1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright IBM Corp. 2006, 2012 4 * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com> 5 * Martin Schwidefsky <schwidefsky@de.ibm.com> 6 * Ralph Wuerthner <rwuerthn@de.ibm.com> 7 * Felix Beck <felix.beck@de.ibm.com> 8 * Holger Dengler <hd@linux.vnet.ibm.com> 9 * 10 * Adjunct processor bus. 11 */ 12 13 #define KMSG_COMPONENT "ap" 14 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 15 16 #include <linux/kernel_stat.h> 17 #include <linux/moduleparam.h> 18 #include <linux/init.h> 19 #include <linux/delay.h> 20 #include <linux/err.h> 21 #include <linux/freezer.h> 22 #include <linux/interrupt.h> 23 #include <linux/workqueue.h> 24 #include <linux/slab.h> 25 #include <linux/notifier.h> 26 #include <linux/kthread.h> 27 #include <linux/mutex.h> 28 #include <asm/airq.h> 29 #include <linux/atomic.h> 30 #include <asm/isc.h> 31 #include <linux/hrtimer.h> 32 #include <linux/ktime.h> 33 #include <asm/facility.h> 34 #include <linux/crypto.h> 35 #include <linux/mod_devicetable.h> 36 #include <linux/debugfs.h> 37 #include <linux/ctype.h> 38 39 #include "ap_bus.h" 40 #include "ap_debug.h" 41 42 /* 43 * Module parameters; note though this file itself isn't modular. 44 */ 45 int ap_domain_index = -1; /* Adjunct Processor Domain Index */ 46 static DEFINE_SPINLOCK(ap_domain_lock); 47 module_param_named(domain, ap_domain_index, int, 0440); 48 MODULE_PARM_DESC(domain, "domain index for ap devices"); 49 EXPORT_SYMBOL(ap_domain_index); 50 51 static int ap_thread_flag; 52 module_param_named(poll_thread, ap_thread_flag, int, 0440); 53 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off)."); 54 55 static char *apm_str; 56 module_param_named(apmask, apm_str, charp, 0440); 57 MODULE_PARM_DESC(apmask, "AP bus adapter mask."); 58 59 static char *aqm_str; 60 module_param_named(aqmask, aqm_str, charp, 0440); 61 MODULE_PARM_DESC(aqmask, "AP bus domain mask."); 62 63 static struct device *ap_root_device; 64 65 DEFINE_SPINLOCK(ap_list_lock); 66 LIST_HEAD(ap_card_list); 67 68 /* Default permissions (ioctl, card and domain masking) */ 69 struct ap_perms ap_perms; 70 EXPORT_SYMBOL(ap_perms); 71 DEFINE_MUTEX(ap_perms_mutex); 72 EXPORT_SYMBOL(ap_perms_mutex); 73 74 static struct ap_config_info *ap_configuration; 75 static bool initialised; 76 77 /* 78 * AP bus related debug feature things. 79 */ 80 debug_info_t *ap_dbf_info; 81 82 /* 83 * Workqueue timer for bus rescan. 84 */ 85 static struct timer_list ap_config_timer; 86 static int ap_config_time = AP_CONFIG_TIME; 87 static void ap_scan_bus(struct work_struct *); 88 static DECLARE_WORK(ap_scan_work, ap_scan_bus); 89 90 /* 91 * Tasklet & timer for AP request polling and interrupts 92 */ 93 static void ap_tasklet_fn(unsigned long); 94 static DECLARE_TASKLET(ap_tasklet, ap_tasklet_fn, 0); 95 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait); 96 static struct task_struct *ap_poll_kthread; 97 static DEFINE_MUTEX(ap_poll_thread_mutex); 98 static DEFINE_SPINLOCK(ap_poll_timer_lock); 99 static struct hrtimer ap_poll_timer; 100 /* 101 * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds. 102 * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling. 103 */ 104 static unsigned long long poll_timeout = 250000; 105 106 /* Maximum domain id */ 107 static int ap_max_domain_id; 108 109 static struct bus_type ap_bus_type; 110 111 /* Adapter interrupt definitions */ 112 static void ap_interrupt_handler(struct airq_struct *airq, bool floating); 113 114 static int ap_airq_flag; 115 116 static struct airq_struct ap_airq = { 117 .handler = ap_interrupt_handler, 118 .isc = AP_ISC, 119 }; 120 121 /** 122 * ap_using_interrupts() - Returns non-zero if interrupt support is 123 * available. 124 */ 125 static inline int ap_using_interrupts(void) 126 { 127 return ap_airq_flag; 128 } 129 130 /** 131 * ap_airq_ptr() - Get the address of the adapter interrupt indicator 132 * 133 * Returns the address of the local-summary-indicator of the adapter 134 * interrupt handler for AP, or NULL if adapter interrupts are not 135 * available. 136 */ 137 void *ap_airq_ptr(void) 138 { 139 if (ap_using_interrupts()) 140 return ap_airq.lsi_ptr; 141 return NULL; 142 } 143 144 /** 145 * ap_interrupts_available(): Test if AP interrupts are available. 146 * 147 * Returns 1 if AP interrupts are available. 148 */ 149 static int ap_interrupts_available(void) 150 { 151 return test_facility(65); 152 } 153 154 /** 155 * ap_configuration_available(): Test if AP configuration 156 * information is available. 157 * 158 * Returns 1 if AP configuration information is available. 159 */ 160 static int ap_configuration_available(void) 161 { 162 return test_facility(12); 163 } 164 165 /** 166 * ap_apft_available(): Test if AP facilities test (APFT) 167 * facility is available. 168 * 169 * Returns 1 if APFT is is available. 170 */ 171 static int ap_apft_available(void) 172 { 173 return test_facility(15); 174 } 175 176 /* 177 * ap_qact_available(): Test if the PQAP(QACT) subfunction is available. 178 * 179 * Returns 1 if the QACT subfunction is available. 180 */ 181 static inline int ap_qact_available(void) 182 { 183 if (ap_configuration) 184 return ap_configuration->qact; 185 return 0; 186 } 187 188 /* 189 * ap_query_configuration(): Fetch cryptographic config info 190 * 191 * Returns the ap configuration info fetched via PQAP(QCI). 