1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright IBM Corp. 2006, 2012 4 * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com> 5 * Martin Schwidefsky <schwidefsky@de.ibm.com> 6 * Ralph Wuerthner <rwuerthn@de.ibm.com> 7 * Felix Beck <felix.beck@de.ibm.com> 8 * Holger Dengler <hd@linux.vnet.ibm.com> 9 * 10 * Adjunct processor bus. 11 */ 12 13 #define KMSG_COMPONENT "ap" 14 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 15 16 #include <linux/kernel_stat.h> 17 #include <linux/moduleparam.h> 18 #include <linux/init.h> 19 #include <linux/delay.h> 20 #include <linux/err.h> 21 #include <linux/interrupt.h> 22 #include <linux/workqueue.h> 23 #include <linux/slab.h> 24 #include <linux/notifier.h> 25 #include <linux/kthread.h> 26 #include <linux/mutex.h> 27 #include <linux/suspend.h> 28 #include <asm/airq.h> 29 #include <linux/atomic.h> 30 #include <asm/isc.h> 31 #include <linux/hrtimer.h> 32 #include <linux/ktime.h> 33 #include <asm/facility.h> 34 #include <linux/crypto.h> 35 #include <linux/mod_devicetable.h> 36 #include <linux/debugfs.h> 37 #include <linux/ctype.h> 38 39 #include "ap_bus.h" 40 #include "ap_debug.h" 41 42 /* 43 * Module parameters; note though this file itself isn't modular. 44 */ 45 int ap_domain_index = -1; /* Adjunct Processor Domain Index */ 46 static DEFINE_SPINLOCK(ap_domain_lock); 47 module_param_named(domain, ap_domain_index, int, 0440); 48 MODULE_PARM_DESC(domain, "domain index for ap devices"); 49 EXPORT_SYMBOL(ap_domain_index); 50 51 static int ap_thread_flag; 52 module_param_named(poll_thread, ap_thread_flag, int, 0440); 53 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off)."); 54 55 static char *apm_str; 56 module_param_named(apmask, apm_str, charp, 0440); 57 MODULE_PARM_DESC(apmask, "AP bus adapter mask."); 58 59 static char *aqm_str; 60 module_param_named(aqmask, aqm_str, charp, 0440); 61 MODULE_PARM_DESC(aqmask, "AP bus domain mask."); 62 63 static struct device *ap_root_device; 64 65 DEFINE_SPINLOCK(ap_list_lock); 66 LIST_HEAD(ap_card_list); 67 68 /* Default permissions (ioctl, card and domain masking) */ 69 struct ap_perms ap_perms; 70 EXPORT_SYMBOL(ap_perms); 71 DEFINE_MUTEX(ap_perms_mutex); 72 EXPORT_SYMBOL(ap_perms_mutex); 73 74 static struct ap_config_info *ap_configuration; 75 static bool initialised; 76 77 /* 78 * AP bus related debug feature things. 79 */ 80 debug_info_t *ap_dbf_info; 81 82 /* 83 * Workqueue timer for bus rescan. 84 */ 85 static struct timer_list ap_config_timer; 86 static int ap_config_time = AP_CONFIG_TIME; 87 static void ap_scan_bus(struct work_struct *); 88 static DECLARE_WORK(ap_scan_work, ap_scan_bus); 89 90 /* 91 * Tasklet & timer for AP request polling and interrupts 92 */ 93 static void ap_tasklet_fn(unsigned long); 94 static DECLARE_TASKLET(ap_tasklet, ap_tasklet_fn, 0); 95 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait); 96 static struct task_struct *ap_poll_kthread; 97 static DEFINE_MUTEX(ap_poll_thread_mutex); 98 static DEFINE_SPINLOCK(ap_poll_timer_lock); 99 static struct hrtimer ap_poll_timer; 100 /* 101 * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds. 102 * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling. 103 */ 104 static unsigned long long poll_timeout = 250000; 105 106 /* Suspend flag */ 107 static int ap_suspend_flag; 108 /* Maximum domain id */ 109 static int ap_max_domain_id; 110 /* 111 * Flag to check if domain was set through module parameter domain=. This is 112 * important when supsend and resume is done in a z/VM environment where the 113 * domain might change. 114 */ 115 static int user_set_domain; 116 static struct bus_type ap_bus_type; 117 118 /* Adapter interrupt definitions */ 119 static void ap_interrupt_handler(struct airq_struct *airq, bool floating); 120 121 static int ap_airq_flag; 122 123 static struct airq_struct ap_airq = { 124 .handler = ap_interrupt_handler, 125 .isc = AP_ISC, 126 }; 127 128 /** 129 * ap_using_interrupts() - Returns non-zero if interrupt support is 130 * available. 131 */ 132 static inline int ap_using_interrupts(void) 133 { 134 return ap_airq_flag; 135 } 136 137 /** 138 * ap_airq_ptr() - Get the address of the adapter interrupt indicator 139 * 140 * Returns the address of the local-summary-indicator of the adapter 141 * interrupt handler for AP, or NULL if adapter interrupts are not 142 * available. 143 */ 144 void *ap_airq_ptr(void) 145 { 146 if (ap_using_interrupts()) 147 return ap_airq.lsi_ptr; 148 return NULL; 149 } 150 151 /** 152 * ap_interrupts_available(): Test if AP interrupts are available. 153 * 154 * Returns 1 if AP interrupts are available. 155 */ 156 static int ap_interrupts_available(void) 157 { 158 return test_facility(65); 159 } 160 161 /** 162 * ap_configuration_available(): Test if AP configuration 163 * information is available. 164 * 165 * Returns 1 if AP configuration information is available. 166 */ 167 static int ap_configuration_available(void) 168 { 169 return test_facility(12); 170 } 171 172 /** 173 * ap_apft_available(): Test if AP facilities test (APFT) 174 * facility is available. 175 * 176 * Returns 1 if APFT is is available. 177 */ 178 static int ap_apft_available(void) 179 { 180 return test_facility(15); 181 } 182 183 /* 184 * ap_qact_available(): Test if the PQAP(QACT) subfunction is available. 185 * 186 * Returns 1 if the QACT subfunction is available. 187 */ 188 static inline int ap_qact_available(void) 189 { 190 if (ap_configuration) 191 return ap_configuration->qact; 192 return 0; 193 } 194 195 /* 196 * ap_query_configuration(): Fetch cryptographic config info 197 * 198 * Returns the ap configuration info fetched via PQAP(QCI). 199 * On success 0 is returned, on failure a negative errno 200 * is returned, e.g. if the PQAP(QCI) instruction is not 201 * available, the return value will be -EOPNOTSUPP. 202 */ 203 static inline int ap_query_configuration(struct ap_config_info *info) 204 { 205 if (!ap_configuration_available()) 206 return -EOPNOTSUPP; 207 if (!info) 208 return -EINVAL; 209 return ap_qci(info); 210 } 211 212 /** 213 * ap_init_configuration(): Allocate and query configuration array. 