xref: /openbmc/linux/drivers/s390/crypto/ap_bus.c (revision 0f4630f3)
1 /*
2  * Copyright IBM Corp. 2006, 2012
3  * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
4  *	      Martin Schwidefsky <schwidefsky@de.ibm.com>
5  *	      Ralph Wuerthner <rwuerthn@de.ibm.com>
6  *	      Felix Beck <felix.beck@de.ibm.com>
7  *	      Holger Dengler <hd@linux.vnet.ibm.com>
8  *
9  * Adjunct processor bus.
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24  */
25 
26 #define KMSG_COMPONENT "ap"
27 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
28 
29 #include <linux/kernel_stat.h>
30 #include <linux/module.h>
31 #include <linux/init.h>
32 #include <linux/delay.h>
33 #include <linux/err.h>
34 #include <linux/interrupt.h>
35 #include <linux/workqueue.h>
36 #include <linux/slab.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/mutex.h>
40 #include <linux/suspend.h>
41 #include <asm/reset.h>
42 #include <asm/airq.h>
43 #include <linux/atomic.h>
44 #include <asm/isc.h>
45 #include <linux/hrtimer.h>
46 #include <linux/ktime.h>
47 #include <asm/facility.h>
48 #include <linux/crypto.h>
49 
50 #include "ap_bus.h"
51 
52 /*
53  * Module description.
54  */
55 MODULE_AUTHOR("IBM Corporation");
56 MODULE_DESCRIPTION("Adjunct Processor Bus driver, " \
57 		   "Copyright IBM Corp. 2006, 2012");
58 MODULE_LICENSE("GPL");
59 MODULE_ALIAS_CRYPTO("z90crypt");
60 
61 /*
62  * Module parameter
63  */
64 int ap_domain_index = -1;	/* Adjunct Processor Domain Index */
65 module_param_named(domain, ap_domain_index, int, S_IRUSR|S_IRGRP);
66 MODULE_PARM_DESC(domain, "domain index for ap devices");
67 EXPORT_SYMBOL(ap_domain_index);
68 
69 static int ap_thread_flag = 0;
70 module_param_named(poll_thread, ap_thread_flag, int, S_IRUSR|S_IRGRP);
71 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
72 
73 static struct device *ap_root_device = NULL;
74 static struct ap_config_info *ap_configuration;
75 static DEFINE_SPINLOCK(ap_device_list_lock);
76 static LIST_HEAD(ap_device_list);
77 static bool initialised;
78 
79 /*
80  * Workqueue timer for bus rescan.
81  */
82 static struct timer_list ap_config_timer;
83 static int ap_config_time = AP_CONFIG_TIME;
84 static void ap_scan_bus(struct work_struct *);
85 static DECLARE_WORK(ap_scan_work, ap_scan_bus);
86 
87 /*
88  * Tasklet & timer for AP request polling and interrupts
89  */
90 static void ap_tasklet_fn(unsigned long);
91 static DECLARE_TASKLET(ap_tasklet, ap_tasklet_fn, 0);
92 static atomic_t ap_poll_requests = ATOMIC_INIT(0);
93 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
94 static struct task_struct *ap_poll_kthread = NULL;
95 static DEFINE_MUTEX(ap_poll_thread_mutex);
96 static DEFINE_SPINLOCK(ap_poll_timer_lock);
97 static struct hrtimer ap_poll_timer;
98 /* In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
99  * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.*/
100 static unsigned long long poll_timeout = 250000;
101 
102 /* Suspend flag */
103 static int ap_suspend_flag;
104 /* Maximum domain id */
105 static int ap_max_domain_id;
106 /* Flag to check if domain was set through module parameter domain=. This is
107  * important when supsend and resume is done in a z/VM environment where the
108  * domain might change. */
109 static int user_set_domain = 0;
110 static struct bus_type ap_bus_type;
111 
112 /* Adapter interrupt definitions */
113 static void ap_interrupt_handler(struct airq_struct *airq);
114 
115 static int ap_airq_flag;
116 
117 static struct airq_struct ap_airq = {
118 	.handler = ap_interrupt_handler,
119 	.isc = AP_ISC,
120 };
121 
122 /**
123  * ap_using_interrupts() - Returns non-zero if interrupt support is
124  * available.
125  */
126 static inline int ap_using_interrupts(void)
127 {
128 	return ap_airq_flag;
129 }
130 
131 /**
132  * ap_intructions_available() - Test if AP instructions are available.
133  *
134  * Returns 0 if the AP instructions are installed.
135  */
136 static inline int ap_instructions_available(void)
137 {
138 	register unsigned long reg0 asm ("0") = AP_MKQID(0,0);
139 	register unsigned long reg1 asm ("1") = -ENODEV;
140 	register unsigned long reg2 asm ("2") = 0UL;
141 
142 	asm volatile(
143 		"   .long 0xb2af0000\n"		/* PQAP(TAPQ) */
144 		"0: la    %1,0\n"
145 		"1:\n"
146 		EX_TABLE(0b, 1b)
147 		: "+d" (reg0), "+d" (reg1), "+d" (reg2) : : "cc" );
148 	return reg1;
149 }
150 
151 /**
152  * ap_interrupts_available(): Test if AP interrupts are available.
153  *
154  * Returns 1 if AP interrupts are available.
155  */
156 static int ap_interrupts_available(void)
157 {
158 	return test_facility(65);
159 }
160 
161 /**
162  * ap_configuration_available(): Test if AP configuration
163  * information is available.
164  *
165  * Returns 1 if AP configuration information is available.
166  */
167 static int ap_configuration_available(void)
168 {
169 	return test_facility(12);
170 }
171 
172 /**
173  * ap_test_queue(): Test adjunct processor queue.
174  * @qid: The AP queue number
175  * @info: Pointer to queue descriptor
176  *
177  * Returns AP queue status structure.
178  */
179 static inline struct ap_queue_status
180 ap_test_queue(ap_qid_t qid, unsigned long *info)
181 {
182 	register unsigned long reg0 asm ("0") = qid;
183 	register struct ap_queue_status reg1 asm ("1");
184 	register unsigned long reg2 asm ("2") = 0UL;
185 
186 	if (test_facility(15))
187 		reg0 |= 1UL << 23;		/* set APFT T bit*/
188 	asm volatile(".long 0xb2af0000"		/* PQAP(TAPQ) */
189 		     : "+d" (reg0), "=d" (reg1), "+d" (reg2) : : "cc");
190 	if (info)
191 		*info = reg2;
192 	return reg1;
193 }
194 
195 /**
196  * ap_reset_queue(): Reset adjunct processor queue.
197  * @qid: The AP queue number
198  *
199  * Returns AP queue status structure.
200  */
201 static inline struct ap_queue_status ap_reset_queue(ap_qid_t qid)
202 {
203 	register unsigned long reg0 asm ("0") = qid | 0x01000000UL;
204 	register struct ap_queue_status reg1 asm ("1");
205 	register unsigned long reg2 asm ("2") = 0UL;
206 
207 	asm volatile(
208 		".long 0xb2af0000"		/* PQAP(RAPQ) */
209 		: "+d" (reg0), "=d" (reg1), "+d" (reg2) : : "cc");
210 	return reg1;
211 }
212 
213 /**
214  * ap_queue_interruption_control(): Enable interruption for a specific AP.
215  * @qid: The AP queue number
216  * @ind: The notification indicator byte
217  *
218  * Returns AP queue status.
219  */
220 static inline struct ap_queue_status
221 ap_queue_interruption_control(ap_qid_t qid, void *ind)
222 {
223 	register unsigned long reg0 asm ("0") = qid | 0x03000000UL;
224 	register unsigned long reg1_in asm ("1") = 0x0000800000000000UL | AP_ISC;
225 	register struct ap_queue_status reg1_out asm ("1");
226 	register void *reg2 asm ("2") = ind;
227 	asm volatile(
228 		".long 0xb2af0000"		/* PQAP(AQIC) */
229 		: "+d" (reg0), "+d" (reg1_in), "=d" (reg1_out), "+d" (reg2)
230 		:
231 		: "cc" );
232 	return reg1_out;
233 }
234 
235 /**
236  * ap_query_configuration(): Get AP configuration data
237  *
238  * Returns 0 on success, or -EOPNOTSUPP.
239  */
240 static inline int ap_query_configuration(void)
241 {
242 	register unsigned long reg0 asm ("0") = 0x04000000UL;
243 	register unsigned long reg1 asm ("1") = -EINVAL;
244 	register void *reg2 asm ("2") = (void *) ap_configuration;
245 
246 	if (!ap_configuration)
247 		return -EOPNOTSUPP;
248 	asm volatile(
249 		".long 0xb2af0000\n"		/* PQAP(QCI) */
250 		"0: la    %1,0\n"
251 		"1:\n"
252 		EX_TABLE(0b, 1b)
253 		: "+d" (reg0), "+d" (reg1), "+d" (reg2)
254 		:
255 		: "cc");
256 
257 	return reg1;
258 }
259 
260 /**
261  * ap_init_configuration(): Allocate and query configuration array.