192 * On success 0 is returned, on failure a negative errno 193 * is returned, e.g. if the PQAP(QCI) instruction is not 194 * available, the return value will be -EOPNOTSUPP. 195 */ 196 static inline int ap_query_configuration(struct ap_config_info *info) 197 { 198 if (!ap_configuration_available()) 199 return -EOPNOTSUPP; 200 if (!info) 201 return -EINVAL; 202 return ap_qci(info); 203 } 204 205 /** 206 * ap_init_configuration(): Allocate and query configuration array. 207 */ 208 static void ap_init_configuration(void) 209 { 210 if (!ap_configuration_available()) 211 return; 212 213 ap_configuration = kzalloc(sizeof(*ap_configuration), GFP_KERNEL); 214 if (!ap_configuration) 215 return; 216 if (ap_query_configuration(ap_configuration) != 0) { 217 kfree(ap_configuration); 218 ap_configuration = NULL; 219 return; 220 } 221 } 222 223 /* 224 * ap_test_config(): helper function to extract the nrth bit 225 * within the unsigned int array field. 226 */ 227 static inline int ap_test_config(unsigned int *field, unsigned int nr) 228 { 229 return ap_test_bit((field + (nr >> 5)), (nr & 0x1f)); 230 } 231 232 /* 233 * ap_test_config_card_id(): Test, whether an AP card ID is configured. 234 * @id AP card ID 235 * 236 * Returns 0 if the card is not configured 237 * 1 if the card is configured or 238 * if the configuration information is not available 239 */ 240 static inline int ap_test_config_card_id(unsigned int id) 241 { 242 if (!ap_configuration) /* QCI not supported */ 243 /* only ids 0...3F may be probed */ 244 return id < 0x40 ? 1 : 0; 245 return ap_test_config(ap_configuration->apm, id); 246 } 247 248 /* 249 * ap_test_config_usage_domain(): Test, whether an AP usage domain 250 * is configured. 251 * @domain AP usage domain ID 252 * 253 * Returns 0 if the usage domain is not configured 254 * 1 if the usage domain is configured or 255 * if the configuration information is not available 256 */ 257 int ap_test_config_usage_domain(unsigned int domain) 258 { 259 if (!ap_configuration) /* QCI not supported */ 260 return domain < 16; 261 return ap_test_config(ap_configuration->aqm, domain); 262 } 263 EXPORT_SYMBOL(ap_test_config_usage_domain); 264 265 /* 266 * ap_test_config_ctrl_domain(): Test, whether an AP control domain 267 * is configured. 268 * @domain AP control domain ID 269 * 270 * Returns 1 if the control domain is configured 271 * 0 in all other cases 272 */ 273 int ap_test_config_ctrl_domain(unsigned int domain) 274 { 275 if (!ap_configuration) /* QCI not supported */ 276 return 0; 277 return ap_test_config(ap_configuration->adm, domain); 278 } 279 EXPORT_SYMBOL(ap_test_config_ctrl_domain); 280 281 /** 282 * ap_query_queue(): Check if an AP queue is available. 283 * @qid: The AP queue number 284 * @queue_depth: Pointer to queue depth value 285 * @device_type: Pointer to device type value 286 * @facilities: Pointer to facility indicator 287 */ 288 static int ap_query_queue(ap_qid_t qid, int *queue_depth, int *device_type, 289 unsigned int *facilities) 290 { 291 struct ap_queue_status status; 292 unsigned long info; 293 int nd; 294 295 if (!ap_test_config_card_id(AP_QID_CARD(qid))) 296 return -ENODEV; 297 298 status = ap_test_queue(qid, ap_apft_available(), &info); 299 switch (status.response_code) { 300 case AP_RESPONSE_NORMAL: 301 *queue_depth = (int)(info & 0xff); 302 *device_type = (int)((info >> 24) & 0xff); 303 *facilities = (unsigned int)(info >> 32); 304 /* Update maximum domain id */ 305 nd = (info >> 16) & 0xff; 306 /* if N bit is available, z13 and newer */ 307 if ((info & (1UL << 57)) && nd > 0) 308 ap_max_domain_id = nd; 309 else /* older machine types */ 310 ap_max_domain_id = 15; 311 switch (*device_type) { 312 /* For CEX2 and CEX3 the available functions 313 * are not reflected by the facilities bits. 314 * Instead it is coded into the type. So here 315 * modify the function bits based on the type. 316 */ 317 case AP_DEVICE_TYPE_CEX2A: 318 case AP_DEVICE_TYPE_CEX3A: 319 *facilities |= 0x08000000; 320 break; 321 case AP_DEVICE_TYPE_CEX2C: 322 case AP_DEVICE_TYPE_CEX3C: 323 *facilities |= 0x10000000; 324 break; 325 default: 326 break; 327 } 328 return 0; 329 case AP_RESPONSE_Q_NOT_AVAIL: 330 case AP_RESPONSE_DECONFIGURED: 331 case AP_RESPONSE_CHECKSTOPPED: 332 case AP_RESPONSE_INVALID_ADDRESS: 333 return -ENODEV; 334 case AP_RESPONSE_RESET_IN_PROGRESS: 335 case AP_RESPONSE_OTHERWISE_CHANGED: 336 case AP_RESPONSE_BUSY: 337 return -EBUSY; 338 default: 339 BUG(); 340 } 341 } 342 343 void ap_wait(enum ap_wait wait) 344 { 345 ktime_t hr_time; 346 347 switch (wait) { 348 case AP_WAIT_AGAIN: 349 case AP_WAIT_INTERRUPT: 350 if (ap_using_interrupts()) 351 break; 352 if (ap_poll_kthread) { 353 wake_up(&ap_poll_wait); 354 break; 355 } 356 fallthrough; 357 case AP_WAIT_TIMEOUT: 358 spin_lock_bh(&ap_poll_timer_lock); 359 if (!hrtimer_is_queued(&ap_poll_timer)) { 360 hr_time = poll_timeout; 361 hrtimer_forward_now(&ap_poll_timer, hr_time); 362 hrtimer_restart(&ap_poll_timer); 363 } 364 spin_unlock_bh(&ap_poll_timer_lock); 365 break; 366 case AP_WAIT_NONE: 367 default: 368 break; 369 } 370 } 371 372 /** 373 * ap_request_timeout(): Handling of request timeouts 374 * @t: timer making this callback 375 * 376 * Handles request timeouts. 