214 */ 215 static void ap_init_configuration(void) 216 { 217 if (!ap_configuration_available()) 218 return; 219 220 ap_configuration = kzalloc(sizeof(*ap_configuration), GFP_KERNEL); 221 if (!ap_configuration) 222 return; 223 if (ap_query_configuration(ap_configuration) != 0) { 224 kfree(ap_configuration); 225 ap_configuration = NULL; 226 return; 227 } 228 } 229 230 /* 231 * ap_test_config(): helper function to extract the nrth bit 232 * within the unsigned int array field. 233 */ 234 static inline int ap_test_config(unsigned int *field, unsigned int nr) 235 { 236 return ap_test_bit((field + (nr >> 5)), (nr & 0x1f)); 237 } 238 239 /* 240 * ap_test_config_card_id(): Test, whether an AP card ID is configured. 241 * @id AP card ID 242 * 243 * Returns 0 if the card is not configured 244 * 1 if the card is configured or 245 * if the configuration information is not available 246 */ 247 static inline int ap_test_config_card_id(unsigned int id) 248 { 249 if (!ap_configuration) /* QCI not supported */ 250 /* only ids 0...3F may be probed */ 251 return id < 0x40 ? 1 : 0; 252 return ap_test_config(ap_configuration->apm, id); 253 } 254 255 /* 256 * ap_test_config_usage_domain(): Test, whether an AP usage domain 257 * is configured. 258 * @domain AP usage domain ID 259 * 260 * Returns 0 if the usage domain is not configured 261 * 1 if the usage domain is configured or 262 * if the configuration information is not available 263 */ 264 int ap_test_config_usage_domain(unsigned int domain) 265 { 266 if (!ap_configuration) /* QCI not supported */ 267 return domain < 16; 268 return ap_test_config(ap_configuration->aqm, domain); 269 } 270 EXPORT_SYMBOL(ap_test_config_usage_domain); 271 272 /* 273 * ap_test_config_ctrl_domain(): Test, whether an AP control domain 274 * is configured. 275 * @domain AP control domain ID 276 * 277 * Returns 1 if the control domain is configured 278 * 0 in all other cases 279 */ 280 int ap_test_config_ctrl_domain(unsigned int domain) 281 { 282 if (!ap_configuration) /* QCI not supported */ 283 return 0; 284 return ap_test_config(ap_configuration->adm, domain); 285 } 286 EXPORT_SYMBOL(ap_test_config_ctrl_domain); 287 288 /** 289 * ap_query_queue(): Check if an AP queue is available. 290 * @qid: The AP queue number 291 * @queue_depth: Pointer to queue depth value 292 * @device_type: Pointer to device type value 293 * @facilities: Pointer to facility indicator 294 */ 295 static int ap_query_queue(ap_qid_t qid, int *queue_depth, int *device_type, 296 unsigned int *facilities) 297 { 298 struct ap_queue_status status; 299 unsigned long info; 300 int nd; 301 302 if (!ap_test_config_card_id(AP_QID_CARD(qid))) 303 return -ENODEV; 304 305 status = ap_test_queue(qid, ap_apft_available(), &info); 306 switch (status.response_code) { 307 case AP_RESPONSE_NORMAL: 308 *queue_depth = (int)(info & 0xff); 309 *device_type = (int)((info >> 24) & 0xff); 310 *facilities = (unsigned int)(info >> 32); 311 /* Update maximum domain id */ 312 nd = (info >> 16) & 0xff; 313 /* if N bit is available, z13 and newer */ 314 if ((info & (1UL << 57)) && nd > 0) 315 ap_max_domain_id = nd; 316 else /* older machine types */ 317 ap_max_domain_id = 15; 318 switch (*device_type) { 319 /* For CEX2 and CEX3 the available functions 320 * are not reflected by the facilities bits. 321 * Instead it is coded into the type. So here 322 * modify the function bits based on the type. 323 */ 324 case AP_DEVICE_TYPE_CEX2A: 325 case AP_DEVICE_TYPE_CEX3A: 326 *facilities |= 0x08000000; 327 break; 328 case AP_DEVICE_TYPE_CEX2C: 329 case AP_DEVICE_TYPE_CEX3C: 330 *facilities |= 0x10000000; 331 break; 332 default: 333 break; 334 } 335 return 0; 336 case AP_RESPONSE_Q_NOT_AVAIL: 337 case AP_RESPONSE_DECONFIGURED: 338 case AP_RESPONSE_CHECKSTOPPED: 339 case AP_RESPONSE_INVALID_ADDRESS: 340 return -ENODEV; 341 case AP_RESPONSE_RESET_IN_PROGRESS: 342 case AP_RESPONSE_OTHERWISE_CHANGED: 343 case AP_RESPONSE_BUSY: 344 return -EBUSY; 345 default: 346 BUG(); 347 } 348 } 349 350 void ap_wait(enum ap_wait wait) 351 { 352 ktime_t hr_time; 353 354 switch (wait) { 355 case AP_WAIT_AGAIN: 356 case AP_WAIT_INTERRUPT: 357 if (ap_using_interrupts()) 358 break; 359 if (ap_poll_kthread) { 360 wake_up(&ap_poll_wait); 361 break; 362 } 363 /* Fall through */ 364 case AP_WAIT_TIMEOUT: 365 spin_lock_bh(&ap_poll_timer_lock); 366 if (!hrtimer_is_queued(&ap_poll_timer)) { 367 hr_time = poll_timeout; 368 hrtimer_forward_now(&ap_poll_timer, hr_time); 369 hrtimer_restart(&ap_poll_timer); 370 } 371 spin_unlock_bh(&ap_poll_timer_lock); 372 break; 373 case AP_WAIT_NONE: 374 default: 375 break; 376 } 377 } 378 379 /** 380 * ap_request_timeout(): Handling of request timeouts 381 * @t: timer making this callback 382 * 383 * Handles request timeouts. 384 */ 385 void ap_request_timeout(struct timer_list *t) 386 { 387 struct ap_queue *aq = from_timer(aq, t, timeout); 388 389 if (ap_suspend_flag) 390 return; 391 spin_lock_bh(&aq->lock); 392 ap_wait(ap_sm_event(aq, AP_EVENT_TIMEOUT)); 393 spin_unlock_bh(&aq->lock); 394 } 395 396 /** 397 * ap_poll_timeout(): AP receive polling for finished AP requests. 398 * @unused: Unused pointer. 399 * 400 * Schedules the AP tasklet using a high resolution timer. 401 */ 402 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused) 403 { 404 if (!ap_suspend_flag) 405 tasklet_schedule(&ap_tasklet); 406 return HRTIMER_NORESTART; 407 } 408 409 /** 410 * ap_interrupt_handler() - Schedule ap_tasklet on interrupt 411 * @airq: pointer to adapter interrupt descriptor 412 */ 413 static void ap_interrupt_handler(struct airq_struct *airq, bool floating) 414 { 415 inc_irq_stat(IRQIO_APB); 416 if (!ap_suspend_flag) 417 tasklet_schedule(&ap_tasklet); 418 } 419 420 /** 421 * ap_tasklet_fn(): Tasklet to poll all AP devices. 