm, newapm, APMASKSIZE);
1351 
1352 	return 0;
1353 }
1354 
1355 static ssize_t apmask_store(struct bus_type *bus, const char *buf,
1356 			    size_t count)
1357 {
1358 	int rc;
1359 	DECLARE_BITMAP(newapm, AP_DEVICES);
1360 
1361 	if (mutex_lock_interruptible(&ap_perms_mutex))
1362 		return -ERESTARTSYS;
1363 
1364 	rc = ap_parse_bitmap_str(buf, ap_perms.apm, AP_DEVICES, newapm);
1365 	if (rc)
1366 		goto done;
1367 
1368 	rc = apmask_commit(newapm);
1369 
1370 done:
1371 	mutex_unlock(&ap_perms_mutex);
1372 	if (rc)
1373 		return rc;
1374 
1375 	ap_bus_revise_bindings();
1376 
1377 	return count;
1378 }
1379 
1380 static BUS_ATTR_RW(apmask);
1381 
1382 static ssize_t aqmask_show(struct bus_type *bus, char *buf)
1383 {
1384 	int rc;
1385 
1386 	if (mutex_lock_interruptible(&ap_perms_mutex))
1387 		return -ERESTARTSYS;
1388 	rc = scnprintf(buf, PAGE_SIZE,
1389 		       "0x%016lx%016lx%016lx%016lx\n",
1390 		       ap_perms.aqm[0], ap_perms.aqm[1],
1391 		       ap_perms.aqm[2], ap_perms.aqm[3]);
1392 	mutex_unlock(&ap_perms_mutex);
1393 
1394 	return rc;
1395 }
1396 
1397 static int __verify_queue_reservations(struct device_driver *drv, void *data)
1398 {
1399 	int rc = 0;
1400 	struct ap_driver *ap_drv = to_ap_drv(drv);
1401 	unsigned long *newaqm = (unsigned long *)data;
1402 
1403 	/*
1404 	 * increase the driver's module refcounter to be sure it is not
1405 	 * going away when we invoke the callback function.
1406 	 */
1407 	if (!try_module_get(drv->owner))
1408 		return 0;
1409 
1410 	if (ap_drv->in_use) {
1411 		rc = ap_drv->in_use(ap_perms.apm, newaqm);
1412 		if (rc)
1413 			return -EBUSY;
1414 	}
1415 
1416 	/* release the driver's module */
1417 	module_put(drv->owner);
1418 
1419 	return rc;
1420 }
1421 
1422 static int aqmask_commit(unsigned long *newaqm)
1423 {
1424 	int rc;
1425 	unsigned long reserved[BITS_TO_LONGS(AP_DOMAINS)];
1426 
1427 	/*
1428 	 * Check if any bits in the aqmask have been set which will
1429 	 * result in queues being removed from non-default drivers
1430 	 */
1431 	if (bitmap_andnot(reserved, newaqm, ap_perms.aqm, AP_DOMAINS)) {
1432 		rc = bus_for_each_drv(&ap_bus_type, NULL, reserved,
1433 				      __verify_queue_reservations);
1434 		if (rc)
1435 			return rc;
1436 	}
1437 
1438 	memcpy(ap_perms.aqm, newaqm, AQMASKSIZE);
1439 
1440 	return 0;
1441 }
1442 
1443 static ssize_t aqmask_store(struct bus_type *bus, const char *buf,
1444 			    size_t count)
1445 {
1446 	int rc;
1447 	DECLARE_BITMAP(newaqm, AP_DOMAINS);
1448 
1449 	if (mutex_lock_interruptible(&ap_perms_mutex))
1450 		return -ERESTARTSYS;
1451 
1452 	rc = ap_parse_bitmap_str(buf, ap_perms.aqm, AP_DOMAINS, newaqm);
1453 	if (rc)
1454 		goto done;
1455 
1456 	rc = aqmask_commit(newaqm);
1457 
1458 done:
1459 	mutex_unlock(&ap_perms_mutex);
1460 	if (rc)
1461 		return rc;
1462 
1463 	ap_bus_revise_bindings();
1464 
1465 	return count;
1466 }
1467 
1468 static BUS_ATTR_RW(aqmask);
1469 
1470 static ssize_t scans_show(struct bus_type *bus, char *buf)
1471 {
1472 	return scnprintf(buf, PAGE_SIZE, "%llu\n",
1473 			 atomic64_read(&ap_scan_bus_count));
1474 }