377 */ 378 void ap_request_timeout(struct timer_list *t) 379 { 380 struct ap_queue *aq = from_timer(aq, t, timeout); 381 382 spin_lock_bh(&aq->lock); 383 ap_wait(ap_sm_event(aq, AP_EVENT_TIMEOUT)); 384 spin_unlock_bh(&aq->lock); 385 } 386 387 /** 388 * ap_poll_timeout(): AP receive polling for finished AP requests. 389 * @unused: Unused pointer. 390 * 391 * Schedules the AP tasklet using a high resolution timer. 392 */ 393 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused) 394 { 395 tasklet_schedule(&ap_tasklet); 396 return HRTIMER_NORESTART; 397 } 398 399 /** 400 * ap_interrupt_handler() - Schedule ap_tasklet on interrupt 401 * @airq: pointer to adapter interrupt descriptor 402 */ 403 static void ap_interrupt_handler(struct airq_struct *airq, bool floating) 404 { 405 inc_irq_stat(IRQIO_APB); 406 tasklet_schedule(&ap_tasklet); 407 } 408 409 /** 410 * ap_tasklet_fn(): Tasklet to poll all AP devices. 411 * @dummy: Unused variable 412 * 413 * Poll all AP devices on the bus. 414 */ 415 static void ap_tasklet_fn(unsigned long dummy) 416 { 417 struct ap_card *ac; 418 struct ap_queue *aq; 419 enum ap_wait wait = AP_WAIT_NONE; 420 421 /* Reset the indicator if interrupts are used. Thus new interrupts can 422 * be received. Doing it in the beginning of the tasklet is therefor 423 * important that no requests on any AP get lost. 424 */ 425 if (ap_using_interrupts()) 426 xchg(ap_airq.lsi_ptr, 0); 427 428 spin_lock_bh(&ap_list_lock); 429 for_each_ap_card(ac) { 430 for_each_ap_queue(aq, ac) { 431 spin_lock_bh(&aq->lock); 432 wait = min(wait, ap_sm_event_loop(aq, AP_EVENT_POLL)); 433 spin_unlock_bh(&aq->lock); 434 } 435 } 436 spin_unlock_bh(&ap_list_lock); 437 438 ap_wait(wait); 439 } 440 441 static int ap_pending_requests(void) 442 { 443 struct ap_card *ac; 444 struct ap_queue *aq; 445 446 spin_lock_bh(&ap_list_lock); 447 for_each_ap_card(ac) { 448 for_each_ap_queue(aq, ac) { 449 if (aq->queue_count == 0) 450 continue; 451 spin_unlock_bh(&ap_list_lock); 452 return 1; 453 } 454 } 455 spin_unlock_bh(&ap_list_lock); 456 return 0; 457 } 458 459 /** 460 * ap_poll_thread(): Thread that polls for finished requests. 461 * @data: Unused pointer 462 * 463 * AP bus poll thread. The purpose of this thread is to poll for 464 * finished requests in a loop if there is a "free" cpu - that is 465 * a cpu that doesn't have anything better to do. The polling stops 466 * as soon as there is another task or if all messages have been 467 * delivered. 468 */ 469 static int ap_poll_thread(void *data) 470 { 471 DECLARE_WAITQUEUE(wait, current); 472 473 set_user_nice(current, MAX_NICE); 474 set_freezable(); 475 while (!kthread_should_stop()) { 476 add_wait_queue(&ap_poll_wait, &wait); 477 set_current_state(TASK_INTERRUPTIBLE); 478 if (!ap_pending_requests()) { 479 schedule(); 480 try_to_freeze(); 481 } 482 set_current_state(TASK_RUNNING); 483 remove_wait_queue(&ap_poll_wait, &wait); 484 if (need_resched()) { 485 schedule(); 486 try_to_freeze(); 487 continue; 488 } 489 ap_tasklet_fn(0); 490 } 491 492 return 0; 493 } 494 495 static int ap_poll_thread_start(void) 496 { 497 int rc; 498 499 if (ap_using_interrupts() || ap_poll_kthread) 500 return 0; 501 mutex_lock(&ap_poll_thread_mutex); 502 ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll"); 503 rc = PTR_ERR_OR_ZERO(ap_poll_kthread); 504 if (rc) 505 ap_poll_kthread = NULL; 506 mutex_unlock(&ap_poll_thread_mutex); 507 return rc; 508 } 509 510 static void ap_poll_thread_stop(void) 511 { 512 if (!ap_poll_kthread) 513 return; 514 mutex_lock(&ap_poll_thread_mutex); 515 kthread_stop(ap_poll_kthread); 516 ap_poll_kthread = NULL; 517 mutex_unlock(&ap_poll_thread_mutex); 518 } 519 520 #define is_card_dev(x) ((x)->parent == ap_root_device) 521 #define is_queue_dev(x) ((x)->parent != ap_root_device) 522 523 /** 524 * ap_bus_match() 525 * @dev: Pointer to device 526 * @drv: Pointer to device_driver 527 * 528 * AP bus driver registration/unregistration. 529 */ 530 static int ap_bus_match(struct device *dev, struct device_driver *drv) 531 { 532 struct ap_driver *ap_drv = to_ap_drv(drv); 533 struct ap_device_id *id; 534 535 /* 536 * Compare device type of the device with the list of 537 * supported types of the device_driver. 538 */ 539 for (id = ap_drv->ids; id->match_flags; id++) { 540 if (is_card_dev(dev) && 541 id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE && 542 id->dev_type == to_ap_dev(dev)->device_type) 543 return 1; 544 if (is_queue_dev(dev) && 545 id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE && 546 id->dev_type == to_ap_dev(dev)->device_type) 547 return 1; 548 } 549 return 0; 550 } 551 552 /** 553 * ap_uevent(): Uevent function for AP devices. 554 * @dev: Pointer to device 555 * @env: Pointer to kobj_uevent_env 556 * 557 * It sets up a single environment variable DEV_TYPE which contains the 558 * hardware device type. 559 */ 560 static int ap_uevent(struct device *dev, struct kobj_uevent_env *env) 561 { 562 struct ap_device *ap_dev = to_ap_dev(dev); 563 int retval = 0; 564 565 if (!ap_dev) 566 return -ENODEV; 567 568 /* Set up DEV_TYPE environment variable. */ 569 retval = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type); 570 if (retval) 571 return retval; 572 573 /* Add MODALIAS= */ 574 retval = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type); 575 576 return retval; 577 } 578 579 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data) 580 { 581 if (is_queue_dev(dev) && 582 AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long) data) 583 device_unregister(dev); 584 return 0; 585 } 586 587 static struct bus_type ap_bus_type = { 588 .name = "ap", 589 .match = &ap_bus_match, 590 .uevent = &ap_uevent, 591 }; 592 593 static int __ap_revise_reserved(struct device *dev, void *dummy) 594 { 595 int rc, card, queue, devres, drvres; 596 597 if (is_queue_dev(dev)) { 598 card = AP_QID_CARD(to_ap_queue(dev)->qid); 599 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid); 600 mutex_lock(&ap_perms_mutex); 601 devres = test_bit_inv(card, ap_perms.apm) 602 && test_bit_inv(queue, ap_perms.aqm); 603 mutex_unlock(&ap_perms_mutex); 604 drvres = to_ap_drv(dev->driver)->flags 605 & AP_DRIVER_FLAG_DEFAULT; 606 if (!!devres != !!drvres) { 607 AP_DBF(DBF_DEBUG, "reprobing queue=%02x.