422 * @dummy: Unused variable 423 * 424 * Poll all AP devices on the bus. 425 */ 426 static void ap_tasklet_fn(unsigned long dummy) 427 { 428 struct ap_card *ac; 429 struct ap_queue *aq; 430 enum ap_wait wait = AP_WAIT_NONE; 431 432 /* Reset the indicator if interrupts are used. Thus new interrupts can 433 * be received. Doing it in the beginning of the tasklet is therefor 434 * important that no requests on any AP get lost. 435 */ 436 if (ap_using_interrupts()) 437 xchg(ap_airq.lsi_ptr, 0); 438 439 spin_lock_bh(&ap_list_lock); 440 for_each_ap_card(ac) { 441 for_each_ap_queue(aq, ac) { 442 spin_lock_bh(&aq->lock); 443 wait = min(wait, ap_sm_event_loop(aq, AP_EVENT_POLL)); 444 spin_unlock_bh(&aq->lock); 445 } 446 } 447 spin_unlock_bh(&ap_list_lock); 448 449 ap_wait(wait); 450 } 451 452 static int ap_pending_requests(void) 453 { 454 struct ap_card *ac; 455 struct ap_queue *aq; 456 457 spin_lock_bh(&ap_list_lock); 458 for_each_ap_card(ac) { 459 for_each_ap_queue(aq, ac) { 460 if (aq->queue_count == 0) 461 continue; 462 spin_unlock_bh(&ap_list_lock); 463 return 1; 464 } 465 } 466 spin_unlock_bh(&ap_list_lock); 467 return 0; 468 } 469 470 /** 471 * ap_poll_thread(): Thread that polls for finished requests. 472 * @data: Unused pointer 473 * 474 * AP bus poll thread. The purpose of this thread is to poll for 475 * finished requests in a loop if there is a "free" cpu - that is 476 * a cpu that doesn't have anything better to do. The polling stops 477 * as soon as there is another task or if all messages have been 478 * delivered. 479 */ 480 static int ap_poll_thread(void *data) 481 { 482 DECLARE_WAITQUEUE(wait, current); 483 484 set_user_nice(current, MAX_NICE); 485 set_freezable(); 486 while (!kthread_should_stop()) { 487 add_wait_queue(&ap_poll_wait, &wait); 488 set_current_state(TASK_INTERRUPTIBLE); 489 if (ap_suspend_flag || !ap_pending_requests()) { 490 schedule(); 491 try_to_freeze(); 492 } 493 set_current_state(TASK_RUNNING); 494 remove_wait_queue(&ap_poll_wait, &wait); 495 if (need_resched()) { 496 schedule(); 497 try_to_freeze(); 498 continue; 499 } 500 ap_tasklet_fn(0); 501 } 502 503 return 0; 504 } 505 506 static int ap_poll_thread_start(void) 507 { 508 int rc; 509 510 if (ap_using_interrupts() || ap_poll_kthread) 511 return 0; 512 mutex_lock(&ap_poll_thread_mutex); 513 ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll"); 514 rc = PTR_ERR_OR_ZERO(ap_poll_kthread); 515 if (rc) 516 ap_poll_kthread = NULL; 517 mutex_unlock(&ap_poll_thread_mutex); 518 return rc; 519 } 520 521 static void ap_poll_thread_stop(void) 522 { 523 if (!ap_poll_kthread) 524 return; 525 mutex_lock(&ap_poll_thread_mutex); 526 kthread_stop(ap_poll_kthread); 527 ap_poll_kthread = NULL; 528 mutex_unlock(&ap_poll_thread_mutex); 529 } 530 531 #define is_card_dev(x) ((x)->parent == ap_root_device) 532 #define is_queue_dev(x) ((x)->parent != ap_root_device) 533 534 /** 535 * ap_bus_match() 536 * @dev: Pointer to device 537 * @drv: Pointer to device_driver 538 * 539 * AP bus driver registration/unregistration. 540 */ 541 static int ap_bus_match(struct device *dev, struct device_driver *drv) 542 { 543 struct ap_driver *ap_drv = to_ap_drv(drv); 544 struct ap_device_id *id; 545 546 /* 547 * Compare device type of the device with the list of 548 * supported types of the device_driver. 549 */ 550 for (id = ap_drv->ids; id->match_flags; id++) { 551 if (is_card_dev(dev) && 552 id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE && 553 id->dev_type == to_ap_dev(dev)->device_type) 554 return 1; 555 if (is_queue_dev(dev) && 556 id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE && 557 id->dev_type == to_ap_dev(dev)->device_type) 558 return 1; 559 } 560 return 0; 561 } 562 563 /** 564 * ap_uevent(): Uevent function for AP devices. 565 * @dev: Pointer to device 566 * @env: Pointer to kobj_uevent_env 567 * 568 * It sets up a single environment variable DEV_TYPE which contains the 569 * hardware device type. 570 */ 571 static int ap_uevent(struct device *dev, struct kobj_uevent_env *env) 572 { 573 struct ap_device *ap_dev = to_ap_dev(dev); 574 int retval = 0; 575 576 if (!ap_dev) 577 return -ENODEV; 578 579 /* Set up DEV_TYPE environment variable. */ 580 retval = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type); 581 if (retval) 582 return retval; 583 584 /* Add MODALIAS= */ 585 retval = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type); 586 587 return retval; 588 } 589 590 static int ap_dev_suspend(struct device *dev) 591 { 592 struct ap_device *ap_dev = to_ap_dev(dev); 593 594 if (ap_dev->drv && ap_dev->drv->suspend) 595 ap_dev->drv->suspend(ap_dev); 596 return 0; 597 } 598 599 static int ap_dev_resume(struct device *dev) 600 { 601 struct ap_device *ap_dev = to_ap_dev(dev); 602 603 if (ap_dev->drv && ap_dev->drv->resume) 604 ap_dev->drv->resume(ap_dev); 605 return 0; 606 } 607 608 static void ap_bus_suspend(void) 609 { 610 AP_DBF(DBF_DEBUG, "%s running\n", __func__); 611 612 ap_suspend_flag = 1; 613 /* 614 * Disable scanning for devices, thus we do not want to scan 615 * for them after removing. 616 */ 617 flush_work(&ap_scan_work); 618 tasklet_disable(&ap_tasklet); 619 } 620 621 static int __ap_card_devices_unregister(struct device *dev, void *dummy) 622 { 623 if (is_card_dev(dev)) 624 device_unregister(dev); 625 return 0; 626 } 627 628 static int __ap_queue_devices_unregister(struct device *dev, void *dummy) 629 { 630 if (is_queue_dev(dev)) 631 device_unregister(dev); 632 return 0; 633 } 634 635 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data) 636 { 637 if (is_queue_dev(dev) && 638 AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long) data) 639 device_unregister(dev); 640 return 0; 641 } 642 643 static void ap_bus_resume(void) 644 { 645 int rc; 646 647 AP_DBF(DBF_DEBUG, "%s running\n", __func__); 648 649 /* remove all queue devices */ 650 bus_for_each_dev(&ap_bus_type, NULL, NULL, 651 __ap_queue_devices_unregister); 652 /* remove all card devices */ 653 bus_for_each_dev(&ap_bus_type, NULL, NULL, 654 __ap_card_devices_unregister); 655 656 /* Reset thin interrupt