1475 
1476 static ssize_t scans_store(struct bus_type *bus, const char *buf,
1477 			   size_t count)
1478 {
1479 	AP_DBF_INFO("%s force AP bus rescan\n", __func__);
1480 
1481 	ap_bus_force_rescan();
1482 
1483 	return count;
1484 }
1485 
1486 static BUS_ATTR_RW(scans);
1487 
1488 static ssize_t bindings_show(struct bus_type *bus, char *buf)
1489 {
1490 	int rc;
1491 	unsigned int apqns, n;
1492 
1493 	ap_calc_bound_apqns(&apqns, &n);
1494 	if (atomic64_read(&ap_scan_bus_count) >= 1 && n == apqns)
1495 		rc = scnprintf(buf, PAGE_SIZE, "%u/%u (complete)\n", n, apqns);
1496 	else
1497 		rc = scnprintf(buf, PAGE_SIZE, "%u/%u\n", n, apqns);
1498 
1499 	return rc;
1500 }
1501 
1502 static BUS_ATTR_RO(bindings);
1503 
1504 static struct attribute *ap_bus_attrs[] = {
1505 	&bus_attr_ap_domain.attr,
1506 	&bus_attr_ap_control_domain_mask.attr,
1507 	&bus_attr_ap_usage_domain_mask.attr,
1508 	&bus_attr_ap_adapter_mask.attr,
1509 	&bus_attr_config_time.attr,
1510 	&bus_attr_poll_thread.attr,
1511 	&bus_attr_ap_interrupts.attr,
1512 	&bus_attr_poll_timeout.attr,
1513 	&bus_attr_ap_max_domain_id.attr,
1514 	&bus_attr_ap_max_adapter_id.attr,
1515 	&bus_attr_apmask.attr,
1516 	&bus_attr_aqmask.attr,
1517 	&bus_attr_scans.attr,
1518 	&bus_attr_bindings.attr,
1519 	NULL,
1520 };
1521 ATTRIBUTE_GROUPS(ap_bus);
1522 
1523 static struct bus_type ap_bus_type = {
1524 	.name = "ap",
1525 	.bus_groups = ap_bus_groups,
1526 	.match = &ap_bus_match,
1527 	.uevent = &ap_uevent,
1528 	.probe = ap_device_probe,
1529 	.remove = ap_device_remove,
1530 };
1531 
1532 /**
1533  * ap_select_domain(): Select an AP domain if possible and we haven't
1534  * already done so before.
1535  */
1536 static void ap_select_domain(void)
1537 {
1538 	struct ap_queue_status status;
1539 	int card, dom;
1540 
1541 	/*
1542 	 * Choose the default domain. Either the one specified with
1543 	 * the "domain=" parameter or the first domain with at least
1544 	 * one valid APQN.
1545 	 */
1546 	spin_lock_bh(&ap_domain_lock);
1547 	if (ap_domain_index >= 0) {
1548 		/* Domain has already been selected. */
1549 		goto out;
1550 	}
1551 	for (dom = 0; dom <= ap_max_domain_id; dom++) {
1552 		if (!ap_test_config_usage_domain(dom) ||
1553 		    !test_bit_inv(dom, ap_perms.aqm))
1554 			continue;
1555 		for (card = 0; card <= ap_max_adapter_id; card++) {
1556 			if (!ap_test_config_card_id(card) ||
1557 			    !test_bit_inv(card, ap_perms.apm))
1558 				continue;
1559 			status = ap_test_queue(AP_MKQID(card, dom),
1560 					       ap_apft_available(),
1561 					       NULL);
1562 			if (status.response_code == AP_RESPONSE_NORMAL)
1563 				break;
1564 		}
1565 		if (card <= ap_max_adapter_id)
1566 			break;
1567 	}
1568 	if (dom <= ap_max_domain_id) {
1569 		ap_domain_index = dom;
1570 		AP_DBF_INFO("%s new default domain is %d\n",
1571 			    __func__, ap_domain_index);
1572 	}
1573 out:
1574 	spin_unlock_bh(&ap_domain_lock);
1575 }
1576 
1577 /*
1578  * This function checks the type and returns either 0 for not
1579  * supported or the highest compatible type value (which may
1580  * include the input type value).