%04x\n", 608 card, queue); 609 rc = device_reprobe(dev); 610 } 611 } 612 613 return 0; 614 } 615 616 static void ap_bus_revise_bindings(void) 617 { 618 bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved); 619 } 620 621 int ap_owned_by_def_drv(int card, int queue) 622 { 623 int rc = 0; 624 625 if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS) 626 return -EINVAL; 627 628 mutex_lock(&ap_perms_mutex); 629 630 if (test_bit_inv(card, ap_perms.apm) 631 && test_bit_inv(queue, ap_perms.aqm)) 632 rc = 1; 633 634 mutex_unlock(&ap_perms_mutex); 635 636 return rc; 637 } 638 EXPORT_SYMBOL(ap_owned_by_def_drv); 639 640 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm, 641 unsigned long *aqm) 642 { 643 int card, queue, rc = 0; 644 645 mutex_lock(&ap_perms_mutex); 646 647 for (card = 0; !rc && card < AP_DEVICES; card++) 648 if (test_bit_inv(card, apm) && 649 test_bit_inv(card, ap_perms.apm)) 650 for (queue = 0; !rc && queue < AP_DOMAINS; queue++) 651 if (test_bit_inv(queue, aqm) && 652 test_bit_inv(queue, ap_perms.aqm)) 653 rc = 1; 654 655 mutex_unlock(&ap_perms_mutex); 656 657 return rc; 658 } 659 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv); 660 661 static int ap_device_probe(struct device *dev) 662 { 663 struct ap_device *ap_dev = to_ap_dev(dev); 664 struct ap_driver *ap_drv = to_ap_drv(dev->driver); 665 int card, queue, devres, drvres, rc; 666 667 if (is_queue_dev(dev)) { 668 /* 669 * If the apqn is marked as reserved/used by ap bus and 670 * default drivers, only probe with drivers with the default 671 * flag set. If it is not marked, only probe with drivers 672 * with the default flag not set. 673 */ 674 card = AP_QID_CARD(to_ap_queue(dev)->qid); 675 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid); 676 mutex_lock(&ap_perms_mutex); 677 devres = test_bit_inv(card, ap_perms.apm) 678 && test_bit_inv(queue, ap_perms.aqm); 679 mutex_unlock(&ap_perms_mutex); 680 drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT; 681 if (!!devres != !!drvres) 682 return -ENODEV; 683 } 684 685 /* Add queue/card to list of active queues/cards */ 686 spin_lock_bh(&ap_list_lock); 687 if (is_card_dev(dev)) 688 list_add(&to_ap_card(dev)->list, &ap_card_list); 689 else 690 list_add(&to_ap_queue(dev)->list, 691 &to_ap_queue(dev)->card->queues); 692 spin_unlock_bh(&ap_list_lock); 693 694 ap_dev->drv = ap_drv; 695 rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV; 696 697 if (rc) { 698 spin_lock_bh(&ap_list_lock); 699 if (is_card_dev(dev)) 700 list_del_init(&to_ap_card(dev)->list); 701 else 702 list_del_init(&to_ap_queue(dev)->list); 703 spin_unlock_bh(&ap_list_lock); 704 ap_dev->drv = NULL; 705 } 706 707 return rc; 708 } 709 710 static int ap_device_remove(struct device *dev) 711 { 712 struct ap_device *ap_dev = to_ap_dev(dev); 713 struct ap_driver *ap_drv = ap_dev->drv; 714 715 /* prepare ap queue device removal */ 716 if (is_queue_dev(dev)) 717 ap_queue_prepare_remove(to_ap_queue(dev)); 718 719 /* driver's chance to clean up gracefully */ 720 if (ap_drv->remove) 721 ap_drv->remove(ap_dev); 722 723 /* now do the ap queue device remove */ 724 if (is_queue_dev(dev)) 725 ap_queue_remove(to_ap_queue(dev)); 726 727 /* Remove queue/card from list of active queues/cards */ 728 spin_lock_bh(&ap_list_lock); 729 if (is_card_dev(dev)) 730 list_del_init(&to_ap_card(dev)->list); 731 else 732 list_del_init(&to_ap_queue(dev)->list); 733 spin_unlock_bh(&ap_list_lock); 734 735 return 0; 736 } 737 738 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner, 739 char *name) 740 { 741 struct device_driver *drv = &ap_drv->driver; 742 743 if (!initialised) 744 return -ENODEV; 745 746 drv->bus = &ap_bus_type; 747 drv->probe = ap_device_probe; 748 drv->remove = ap_device_remove; 749 drv->owner = owner; 750 drv->name = name; 751 return driver_register(drv); 752 } 753 EXPORT_SYMBOL(ap_driver_register); 754 755 void ap_driver_unregister(struct ap_driver *ap_drv) 756 { 757 driver_unregister(&ap_drv->driver); 758 } 759 EXPORT_SYMBOL(ap_driver_unregister); 760 761 void ap_bus_force_rescan(void) 762 { 763 /* processing a asynchronous bus rescan */ 764 del_timer(&ap_config_timer); 765 queue_work(system_long_wq, &ap_scan_work); 766 flush_work(&ap_scan_work); 767 } 768 EXPORT_SYMBOL(ap_bus_force_rescan); 769 770 /* 771 * A config change has happened, force an ap bus rescan. 772 */ 773 void ap_bus_cfg_chg(void) 774 { 775 AP_DBF(DBF_INFO, "%s config change, forcing bus rescan\n", __func__); 776 777 ap_bus_force_rescan(); 778 } 779 780 /* 781 * hex2bitmap() - parse hex mask string and set bitmap. 