setting */ 657 if (ap_interrupts_available() && !ap_using_interrupts()) { 658 rc = register_adapter_interrupt(&ap_airq); 659 ap_airq_flag = (rc == 0); 660 } 661 if (!ap_interrupts_available() && ap_using_interrupts()) { 662 unregister_adapter_interrupt(&ap_airq); 663 ap_airq_flag = 0; 664 } 665 /* Reset domain */ 666 if (!user_set_domain) 667 ap_domain_index = -1; 668 /* Get things going again */ 669 ap_suspend_flag = 0; 670 if (ap_airq_flag) 671 xchg(ap_airq.lsi_ptr, 0); 672 tasklet_enable(&ap_tasklet); 673 queue_work(system_long_wq, &ap_scan_work); 674 } 675 676 static int ap_power_event(struct notifier_block *this, unsigned long event, 677 void *ptr) 678 { 679 switch (event) { 680 case PM_HIBERNATION_PREPARE: 681 case PM_SUSPEND_PREPARE: 682 ap_bus_suspend(); 683 break; 684 case PM_POST_HIBERNATION: 685 case PM_POST_SUSPEND: 686 ap_bus_resume(); 687 break; 688 default: 689 break; 690 } 691 return NOTIFY_DONE; 692 } 693 static struct notifier_block ap_power_notifier = { 694 .notifier_call = ap_power_event, 695 }; 696 697 static SIMPLE_DEV_PM_OPS(ap_bus_pm_ops, ap_dev_suspend, ap_dev_resume); 698 699 static struct bus_type ap_bus_type = { 700 .name = "ap", 701 .match = &ap_bus_match, 702 .uevent = &ap_uevent, 703 .pm = &ap_bus_pm_ops, 704 }; 705 706 static int __ap_revise_reserved(struct device *dev, void *dummy) 707 { 708 int rc, card, queue, devres, drvres; 709 710 if (is_queue_dev(dev)) { 711 card = AP_QID_CARD(to_ap_queue(dev)->qid); 712 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid); 713 mutex_lock(&ap_perms_mutex); 714 devres = test_bit_inv(card, ap_perms.apm) 715 && test_bit_inv(queue, ap_perms.aqm); 716 mutex_unlock(&ap_perms_mutex); 717 drvres = to_ap_drv(dev->driver)->flags 718 & AP_DRIVER_FLAG_DEFAULT; 719 if (!!devres != !!drvres) { 720 AP_DBF(DBF_DEBUG, "reprobing queue=%02x.%04x\n", 721 card, queue); 722 rc = device_reprobe(dev); 723 } 724 } 725 726 return 0; 727 } 728 729 static void ap_bus_revise_bindings(void) 730 { 731 bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved); 732 } 733 734 int ap_owned_by_def_drv(int card, int queue) 735 { 736 int rc = 0; 737 738 if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS) 739 return -EINVAL; 740 741 mutex_lock(&ap_perms_mutex); 742 743 if (test_bit_inv(card, ap_perms.apm) 744 && test_bit_inv(queue, ap_perms.aqm)) 745 rc = 1; 746 747 mutex_unlock(&ap_perms_mutex); 748 749 return rc; 750 } 751 EXPORT_SYMBOL(ap_owned_by_def_drv); 752 753 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm, 754 unsigned long *aqm) 755 { 756 int card, queue, rc = 0; 757 758 mutex_lock(&ap_perms_mutex); 759 760 for (card = 0; !rc && card < AP_DEVICES; card++) 761 if (test_bit_inv(card, apm) && 762 test_bit_inv(card, ap_perms.apm)) 763 for (queue = 0; !rc && queue < AP_DOMAINS; queue++) 764 if (test_bit_inv(queue, aqm) && 765 test_bit_inv(queue, ap_perms.aqm)) 766 rc = 1; 767 768 mutex_unlock(&ap_perms_mutex); 769 770 return rc; 771 } 772 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv); 773 774 static int ap_device_probe(struct device *dev) 775 { 776 struct ap_device *ap_dev = to_ap_dev(dev); 777 struct ap_driver *ap_drv = to_ap_drv(dev->driver); 778 int card, queue, devres, drvres, rc; 779 780 if (is_queue_dev(dev)) { 781 /* 782 * If the apqn is marked as reserved/used by ap bus and 783 * default drivers, only probe with drivers with the default 784 * flag set. If it is not marked, only probe with drivers 785 * with the default flag not set. 786 */ 787 card = AP_QID_CARD(to_ap_queue(dev)->qid); 788 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid); 789 mutex_lock(&ap_perms_mutex); 790 devres = test_bit_inv(card, ap_perms.apm) 791 && test_bit_inv(queue, ap_perms.aqm); 792 mutex_unlock(&ap_perms_mutex); 793 drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT; 794 if (!!devres != !!drvres) 795 return -ENODEV; 796 } 797 798 /* Add queue/card to list of active queues/cards */ 799 spin_lock_bh(&ap_list_lock); 800 if (is_card_dev(dev)) 801 list_add(&to_ap_card(dev)->list, &ap_card_list); 802 else 803 list_add(&to_ap_queue(dev)->list, 804 &to_ap_queue(dev)->card->queues); 805 spin_unlock_bh(&ap_list_lock); 806 807 ap_dev->drv = ap_drv; 808 rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV; 809 810 if (rc) { 811 spin_lock_bh(&ap_list_lock); 812 if (is_card_dev(dev)) 813 list_del_init(&to_ap_card(dev)->list); 814 else 815 list_del_init(&to_ap_queue(dev)->list); 816 spin_unlock_bh(&ap_list_lock); 817 ap_dev->drv = NULL; 818 } 819 820 return rc; 821 } 822 823 static int ap_device_remove(struct device *dev) 824 { 825 struct ap_device *ap_dev = to_ap_dev(dev); 826 struct ap_driver *ap_drv = ap_dev->drv; 827 828 /* prepare ap queue device removal */ 829 if (is_queue_dev(dev)) 830 ap_queue_prepare_remove(to_ap_queue(dev)); 831 832 /* driver's chance to clean up gracefully */ 833 if (ap_drv->remove) 834 ap_drv->remove(ap_dev); 835 836 /* now do the ap queue device remove */ 837 if (is_queue_dev(dev)) 838 ap_queue_remove(to_ap_queue(dev)); 839 840 /* Remove queue/card from list of active queues/cards */ 841 spin_lock_bh(&ap_list_lock); 842 if (is_card_dev(dev)) 843 list_del_init(&to_ap_card(dev)->list); 844 else 845 list_del_init(&to_ap_queue(dev)->list); 846 spin_unlock_bh(&ap_list_lock); 847 848 return 0; 849 } 850 851 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner, 852 char *name) 853 { 854 struct device_driver *drv = &ap_drv->driver; 855 856 if (!initialised) 857 return -ENODEV; 858 859 drv->bus = &ap_bus_type; 860 drv->probe = ap_device_probe; 861 drv->remove = ap_device_remove; 862 drv->owner = owner; 863 drv->name = name; 864 return driver_register(drv); 865 } 866 EXPORT_SYMBOL(ap_driver_register); 867 868 void ap_driver_unregister(struct ap_driver *ap_drv) 869 { 870 driver_unregister(&ap_drv->driver); 871 } 872 EXPORT_SYMBOL(ap_driver_unregister); 873 874 void ap_bus_force_rescan(void) 875 { 876 if (ap_suspend_flag) 877 return; 878 /* processing a asynchronous bus rescan */ 879 del_timer(&ap_config_timer); 880 queue_work(system_long_wq, &ap_scan_work); 881 flush_work(&ap_scan_work); 882 } 883 EXPORT_SYMBOL(ap_bus_force_rescan); 884 885 /* 886 * A config change has happened, force an ap bus rescan. 