262  */
263 static void ap_init_configuration(void)
264 {
265 	if (!ap_configuration_available())
266 		return;
267 
268 	ap_configuration = kzalloc(sizeof(*ap_configuration), GFP_KERNEL);
269 	if (!ap_configuration)
270 		return;
271 	if (ap_query_configuration() != 0) {
272 		kfree(ap_configuration);
273 		ap_configuration = NULL;
274 		return;
275 	}
276 }
277 
278 /*
279  * ap_test_config(): helper function to extract the nrth bit
280  *		     within the unsigned int array field.
281  */
282 static inline int ap_test_config(unsigned int *field, unsigned int nr)
283 {
284 	return ap_test_bit((field + (nr >> 5)), (nr & 0x1f));
285 }
286 
287 /*
288  * ap_test_config_card_id(): Test, whether an AP card ID is configured.
289  * @id AP card ID
290  *
291  * Returns 0 if the card is not configured
292  *	   1 if the card is configured or
293  *	     if the configuration information is not available
294  */
295 static inline int ap_test_config_card_id(unsigned int id)
296 {
297 	if (!ap_configuration)	/* QCI not supported */
298 		return 1;
299 	return ap_test_config(ap_configuration->apm, id);
300 }
301 
302 /*
303  * ap_test_config_domain(): Test, whether an AP usage domain is configured.
304  * @domain AP usage domain ID
305  *
306  * Returns 0 if the usage domain is not configured
307  *	   1 if the usage domain is configured or
308  *	     if the configuration information is not available
309  */
310 static inline int ap_test_config_domain(unsigned int domain)
311 {
312 	if (!ap_configuration)	/* QCI not supported */
313 		return domain < 16;
314 	return ap_test_config(ap_configuration->aqm, domain);
315 }
316 
317 /**
318  * ap_queue_enable_interruption(): Enable interruption on an AP.
319  * @qid: The AP queue number
320  * @ind: the notification indicator byte
321  *
322  * Enables interruption on AP queue via ap_queue_interruption_control(). Based
323  * on the return value it waits a while and tests the AP queue if interrupts
324  * have been switched on using ap_test_queue().
325  */
326 static int ap_queue_enable_interruption(struct ap_device *ap_dev, void *ind)
327 {
328 	struct ap_queue_status status;
329 
330 	status = ap_queue_interruption_control(ap_dev->qid, ind);
331 	switch (status.response_code) {
332 	case AP_RESPONSE_NORMAL:
333 	case AP_RESPONSE_OTHERWISE_CHANGED:
334 		return 0;
335 	case AP_RESPONSE_Q_NOT_AVAIL:
336 	case AP_RESPONSE_DECONFIGURED:
337 	case AP_RESPONSE_CHECKSTOPPED:
338 	case AP_RESPONSE_INVALID_ADDRESS:
339 		pr_err("Registering adapter interrupts for AP %d failed\n",
340 		       AP_QID_DEVICE(ap_dev->qid));
341 		return -EOPNOTSUPP;
342 	case AP_RESPONSE_RESET_IN_PROGRESS:
343 	case AP_RESPONSE_BUSY:
344 	default:
345 		return -EBUSY;
346 	}
347 }
348 
349 /**
350  * __ap_send(): Send message to adjunct processor queue.
351  * @qid: The AP queue number
352  * @psmid: The program supplied message identifier
353  * @msg: The message text
354  * @length: The message length
355  * @special: Special Bit
356  *
357  * Returns AP queue status structure.
358  * Condition code 1 on NQAP can't happen because the L bit is 1.
359  * Condition code 2 on NQAP also means the send is incomplete,
360  * because a segment boundary was reached. The NQAP is repeated.
361  */
362 static inline struct ap_queue_status
363 __ap_send(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length,
364 	  unsigned int special)
365 {
366 	typedef struct { char _[length]; } msgblock;
367 	register unsigned long reg0 asm ("0") = qid | 0x40000000UL;
368 	register struct ap_queue_status reg1 asm ("1");
369 	register unsigned long reg2 asm ("2") = (unsigned long) msg;
370 	register unsigned long reg3 asm ("3") = (unsigned long) length;
371 	register unsigned long reg4 asm ("4") = (unsigned int) (psmid >> 32);
372 	register unsigned long reg5 asm ("5") = psmid & 0xffffffff;
373 
374 	if (special == 1)
375 		reg0 |= 0x400000UL;
376 
377 	asm volatile (
378 		"0: .long 0xb2ad0042\n"		/* NQAP */
379 		"   brc   2,0b"
380 		: "+d" (reg0), "=d" (reg1), "+d" (reg2), "+d" (reg3)
381 		: "d" (reg4), "d" (reg5), "m" (*(msgblock *) msg)
382 		: "cc" );
383 	return reg1;
384 }
385 
386 int ap_send(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length)
387 {
388 	struct ap_queue_status status;
389 
390 	status = __ap_send(qid, psmid, msg, length, 0);
391 	switch (status.response_code) {
392 	case AP_RESPONSE_NORMAL:
393 		return 0;
394 	case AP_RESPONSE_Q_FULL:
395 	case AP_RESPONSE_RESET_IN_PROGRESS:
396 		return -EBUSY;
397 	case AP_RESPONSE_REQ_FAC_NOT_INST:
398 		return -EINVAL;
399 	default:	/* Device is gone. */
400 		return -ENODEV;
401 	}
402 }
403 EXPORT_SYMBOL(ap_send);
404 
405 /**
406  * __ap_recv(): Receive message from adjunct processor queue.
407  * @qid: The AP queue number
408  * @psmid: Pointer to program supplied message identifier
409  * @msg: The message text
410  * @length: The message length
411  *
412  * Returns AP queue status structure.
413  * Condition code 1 on DQAP means the receive has taken place
414  * but only partially.	The response is incomplete, hence the
415  * DQAP is repeated.
416  * Condition code 2 on DQAP also means the receive is incomplete,
417  * this time because a segment boundary was reached. Again, the
418  * DQAP is repeated.
419  * Note that gpr2 is used by the DQAP instruction to keep track of
420  * any 'residual' length, in case the instruction gets interrupted.
421  * Hence it gets zeroed before the instruction.
422  */
423 static inline struct ap_queue_status
424 __ap_recv(ap_qid_t qid, unsigned long long *psmid, void *msg, size_t length)
425 {
426 	typedef struct { char _[length]; } msgblock;
427 	register unsigned long reg0 asm("0") = qid | 0x80000000UL;
428 	register struct ap_queue_status reg1 asm ("1");
429 	register unsigned long reg2 asm("2") = 0UL;
430 	register unsigned long reg4 asm("4") = (unsigned long) msg;
431 	register unsigned long reg5 asm("5") = (unsigned long) length;
432 	register unsigned long reg6 asm("6") = 0UL;
433 	register unsigned long reg7 asm("7") = 0UL;
434 
435 
436 	asm volatile(
437 		"0: .long 0xb2ae0064\n"		/* DQAP */
438 		"   brc   6,0b\n"
439 		: "+d" (reg0), "=d" (reg1), "+d" (reg2),
440 		"+d" (reg4), "+d" (reg5), "+d" (reg6), "+d" (reg7),
441 		"=m" (*(msgblock *) msg) : : "cc" );
442 	*psmid = (((unsigned long long) reg6) << 32) + reg7;
443 	return reg1;
444 }
445 
446 int ap_recv(ap_qid_t qid, unsigned long long *psmid, void *msg, size_t length)
447 {
448 	struct ap_queue_status status;
449 
450 	status = __ap_recv(qid, psmid, msg, length);
451 	switch (status.response_code) {
452 	case AP_RESPONSE_NORMAL:
453 		return 0;
454 	case AP_RESPONSE_NO_PENDING_REPLY:
455 		if (status.queue_empty)
456 			return -ENOENT;
457 		return -EBUSY;
458 	case AP_RESPONSE_RESET_IN_PROGRESS:
459 		return -EBUSY;
460 	default:
461 		return -ENODEV;
462 	}
463 }
464 EXPORT_SYMBOL(ap_recv);
465 
466 /**
467  * ap_query_queue(): Check if an AP queue is available.