782 * Valid strings are "0x012345678" with at least one valid hex number. 783 * Rest of the bitmap to the right is padded with 0. No spaces allowed 784 * within the string, the leading 0x may be omitted. 785 * Returns the bitmask with exactly the bits set as given by the hex 786 * string (both in big endian order). 787 */ 788 static int hex2bitmap(const char *str, unsigned long *bitmap, int bits) 789 { 790 int i, n, b; 791 792 /* bits needs to be a multiple of 8 */ 793 if (bits & 0x07) 794 return -EINVAL; 795 796 if (str[0] == '0' && str[1] == 'x') 797 str++; 798 if (*str == 'x') 799 str++; 800 801 for (i = 0; isxdigit(*str) && i < bits; str++) { 802 b = hex_to_bin(*str); 803 for (n = 0; n < 4; n++) 804 if (b & (0x08 >> n)) 805 set_bit_inv(i + n, bitmap); 806 i += 4; 807 } 808 809 if (*str == '\n') 810 str++; 811 if (*str) 812 return -EINVAL; 813 return 0; 814 } 815 816 /* 817 * modify_bitmap() - parse bitmask argument and modify an existing 818 * bit mask accordingly. A concatenation (done with ',') of these 819 * terms is recognized: 820 * +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>] 821 * <bitnr> may be any valid number (hex, decimal or octal) in the range 822 * 0...bits-1; the leading + or - is required. Here are some examples: 823 * +0-15,+32,-128,-0xFF 824 * -0-255,+1-16,+0x128 825 * +1,+2,+3,+4,-5,-7-10 826 * Returns the new bitmap after all changes have been applied. Every 827 * positive value in the string will set a bit and every negative value 828 * in the string will clear a bit. As a bit may be touched more than once, 829 * the last 'operation' wins: 830 * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be 831 * cleared again. All other bits are unmodified. 832 */ 833 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits) 834 { 835 int a, i, z; 836 char *np, sign; 837 838 /* bits needs to be a multiple of 8 */ 839 if (bits & 0x07) 840 return -EINVAL; 841 842 while (*str) { 843 sign = *str++; 844 if (sign != '+' && sign != '-') 845 return -EINVAL; 846 a = z = simple_strtoul(str, &np, 0); 847 if (str == np || a >= bits) 848 return -EINVAL; 849 str = np; 850 if (*str == '-') { 851 z = simple_strtoul(++str, &np, 0); 852 if (str == np || a > z || z >= bits) 853 return -EINVAL; 854 str = np; 855 } 856 for (i = a; i <= z; i++) 857 if (sign == '+') 858 set_bit_inv(i, bitmap); 859 else 860 clear_bit_inv(i, bitmap); 861 while (*str == ',' || *str == '\n') 862 str++; 863 } 864 865 return 0; 866 } 867 868 int ap_parse_mask_str(const char *str, 869 unsigned long *bitmap, int bits, 870 struct mutex *lock) 871 { 872 unsigned long *newmap, size; 873 int rc; 874 875 /* bits needs to be a multiple of 8 */ 876 if (bits & 0x07) 877 return -EINVAL; 878 879 size = BITS_TO_LONGS(bits)*sizeof(unsigned long); 880 newmap = kmalloc(size, GFP_KERNEL); 881 if (!newmap) 882 return -ENOMEM; 883 if (mutex_lock_interruptible(lock)) { 884 kfree(newmap); 885 return -ERESTARTSYS; 886 } 887 888 if (*str == '+' || *str == '-') { 889 memcpy(newmap, bitmap, size); 890 rc = modify_bitmap(str, newmap, bits); 891 } else { 892 memset(newmap, 0, size); 893 rc = hex2bitmap(str, newmap, bits); 894 } 895 if (rc == 0) 896 memcpy(bitmap, newmap, size); 897 mutex_unlock(lock); 898 kfree(newmap); 899 return rc; 900 } 901 EXPORT_SYMBOL(ap_parse_mask_str); 902 903 /* 904 * AP bus attributes. 905 */ 906 907 static ssize_t ap_domain_show(struct bus_type *bus, char *buf) 908 { 909 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index); 910 } 911 912 static ssize_t ap_domain_store(struct bus_type *bus, 913 const char *buf, size_t count) 914 { 915 int domain; 916 917 if (sscanf(buf, "%i\n", &domain) != 1 || 918 domain < 0 || domain > ap_max_domain_id || 919 !test_bit_inv(domain, ap_perms.aqm)) 920 return -EINVAL; 921 spin_lock_bh(&ap_domain_lock); 922 ap_domain_index = domain; 923 spin_unlock_bh(&ap_domain_lock); 924 925 AP_DBF(DBF_DEBUG, "stored new default domain=%d\n", domain); 926 927 return count; 928 } 929 930 static BUS_ATTR_RW(ap_domain); 931 932 static ssize_t ap_control_domain_mask_show(struct bus_type *bus, char *buf) 933 { 934 if (!ap_configuration) /* QCI not supported */ 935 return scnprintf(buf, PAGE_SIZE, "not supported\n"); 936 937 return scnprintf(buf, PAGE_SIZE, 938 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 939 ap_configuration->adm[0], ap_configuration->adm[1], 940 ap_configuration->adm[2], ap_configuration->adm[3], 941 ap_configuration->adm[4], ap_configuration->adm[5], 942 ap_configuration->adm[6], ap_configuration->adm[7]); 943 } 944 945 static BUS_ATTR_RO(ap_control_domain_mask); 946 947 static ssize_t ap_usage_domain_mask_show(struct bus_type *bus, char *buf) 948 { 949 if (!ap_configuration) /* QCI not supported */ 950 return scnprintf(buf, PAGE_SIZE, "not supported\n"); 951 952 return scnprintf(buf, PAGE_SIZE, 953 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 954 ap_configuration->aqm[0], ap_configuration->aqm[1], 955 ap_configuration->aqm[2], ap_configuration->aqm[3], 956 ap_configuration->aqm[4], ap_configuration->aqm[5], 957 ap_configuration->aqm[6], ap_configuration->aqm[7]); 958 } 959 960 static BUS_ATTR_RO(ap_usage_domain_mask); 961 962 static ssize_t ap_adapter_mask_show(struct bus_type *bus, char *buf) 963 { 964 if (!ap_configuration) /* QCI not supported */ 965 return scnprintf(buf, PAGE_SIZE, "not supported\n"); 966 967 return scnprintf(buf, PAGE_SIZE, 968 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 969 ap_configuration->apm[0], ap_configuration->apm[1], 970 ap_configuration->apm[2], ap_configuration->apm[3], 971 ap_configuration->apm[4], ap_configuration->apm[5], 972 ap_configuration->apm[6], ap_configuration->apm[7]); 973 } 974 975 static BUS_ATTR_RO(ap_adapter_mask); 976 977 static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf) 978 { 979 return scnprintf(buf, PAGE_SIZE, "%d\n", 980 ap_using_interrupts() ? 