887 */ 888 void ap_bus_cfg_chg(void) 889 { 890 AP_DBF(DBF_INFO, "%s config change, forcing bus rescan\n", __func__); 891 892 ap_bus_force_rescan(); 893 } 894 895 /* 896 * hex2bitmap() - parse hex mask string and set bitmap. 897 * Valid strings are "0x012345678" with at least one valid hex number. 898 * Rest of the bitmap to the right is padded with 0. No spaces allowed 899 * within the string, the leading 0x may be omitted. 900 * Returns the bitmask with exactly the bits set as given by the hex 901 * string (both in big endian order). 902 */ 903 static int hex2bitmap(const char *str, unsigned long *bitmap, int bits) 904 { 905 int i, n, b; 906 907 /* bits needs to be a multiple of 8 */ 908 if (bits & 0x07) 909 return -EINVAL; 910 911 if (str[0] == '0' && str[1] == 'x') 912 str++; 913 if (*str == 'x') 914 str++; 915 916 for (i = 0; isxdigit(*str) && i < bits; str++) { 917 b = hex_to_bin(*str); 918 for (n = 0; n < 4; n++) 919 if (b & (0x08 >> n)) 920 set_bit_inv(i + n, bitmap); 921 i += 4; 922 } 923 924 if (*str == '\n') 925 str++; 926 if (*str) 927 return -EINVAL; 928 return 0; 929 } 930 931 /* 932 * modify_bitmap() - parse bitmask argument and modify an existing 933 * bit mask accordingly. A concatenation (done with ',') of these 934 * terms is recognized: 935 * +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>] 936 * <bitnr> may be any valid number (hex, decimal or octal) in the range 937 * 0...bits-1; the leading + or - is required. Here are some examples: 938 * +0-15,+32,-128,-0xFF 939 * -0-255,+1-16,+0x128 940 * +1,+2,+3,+4,-5,-7-10 941 * Returns the new bitmap after all changes have been applied. Every 942 * positive value in the string will set a bit and every negative value 943 * in the string will clear a bit. As a bit may be touched more than once, 944 * the last 'operation' wins: 945 * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be 946 * cleared again. All other bits are unmodified. 947 */ 948 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits) 949 { 950 int a, i, z; 951 char *np, sign; 952 953 /* bits needs to be a multiple of 8 */ 954 if (bits & 0x07) 955 return -EINVAL; 956 957 while (*str) { 958 sign = *str++; 959 if (sign != '+' && sign != '-') 960 return -EINVAL; 961 a = z = simple_strtoul(str, &np, 0); 962 if (str == np || a >= bits) 963 return -EINVAL; 964 str = np; 965 if (*str == '-') { 966 z = simple_strtoul(++str, &np, 0); 967 if (str == np || a > z || z >= bits) 968 return -EINVAL; 969 str = np; 970 } 971 for (i = a; i <= z; i++) 972 if (sign == '+') 973 set_bit_inv(i, bitmap); 974 else 975 clear_bit_inv(i, bitmap); 976 while (*str == ',' || *str == '\n') 977 str++; 978 } 979 980 return 0; 981 } 982 983 int ap_parse_mask_str(const char *str, 984 unsigned long *bitmap, int bits, 985 struct mutex *lock) 986 { 987 unsigned long *newmap, size; 988 int rc; 989 990 /* bits needs to be a multiple of 8 */ 991 if (bits & 0x07) 992 return -EINVAL; 993 994 size = BITS_TO_LONGS(bits)*sizeof(unsigned long); 995 newmap = kmalloc(size, GFP_KERNEL); 996 if (!newmap) 997 return -ENOMEM; 998 if (mutex_lock_interruptible(lock)) { 999 kfree(newmap); 1000 return -ERESTARTSYS; 1001 } 1002 1003 if (*str == '+' || *str == '-') { 1004 memcpy(newmap, bitmap, size); 1005 rc = modify_bitmap(str, newmap, bits); 1006 } else { 1007 memset(newmap, 0, size); 1008 rc = hex2bitmap(str, newmap, bits); 1009 } 1010 if (rc == 0) 1011 memcpy(bitmap, newmap, size); 1012 mutex_unlock(lock); 1013 kfree(newmap); 1014 return rc; 1015 } 1016 EXPORT_SYMBOL(ap_parse_mask_str); 1017 1018 /* 1019 * AP bus attributes. 1020 */ 1021 1022 static ssize_t ap_domain_show(struct bus_type *bus, char *buf) 1023 { 1024 return snprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index); 1025 } 1026 1027 static ssize_t ap_domain_store(struct bus_type *bus, 1028 const char *buf, size_t count) 1029 { 1030 int domain; 1031 1032 if (sscanf(buf, "%i\n", &domain) != 1 || 1033 domain < 0 || domain > ap_max_domain_id || 1034 !test_bit_inv(domain, ap_perms.aqm)) 1035 return -EINVAL; 1036 spin_lock_bh(&ap_domain_lock); 1037 ap_domain_index = domain; 1038 spin_unlock_bh(&ap_domain_lock); 1039 1040 AP_DBF(DBF_DEBUG, "stored new default domain=%d\n", domain); 1041 1042 return count; 1043 } 1044 1045 static BUS_ATTR_RW(ap_domain); 1046 1047 static ssize_t ap_control_domain_mask_show(struct bus_type *bus, char *buf) 1048 { 1049 if (!ap_configuration) /* QCI not supported */ 1050 return snprintf(buf, PAGE_SIZE, "not supported\n"); 1051 1052 return snprintf(buf, PAGE_SIZE, 1053 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1054 ap_configuration->adm[0], ap_configuration->adm[1], 1055 ap_configuration->adm[2], ap_configuration->adm[3], 1056 ap_configuration->adm[4], ap_configuration->adm[5], 1057 ap_configuration->adm[6], ap_configuration->adm[7]); 1058 } 1059 1060 static BUS_ATTR_RO(ap_control_domain_mask); 1061 1062 static ssize_t ap_usage_domain_mask_show(struct bus_type *bus, char *buf) 1063 { 1064 if (!ap_configuration) /* QCI not supported */ 1065 return snprintf(buf, PAGE_SIZE, "not supported\n"); 1066 1067 return snprintf(buf, PAGE_SIZE, 1068 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1069 ap_configuration->aqm[0], ap_configuration->aqm[1], 1070 ap_configuration->aqm[2], ap_configuration->aqm[3], 1071 ap_configuration->aqm[4], ap_configuration->aqm[5], 1072 ap_configuration->aqm[6], ap_configuration->aqm[7]); 1073 } 1074 1075 static BUS_ATTR_RO(ap_usage_domain_mask); 1076 1077 static ssize_t ap_adapter_mask_show(struct bus_type *bus, char *buf) 1078 { 1079 if (!ap_configuration) /* QCI not supported */ 1080 return snprintf(buf, PAGE_SIZE, "not supported\n"); 1081 1082 return snprintf(buf, PAGE_SIZE, 1083 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1084 ap_configuration->apm[0], ap_configuration->apm[1], 1085 ap_configuration->apm[2], ap_configuration->apm[3], 1086 ap_configuration->apm[4], ap_configuration->apm[5], 1087 ap_configuration->apm[6], ap_configuration->apm[7]); 1088 } 1089 1090 static BUS_ATTR_RO(ap_adapter_mask); 1091 1092 static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf) 1093 { 1094 return snprintf(buf, PAGE_SIZE, "%d\n", 1095 ap_using_interrupts() ? 