1581  */
1582 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func)
1583 {
1584 	int comp_type = 0;
1585 
1586 	/* < CEX2A is not supported */
1587 	if (rawtype < AP_DEVICE_TYPE_CEX2A) {
1588 		AP_DBF_WARN("%s queue=%02x.%04x unsupported type %d\n",
1589 			    __func__, AP_QID_CARD(qid),
1590 			    AP_QID_QUEUE(qid), rawtype);
1591 		return 0;
1592 	}
1593 	/* up to CEX8 known and fully supported */
1594 	if (rawtype <= AP_DEVICE_TYPE_CEX8)
1595 		return rawtype;
1596 	/*
1597 	 * unknown new type > CEX8, check for compatibility
1598 	 * to the highest known and supported type which is
1599 	 * currently CEX8 with the help of the QACT function.
1600 	 */
1601 	if (ap_qact_available()) {
1602 		struct ap_queue_status status;
1603 		union ap_qact_ap_info apinfo = {0};
1604 
1605 		apinfo.mode = (func >> 26) & 0x07;
1606 		apinfo.cat = AP_DEVICE_TYPE_CEX8;
1607 		status = ap_qact(qid, 0, &apinfo);
1608 		if (status.response_code == AP_RESPONSE_NORMAL
1609 		    && apinfo.cat >= AP_DEVICE_TYPE_CEX2A
1610 		    && apinfo.cat <= AP_DEVICE_TYPE_CEX8)
1611 			comp_type = apinfo.cat;
1612 	}
1613 	if (!comp_type)
1614 		AP_DBF_WARN("%s queue=%02x.%04x unable to map type %d\n",
1615 			    __func__, AP_QID_CARD(qid),
1616 			    AP_QID_QUEUE(qid), rawtype);
1617 	else if (comp_type != rawtype)
1618 		AP_DBF_INFO("%s queue=%02x.%04x map type %d to %d\n",
1619 			    __func__, AP_QID_CARD(qid), AP_QID_QUEUE(qid),
1620 			    rawtype, comp_type);
1621 	return comp_type;
1622 }
1623 
1624 /*
1625  * Helper function to be used with bus_find_dev
1626  * matches for the card device with the given id
1627  */
1628 static int __match_card_device_with_id(struct device *dev, const void *data)
1629 {
1630 	return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *) data;
1631 }
1632 
1633 /*
1634  * Helper function to be used with bus_find_dev
1635  * matches for the queue device with a given qid
1636  */
1637 static int __match_queue_device_with_qid(struct device *dev, const void *data)
1638 {
1639 	return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long) data;
1640 }
1641 
1642 /*
1643  * Helper function to be used with bus_find_dev
1644  * matches any queue device with given queue id
1645  */
1646 static int __match_queue_device_with_queue_id(struct device *dev, const void *data)
1647 {
1648 	return is_queue_dev(dev)
1649 		&& AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long) data;
1650 }
1651 
1652 /* Helper function for notify_config_changed */
1653 static int __drv_notify_config_changed(struct device_driver *drv, void *data)
1654 {
1655 	struct ap_driver *ap_drv = to_ap_drv(drv);
1656 
1657 	if (try_module_get(drv->owner)) {
1658 		if (ap_drv->on_config_changed)
1659 			ap_drv->on_config_changed(ap_qci_info, ap_qci_info_old);
1660 		module_put(drv->owner);
1661 	}
1662 
1663 	return 0;
1664 }
1665 
1666 /* Notify all drivers about an qci config change */
1667 static inline void notify_config_changed(void)
1668 {
1669 	bus_for_each_drv(&ap_bus_type, NULL, NULL,
1670 			 __drv_notify_config_changed);
1671 }
1672 
1673 /* Helper function for notify_scan_complete */
1674 static int __drv_notify_scan_complete(struct device_driver *drv, void *data)
1675 {
1676 	struct ap_driver *ap_drv = to_ap_drv(drv);
1677 
1678 	if (try_module_get(drv->owner)) {
1679 		if (ap_drv->on_scan_complete)
1680 			ap_drv->on_scan_complete(ap_qci_info,
1681 						 ap_qci_info_old);
1682 		module_put(drv->owner);
1683 	}
1684 
1685 	return 0;
1686 }
1687 
1688 /* Notify all drivers about bus scan complete */
1689 static inline void notify_scan_complete(void)
1690 {
1691 	bus_for_each_drv(&ap_bus_type, NULL, NULL,
1692 			 __drv_notify_scan_complete);
1693 }
1694 
1695 /*
1696  * Helper function for ap_scan_bus().