468  * @qid: The AP queue number
469  * @queue_depth: Pointer to queue depth value
470  * @device_type: Pointer to device type value
471  * @facilities: Pointer to facility indicator
472  */
473 static int ap_query_queue(ap_qid_t qid, int *queue_depth, int *device_type,
474 			  unsigned int *facilities)
475 {
476 	struct ap_queue_status status;
477 	unsigned long info;
478 	int nd;
479 
480 	if (!ap_test_config_card_id(AP_QID_DEVICE(qid)))
481 		return -ENODEV;
482 
483 	status = ap_test_queue(qid, &info);
484 	switch (status.response_code) {
485 	case AP_RESPONSE_NORMAL:
486 		*queue_depth = (int)(info & 0xff);
487 		*device_type = (int)((info >> 24) & 0xff);
488 		*facilities = (unsigned int)(info >> 32);
489 		/* Update maximum domain id */
490 		nd = (info >> 16) & 0xff;
491 		if ((info & (1UL << 57)) && nd > 0)
492 			ap_max_domain_id = nd;
493 		return 0;
494 	case AP_RESPONSE_Q_NOT_AVAIL:
495 	case AP_RESPONSE_DECONFIGURED:
496 	case AP_RESPONSE_CHECKSTOPPED:
497 	case AP_RESPONSE_INVALID_ADDRESS:
498 		return -ENODEV;
499 	case AP_RESPONSE_RESET_IN_PROGRESS:
500 	case AP_RESPONSE_OTHERWISE_CHANGED:
501 	case AP_RESPONSE_BUSY:
502 		return -EBUSY;
503 	default:
504 		BUG();
505 	}
506 }
507 
508 /* State machine definitions and helpers */
509 
510 static void ap_sm_wait(enum ap_wait wait)
511 {
512 	ktime_t hr_time;
513 
514 	switch (wait) {
515 	case AP_WAIT_AGAIN:
516 	case AP_WAIT_INTERRUPT:
517 		if (ap_using_interrupts())
518 			break;
519 		if (ap_poll_kthread) {
520 			wake_up(&ap_poll_wait);
521 			break;
522 		}
523 		/* Fall through */
524 	case AP_WAIT_TIMEOUT:
525 		spin_lock_bh(&ap_poll_timer_lock);
526 		if (!hrtimer_is_queued(&ap_poll_timer)) {
527 			hr_time = ktime_set(0, poll_timeout);
528 			hrtimer_forward_now(&ap_poll_timer, hr_time);
529 			hrtimer_restart(&ap_poll_timer);
530 		}
531 		spin_unlock_bh(&ap_poll_timer_lock);
532 		break;
533 	case AP_WAIT_NONE:
534 	default:
535 		break;
536 	}
537 }
538 
539 static enum ap_wait ap_sm_nop(struct ap_device *ap_dev)
540 {
541 	return AP_WAIT_NONE;
542 }
543 
544 /**
545  * ap_sm_recv(): Receive pending reply messages from an AP device but do
546  *	not change the state of the device.
547  * @ap_dev: pointer to the AP device
548  *
549  * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT
550  */
551 static struct ap_queue_status ap_sm_recv(struct ap_device *ap_dev)
552 {
553 	struct ap_queue_status status;
554 	struct ap_message *ap_msg;
555 
556 	status = __ap_recv(ap_dev->qid, &ap_dev->reply->psmid,
557 			   ap_dev->reply->message, ap_dev->reply->length);
558 	switch (status.response_code) {
559 	case AP_RESPONSE_NORMAL:
560 		atomic_dec(&ap_poll_requests);
561 		ap_dev->queue_count--;
562 		if (ap_dev->queue_count > 0)
563 			mod_timer(&ap_dev->timeout,
564 				  jiffies + ap_dev->drv->request_timeout);
565 		list_for_each_entry(ap_msg, &ap_dev->pendingq, list) {
566 			if (ap_msg->psmid != ap_dev->reply->psmid)
567 				continue;
568 			list_del_init(&ap_msg->list);
569 			ap_dev->pendingq_count--;
570 			ap_msg->receive(ap_dev, ap_msg, ap_dev->reply);
571 			break;
572 		}
573 	case AP_RESPONSE_NO_PENDING_REPLY:
574 		if (!status.queue_empty || ap_dev->queue_count <= 0)
575 			break;
576 		/* The card shouldn't forget requests but who knows. */
577 		atomic_sub(ap_dev->queue_count, &ap_poll_requests);
578 		ap_dev->queue_count = 0;
579 		list_splice_init(&ap_dev->pendingq, &ap_dev->requestq);
580 		ap_dev->requestq_count += ap_dev->pendingq_count;
581 		ap_dev->pendingq_count = 0;
582 		break;
583 	default:
584 		break;
585 	}
586 	return status;
587 }
588 
589 /**
590  * ap_sm_read(): Receive pending reply messages from an AP device.
591  * @ap_dev: pointer to the AP device
592  *
593  * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT
594  */
595 static enum ap_wait ap_sm_read(struct ap_device *ap_dev)
596 {
597 	struct ap_queue_status status;
598 
599 	status = ap_sm_recv(ap_dev);
600 	switch (status.response_code) {
601 	case AP_RESPONSE_NORMAL:
602 		if (ap_dev->queue_count > 0)
603 			return AP_WAIT_AGAIN;
604 		ap_dev->state = AP_STATE_IDLE;
605 		return AP_WAIT_NONE;
606 	case AP_RESPONSE_NO_PENDING_REPLY:
607 		if (ap_dev->queue_count > 0)
608 			return AP_WAIT_INTERRUPT;
609 		ap_dev->state = AP_STATE_IDLE;
610 		return AP_WAIT_NONE;
611 	default:
612 		ap_dev->state = AP_STATE_BORKED;
613 		return AP_WAIT_NONE;
614 	}
615 }
616 
617 /**
618  * ap_sm_write(): Send messages from the request queue to an AP device.
619  * @ap_dev: pointer to the AP device
620  *
621  * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT
622  */
623 static enum ap_wait ap_sm_write(struct ap_device *ap_dev)
624 {
625 	struct ap_queue_status status;
626 	struct ap_message *ap_msg;
627 
628 	if (ap_dev->requestq_count <= 0)
629 		return AP_WAIT_NONE;
630 	/* Start the next request on the queue. */
631 	ap_msg = list_entry(ap_dev->requestq.next, struct ap_message, list);
632 	status = __ap_send(ap_dev->qid, ap_msg->psmid,
633 			   ap_msg->message, ap_msg->length, ap_msg->special);
634 	switch (status.response_code) {
635 	case AP_RESPONSE_NORMAL:
636 		atomic_inc(&ap_poll_requests);
637 		ap_dev->queue_count++;
638 		if (ap_dev->queue_count == 1)
639 			mod_timer(&ap_dev->timeout,
640 				  jiffies + ap_dev->drv->request_timeout);
641 		list_move_tail(&ap_msg->list, &ap_dev->pendingq);
642 		ap_dev->requestq_count--;
643 		ap_dev->pendingq_count++;
644 		if (ap_dev->queue_count < ap_dev->queue_depth) {
645 			ap_dev->state = AP_STATE_WORKING;
646 			return AP_WAIT_AGAIN;
647 		}
648 		/* fall through */
649 	case AP_RESPONSE_Q_FULL:
650 		ap_dev->state = AP_STATE_QUEUE_FULL;
651 		return AP_WAIT_INTERRUPT;
652 	case AP_RESPONSE_RESET_IN_PROGRESS:
653 		ap_dev->state = AP_STATE_RESET_WAIT;
654 		return AP_WAIT_TIMEOUT;
655 	case AP_RESPONSE_MESSAGE_TOO_BIG:
656 	case AP_RESPONSE_REQ_FAC_NOT_INST:
657 		list_del_init(&ap_msg->list);
658 		ap_dev->requestq_count--;
659 		ap_msg->rc = -EINVAL;
660 		ap_msg->receive(ap_dev, ap_msg, NULL);
661 		return AP_WAIT_AGAIN;
662 	default:
663 		ap_dev->state = AP_STATE_BORKED;
664 		return AP_WAIT_NONE;
665 	}
666 }
667 
668 /**
669  * ap_sm_read_write(): Send and receive messages to/from an AP device.
670  * @ap_dev: pointer to the AP device
671  *
672  * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT
673  */
674 static enum ap_wait ap_sm_read_write(struct ap_device *ap_dev)
675 {
676 	return min(ap_sm_read(ap_dev), ap_sm_write(ap_dev));
677 }
678 
679 /**
680  * ap_sm_reset(): Reset an AP queue.
681  * @qid: The AP queue number
682  *
683  * Submit the Reset command to an AP queue.
684  */
685 static enum ap_wait ap_sm_reset(struct ap_device *ap_dev)
686 {
687 	struct ap_queue_status status;
688 
689 	status = ap_reset_queue(ap_dev->qid);
690 	switch (status.response_code) {
691 	case AP_RESPONSE_NORMAL:
692 	case AP_RESPONSE_RESET_IN_PROGRESS:
693 		ap_dev->state = AP_STATE_RESET_WAIT;
694 		ap_dev->interrupt = AP_INTR_DISABLED;
695 		return AP_WAIT_TIMEOUT;
696 	case AP_RESPONSE_BUSY:
697 		return AP_WAIT_TIMEOUT;
698 	case AP_RESPONSE_Q_NOT_AVAIL:
699 	case AP_RESPONSE_DECONFIGURED:
700 	case AP_RESPONSE_CHECKSTOPPED:
701 	default:
702 		ap_dev->state = AP_STATE_BORKED;
703 		return AP_WAIT_NONE;
704 	}
705 }
706 
707 /**
708  * ap_sm_reset_wait(): Test queue for completion of the reset operation
709  * @ap_dev: pointer to the AP device
710  *
711  * Returns AP_POLL_IMMEDIATELY, AP_POLL_AFTER_TIMEROUT or 0.