1 : 0); 981 } 982 983 static BUS_ATTR_RO(ap_interrupts); 984 985 static ssize_t config_time_show(struct bus_type *bus, char *buf) 986 { 987 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_config_time); 988 } 989 990 static ssize_t config_time_store(struct bus_type *bus, 991 const char *buf, size_t count) 992 { 993 int time; 994 995 if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120) 996 return -EINVAL; 997 ap_config_time = time; 998 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ); 999 return count; 1000 } 1001 1002 static BUS_ATTR_RW(config_time); 1003 1004 static ssize_t poll_thread_show(struct bus_type *bus, char *buf) 1005 { 1006 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0); 1007 } 1008 1009 static ssize_t poll_thread_store(struct bus_type *bus, 1010 const char *buf, size_t count) 1011 { 1012 int flag, rc; 1013 1014 if (sscanf(buf, "%d\n", &flag) != 1) 1015 return -EINVAL; 1016 if (flag) { 1017 rc = ap_poll_thread_start(); 1018 if (rc) 1019 count = rc; 1020 } else 1021 ap_poll_thread_stop(); 1022 return count; 1023 } 1024 1025 static BUS_ATTR_RW(poll_thread); 1026 1027 static ssize_t poll_timeout_show(struct bus_type *bus, char *buf) 1028 { 1029 return scnprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout); 1030 } 1031 1032 static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf, 1033 size_t count) 1034 { 1035 unsigned long long time; 1036 ktime_t hr_time; 1037 1038 /* 120 seconds = maximum poll interval */ 1039 if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 || 1040 time > 120000000000ULL) 1041 return -EINVAL; 1042 poll_timeout = time; 1043 hr_time = poll_timeout; 1044 1045 spin_lock_bh(&ap_poll_timer_lock); 1046 hrtimer_cancel(&ap_poll_timer); 1047 hrtimer_set_expires(&ap_poll_timer, hr_time); 1048 hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS); 1049 spin_unlock_bh(&ap_poll_timer_lock); 1050 1051 return count; 1052 } 1053 1054 static BUS_ATTR_RW(poll_timeout); 1055 1056 static ssize_t ap_max_domain_id_show(struct bus_type *bus, char *buf) 1057 { 1058 int max_domain_id; 1059 1060 if (ap_configuration) 1061 max_domain_id = ap_max_domain_id ? : -1; 1062 else 1063 max_domain_id = 15; 1064 return scnprintf(buf, PAGE_SIZE, "%d\n", max_domain_id); 1065 } 1066 1067 static BUS_ATTR_RO(ap_max_domain_id); 1068 1069 static ssize_t apmask_show(struct bus_type *bus, char *buf) 1070 { 1071 int rc; 1072 1073 if (mutex_lock_interruptible(&ap_perms_mutex)) 1074 return -ERESTARTSYS; 1075 rc = scnprintf(buf, PAGE_SIZE, 1076 "0x%016lx%016lx%016lx%016lx\n", 1077 ap_perms.apm[0], ap_perms.apm[1], 1078 ap_perms.apm[2], ap_perms.apm[3]); 1079 mutex_unlock(&ap_perms_mutex); 1080 1081 return rc; 1082 } 1083 1084 static ssize_t apmask_store(struct bus_type *bus, const char *buf, 1085 size_t count) 1086 { 1087 int rc; 1088 1089 rc = ap_parse_mask_str(buf, ap_perms.apm, AP_DEVICES, &ap_perms_mutex); 1090 if (rc) 1091 return rc; 1092 1093 ap_bus_revise_bindings(); 1094 1095 return count; 1096 } 1097 1098 static BUS_ATTR_RW(apmask); 1099 1100 static ssize_t aqmask_show(struct bus_type *bus, char *buf) 1101 { 1102 int rc; 1103 1104 if (mutex_lock_interruptible(&ap_perms_mutex)) 1105 return -ERESTARTSYS; 1106 rc = scnprintf(buf, PAGE_SIZE, 1107 "0x%016lx%016lx%016lx%016lx\n", 1108 ap_perms.aqm[0], ap_perms.aqm[1], 1109 ap_perms.aqm[2], ap_perms.aqm[3]); 1110 mutex_unlock(&ap_perms_mutex); 1111 1112 return rc; 1113 } 1114 1115 static ssize_t aqmask_store(struct bus_type *bus, const char *buf, 1116 size_t count) 1117 { 1118 int rc; 1119 1120 rc = ap_parse_mask_str(buf, ap_perms.aqm, AP_DOMAINS, &ap_perms_mutex); 1121 if (rc) 1122 return rc; 1123 1124 ap_bus_revise_bindings(); 1125 1126 return count; 1127 } 1128 1129 static BUS_ATTR_RW(aqmask); 1130 1131 static struct bus_attribute *const ap_bus_attrs[] = { 1132 &bus_attr_ap_domain, 1133 &bus_attr_ap_control_domain_mask, 1134 &bus_attr_ap_usage_domain_mask, 1135 &bus_attr_ap_adapter_mask, 1136 &bus_attr_config_time, 1137 &bus_attr_poll_thread, 1138 &bus_attr_ap_interrupts, 1139 &bus_attr_poll_timeout, 1140 &bus_attr_ap_max_domain_id, 1141 &bus_attr_apmask, 1142 &bus_attr_aqmask, 1143 NULL, 1144 }; 1145 1146 /** 1147 * ap_select_domain(): Select an AP domain if possible and we haven't 1148 * already done so before. 1149 */ 1150 static void ap_select_domain(void) 1151 { 1152 int count, max_count, best_domain; 1153 struct ap_queue_status status; 1154 int i, j; 1155 1156 /* 1157 * We want to use a single domain. Either the one specified with 1158 * the "domain=" parameter or the domain with the maximum number 1159 * of devices. 