1 : 0); 1096 } 1097 1098 static BUS_ATTR_RO(ap_interrupts); 1099 1100 static ssize_t config_time_show(struct bus_type *bus, char *buf) 1101 { 1102 return snprintf(buf, PAGE_SIZE, "%d\n", ap_config_time); 1103 } 1104 1105 static ssize_t config_time_store(struct bus_type *bus, 1106 const char *buf, size_t count) 1107 { 1108 int time; 1109 1110 if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120) 1111 return -EINVAL; 1112 ap_config_time = time; 1113 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ); 1114 return count; 1115 } 1116 1117 static BUS_ATTR_RW(config_time); 1118 1119 static ssize_t poll_thread_show(struct bus_type *bus, char *buf) 1120 { 1121 return snprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0); 1122 } 1123 1124 static ssize_t poll_thread_store(struct bus_type *bus, 1125 const char *buf, size_t count) 1126 { 1127 int flag, rc; 1128 1129 if (sscanf(buf, "%d\n", &flag) != 1) 1130 return -EINVAL; 1131 if (flag) { 1132 rc = ap_poll_thread_start(); 1133 if (rc) 1134 count = rc; 1135 } else 1136 ap_poll_thread_stop(); 1137 return count; 1138 } 1139 1140 static BUS_ATTR_RW(poll_thread); 1141 1142 static ssize_t poll_timeout_show(struct bus_type *bus, char *buf) 1143 { 1144 return snprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout); 1145 } 1146 1147 static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf, 1148 size_t count) 1149 { 1150 unsigned long long time; 1151 ktime_t hr_time; 1152 1153 /* 120 seconds = maximum poll interval */ 1154 if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 || 1155 time > 120000000000ULL) 1156 return -EINVAL; 1157 poll_timeout = time; 1158 hr_time = poll_timeout; 1159 1160 spin_lock_bh(&ap_poll_timer_lock); 1161 hrtimer_cancel(&ap_poll_timer); 1162 hrtimer_set_expires(&ap_poll_timer, hr_time); 1163 hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS); 1164 spin_unlock_bh(&ap_poll_timer_lock); 1165 1166 return count; 1167 } 1168 1169 static BUS_ATTR_RW(poll_timeout); 1170 1171 static ssize_t ap_max_domain_id_show(struct bus_type *bus, char *buf) 1172 { 1173 int max_domain_id; 1174 1175 if (ap_configuration) 1176 max_domain_id = ap_max_domain_id ? : -1; 1177 else 1178 max_domain_id = 15; 1179 return snprintf(buf, PAGE_SIZE, "%d\n", max_domain_id); 1180 } 1181 1182 static BUS_ATTR_RO(ap_max_domain_id); 1183 1184 static ssize_t apmask_show(struct bus_type *bus, char *buf) 1185 { 1186 int rc; 1187 1188 if (mutex_lock_interruptible(&ap_perms_mutex)) 1189 return -ERESTARTSYS; 1190 rc = snprintf(buf, PAGE_SIZE, 1191 "0x%016lx%016lx%016lx%016lx\n", 1192 ap_perms.apm[0], ap_perms.apm[1], 1193 ap_perms.apm[2], ap_perms.apm[3]); 1194 mutex_unlock(&ap_perms_mutex); 1195 1196 return rc; 1197 } 1198 1199 static ssize_t apmask_store(struct bus_type *bus, const char *buf, 1200 size_t count) 1201 { 1202 int rc; 1203 1204 rc = ap_parse_mask_str(buf, ap_perms.apm, AP_DEVICES, &ap_perms_mutex); 1205 if (rc) 1206 return rc; 1207 1208 ap_bus_revise_bindings(); 1209 1210 return count; 1211 } 1212 1213 static BUS_ATTR_RW(apmask); 1214 1215 static ssize_t aqmask_show(struct bus_type *bus, char *buf) 1216 { 1217 int rc; 1218 1219 if (mutex_lock_interruptible(&ap_perms_mutex)) 1220 return -ERESTARTSYS; 1221 rc = snprintf(buf, PAGE_SIZE, 1222 "0x%016lx%016lx%016lx%016lx\n", 1223 ap_perms.aqm[0], ap_perms.aqm[1], 1224 ap_perms.aqm[2], ap_perms.aqm[3]); 1225 mutex_unlock(&ap_perms_mutex); 1226 1227 return rc; 1228 } 1229 1230 static ssize_t aqmask_store(struct bus_type *bus, const char *buf, 1231 size_t count) 1232 { 1233 int rc; 1234 1235 rc = ap_parse_mask_str(buf, ap_perms.aqm, AP_DOMAINS, &ap_perms_mutex); 1236 if (rc) 1237 return rc; 1238 1239 ap_bus_revise_bindings(); 1240 1241 return count; 1242 } 1243 1244 static BUS_ATTR_RW(aqmask); 1245 1246 static struct bus_attribute *const ap_bus_attrs[] = { 1247 &bus_attr_ap_domain, 1248 &bus_attr_ap_control_domain_mask, 1249 &bus_attr_ap_usage_domain_mask, 1250 &bus_attr_ap_adapter_mask, 1251 &bus_attr_config_time, 1252 &bus_attr_poll_thread, 1253 &bus_attr_ap_interrupts, 1254 &bus_attr_poll_timeout, 1255 &bus_attr_ap_max_domain_id, 1256 &bus_attr_apmask, 1257 &bus_attr_aqmask, 1258 NULL, 1259 }; 1260 1261 /** 1262 * ap_select_domain(): Select an AP domain if possible and we haven't 1263 * already done so before. 1264 */ 1265 static void ap_select_domain(void) 1266 { 1267 int count, max_count, best_domain; 1268 struct ap_queue_status status; 1269 int i, j; 1270 1271 /* 1272 * We want to use a single domain. Either the one specified with 1273 * the "domain=" parameter or the domain with the maximum number 1274 * of devices. 1275 */ 1276 spin_lock_bh(&ap_domain_lock); 1277 if (ap_domain_index >= 0) { 1278 /* Domain has already been selected. */ 1279 spin_unlock_bh(&ap_domain_lock); 1280 return; 1281 } 1282 best_domain = -1; 1283 max_count = 0; 1284 for (i = 0; i < AP_DOMAINS; i++) { 1285 if (!ap_test_config_usage_domain(i) || 1286 !test_bit_inv(i, ap_perms.aqm)) 1287 continue; 1288 count = 0; 1289 for (j = 0; j < AP_DEVICES; j++) { 1290 if (!ap_test_config_card_id(j)) 1291 continue; 1292 status = ap_test_queue(AP_MKQID(j, i), 1293 ap_apft_available(), 1294 NULL); 1295 if (status.response_code != AP_RESPONSE_NORMAL) 1296 continue; 1297 count++; 1298 } 1299 if (count > max_count) { 1300 max_count = count; 1301 best_domain = i; 1302 } 1303 } 1304 if (best_domain >= 0) { 1305 ap_domain_index = best_domain; 1306 AP_DBF(DBF_DEBUG, "new ap_domain_index=%d\n", ap_domain_index); 1307 } 1308 spin_unlock_bh(&ap_domain_lock); 1309 } 1310 1311 /* 1312 * This function checks the type and returns either 0 for not 1313 * supported or the highest compatible type value (which may 1314 * include the input type value). 