712  */
713 static enum ap_wait ap_sm_reset_wait(struct ap_device *ap_dev)
714 {
715 	struct ap_queue_status status;
716 	unsigned long info;
717 
718 	if (ap_dev->queue_count > 0)
719 		/* Try to read a completed message and get the status */
720 		status = ap_sm_recv(ap_dev);
721 	else
722 		/* Get the status with TAPQ */
723 		status = ap_test_queue(ap_dev->qid, &info);
724 
725 	switch (status.response_code) {
726 	case AP_RESPONSE_NORMAL:
727 		if (ap_using_interrupts() &&
728 		    ap_queue_enable_interruption(ap_dev,
729 						 ap_airq.lsi_ptr) == 0)
730 			ap_dev->state = AP_STATE_SETIRQ_WAIT;
731 		else
732 			ap_dev->state = (ap_dev->queue_count > 0) ?
733 				AP_STATE_WORKING : AP_STATE_IDLE;
734 		return AP_WAIT_AGAIN;
735 	case AP_RESPONSE_BUSY:
736 	case AP_RESPONSE_RESET_IN_PROGRESS:
737 		return AP_WAIT_TIMEOUT;
738 	case AP_RESPONSE_Q_NOT_AVAIL:
739 	case AP_RESPONSE_DECONFIGURED:
740 	case AP_RESPONSE_CHECKSTOPPED:
741 	default:
742 		ap_dev->state = AP_STATE_BORKED;
743 		return AP_WAIT_NONE;
744 	}
745 }
746 
747 /**
748  * ap_sm_setirq_wait(): Test queue for completion of the irq enablement
749  * @ap_dev: pointer to the AP device
750  *
751  * Returns AP_POLL_IMMEDIATELY, AP_POLL_AFTER_TIMEROUT or 0.
752  */
753 static enum ap_wait ap_sm_setirq_wait(struct ap_device *ap_dev)
754 {
755 	struct ap_queue_status status;
756 	unsigned long info;
757 
758 	if (ap_dev->queue_count > 0)
759 		/* Try to read a completed message and get the status */
760 		status = ap_sm_recv(ap_dev);
761 	else
762 		/* Get the status with TAPQ */
763 		status = ap_test_queue(ap_dev->qid, &info);
764 
765 	if (status.int_enabled == 1) {
766 		/* Irqs are now enabled */
767 		ap_dev->interrupt = AP_INTR_ENABLED;
768 		ap_dev->state = (ap_dev->queue_count > 0) ?
769 			AP_STATE_WORKING : AP_STATE_IDLE;
770 	}
771 
772 	switch (status.response_code) {
773 	case AP_RESPONSE_NORMAL:
774 		if (ap_dev->queue_count > 0)
775 			return AP_WAIT_AGAIN;
776 		/* fallthrough */
777 	case AP_RESPONSE_NO_PENDING_REPLY:
778 		return AP_WAIT_TIMEOUT;
779 	default:
780 		ap_dev->state = AP_STATE_BORKED;
781 		return AP_WAIT_NONE;
782 	}
783 }
784 
785 /*
786  * AP state machine jump table
787  */
788 ap_func_t *ap_jumptable[NR_AP_STATES][NR_AP_EVENTS] = {
789 	[AP_STATE_RESET_START] = {
790 		[AP_EVENT_POLL] = ap_sm_reset,
791 		[AP_EVENT_TIMEOUT] = ap_sm_nop,
792 	},
793 	[AP_STATE_RESET_WAIT] = {
794 		[AP_EVENT_POLL] = ap_sm_reset_wait,
795 		[AP_EVENT_TIMEOUT] = ap_sm_nop,
796 	},
797 	[AP_STATE_SETIRQ_WAIT] = {
798 		[AP_EVENT_POLL] = ap_sm_setirq_wait,
799 		[AP_EVENT_TIMEOUT] = ap_sm_nop,
800 	},
801 	[AP_STATE_IDLE] = {
802 		[AP_EVENT_POLL] = ap_sm_write,
803 		[AP_EVENT_TIMEOUT] = ap_sm_nop,
804 	},
805 	[AP_STATE_WORKING] = {
806 		[AP_EVENT_POLL] = ap_sm_read_write,
807 		[AP_EVENT_TIMEOUT] = ap_sm_reset,
808 	},
809 	[AP_STATE_QUEUE_FULL] = {
810 		[AP_EVENT_POLL] = ap_sm_read,
811 		[AP_EVENT_TIMEOUT] = ap_sm_reset,
812 	},
813 	[AP_STATE_SUSPEND_WAIT] = {
814 		[AP_EVENT_POLL] = ap_sm_read,
815 		[AP_EVENT_TIMEOUT] = ap_sm_nop,
816 	},
817 	[AP_STATE_BORKED] = {
818 		[AP_EVENT_POLL] = ap_sm_nop,
819 		[AP_EVENT_TIMEOUT] = ap_sm_nop,
820 	},
821 };
822 
823 static inline enum ap_wait ap_sm_event(struct ap_device *ap_dev,
824 				       enum ap_event event)
825 {
826 	return ap_jumptable[ap_dev->state][event](ap_dev);
827 }
828 
829 static inline enum ap_wait ap_sm_event_loop(struct ap_device *ap_dev,
830 					    enum ap_event event)
831 {
832 	enum ap_wait wait;
833 
834 	while ((wait = ap_sm_event(ap_dev, event)) == AP_WAIT_AGAIN)
835 		;
836 	return wait;
837 }
838 
839 /**
840  * ap_request_timeout(): Handling of request timeouts
841  * @data: Holds the AP device.
842  *
843  * Handles request timeouts.
844  */
845 static void ap_request_timeout(unsigned long data)
846 {
847 	struct ap_device *ap_dev = (struct ap_device *) data;
848 
849 	if (ap_suspend_flag)
850 		return;
851 	spin_lock_bh(&ap_dev->lock);
852 	ap_sm_wait(ap_sm_event(ap_dev, AP_EVENT_TIMEOUT));
853 	spin_unlock_bh(&ap_dev->lock);
854 }
855 
856 /**
857  * ap_poll_timeout(): AP receive polling for finished AP requests.
858  * @unused: Unused pointer.
859  *
860  * Schedules the AP tasklet using a high resolution timer.
861  */
862 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
863 {
864 	if (!ap_suspend_flag)
865 		tasklet_schedule(&ap_tasklet);
866 	return HRTIMER_NORESTART;
867 }
868 
869 /**
870  * ap_interrupt_handler() - Schedule ap_tasklet on interrupt
871  * @airq: pointer to adapter interrupt descriptor
872  */
873 static void ap_interrupt_handler(struct airq_struct *airq)
874 {
875 	inc_irq_stat(IRQIO_APB);
876 	if (!ap_suspend_flag)
877 		tasklet_schedule(&ap_tasklet);
878 }
879 
880 /**
881  * ap_tasklet_fn(): Tasklet to poll all AP devices.
882  * @dummy: Unused variable
883  *
884  * Poll all AP devices on the bus.
885  */
886 static void ap_tasklet_fn(unsigned long dummy)
887 {
888 	struct ap_device *ap_dev;
889 	enum ap_wait wait = AP_WAIT_NONE;
890 
891 	/* Reset the indicator if interrupts are used. Thus new interrupts can
892 	 * be received. Doing it in the beginning of the tasklet is therefor
893 	 * important that no requests on any AP get lost.
894 	 */
895 	if (ap_using_interrupts())
896 		xchg(ap_airq.lsi_ptr, 0);
897 
898 	spin_lock(&ap_device_list_lock);
899 	list_for_each_entry(ap_dev, &ap_device_list, list) {
900 		spin_lock_bh(&ap_dev->lock);
901 		wait = min(wait, ap_sm_event_loop(ap_dev, AP_EVENT_POLL));
902 		spin_unlock_bh(&ap_dev->lock);
903 	}
904 	spin_unlock(&ap_device_list_lock);
905 	ap_sm_wait(wait);
906 }
907 
908 /**
909  * ap_poll_thread(): Thread that polls for finished requests.
910  * @data: Unused pointer
911  *
912  * AP bus poll thread. The purpose of this thread is to poll for
913  * finished requests in a loop if there is a "free" cpu - that is
914  * a cpu that doesn't have anything better to do. The polling stops
915  * as soon as there is another task or if all messages have been
916  * delivered.