1697  * Remove card device and associated queue devices.
1698  */
1699 static inline void ap_scan_rm_card_dev_and_queue_devs(struct ap_card *ac)
1700 {
1701 	bus_for_each_dev(&ap_bus_type, NULL,
1702 			 (void *)(long) ac->id,
1703 			 __ap_queue_devices_with_id_unregister);
1704 	device_unregister(&ac->ap_dev.device);
1705 }
1706 
1707 /*
1708  * Helper function for ap_scan_bus().
1709  * Does the scan bus job for all the domains within
1710  * a valid adapter given by an ap_card ptr.
1711  */
1712 static inline void ap_scan_domains(struct ap_card *ac)
1713 {
1714 	bool decfg, chkstop;
1715 	ap_qid_t qid;
1716 	unsigned int func;
1717 	struct device *dev;
1718 	struct ap_queue *aq;
1719 	int rc, dom, depth, type, ml;
1720 
1721 	/*
1722 	 * Go through the configuration for the domains and compare them
1723 	 * to the existing queue devices. Also take care of the config
1724 	 * and error state for the queue devices.
1725 	 */
1726 
1727 	for (dom = 0; dom <= ap_max_domain_id; dom++) {
1728 		qid = AP_MKQID(ac->id, dom);
1729 		dev = bus_find_device(&ap_bus_type, NULL,
1730 				      (void *)(long) qid,
1731 				      __match_queue_device_with_qid);
1732 		aq = dev ? to_ap_queue(dev) : NULL;
1733 		if (!ap_test_config_usage_domain(dom)) {
1734 			if (dev) {
1735 				AP_DBF_INFO("%s(%d,%d) not in config anymore, rm queue dev\n",
1736 					    __func__, ac->id, dom);
1737 				device_unregister(dev);
1738 				put_device(dev);
1739 			}
1740 			continue;
1741 		}
1742 		/* domain is valid, get info from this APQN */
1743 		if (!ap_queue_info(qid, &type, &func, &depth,
1744 				   &ml, &decfg, &chkstop)) {
1745 			if (aq) {
1746 				AP_DBF_INFO("%s(%d,%d) queue_info() failed, rm queue dev\n",
1747 					    __func__, ac->id, dom);
1748 				device_unregister(dev);
1749 				put_device(dev);
1750 			}
1751 			continue;
1752 		}
1753 		/* if no queue device exists, create a new one */
1754 		if (!aq) {
1755 			aq = ap_queue_create(qid, ac->ap_dev.device_type);
1756 			if (!aq) {
1757 				AP_DBF_WARN("%s(%d,%d) ap_queue_create() failed\n",
1758 					    __func__, ac->id, dom);
1759 				continue;
1760 			}
1761 			aq->card = ac;
1762 			aq->config = !decfg;
1763 			aq->chkstop = chkstop;
1764 			dev = &aq->ap_dev.device;
1765 			dev->bus = &ap_bus_type;
1766 			dev->parent = &ac->ap_dev.device;
1767 			dev_set_name(dev, "%02x.%04x", ac->id, dom);
1768 			/* register queue device */
1769 			rc = device_register(dev);
1770 			if (rc) {
1771 				AP_DBF_WARN("%s(%d,%d) device_register() failed\n",
1772 					    __func__, ac->id, dom);
1773 				goto put_dev_and_continue;
1774 			}
1775 			/* get it and thus adjust reference counter */
1776 			get_device(dev);
1777 			if (decfg)
1778 				AP_DBF_INFO("%s(%d,%d) new (decfg) queue dev created\n",
1779 					    __func__, ac->id, dom);
1780 			else if (chkstop)
1781 				AP_DBF_INFO("%s(%d,%d) new (chkstop) queue dev created\n",
1782 					    __func__, ac->id, dom);
1783 			else
1784 				AP_DBF_INFO("%s(%d,%d) new queue dev created\n",
1785 					    __func__, ac->id, dom);
1786 			goto put_dev_and_continue;
1787 		}
1788 		/* handle state changes on already existing queue device */
1789 		spin_lock_bh(&aq->lock);
1790 		/* checkstop state */
1791 		if (chkstop && !aq->chkstop) {
1792 			/* checkstop on */
1793 			aq->chkstop = true;
1794 			if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1795 				aq->dev_state = AP_DEV_STATE_ERROR;
1796 				aq->last_err_rc = AP_RESPONSE_CHECKSTOPPED;
1797 			}