1315 */ 1316 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func) 1317 { 1318 int comp_type = 0; 1319 1320 /* < CEX2A is not supported */ 1321 if (rawtype < AP_DEVICE_TYPE_CEX2A) 1322 return 0; 1323 /* up to CEX7 known and fully supported */ 1324 if (rawtype <= AP_DEVICE_TYPE_CEX7) 1325 return rawtype; 1326 /* 1327 * unknown new type > CEX7, check for compatibility 1328 * to the highest known and supported type which is 1329 * currently CEX7 with the help of the QACT function. 1330 */ 1331 if (ap_qact_available()) { 1332 struct ap_queue_status status; 1333 union ap_qact_ap_info apinfo = {0}; 1334 1335 apinfo.mode = (func >> 26) & 0x07; 1336 apinfo.cat = AP_DEVICE_TYPE_CEX7; 1337 status = ap_qact(qid, 0, &apinfo); 1338 if (status.response_code == AP_RESPONSE_NORMAL 1339 && apinfo.cat >= AP_DEVICE_TYPE_CEX2A 1340 && apinfo.cat <= AP_DEVICE_TYPE_CEX7) 1341 comp_type = apinfo.cat; 1342 } 1343 if (!comp_type) 1344 AP_DBF(DBF_WARN, "queue=%02x.%04x unable to map type %d\n", 1345 AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype); 1346 else if (comp_type != rawtype) 1347 AP_DBF(DBF_INFO, "queue=%02x.%04x map type %d to %d\n", 1348 AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype, comp_type); 1349 return comp_type; 1350 } 1351 1352 /* 1353 * Helper function to be used with bus_find_dev 1354 * matches for the card device with the given id 1355 */ 1356 static int __match_card_device_with_id(struct device *dev, const void *data) 1357 { 1358 return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *) data; 1359 } 1360 1361 /* 1362 * Helper function to be used with bus_find_dev 1363 * matches for the queue device with a given qid 1364 */ 1365 static int __match_queue_device_with_qid(struct device *dev, const void *data) 1366 { 1367 return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long) data; 1368 } 1369 1370 /* 1371 * Helper function to be used with bus_find_dev 1372 * matches any queue device with given queue id 1373 */ 1374 static int __match_queue_device_with_queue_id(struct device *dev, const void *data) 1375 { 1376 return is_queue_dev(dev) 1377 && AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long) data; 1378 } 1379 1380 /* 1381 * Helper function for ap_scan_bus(). 1382 * Does the scan bus job for the given adapter id. 1383 */ 1384 static void _ap_scan_bus_adapter(int id) 1385 { 1386 ap_qid_t qid; 1387 unsigned int func; 1388 struct ap_card *ac; 1389 struct device *dev; 1390 struct ap_queue *aq; 1391 int rc, dom, depth, type, comp_type, borked; 1392 1393 /* check if there is a card device registered with this id */ 1394 dev = bus_find_device(&ap_bus_type, NULL, 1395 (void *)(long) id, 1396 __match_card_device_with_id); 1397 ac = dev ? to_ap_card(dev) : NULL; 1398 if (!ap_test_config_card_id(id)) { 1399 if (dev) { 1400 /* Card device has been removed from configuration */ 1401 bus_for_each_dev(&ap_bus_type, NULL, 1402 (void *)(long) id, 1403 __ap_queue_devices_with_id_unregister); 1404 device_unregister(dev); 1405 put_device(dev); 1406 } 1407 return; 1408 } 1409 1410 /* 1411 * This card id is enabled in the configuration. If we already have 1412 * a card device with this id, check if type and functions are still 1413 * the very same. Also verify that at least one queue is available. 1414 */ 1415 if (ac) { 1416 /* find the first valid queue */ 1417 for (dom = 0; dom < AP_DOMAINS; dom++) { 1418 qid = AP_MKQID(id, dom); 1419 if (ap_query_queue(qid, &depth, &type, &func) == 0) 1420 break; 1421 } 1422 borked = 0; 1423 if (dom >= AP_DOMAINS) { 1424 /* no accessible queue on this card */ 1425 borked = 1; 1426 } else if (ac->raw_hwtype != type) { 1427 /* card type has changed */ 1428 AP_DBF(DBF_INFO, "card=%02x type changed.\n", id); 1429 borked = 1; 1430 } else if (ac->functions != func) { 1431 /* card functions have changed */ 1432 AP_DBF(DBF_INFO, "card=%02x functions changed.\n", id); 1433 borked = 1; 1434 } 1435 if (borked) { 1436 /* unregister card device and associated queues */ 1437 bus_for_each_dev(&ap_bus_type, NULL, 1438 (void *)(long) id, 1439 __ap_queue_devices_with_id_unregister); 1440 device_unregister(dev); 1441 put_device(dev); 1442 /* go back if there is no valid queue on this card */ 1443 if (dom >= AP_DOMAINS) 1444 return; 1445 ac = NULL; 1446 } 1447 } 1448 1449 /* 1450 * Go through all possible queue ids. Check and maybe create or release 1451 * queue devices for this card. If there exists no card device yet, 1452 * create a card device also. 1453 */ 1454 for (dom = 0; dom < AP_DOMAINS; dom++) { 1455 qid = AP_MKQID(id, dom); 1456 dev = bus_find_device(&ap_bus_type, NULL, 1457 (void *)(long) qid, 1458 __match_queue_device_with_qid); 1459 aq = dev ? to_ap_queue(dev) : NULL; 1460 if (!ap_test_config_usage_domain(dom)) { 1461 if (dev) { 1462 /* Queue device exists but has been 1463 * removed from configuration. 1464 */ 1465 device_unregister(dev); 1466 put_device(dev); 1467 } 1468 continue; 1469 } 1470 /* try to fetch infos about this queue */ 1471 rc = ap_query_queue(qid, &depth, &type, &func); 1472 if (dev) { 1473 if (rc == -ENODEV) 1474 borked = 1; 1475 else { 1476 spin_lock_bh(&aq->lock); 1477 borked = aq->state == AP_STATE_BORKED; 1478 spin_unlock_bh(&aq->lock); 1479 } 1480 if (borked) { 1481 /* Remove broken device */ 1482 AP_DBF(DBF_DEBUG, 1483 "removing broken queue=%02x.