917  */
918 static int ap_poll_thread(void *data)
919 {
920 	DECLARE_WAITQUEUE(wait, current);
921 
922 	set_user_nice(current, MAX_NICE);
923 	set_freezable();
924 	while (!kthread_should_stop()) {
925 		add_wait_queue(&ap_poll_wait, &wait);
926 		set_current_state(TASK_INTERRUPTIBLE);
927 		if (ap_suspend_flag ||
928 		    atomic_read(&ap_poll_requests) <= 0) {
929 			schedule();
930 			try_to_freeze();
931 		}
932 		set_current_state(TASK_RUNNING);
933 		remove_wait_queue(&ap_poll_wait, &wait);
934 		if (need_resched()) {
935 			schedule();
936 			try_to_freeze();
937 			continue;
938 		}
939 		ap_tasklet_fn(0);
940 	} while (!kthread_should_stop());
941 	return 0;
942 }
943 
944 static int ap_poll_thread_start(void)
945 {
946 	int rc;
947 
948 	if (ap_using_interrupts() || ap_poll_kthread)
949 		return 0;
950 	mutex_lock(&ap_poll_thread_mutex);
951 	ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
952 	rc = PTR_RET(ap_poll_kthread);
953 	if (rc)
954 		ap_poll_kthread = NULL;
955 	mutex_unlock(&ap_poll_thread_mutex);
956 	return rc;
957 }
958 
959 static void ap_poll_thread_stop(void)
960 {
961 	if (!ap_poll_kthread)
962 		return;
963 	mutex_lock(&ap_poll_thread_mutex);
964 	kthread_stop(ap_poll_kthread);
965 	ap_poll_kthread = NULL;
966 	mutex_unlock(&ap_poll_thread_mutex);
967 }
968 
969 /**
970  * ap_queue_message(): Queue a request to an AP device.
971  * @ap_dev: The AP device to queue the message to
972  * @ap_msg: The message that is to be added
973  */
974 void ap_queue_message(struct ap_device *ap_dev, struct ap_message *ap_msg)
975 {
976 	/* For asynchronous message handling a valid receive-callback
977 	 * is required. */
978 	BUG_ON(!ap_msg->receive);
979 
980 	spin_lock_bh(&ap_dev->lock);
981 	/* Queue the message. */
982 	list_add_tail(&ap_msg->list, &ap_dev->requestq);
983 	ap_dev->requestq_count++;
984 	ap_dev->total_request_count++;
985 	/* Send/receive as many request from the queue as possible. */
986 	ap_sm_wait(ap_sm_event_loop(ap_dev, AP_EVENT_POLL));
987 	spin_unlock_bh(&ap_dev->lock);
988 }
989 EXPORT_SYMBOL(ap_queue_message);
990 
991 /**
992  * ap_cancel_message(): Cancel a crypto request.
993  * @ap_dev: The AP device that has the message queued
994  * @ap_msg: The message that is to be removed
995  *
996  * Cancel a crypto request. This is done by removing the request
997  * from the device pending or request queue. Note that the
998  * request stays on the AP queue. When it finishes the message
999  * reply will be discarded because the psmid can't be found.
1000  */
1001 void ap_cancel_message(struct ap_device *ap_dev, struct ap_message *ap_msg)
1002 {
1003 	struct ap_message *tmp;
1004 
1005 	spin_lock_bh(&ap_dev->lock);
1006 	if (!list_empty(&ap_msg->list)) {
1007 		list_for_each_entry(tmp, &ap_dev->pendingq, list)
1008 			if (tmp->psmid == ap_msg->psmid) {
1009 				ap_dev->pendingq_count--;
1010 				goto found;
1011 			}
1012 		ap_dev->requestq_count--;
1013 found:
1014 		list_del_init(&ap_msg->list);
1015 	}
1016 	spin_unlock_bh(&ap_dev->lock);
1017 }
1018 EXPORT_SYMBOL(ap_cancel_message);
1019 
1020 /*
1021  * AP device related attributes.
1022  */
1023 static ssize_t ap_hwtype_show(struct device *dev,
1024 			      struct device_attribute *attr, char *buf)
1025 {
1026 	struct ap_device *ap_dev = to_ap_dev(dev);
1027 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->device_type);
1028 }
1029 
1030 static DEVICE_ATTR(hwtype, 0444, ap_hwtype_show, NULL);
1031 
1032 static ssize_t ap_raw_hwtype_show(struct device *dev,
1033 			      struct device_attribute *attr, char *buf)
1034 {
1035 	struct ap_device *ap_dev = to_ap_dev(dev);
1036 
1037 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->raw_hwtype);
1038 }
1039 
1040 static DEVICE_ATTR(raw_hwtype, 0444, ap_raw_hwtype_show, NULL);
1041 
1042 static ssize_t ap_depth_show(struct device *dev, struct device_attribute *attr,
1043 			     char *buf)
1044 {
1045 	struct ap_device *ap_dev = to_ap_dev(dev);
1046 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->queue_depth);
1047 }
1048 
1049 static DEVICE_ATTR(depth, 0444, ap_depth_show, NULL);
1050 static ssize_t ap_request_count_show(struct device *dev,
1051 				     struct device_attribute *attr,
1052 				     char *buf)
1053 {
1054 	struct ap_device *ap_dev = to_ap_dev(dev);
1055 	int rc;
1056 
1057 	spin_lock_bh(&ap_dev->lock);
1058 	rc = snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->total_request_count);
1059 	spin_unlock_bh(&ap_dev->lock);
1060 	return rc;
1061 }
1062 
1063 static DEVICE_ATTR(request_count, 0444, ap_request_count_show, NULL);
1064 
1065 static ssize_t ap_requestq_count_show(struct device *dev,
1066 				      struct device_attribute *attr, char *buf)
1067 {
1068 	struct ap_device *ap_dev = to_ap_dev(dev);
1069 	int rc;
1070 
1071 	spin_lock_bh(&ap_dev->lock);
1072 	rc = snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->requestq_count);
1073 	spin_unlock_bh(&ap_dev->lock);
1074 	return rc;
1075 }
1076 
1077 static DEVICE_ATTR(requestq_count, 0444, ap_requestq_count_show, NULL);
1078 
1079 static ssize_t ap_pendingq_count_show(struct device *dev,
1080 				      struct device_attribute *attr, char *buf)
1081 {
1082 	struct ap_device *ap_dev = to_ap_dev(dev);
1083 	int rc;
1084 
1085 	spin_lock_bh(&ap_dev->lock);
1086 	rc = snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->pendingq_count);
1087 	spin_unlock_bh(&ap_dev->lock);
1088 	return rc;
1089 }
1090 
1091 static DEVICE_ATTR(pendingq_count, 0444, ap_pendingq_count_show, NULL);
1092 
1093 static ssize_t ap_reset_show(struct device *dev,
1094 				      struct device_attribute *attr, char *buf)
1095 {
1096 	struct ap_device *ap_dev = to_ap_dev(dev);
1097 	int rc = 0;
1098 
1099 	spin_lock_bh(&ap_dev->lock);
1100 	switch (ap_dev->state) {
1101 	case AP_STATE_RESET_START:
1102 	case AP_STATE_RESET_WAIT:
1103 		rc = snprintf(buf, PAGE_SIZE, "Reset in progress.\n");
1104 		break;
1105 	case AP_STATE_WORKING:
1106 	case AP_STATE_QUEUE_FULL:
1107 		rc = snprintf(buf, PAGE_SIZE, "Reset Timer armed.\n");
1108 		break;
1109 	default:
1110 		rc = snprintf(buf, PAGE_SIZE, "No Reset Timer set.\n");
1111 	}
1112 	spin_unlock_bh(&ap_dev->lock);
1113 	return rc;
1114 }
1115 
1116 static DEVICE_ATTR(reset, 0444, ap_reset_show, NULL);
1117 
1118 static ssize_t ap_interrupt_show(struct device *dev,
1119 				      struct device_attribute *attr, char *buf)
1120 {
1121 	struct ap_device *ap_dev = to_ap_dev(dev);
1122 	int rc = 0;
1123 
1124 	spin_lock_bh(&ap_dev->lock);
1125 	if (ap_dev->state == AP_STATE_SETIRQ_WAIT)
1126 		rc = snprintf(buf, PAGE_SIZE, "Enable Interrupt pending.\n");
1127 	else if (ap_dev->interrupt == AP_INTR_ENABLED)
1128 		rc = snprintf(buf, PAGE_SIZE, "Interrupts enabled.\n");
1129 	else
1130 		rc = snprintf(buf, PAGE_SIZE, "Interrupts disabled.\n");
1131 	spin_unlock_bh(&ap_dev->lock);
1132 	return rc;
1133 }
1134 
1135 static DEVICE_ATTR(interrupt, 0444, ap_interrupt_show, NULL);
1136 
1137 static ssize_t ap_modalias_show(struct device *dev,
1138 				struct device_attribute *attr, char *buf)
1139 {
1140 	return sprintf(buf, "ap:t%02X\n", to_ap_dev(dev)->device_type);
1141 }
1142 
1143 static DEVICE_ATTR(modalias, 0444, ap_modalias_show, NULL);
1144 
1145 static ssize_t ap_functions_show(struct device *dev,
1146 				 struct device_attribute *attr, char *buf)
1147 {
1148 	struct ap_device *ap_dev = to_ap_dev(dev);
1149 	return snprintf(buf, PAGE_SIZE, "0x%08X\n", ap_dev->functions);
1150 }
1151 
1152 static DEVICE_ATTR(ap_functions, 0444, ap_functions_show, NULL);
1153 
1154 static struct attribute *ap_dev_attrs[] = {
1155 	&dev_attr_hwtype.attr,
1156 	&dev_attr_raw_hwtype.attr,
1157 	&dev_attr_depth.attr,
1158 	&dev_attr_request_count.attr,
1159 	&dev_attr_requestq_count.attr,
1160 	&dev_attr_pendingq_count.attr,
1161 	&dev_attr_reset.attr,
1162 	&dev_attr_interrupt.attr,
1163 	&dev_attr_modalias.attr,
1164 	&dev_attr_ap_functions.attr,
1165 	NULL
1166 };
1167 static struct attribute_group ap_dev_attr_group = {
1168 	.attrs = ap_dev_attrs
1169 };
1170 
1171 /**
1172  * ap_bus_match()
1173  * @dev: Pointer to device
1174  * @drv: Pointer to device_driver
1175  *
1176  * AP bus driver registration/unregistration.