1798 			spin_unlock_bh(&aq->lock);
1799 			AP_DBF_DBG("%s(%d,%d) queue dev checkstop on\n",
1800 				   __func__, ac->id, dom);
1801 			/* 'receive' pending messages with -EAGAIN */
1802 			ap_flush_queue(aq);
1803 			goto put_dev_and_continue;
1804 		} else if (!chkstop && aq->chkstop) {
1805 			/* checkstop off */
1806 			aq->chkstop = false;
1807 			if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1808 				aq->dev_state = AP_DEV_STATE_OPERATING;
1809 				aq->sm_state = AP_SM_STATE_RESET_START;
1810 			}
1811 			spin_unlock_bh(&aq->lock);
1812 			AP_DBF_DBG("%s(%d,%d) queue dev checkstop off\n",
1813 				   __func__, ac->id, dom);
1814 			goto put_dev_and_continue;
1815 		}
1816 		/* config state change */
1817 		if (decfg && aq->config) {
1818 			/* config off this queue device */
1819 			aq->config = false;
1820 			if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1821 				aq->dev_state = AP_DEV_STATE_ERROR;
1822 				aq->last_err_rc = AP_RESPONSE_DECONFIGURED;
1823 			}
1824 			spin_unlock_bh(&aq->lock);
1825 			AP_DBF_DBG("%s(%d,%d) queue dev config off\n",
1826 				   __func__, ac->id, dom);
1827 			ap_send_config_uevent(&aq->ap_dev, aq->config);
1828 			/* 'receive' pending messages with -EAGAIN */
1829 			ap_flush_queue(aq);
1830 			goto put_dev_and_continue;
1831 		} else if (!decfg && !aq->config) {
1832 			/* config on this queue device */
1833 			aq->config = true;
1834 			if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1835 				aq->dev_state = AP_DEV_STATE_OPERATING;
1836 				aq->sm_state = AP_SM_STATE_RESET_START;
1837 			}
1838 			spin_unlock_bh(&aq->lock);
1839 			AP_DBF_DBG("%s(%d,%d) queue dev config on\n",
1840 				   __func__, ac->id, dom);
1841 			ap_send_config_uevent(&aq->ap_dev, aq->config);
1842 			goto put_dev_and_continue;
1843 		}
1844 		/* handle other error states */
1845 		if (!decfg && aq->dev_state == AP_DEV_STATE_ERROR) {
1846 			spin_unlock_bh(&aq->lock);
1847 			/* 'receive' pending messages with -EAGAIN */
1848 			ap_flush_queue(aq);
1849 			/* re-init (with reset) the queue device */
1850 			ap_queue_init_state(aq);
1851 			AP_DBF_INFO("%s(%d,%d) queue dev reinit enforced\n",
1852 				    __func__, ac->id, dom);
1853 			goto put_dev_and_continue;
1854 		}
1855 		spin_unlock_bh(&aq->lock);
1856 put_dev_and_continue:
1857 		put_device(dev);
1858 	}
1859 }
1860 
1861 /*
1862  * Helper function for ap_scan_bus().
1863  * Does the scan bus job for the given adapter id.
1864  */
1865 static inline void ap_scan_adapter(int ap)
1866 {
1867 	bool decfg, chkstop;
1868 	ap_qid_t qid;
1869 	unsigned int func;
1870 	struct device *dev;
1871 	struct ap_card *ac;
1872 	int rc, dom, depth, type, comp_type, ml;
1873 
1874 	/* Is there currently a card device for this adapter ? */
1875 	dev = bus_find_device(&ap_bus_type, NULL,
1876 			      (void *)(long) ap,
1877 			      __match_card_device_with_id);
1878 	ac = dev ? to_ap_card(dev) : NULL;
1879 
1880 	/* Adapter not in configuration ? */
1881 	if (!ap_test_config_card_id(ap)) {
1882 		if (ac) {
1883 			AP_DBF_INFO("%s(%d) ap not in config any more, rm card and queue devs\n",
1884 				    __func__, ap);
1885 			ap_scan_rm_card_dev_and_queue_devs(ac);
1886 			put_device(dev);
1887 		}
1888 		return;
1889 	}
1890 
1891 	/*
1892 	 * Adapter ap is valid in the current configuration. So do some checks:
1893 	 * If no card device exists, build one. If a card device exists, check
1894 	 * for type and functions changed. For all this we need to find a valid
1895 	 * APQN first.