1160 */ 1161 spin_lock_bh(&ap_domain_lock); 1162 if (ap_domain_index >= 0) { 1163 /* Domain has already been selected. */ 1164 spin_unlock_bh(&ap_domain_lock); 1165 return; 1166 } 1167 best_domain = -1; 1168 max_count = 0; 1169 for (i = 0; i < AP_DOMAINS; i++) { 1170 if (!ap_test_config_usage_domain(i) || 1171 !test_bit_inv(i, ap_perms.aqm)) 1172 continue; 1173 count = 0; 1174 for (j = 0; j < AP_DEVICES; j++) { 1175 if (!ap_test_config_card_id(j)) 1176 continue; 1177 status = ap_test_queue(AP_MKQID(j, i), 1178 ap_apft_available(), 1179 NULL); 1180 if (status.response_code != AP_RESPONSE_NORMAL) 1181 continue; 1182 count++; 1183 } 1184 if (count > max_count) { 1185 max_count = count; 1186 best_domain = i; 1187 } 1188 } 1189 if (best_domain >= 0) { 1190 ap_domain_index = best_domain; 1191 AP_DBF(DBF_DEBUG, "new ap_domain_index=%d\n", ap_domain_index); 1192 } 1193 spin_unlock_bh(&ap_domain_lock); 1194 } 1195 1196 /* 1197 * This function checks the type and returns either 0 for not 1198 * supported or the highest compatible type value (which may 1199 * include the input type value). 1200 */ 1201 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func) 1202 { 1203 int comp_type = 0; 1204 1205 /* < CEX2A is not supported */ 1206 if (rawtype < AP_DEVICE_TYPE_CEX2A) 1207 return 0; 1208 /* up to CEX7 known and fully supported */ 1209 if (rawtype <= AP_DEVICE_TYPE_CEX7) 1210 return rawtype; 1211 /* 1212 * unknown new type > CEX7, check for compatibility 1213 * to the highest known and supported type which is 1214 * currently CEX7 with the help of the QACT function. 1215 */ 1216 if (ap_qact_available()) { 1217 struct ap_queue_status status; 1218 union ap_qact_ap_info apinfo = {0}; 1219 1220 apinfo.mode = (func >> 26) & 0x07; 1221 apinfo.cat = AP_DEVICE_TYPE_CEX7; 1222 status = ap_qact(qid, 0, &apinfo); 1223 if (status.response_code == AP_RESPONSE_NORMAL 1224 && apinfo.cat >= AP_DEVICE_TYPE_CEX2A 1225 && apinfo.cat <= AP_DEVICE_TYPE_CEX7) 1226 comp_type = apinfo.cat; 1227 } 1228 if (!comp_type) 1229 AP_DBF(DBF_WARN, "queue=%02x.%04x unable to map type %d\n", 1230 AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype); 1231 else if (comp_type != rawtype) 1232 AP_DBF(DBF_INFO, "queue=%02x.%04x map type %d to %d\n", 1233 AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype, comp_type); 1234 return comp_type; 1235 } 1236 1237 /* 1238 * Helper function to be used with bus_find_dev 1239 * matches for the card device with the given id 1240 */ 1241 static int __match_card_device_with_id(struct device *dev, const void *data) 1242 { 1243 return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *) data; 1244 } 1245 1246 /* 1247 * Helper function to be used with bus_find_dev 1248 * matches for the queue device with a given qid 1249 */ 1250 static int __match_queue_device_with_qid(struct device *dev, const void *data) 1251 { 1252 return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long) data; 1253 } 1254 1255 /* 1256 * Helper function to be used with bus_find_dev 1257 * matches any queue device with given queue id 1258 */ 1259 static int __match_queue_device_with_queue_id(struct device *dev, const void *data) 1260 { 1261 return is_queue_dev(dev) 1262 && AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long) data; 1263 } 1264 1265 /* 1266 * Helper function for ap_scan_bus(). 1267 * Does the scan bus job for the given adapter id. 1268 */ 1269 static void _ap_scan_bus_adapter(int id) 1270 { 1271 ap_qid_t qid; 1272 unsigned int func; 1273 struct ap_card *ac; 1274 struct device *dev; 1275 struct ap_queue *aq; 1276 int rc, dom, depth, type, comp_type, borked; 1277 1278 /* check if there is a card device registered with this id */ 1279 dev = bus_find_device(&ap_bus_type, NULL, 1280 (void *)(long) id, 1281 __match_card_device_with_id); 1282 ac = dev ? to_ap_card(dev) : NULL; 1283 if (!ap_test_config_card_id(id)) { 1284 if (dev) { 1285 /* Card device has been removed from configuration */ 1286 bus_for_each_dev(&ap_bus_type, NULL, 1287 (void *)(long) id, 1288 __ap_queue_devices_with_id_unregister); 1289 device_unregister(dev); 1290 put_device(dev); 1291 } 1292 return; 1293 } 1294 1295 /* 1296 * This card id is enabled in the configuration. If we already have 1297 * a card device with this id, check if type and functions are still 1298 * the very same. Also verify that at least one queue is available. 1299 */ 1300 if (ac) { 1301 /* find the first valid queue */ 1302 for (dom = 0; dom < AP_DOMAINS; dom++) { 1303 qid = AP_MKQID(id, dom); 1304 if (ap_query_queue(qid, &depth, &type, &func) == 0) 1305 break; 1306 } 1307 borked = 0; 1308 if (dom >= AP_DOMAINS) { 1309 /* no accessible queue on this card */ 1310 borked = 1; 1311 } else if (ac->raw_hwtype != type) { 1312 /* card type has changed */ 1313 AP_DBF(DBF_INFO, "card=%02x type changed.\n", id); 1314 borked = 1; 1315 } else if (ac->functions != func) { 1316 /* card functions have changed */ 1317 AP_DBF(DBF_INFO, "card=%02x functions changed.\n", id); 1318 borked = 1; 1319 } 1320 if (borked) { 1321 /* unregister card device and associated queues */ 1322 bus_for_each_dev(&ap_bus_type, NULL, 1323 (void *)(long) id, 1324 __ap_queue_devices_with_id_unregister); 1325 device_unregister(dev); 1326 put_device(dev); 1327 /* go back if there is no valid queue on this card */ 1328 if (dom >= AP_DOMAINS) 1329 return; 1330 ac = NULL; 1331 } 1332 } 1333 1334 /* 1335 * Go through all possible queue ids. Check and maybe create or release 1336 * queue devices for this card. If there exists no card device yet, 1337 * create a card device also. 1338 */ 1339 for (dom = 0; dom < AP_DOMAINS; dom++) { 1340 qid = AP_MKQID(id, dom); 1341 dev = bus_find_device(&ap_bus_type, NULL, 1342 (void *)(long) qid, 1343 __match_queue_device_with_qid); 1344 aq = dev ? to_ap_queue(dev) : NULL; 1345 if (!ap_test_config_usage_domain(dom)) { 1346 if (dev) { 1347 /* Queue device exists but has been 1348 * removed from configuration. 