%04x\n", 1484 id, dom); 1485 device_unregister(dev); 1486 } 1487 put_device(dev); 1488 continue; 1489 } 1490 if (rc) 1491 continue; 1492 /* a new queue device is needed, check out comp type */ 1493 comp_type = ap_get_compatible_type(qid, type, func); 1494 if (!comp_type) 1495 continue; 1496 /* maybe a card device needs to be created first */ 1497 if (!ac) { 1498 ac = ap_card_create(id, depth, type, comp_type, func); 1499 if (!ac) 1500 continue; 1501 ac->ap_dev.device.bus = &ap_bus_type; 1502 ac->ap_dev.device.parent = ap_root_device; 1503 dev_set_name(&ac->ap_dev.device, "card%02x", id); 1504 /* Register card device with AP bus */ 1505 rc = device_register(&ac->ap_dev.device); 1506 if (rc) { 1507 put_device(&ac->ap_dev.device); 1508 ac = NULL; 1509 break; 1510 } 1511 /* get it and thus adjust reference counter */ 1512 get_device(&ac->ap_dev.device); 1513 } 1514 /* now create the new queue device */ 1515 aq = ap_queue_create(qid, comp_type); 1516 if (!aq) 1517 continue; 1518 aq->card = ac; 1519 aq->ap_dev.device.bus = &ap_bus_type; 1520 aq->ap_dev.device.parent = &ac->ap_dev.device; 1521 dev_set_name(&aq->ap_dev.device, "%02x.%04x", id, dom); 1522 /* Register queue device */ 1523 rc = device_register(&aq->ap_dev.device); 1524 if (rc) { 1525 put_device(&aq->ap_dev.device); 1526 continue; 1527 } 1528 } /* end domain loop */ 1529 1530 if (ac) 1531 put_device(&ac->ap_dev.device); 1532 } 1533 1534 /** 1535 * ap_scan_bus(): Scan the AP bus for new devices 1536 * Runs periodically, workqueue timer (ap_config_time) 1537 */ 1538 static void ap_scan_bus(struct work_struct *unused) 1539 { 1540 int id; 1541 1542 AP_DBF(DBF_DEBUG, "%s running\n", __func__); 1543 1544 ap_query_configuration(ap_configuration); 1545 ap_select_domain(); 1546 1547 /* loop over all possible adapters */ 1548 for (id = 0; id < AP_DEVICES; id++) 1549 _ap_scan_bus_adapter(id); 1550 1551 /* check if there is at least one queue available with default domain */ 1552 if (ap_domain_index >= 0) { 1553 struct device *dev = 1554 bus_find_device(&ap_bus_type, NULL, 1555 (void *)(long) ap_domain_index, 1556 __match_queue_device_with_queue_id); 1557 if (dev) 1558 put_device(dev); 1559 else 1560 AP_DBF(DBF_INFO, 1561 "no queue device with default domain %d available\n", 1562 ap_domain_index); 1563 } 1564 1565 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ); 1566 } 1567 1568 static void ap_config_timeout(struct timer_list *unused) 1569 { 1570 if (ap_suspend_flag) 1571 return; 1572 queue_work(system_long_wq, &ap_scan_work); 1573 } 1574 1575 static int __init ap_debug_init(void) 1576 { 1577 ap_dbf_info = debug_register("ap", 1, 1, 1578 DBF_MAX_SPRINTF_ARGS * sizeof(long)); 1579 debug_register_view(ap_dbf_info, &debug_sprintf_view); 1580 debug_set_level(ap_dbf_info, DBF_ERR); 1581 1582 return 0; 1583 } 1584 1585 static void __init ap_perms_init(void) 1586 { 1587 /* all resources useable if no kernel parameter string given */ 1588 memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm)); 1589 memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm)); 1590 memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm)); 1591 1592 /* apm kernel parameter string */ 1593 if (apm_str) { 1594 memset(&ap_perms.apm, 0, sizeof(ap_perms.apm)); 1595 ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES, 1596 &ap_perms_mutex); 1597 } 1598 1599 /* aqm kernel parameter string */ 1600 if (aqm_str) { 1601 memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm)); 1602 ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS, 1603 &ap_perms_mutex); 1604 } 1605 } 1606 1607 /** 1608 * ap_module_init(): The module initialization code. 1609 * 1610 * Initializes the module. 1611 */ 1612 static int __init ap_module_init(void) 1613 { 1614 int max_domain_id; 1615 int rc, i; 1616 1617 rc = ap_debug_init(); 1618 if (rc) 1619 return rc; 1620 1621 if (!ap_instructions_available()) { 1622 pr_warn("The hardware system does not support AP instructions\n"); 1623 return -ENODEV; 1624 } 1625 1626 /* set up the AP permissions (ioctls, ap and aq masks) */ 1627 ap_perms_init(); 1628 1629 /* Get AP configuration data if available */ 1630 ap_init_configuration(); 1631 1632 if (ap_configuration) 1633 max_domain_id = 1634 ap_max_domain_id ? ap_max_domain_id : AP_DOMAINS - 1; 1635 else 1636 max_domain_id = 15; 1637 if (ap_domain_index < -1 || ap_domain_index > max_domain_id || 1638 (ap_domain_index >= 0 && 1639 !test_bit_inv(ap_domain_index, ap_perms.aqm))) { 1640 pr_warn("%d is not a valid cryptographic domain\n", 1641 ap_domain_index); 1642 ap_domain_index = -1; 1643 } 1644 /* In resume callback we need to know if the user had set the domain. 1645 * If so, we can not just reset it. 1646 */ 1647 if (ap_domain_index >= 0) 1648 user_set_domain = 1; 1649 1650 if (ap_interrupts_available()) { 1651 rc = register_adapter_interrupt(&ap_airq); 1652 ap_airq_flag = (rc == 0); 1653 } 1654 1655 /* Create /sys/bus/ap. */ 1656 rc = bus_register(&ap_bus_type); 1657 if (rc) 1658 goto out; 1659 for (i = 0; ap_bus_attrs[i]; i++) { 1660 rc = bus_create_file(&ap_bus_type, ap_bus_attrs[i]); 1661 if (rc) 1662 goto out_bus; 1663 } 1664 1665 /* Create /sys/devices/ap. */ 1666 ap_root_device = root_device_register("ap"); 1667 rc = PTR_ERR_OR_ZERO(ap_root_device); 1668 if (rc) 1669 goto out_bus; 1670 1671 /* Setup the AP bus rescan timer. */ 1672 timer_setup(&ap_config_timer, ap_config_timeout, 0); 1673 1674 /* 1675 * Setup the high resultion poll timer. 1676 * If we are running under z/VM adjust polling to z/VM polling rate. 1677 */ 1678 if (MACHINE_IS_VM) 1679 poll_timeout = 1500000; 1680 spin_lock_init(&ap_poll_timer_lock); 1681 hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1682 ap_poll_timer.function = ap_poll_timeout; 1683 1684 /* Start the low priority AP bus poll thread. */ 1685 if (ap_thread_flag) { 1686 rc = ap_poll_thread_start(); 1687 if (rc) 1688 goto out_work; 1689 } 1690 1691 rc = register_pm_notifier(&ap_power_notifier); 1692 if (rc) 1693 goto out_pm; 1694 1695 queue_work(system_long_wq, &ap_scan_work); 1696 initialised = true; 1697 1698 return 0; 1699 1700 out_pm: 1701 ap_poll_thread_stop(); 1702 out_work: 1703 hrtimer_cancel(&ap_poll_timer); 1704 root_device_unregister(ap_root_device); 1705 out_bus: 1706 while (i--) 1707 bus_remove_file(&ap_bus_type, ap_bus_attrs[i]); 1708 bus_unregister(&ap_bus_type); 1709 out: 1710 if (ap_using_interrupts()) 1711 unregister_adapter_interrupt(&ap_airq); 1712 kfree(ap_configuration); 1713 return rc; 1714 } 1715 device_initcall(ap_module_init); 1716