1896 	 */
1897 
1898 	for (dom = 0; dom <= ap_max_domain_id; dom++)
1899 		if (ap_test_config_usage_domain(dom)) {
1900 			qid = AP_MKQID(ap, dom);
1901 			if (ap_queue_info(qid, &type, &func, &depth,
1902 					  &ml, &decfg, &chkstop))
1903 				break;
1904 		}
1905 	if (dom > ap_max_domain_id) {
1906 		/* Could not find a valid APQN for this adapter */
1907 		if (ac) {
1908 			AP_DBF_INFO("%s(%d) no type info (no APQN found), rm card and queue devs\n",
1909 				    __func__, ap);
1910 			ap_scan_rm_card_dev_and_queue_devs(ac);
1911 			put_device(dev);
1912 		} else {
1913 			AP_DBF_DBG("%s(%d) no type info (no APQN found), ignored\n",
1914 				   __func__, ap);
1915 		}
1916 		return;
1917 	}
1918 	if (!type) {
1919 		/* No apdater type info available, an unusable adapter */
1920 		if (ac) {
1921 			AP_DBF_INFO("%s(%d) no valid type (0) info, rm card and queue devs\n",
1922 				    __func__, ap);
1923 			ap_scan_rm_card_dev_and_queue_devs(ac);
1924 			put_device(dev);
1925 		} else {
1926 			AP_DBF_DBG("%s(%d) no valid type (0) info, ignored\n",
1927 				   __func__, ap);
1928 		}
1929 		return;
1930 	}
1931 
1932 	if (ac) {
1933 		/* Check APQN against existing card device for changes */
1934 		if (ac->raw_hwtype != type) {
1935 			AP_DBF_INFO("%s(%d) hwtype %d changed, rm card and queue devs\n",
1936 				    __func__, ap, type);
1937 			ap_scan_rm_card_dev_and_queue_devs(ac);
1938 			put_device(dev);
1939 			ac = NULL;
1940 		} else if (ac->functions != func) {
1941 			AP_DBF_INFO("%s(%d) functions 0x%08x changed, rm card and queue devs\n",
1942 				    __func__, ap, type);
1943 			ap_scan_rm_card_dev_and_queue_devs(ac);
1944 			put_device(dev);
1945 			ac = NULL;
1946 		} else {
1947 			/* handle checkstop state change */
1948 			if (chkstop && !ac->chkstop) {
1949 				/* checkstop on */
1950 				ac->chkstop = true;
1951 				AP_DBF_INFO("%s(%d) card dev checkstop on\n",
1952 					    __func__, ap);
1953 			} else if (!chkstop && ac->chkstop) {
1954 				/* checkstop off */
1955 				ac->chkstop = false;
1956 				AP_DBF_INFO("%s(%d) card dev checkstop off\n",
1957 					    __func__, ap);
1958 			}
1959 			/* handle config state change */
1960 			if (decfg && ac->config) {
1961 				ac->config = false;
1962 				AP_DBF_INFO("%s(%d) card dev config off\n",
1963 					    __func__, ap);
1964 				ap_send_config_uevent(&ac->ap_dev, ac->config);
1965 			} else if (!decfg && !ac->config) {
1966 				ac->config = true;
1967 				AP_DBF_INFO("%s(%d) card dev config on\n",
1968 					    __func__, ap);
1969 				ap_send_config_uevent(&ac->ap_dev, ac->config);
1970 			}
1971 		}
1972 	}
1973 
1974 	if (!ac) {
1975 		/* Build a new card device */
1976 		comp_type = ap_get_compatible_type(qid, type, func);
1977 		if (!comp_type) {
1978 			AP_DBF_WARN("%s(%d) type %d, can't get compatibility type\n",
1979 				    __func__, ap, type);
1980 			return;
1981 		}
1982 		ac = ap_card_create(ap, depth, type, comp_type, func, ml);
1983 		if (!ac) {
1984 			AP_DBF_WARN("%s(%d) ap_card_create() failed\n",
1985 				    __func__, ap);
1986 			return;
1987 		}
1988 		ac->config = !decfg;
1989 		ac->chkstop = chkstop;
1990 		dev = &ac->ap_dev.device;
1991 		dev->bus = &ap_bus_type;
1992 		dev->parent = ap_root_device;
1993 		dev_set_name(dev, "card%02x", ap);
1994 		/* maybe enlarge ap_max_msg_size to support this card */
1995 		if (ac->maxmsgsize > atomic_read(&ap_max_msg_size)) {
1996 			atomic_set(&ap_max_msg_size, ac->maxmsgsize);
1997 			AP_DBF_INFO("%s(%d) ap_max_msg_size update to %d byte\n",
1998 				    __func__, ap,
1999 				    atomic_read(&ap_max_msg_size));
2000 		}
2001 		/* Register the new card device with AP bus */
2002 		rc = device_register(dev);
2003 		if (rc) {
2004 			AP_DBF_WARN("%s(%d) device_register() failed\n",
2005 				    __func__, ap);
2006 			put_device(dev);
2007 			return;
2008 		}
2009 		/* get it and thus adjust reference counter */
2010 		get_device(dev);
2011 		if (decfg)
2012 			AP_DBF_INFO("%s(%d) new (decfg) card dev type=%d func=0x%08x created\n",