1177  */
1178 static int ap_bus_match(struct device *dev, struct device_driver *drv)
1179 {
1180 	struct ap_device *ap_dev = to_ap_dev(dev);
1181 	struct ap_driver *ap_drv = to_ap_drv(drv);
1182 	struct ap_device_id *id;
1183 
1184 	/*
1185 	 * Compare device type of the device with the list of
1186 	 * supported types of the device_driver.
1187 	 */
1188 	for (id = ap_drv->ids; id->match_flags; id++) {
1189 		if ((id->match_flags & AP_DEVICE_ID_MATCH_DEVICE_TYPE) &&
1190 		    (id->dev_type != ap_dev->device_type))
1191 			continue;
1192 		return 1;
1193 	}
1194 	return 0;
1195 }
1196 
1197 /**
1198  * ap_uevent(): Uevent function for AP devices.
1199  * @dev: Pointer to device
1200  * @env: Pointer to kobj_uevent_env
1201  *
1202  * It sets up a single environment variable DEV_TYPE which contains the
1203  * hardware device type.
1204  */
1205 static int ap_uevent (struct device *dev, struct kobj_uevent_env *env)
1206 {
1207 	struct ap_device *ap_dev = to_ap_dev(dev);
1208 	int retval = 0;
1209 
1210 	if (!ap_dev)
1211 		return -ENODEV;
1212 
1213 	/* Set up DEV_TYPE environment variable. */
1214 	retval = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
1215 	if (retval)
1216 		return retval;
1217 
1218 	/* Add MODALIAS= */
1219 	retval = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
1220 
1221 	return retval;
1222 }
1223 
1224 static int ap_dev_suspend(struct device *dev, pm_message_t state)
1225 {
1226 	struct ap_device *ap_dev = to_ap_dev(dev);
1227 
1228 	/* Poll on the device until all requests are finished. */
1229 	spin_lock_bh(&ap_dev->lock);
1230 	ap_dev->state = AP_STATE_SUSPEND_WAIT;
1231 	while (ap_sm_event(ap_dev, AP_EVENT_POLL) != AP_WAIT_NONE)
1232 		;
1233 	ap_dev->state = AP_STATE_BORKED;
1234 	spin_unlock_bh(&ap_dev->lock);
1235 	return 0;
1236 }
1237 
1238 static int ap_dev_resume(struct device *dev)
1239 {
1240 	return 0;
1241 }
1242 
1243 static void ap_bus_suspend(void)
1244 {
1245 	ap_suspend_flag = 1;
1246 	/*
1247 	 * Disable scanning for devices, thus we do not want to scan
1248 	 * for them after removing.
1249 	 */
1250 	flush_work(&ap_scan_work);
1251 	tasklet_disable(&ap_tasklet);
1252 }
1253 
1254 static int __ap_devices_unregister(struct device *dev, void *dummy)
1255 {
1256 	device_unregister(dev);
1257 	return 0;
1258 }
1259 
1260 static void ap_bus_resume(void)
1261 {
1262 	int rc;
1263 
1264 	/* Unconditionally remove all AP devices */
1265 	bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_devices_unregister);
1266 	/* Reset thin interrupt setting */
1267 	if (ap_interrupts_available() && !ap_using_interrupts()) {
1268 		rc = register_adapter_interrupt(&ap_airq);
1269 		ap_airq_flag = (rc == 0);
1270 	}
1271 	if (!ap_interrupts_available() && ap_using_interrupts()) {
1272 		unregister_adapter_interrupt(&ap_airq);
1273 		ap_airq_flag = 0;
1274 	}
1275 	/* Reset domain */
1276 	if (!user_set_domain)
1277 		ap_domain_index = -1;
1278 	/* Get things going again */
1279 	ap_suspend_flag = 0;
1280 	if (ap_airq_flag)
1281 		xchg(ap_airq.lsi_ptr, 0);
1282 	tasklet_enable(&ap_tasklet);
1283 	queue_work(system_long_wq, &ap_scan_work);
1284 }
1285 
1286 static int ap_power_event(struct notifier_block *this, unsigned long event,
1287 			  void *ptr)
1288 {
1289 	switch (event) {
1290 	case PM_HIBERNATION_PREPARE:
1291 	case PM_SUSPEND_PREPARE:
1292 		ap_bus_suspend();
1293 		break;
1294 	case PM_POST_HIBERNATION:
1295 	case PM_POST_SUSPEND:
1296 		ap_bus_resume();
1297 		break;
1298 	default:
1299 		break;
1300 	}
1301 	return NOTIFY_DONE;
1302 }
1303 static struct notifier_block ap_power_notifier = {
1304 	.notifier_call = ap_power_event,
1305 };
1306 
1307 static struct bus_type ap_bus_type = {
1308 	.name = "ap",
1309 	.match = &ap_bus_match,
1310 	.uevent = &ap_uevent,
1311 	.suspend = ap_dev_suspend,
1312 	.resume = ap_dev_resume,
1313 };
1314 
1315 static int ap_device_probe(struct device *dev)
1316 {
1317 	struct ap_device *ap_dev = to_ap_dev(dev);
1318 	struct ap_driver *ap_drv = to_ap_drv(dev->driver);
1319 	int rc;
1320 
1321 	ap_dev->drv = ap_drv;
1322 	rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
1323 	if (rc)
1324 		ap_dev->drv = NULL;
1325 	return rc;
1326 }
1327 
1328 /**
1329  * __ap_flush_queue(): Flush requests.
1330  * @ap_dev: Pointer to the AP device
1331  *
1332  * Flush all requests from the request/pending queue of an AP device.
1333  */
1334 static void __ap_flush_queue(struct ap_device *ap_dev)
1335 {
1336 	struct ap_message *ap_msg, *next;
1337 
1338 	list_for_each_entry_safe(ap_msg, next, &ap_dev->pendingq, list) {
1339 		list_del_init(&ap_msg->list);
1340 		ap_dev->pendingq_count--;
1341 		ap_msg->rc = -EAGAIN;
1342 		ap_msg->receive(ap_dev, ap_msg, NULL);
1343 	}
1344 	list_for_each_entry_safe(ap_msg, next, &ap_dev->requestq, list) {
1345 		list_del_init(&ap_msg->list);
1346 		ap_dev->requestq_count--;
1347 		ap_msg->rc = -EAGAIN;
1348 		ap_msg->receive(ap_dev, ap_msg, NULL);
1349 	}
1350 }
1351 
1352 void ap_flush_queue(struct ap_device *ap_dev)
1353 {
1354 	spin_lock_bh(&ap_dev->lock);
1355 	__ap_flush_queue(ap_dev);
1356 	spin_unlock_bh(&ap_dev->lock);
1357 }
1358 EXPORT_SYMBOL(ap_flush_queue);
1359 
1360 static int ap_device_remove(struct device *dev)
1361 {
1362 	struct ap_device *ap_dev = to_ap_dev(dev);
1363 	struct ap_driver *ap_drv = ap_dev->drv;
1364 
1365 	ap_flush_queue(ap_dev);
1366 	del_timer_sync(&ap_dev->timeout);
1367 	spin_lock_bh(&ap_device_list_lock);
1368 	list_del_init(&ap_dev->list);
1369 	spin_unlock_bh(&ap_device_list_lock);
1370 	if (ap_drv->remove)
1371 		ap_drv->remove(ap_dev);
1372 	spin_lock_bh(&ap_dev->lock);
1373 	atomic_sub(ap_dev->queue_count, &ap_poll_requests);
1374 	spin_unlock_bh(&ap_dev->lock);
1375 	return 0;
1376 }
1377 
1378 static void ap_device_release(struct device *dev)
1379 {
1380 	kfree(to_ap_dev(dev));
1381 }
1382 
1383 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
1384 		       char *name)
1385 {
1386 	struct device_driver *drv = &ap_drv->driver;
1387 
1388 	if (!initialised)
1389 		return -ENODEV;
1390 
1391 	drv->bus = &ap_bus_type;
1392 	drv->probe = ap_device_probe;
1393 	drv->remove = ap_device_remove;
1394 	drv->owner = owner;
1395 	drv->name = name;
1396 	return driver_register(drv);
1397 }
1398 EXPORT_SYMBOL(ap_driver_register);
1399 
1400 void ap_driver_unregister(struct ap_driver *ap_drv)
1401 {
1402 	driver_unregister(&ap_drv->driver);
1403 }
1404 EXPORT_SYMBOL(ap_driver_unregister);
1405 
1406 void ap_bus_force_rescan(void)
1407 {
1408 	if (ap_suspend_flag)
1409 		return;
1410 	/* processing a asynchronous bus rescan */
1411 	del_timer(&ap_config_timer);
1412 	queue_work(system_long_wq, &ap_scan_work);
1413 	flush_work(&ap_scan_work);
1414 }
1415 EXPORT_SYMBOL(ap_bus_force_rescan);
1416 
1417 /*
1418  * AP bus attributes.
1419  */
1420 static ssize_t ap_domain_show(struct bus_type *bus, char *buf)
1421 {
1422 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index);
1423 }
1424 
1425 static BUS_ATTR(ap_domain, 0444, ap_domain_show, NULL);
1426 
1427 static ssize_t ap_control_domain_mask_show(struct bus_type *bus, char *buf)
1428 {
1429 	if (!ap_configuration)	/* QCI not supported */
1430 		return snprintf(buf, PAGE_SIZE, "not supported\n");
1431 	if (!test_facility(76))
1432 		/* format 0 - 16 bit domain field */
1433 		return snprintf(buf, PAGE_SIZE, "%08x%08x\n",
1434 				ap_configuration->adm[0],
1435 				ap_configuration->adm[1]);
1436 	/* format 1 - 256 bit domain field */
1437 	return snprintf(buf, PAGE_SIZE,
1438 			"0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1439 			ap_configuration->adm[0], ap_configuration->adm[1],
1440 			ap_configuration->adm[2], ap_configuration->adm[3],
1441 			ap_configuration->adm[4], ap_configuration->adm[5],
1442 			ap_configuration->adm[6], ap_configuration->adm[7]);
1443 }
1444 
1445 static BUS_ATTR(ap_control_domain_mask, 0444,
1446 		ap_control_domain_mask_show, NULL);
1447 
1448 static ssize_t ap_config_time_show(struct bus_type *bus, char *buf)
1449 {
1450 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_config_time);
1451 }
1452 
1453 static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf)
1454 {
1455 	return snprintf(buf, PAGE_SIZE, "%d\n",
1456 			ap_using_interrupts() ? 1 : 0);
1457 }
1458 
1459 static BUS_ATTR(ap_interrupts, 0444, ap_interrupts_show, NULL);
1460 
1461 static ssize_t ap_config_time_store(struct bus_type *bus,
1462 				    const char *buf, size_t count)
1463 {
1464 	int time;
1465 
1466 	if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
1467 		return -EINVAL;
1468 	ap_config_time = time;
1469 	mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1470 	return count;
1471 }
1472 
1473 static BUS_ATTR(config_time, 0644, ap_config_time_show, ap_config_time_store);
1474 
1475 static ssize_t ap_poll_thread_show(struct bus_type *bus, char *buf)
1476 {
1477 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0);
1478 }
1479 
1480 static ssize_t ap_poll_thread_store(struct bus_type *bus,
1481 				    const char *buf, size_t count)
1482 {
1483 	int flag, rc;
1484 
1485 	if (sscanf(buf, "%d\n", &flag) != 1)
1486 		return -EINVAL;
1487 	if (flag) {
1488 		rc = ap_poll_thread_start();
1489 		if (rc)
1490 			count = rc;
1491 	} else
1492 		ap_poll_thread_stop();
1493 	return count;
1494 }
1495 
1496 static BUS_ATTR(poll_thread, 0644, ap_poll_thread_show, ap_poll_thread_store);
1497 
1498 static ssize_t poll_timeout_show(struct bus_type *bus, char *buf)
1499 {
1500 	return snprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout);
1501 }
1502 
1503 static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf,
1504 				  size_t count)
1505 {
1506 	unsigned long long time;
1507 	ktime_t hr_time;
1508 
1509 	/* 120 seconds = maximum poll interval */
1510 	if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 ||
1511 	    time > 120000000000ULL)
1512 		return -EINVAL;
1513 	poll_timeout = time;
1514 	hr_time = ktime_set(0, poll_timeout);
1515 
1516 	spin_lock_bh(&ap_poll_timer_lock);
1517 	hrtimer_cancel(&ap_poll_timer);
1518 	hrtimer_set_expires(&ap_poll_timer, hr_time);
1519 	hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
1520 	spin_unlock_bh(&ap_poll_timer_lock);
1521 
1522 	return count;
1523 }
1524 
1525 static BUS_ATTR(poll_timeout, 0644, poll_timeout_show, poll_timeout_store);
1526 
1527 static ssize_t ap_max_domain_id_show(struct bus_type *bus, char *buf)
1528 {
1529 	int max_domain_id;
1530 
1531 	if (ap_configuration)
1532 		max_domain_id = ap_max_domain_id ? : -1;
1533 	else
1534 		max_domain_id = 15;
1535 	return snprintf(buf, PAGE_SIZE, "%d\n", max_domain_id);
1536 }
1537 
1538 static BUS_ATTR(ap_max_domain_id, 0444, ap_max_domain_id_show, NULL);
1539 
1540 static struct bus_attribute *const ap_bus_attrs[] = {
1541 	&bus_attr_ap_domain,
1542 	&bus_attr_ap_control_domain_mask,
1543 	&bus_attr_config_time,
1544 	&bus_attr_poll_thread,
1545 	&bus_attr_ap_interrupts,
1546 	&bus_attr_poll_timeout,
1547 	&bus_attr_ap_max_domain_id,
1548 	NULL,
1549 };
1550 
1551 /**
1552  * ap_select_domain(): Select an AP domain.
1553  *
1554  * Pick one of the 16 AP domains.
1555  */
1556 static int ap_select_domain(void)
1557 {
1558 	int count, max_count, best_domain;
1559 	struct ap_queue_status status;
1560 	int i, j;
1561 
1562 	/*
1563 	 * We want to use a single domain. Either the one specified with
1564 	 * the "domain=" parameter or the domain with the maximum number
1565 	 * of devices.
1566 	 */
1567 	if (ap_domain_index >= 0)
1568 		/* Domain has already been selected. */
1569 		return 0;
1570 	best_domain = -1;
1571 	max_count = 0;
1572 	for (i = 0; i < AP_DOMAINS; i++) {
1573 		if (!ap_test_config_domain(i))
1574 			continue;
1575 		count = 0;
1576 		for (j = 0; j < AP_DEVICES; j++) {
1577 			if (!ap_test_config_card_id(j))
1578 				continue;
1579 			status = ap_test_queue(AP_MKQID(j, i), NULL);
1580 			if (status.response_code != AP_RESPONSE_NORMAL)
1581 				continue;
1582 			count++;
1583 		}
1584 		if (count > max_count) {
1585 			max_count = count;
1586 			best_domain = i;
1587 		}
1588 	}
1589 	if (best_domain >= 0){
1590 		ap_domain_index = best_domain;
1591 		return 0;
1592 	}
1593 	return -ENODEV;
1594 }
1595 
1596 /**
1597  * __ap_scan_bus(): Scan the AP bus.
1598  * @dev: Pointer to device
1599  * @data: Pointer to data
1600  *
1601  * Scan the AP bus for new devices.