2013 				    __func__, ap, type, func);
2014 		else if (chkstop)
2015 			AP_DBF_INFO("%s(%d) new (chkstop) card dev type=%d func=0x%08x created\n",
2016 				    __func__, ap, type, func);
2017 		else
2018 			AP_DBF_INFO("%s(%d) new card dev type=%d func=0x%08x created\n",
2019 				    __func__, ap, type, func);
2020 	}
2021 
2022 	/* Verify the domains and the queue devices for this card */
2023 	ap_scan_domains(ac);
2024 
2025 	/* release the card device */
2026 	put_device(&ac->ap_dev.device);
2027 }
2028 
2029 /**
2030  * ap_get_configuration - get the host AP configuration
2031  *
2032  * Stores the host AP configuration information returned from the previous call
2033  * to Query Configuration Information (QCI), then retrieves and stores the
2034  * current AP configuration returned from QCI.
2035  *
2036  * Return: true if the host AP configuration changed between calls to QCI;
2037  * otherwise, return false.
2038  */
2039 static bool ap_get_configuration(void)
2040 {
2041 	memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info));
2042 	ap_fetch_qci_info(ap_qci_info);
2043 
2044 	return memcmp(ap_qci_info, ap_qci_info_old,
2045 		      sizeof(struct ap_config_info)) != 0;
2046 }
2047 
2048 /**
2049  * ap_scan_bus(): Scan the AP bus for new devices
2050  * Runs periodically, workqueue timer (ap_config_time)
2051  * @unused: Unused pointer.
2052  */
2053 static void ap_scan_bus(struct work_struct *unused)
2054 {
2055 	int ap, config_changed = 0;
2056 
2057 	/* config change notify */
2058 	config_changed = ap_get_configuration();
2059 	if (config_changed)
2060 		notify_config_changed();
2061 	ap_select_domain();
2062 
2063 	AP_DBF_DBG("%s running\n", __func__);
2064 
2065 	/* loop over all possible adapters */
2066 	for (ap = 0; ap <= ap_max_adapter_id; ap++)
2067 		ap_scan_adapter(ap);
2068 
2069 	/* scan complete notify */
2070 	if (config_changed)
2071 		notify_scan_complete();
2072 
2073 	/* check if there is at least one queue available with default domain */
2074 	if (ap_domain_index >= 0) {
2075 		struct device *dev =
2076 			bus_find_device(&ap_bus_type, NULL,
2077 					(void *)(long) ap_domain_index,
2078 					__match_queue_device_with_queue_id);
2079 		if (dev)
2080 			put_device(dev);
2081 		else
2082 			AP_DBF_INFO("%s no queue device with default domain %d available\n",
2083 				    __func__, ap_domain_index);
2084 	}
2085 
2086 	if (atomic64_inc_return(&ap_scan_bus_count) == 1) {
2087 		AP_DBF_DBG("%s init scan complete\n", __func__);
2088 		ap_send_init_scan_done_uevent();
2089 		ap_check_bindings_complete();
2090 	}
2091 
2092 	mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
2093 }
2094 
2095 static void ap_config_timeout(struct timer_list *unused)
2096 {
2097 	queue_work(system_long_wq, &ap_scan_work);
2098 }
2099 
2100 static int __init ap_debug_init(void)
2101 {
2102 	ap_dbf_info = debug_register("ap", 2, 1,
2103 				     DBF_MAX_SPRINTF_ARGS * sizeof(long));
2104 	debug_register_view(ap_dbf_info, &debug_sprintf_view);
2105 	debug_set_level(ap_dbf_info, DBF_ERR);
2106 
2107 	return 0;
2108 }
2109 
2110 static void __init ap_perms_init(void)
2111 {
2112 	/* all resources useable if no kernel parameter string given */
2113 	memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm));
2114 	memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm));
2115 	memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm));
2116 
2117 	/* apm kernel parameter string */
2118 	if (apm_str) {
2119 		memset(&ap_perms.apm, 0, sizeof(ap_perms.apm));
2120 		ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES,
2121 				  &ap_perms_mutex);
2122 	}
2123 
2124 	/* aqm kernel parameter string */
2125 	if (aqm_str) {
2126 		memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm));
2127 		ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS,
2128 				  &ap_perms_mutex);
2129 	}
2130 }
2131 
2132 /**
2133  * ap_module_init(): The module initialization code.