1602  */
1603 static int __ap_scan_bus(struct device *dev, void *data)
1604 {
1605 	return to_ap_dev(dev)->qid == (ap_qid_t)(unsigned long) data;
1606 }
1607 
1608 static void ap_scan_bus(struct work_struct *unused)
1609 {
1610 	struct ap_device *ap_dev;
1611 	struct device *dev;
1612 	ap_qid_t qid;
1613 	int queue_depth = 0, device_type = 0;
1614 	unsigned int device_functions = 0;
1615 	int rc, i, borked;
1616 
1617 	ap_query_configuration();
1618 	if (ap_select_domain() != 0)
1619 		goto out;
1620 
1621 	for (i = 0; i < AP_DEVICES; i++) {
1622 		qid = AP_MKQID(i, ap_domain_index);
1623 		dev = bus_find_device(&ap_bus_type, NULL,
1624 				      (void *)(unsigned long)qid,
1625 				      __ap_scan_bus);
1626 		rc = ap_query_queue(qid, &queue_depth, &device_type,
1627 				    &device_functions);
1628 		if (dev) {
1629 			ap_dev = to_ap_dev(dev);
1630 			spin_lock_bh(&ap_dev->lock);
1631 			if (rc == -ENODEV)
1632 				ap_dev->state = AP_STATE_BORKED;
1633 			borked = ap_dev->state == AP_STATE_BORKED;
1634 			spin_unlock_bh(&ap_dev->lock);
1635 			if (borked)	/* Remove broken device */
1636 				device_unregister(dev);
1637 			put_device(dev);
1638 			if (!borked)
1639 				continue;
1640 		}
1641 		if (rc)
1642 			continue;
1643 		ap_dev = kzalloc(sizeof(*ap_dev), GFP_KERNEL);
1644 		if (!ap_dev)
1645 			break;
1646 		ap_dev->qid = qid;
1647 		ap_dev->state = AP_STATE_RESET_START;
1648 		ap_dev->interrupt = AP_INTR_DISABLED;
1649 		ap_dev->queue_depth = queue_depth;
1650 		ap_dev->raw_hwtype = device_type;
1651 		ap_dev->device_type = device_type;
1652 		ap_dev->functions = device_functions;
1653 		spin_lock_init(&ap_dev->lock);
1654 		INIT_LIST_HEAD(&ap_dev->pendingq);
1655 		INIT_LIST_HEAD(&ap_dev->requestq);
1656 		INIT_LIST_HEAD(&ap_dev->list);
1657 		setup_timer(&ap_dev->timeout, ap_request_timeout,
1658 			    (unsigned long) ap_dev);
1659 
1660 		ap_dev->device.bus = &ap_bus_type;
1661 		ap_dev->device.parent = ap_root_device;
1662 		rc = dev_set_name(&ap_dev->device, "card%02x",
1663 				  AP_QID_DEVICE(ap_dev->qid));
1664 		if (rc) {
1665 			kfree(ap_dev);
1666 			continue;
1667 		}
1668 		/* Add to list of devices */
1669 		spin_lock_bh(&ap_device_list_lock);
1670 		list_add(&ap_dev->list, &ap_device_list);
1671 		spin_unlock_bh(&ap_device_list_lock);
1672 		/* Start with a device reset */
1673 		spin_lock_bh(&ap_dev->lock);
1674 		ap_sm_wait(ap_sm_event(ap_dev, AP_EVENT_POLL));
1675 		spin_unlock_bh(&ap_dev->lock);
1676 		/* Register device */
1677 		ap_dev->device.release = ap_device_release;
1678 		rc = device_register(&ap_dev->device);
1679 		if (rc) {
1680 			spin_lock_bh(&ap_dev->lock);
1681 			list_del_init(&ap_dev->list);
1682 			spin_unlock_bh(&ap_dev->lock);
1683 			put_device(&ap_dev->device);
1684 			continue;
1685 		}
1686 		/* Add device attributes. */
1687 		rc = sysfs_create_group(&ap_dev->device.kobj,
1688 					&ap_dev_attr_group);
1689 		if (rc) {
1690 			device_unregister(&ap_dev->device);
1691 			continue;
1692 		}
1693 	}
1694 out:
1695 	mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1696 }
1697 
1698 static void ap_config_timeout(unsigned long ptr)
1699 {
1700 	if (ap_suspend_flag)
1701 		return;
1702 	queue_work(system_long_wq, &ap_scan_work);
1703 }
1704 
1705 static void ap_reset_domain(void)
1706 {
1707 	int i;
1708 
1709 	if (ap_domain_index == -1 || !ap_test_config_domain(ap_domain_index))
1710 		return;
1711 	for (i = 0; i < AP_DEVICES; i++)
1712 		ap_reset_queue(AP_MKQID(i, ap_domain_index));
1713 }
1714 
1715 static void ap_reset_all(void)
1716 {
1717 	int i, j;
1718 
1719 	for (i = 0; i < AP_DOMAINS; i++) {
1720 		if (!ap_test_config_domain(i))
1721 			continue;
1722 		for (j = 0; j < AP_DEVICES; j++) {
1723 			if (!ap_test_config_card_id(j))
1724 				continue;
1725 			ap_reset_queue(AP_MKQID(j, i));
1726 		}
1727 	}
1728 }
1729 
1730 static struct reset_call ap_reset_call = {
1731 	.fn = ap_reset_all,
1732 };
1733 
1734 /**
1735  * ap_module_init(): The module initialization code.
1736  *
1737  * Initializes the module.
1738  */
1739 int __init ap_module_init(void)
1740 {
1741 	int max_domain_id;
1742 	int rc, i;
1743 
1744 	if (ap_instructions_available() != 0) {
1745 		pr_warn("The hardware system does not support AP instructions\n");
1746 		return -ENODEV;
1747 	}
1748 
1749 	/* Get AP configuration data if available */
1750 	ap_init_configuration();
1751 
1752 	if (ap_configuration)
1753 		max_domain_id = ap_max_domain_id ? : (AP_DOMAINS - 1);
1754 	else
1755 		max_domain_id = 15;
1756 	if (ap_domain_index < -1 || ap_domain_index > max_domain_id) {
1757 		pr_warn("%d is not a valid cryptographic domain\n",
1758 			ap_domain_index);
1759 		return -EINVAL;
1760 	}
1761 	/* In resume callback we need to know if the user had set the domain.
1762 	 * If so, we can not just reset it.
1763 	 */
1764 	if (ap_domain_index >= 0)
1765 		user_set_domain = 1;
1766 
1767 	if (ap_interrupts_available()) {
1768 		rc = register_adapter_interrupt(&ap_airq);
1769 		ap_airq_flag = (rc == 0);
1770 	}
1771 
1772 	register_reset_call(&ap_reset_call);
1773 
1774 	/* Create /sys/bus/ap. */
1775 	rc = bus_register(&ap_bus_type);
1776 	if (rc)
1777 		goto out;
1778 	for (i = 0; ap_bus_attrs[i]; i++) {
1779 		rc = bus_create_file(&ap_bus_type, ap_bus_attrs[i]);
1780 		if (rc)
1781 			goto out_bus;
1782 	}
1783 
1784 	/* Create /sys/devices/ap. */
1785 	ap_root_device = root_device_register("ap");
1786 	rc = PTR_RET(ap_root_device);
1787 	if (rc)
1788 		goto out_bus;
1789 
1790 	/* Setup the AP bus rescan timer. */
1791 	setup_timer(&ap_config_timer, ap_config_timeout, 0);
1792 
1793 	/*
1794 	 * Setup the high resultion poll timer.
1795 	 * If we are running under z/VM adjust polling to z/VM polling rate.
1796 	 */
1797 	if (MACHINE_IS_VM)
1798 		poll_timeout = 1500000;
1799 	spin_lock_init(&ap_poll_timer_lock);
1800 	hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1801 	ap_poll_timer.function = ap_poll_timeout;
1802 
1803 	/* Start the low priority AP bus poll thread. */
1804 	if (ap_thread_flag) {
1805 		rc = ap_poll_thread_start();
1806 		if (rc)
1807 			goto out_work;
1808 	}
1809 
1810 	rc = register_pm_notifier(&ap_power_notifier);
1811 	if (rc)
1812 		goto out_pm;
1813 
1814 	queue_work(system_long_wq, &ap_scan_work);
1815 	initialised = true;
1816 
1817 	return 0;
1818 
1819 out_pm:
1820 	ap_poll_thread_stop();
1821 out_work:
1822 	hrtimer_cancel(&ap_poll_timer);
1823 	root_device_unregister(ap_root_device);
1824 out_bus:
1825 	while (i--)
1826 		bus_remove_file(&ap_bus_type, ap_bus_attrs[i]);
1827 	bus_unregister(&ap_bus_type);
1828 out:
1829 	unregister_reset_call(&ap_reset_call);
1830 	if (ap_using_interrupts())
1831 		unregister_adapter_interrupt(&ap_airq);
1832 	kfree(ap_configuration);
1833 	return rc;
1834 }
1835 
1836 /**
1837  * ap_modules_exit(): The module termination code
1838  *
1839  * Terminates the module.
1840  */
1841 void ap_module_exit(void)
1842 {
1843 	int i;
1844 
1845 	initialised = false;
1846 	ap_reset_domain();
1847 	ap_poll_thread_stop();
1848 	del_timer_sync(&ap_config_timer);
1849 	hrtimer_cancel(&ap_poll_timer);
1850 	tasklet_kill(&ap_tasklet);
1851 	bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_devices_unregister);
1852 	for (i = 0; ap_bus_attrs[i]; i++)
1853 		bus_remove_file(&ap_bus_type, ap_bus_attrs[i]);
1854 	unregister_pm_notifier(&ap_power_notifier);
1855 	root_device_unregister(ap_root_device);
1856 	bus_unregister(&ap_bus_type);
1857 	kfree(ap_configuration);
1858 	unregister_reset_call(&ap_reset_call);
1859 	if (ap_using_interrupts())
1860 		unregister_adapter_interrupt(&ap_airq);
1861 }
1862 
1863 module_init(ap_module_init);
1864 module_exit(ap_module_exit);
1865