2134  *
2135  * Initializes the module.
2136  */
2137 static int __init ap_module_init(void)
2138 {
2139 	int rc;
2140 
2141 	rc = ap_debug_init();
2142 	if (rc)
2143 		return rc;
2144 
2145 	if (!ap_instructions_available()) {
2146 		pr_warn("The hardware system does not support AP instructions\n");
2147 		return -ENODEV;
2148 	}
2149 
2150 	/* init ap_queue hashtable */
2151 	hash_init(ap_queues);
2152 
2153 	/* set up the AP permissions (ioctls, ap and aq masks) */
2154 	ap_perms_init();
2155 
2156 	/* Get AP configuration data if available */
2157 	ap_init_qci_info();
2158 
2159 	/* check default domain setting */
2160 	if (ap_domain_index < -1 || ap_domain_index > ap_max_domain_id ||
2161 	    (ap_domain_index >= 0 &&
2162 	     !test_bit_inv(ap_domain_index, ap_perms.aqm))) {
2163 		pr_warn("%d is not a valid cryptographic domain\n",
2164 			ap_domain_index);
2165 		ap_domain_index = -1;
2166 	}
2167 
2168 	/* enable interrupts if available */
2169 	if (ap_interrupts_available() && ap_useirq) {
2170 		rc = register_adapter_interrupt(&ap_airq);
2171 		ap_irq_flag = (rc == 0);
2172 	}
2173 
2174 	/* Create /sys/bus/ap. */
2175 	rc = bus_register(&ap_bus_type);
2176 	if (rc)
2177 		goto out;
2178 
2179 	/* Create /sys/devices/ap. */
2180 	ap_root_device = root_device_register("ap");
2181 	rc = PTR_ERR_OR_ZERO(ap_root_device);
2182 	if (rc)
2183 		goto out_bus;
2184 	ap_root_device->bus = &ap_bus_type;
2185 
2186 	/* Setup the AP bus rescan timer. */
2187 	timer_setup(&ap_config_timer, ap_config_timeout, 0);
2188 
2189 	/*
2190 	 * Setup the high resultion poll timer.
2191 	 * If we are running under z/VM adjust polling to z/VM polling rate.
2192 	 */
2193 	if (MACHINE_IS_VM)
2194 		poll_timeout = 1500000;
2195 	hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2196 	ap_poll_timer.function = ap_poll_timeout;
2197 
2198 	/* Start the low priority AP bus poll thread. */
2199 	if (ap_thread_flag) {
2200 		rc = ap_poll_thread_start();
2201 		if (rc)
2202 			goto out_work;
2203 	}
2204 
2205 	queue_work(system_long_wq, &ap_scan_work);
2206 
2207 	return 0;
2208 
2209 out_work:
2210 	hrtimer_cancel(&ap_poll_timer);
2211 	root_device_unregister(ap_root_device);
2212 out_bus:
2213 	bus_unregister(&ap_bus_type);
2214 out:
2215 	if (ap_irq_flag)
2216 		unregister_adapter_interrupt(&ap_airq);
2217 	kfree(ap_qci_info);
2218 	return rc;
2219 }
2220 device_initcall(ap_module_init);
2221