1349 */ 1350 device_unregister(dev); 1351 put_device(dev); 1352 } 1353 continue; 1354 } 1355 /* try to fetch infos about this queue */ 1356 rc = ap_query_queue(qid, &depth, &type, &func); 1357 if (dev) { 1358 if (rc == -ENODEV) 1359 borked = 1; 1360 else { 1361 spin_lock_bh(&aq->lock); 1362 borked = aq->state == AP_STATE_BORKED; 1363 spin_unlock_bh(&aq->lock); 1364 } 1365 if (borked) { 1366 /* Remove broken device */ 1367 AP_DBF(DBF_DEBUG, 1368 "removing broken queue=%02x.%04x\n", 1369 id, dom); 1370 device_unregister(dev); 1371 } 1372 put_device(dev); 1373 continue; 1374 } 1375 if (rc) 1376 continue; 1377 /* a new queue device is needed, check out comp type */ 1378 comp_type = ap_get_compatible_type(qid, type, func); 1379 if (!comp_type) 1380 continue; 1381 /* maybe a card device needs to be created first */ 1382 if (!ac) { 1383 ac = ap_card_create(id, depth, type, comp_type, func); 1384 if (!ac) 1385 continue; 1386 ac->ap_dev.device.bus = &ap_bus_type; 1387 ac->ap_dev.device.parent = ap_root_device; 1388 dev_set_name(&ac->ap_dev.device, "card%02x", id); 1389 /* Register card device with AP bus */ 1390 rc = device_register(&ac->ap_dev.device); 1391 if (rc) { 1392 put_device(&ac->ap_dev.device); 1393 ac = NULL; 1394 break; 1395 } 1396 /* get it and thus adjust reference counter */ 1397 get_device(&ac->ap_dev.device); 1398 } 1399 /* now create the new queue device */ 1400 aq = ap_queue_create(qid, comp_type); 1401 if (!aq) 1402 continue; 1403 aq->card = ac; 1404 aq->ap_dev.device.bus = &ap_bus_type; 1405 aq->ap_dev.device.parent = &ac->ap_dev.device; 1406 dev_set_name(&aq->ap_dev.device, "%02x.%04x", id, dom); 1407 /* Register queue device */ 1408 rc = device_register(&aq->ap_dev.device); 1409 if (rc) { 1410 put_device(&aq->ap_dev.device); 1411 continue; 1412 } 1413 } /* end domain loop */ 1414 1415 if (ac) 1416 put_device(&ac->ap_dev.device); 1417 } 1418 1419 /** 1420 * ap_scan_bus(): Scan the AP bus for new devices 1421 * Runs periodically, workqueue timer (ap_config_time) 1422 */ 1423 static void ap_scan_bus(struct work_struct *unused) 1424 { 1425 int id; 1426 1427 AP_DBF(DBF_DEBUG, "%s running\n", __func__); 1428 1429 ap_query_configuration(ap_configuration); 1430 ap_select_domain(); 1431 1432 /* loop over all possible adapters */ 1433 for (id = 0; id < AP_DEVICES; id++) 1434 _ap_scan_bus_adapter(id); 1435 1436 /* check if there is at least one queue available with default domain */ 1437 if (ap_domain_index >= 0) { 1438 struct device *dev = 1439 bus_find_device(&ap_bus_type, NULL, 1440 (void *)(long) ap_domain_index, 1441 __match_queue_device_with_queue_id); 1442 if (dev) 1443 put_device(dev); 1444 else 1445 AP_DBF(DBF_INFO, 1446 "no queue device with default domain %d available\n", 1447 ap_domain_index); 1448 } 1449 1450 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ); 1451 } 1452 1453 static void ap_config_timeout(struct timer_list *unused) 1454 { 1455 queue_work(system_long_wq, &ap_scan_work); 1456 } 1457 1458 static int __init ap_debug_init(void) 1459 { 1460 ap_dbf_info = debug_register("ap", 1, 1, 1461 DBF_MAX_SPRINTF_ARGS * sizeof(long)); 1462 debug_register_view(ap_dbf_info, &debug_sprintf_view); 1463 debug_set_level(ap_dbf_info, DBF_ERR); 1464 1465 return 0; 1466 } 1467 1468 static void __init ap_perms_init(void) 1469 { 1470 /* all resources useable if no kernel parameter string given */ 1471 memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm)); 1472 memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm)); 1473 memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm)); 1474 1475 /* apm kernel parameter string */ 1476 if (apm_str) { 1477 memset(&ap_perms.apm, 0, sizeof(ap_perms.apm)); 1478 ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES, 1479 &ap_perms_mutex); 1480 } 1481 1482 /* aqm kernel parameter string */ 1483 if (aqm_str) { 1484 memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm)); 1485 ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS, 1486 &ap_perms_mutex); 1487 } 1488 } 1489 1490 /** 1491 * ap_module_init(): The module initialization code. 1492 * 1493 * Initializes the module. 1494 */ 1495 static int __init ap_module_init(void) 1496 { 1497 int max_domain_id; 1498 int rc, i; 1499 1500 rc = ap_debug_init(); 1501 if (rc) 1502 return rc; 1503 1504 if (!ap_instructions_available()) { 1505 pr_warn("The hardware system does not support AP instructions\n"); 1506 return -ENODEV; 1507 } 1508 1509 /* set up the AP permissions (ioctls, ap and aq masks) */ 1510 ap_perms_init(); 1511 1512 /* Get AP configuration data if available */ 1513 ap_init_configuration(); 1514 1515 if (ap_configuration) 1516 max_domain_id = 1517 ap_max_domain_id ? ap_max_domain_id : AP_DOMAINS - 1; 1518 else 1519 max_domain_id = 15; 1520 if (ap_domain_index < -1 || ap_domain_index > max_domain_id || 1521 (ap_domain_index >= 0 && 1522 !test_bit_inv(ap_domain_index, ap_perms.aqm))) { 1523 pr_warn("%d is not a valid cryptographic domain\n", 1524 ap_domain_index); 1525 ap_domain_index = -1; 1526 } 1527 1528 if (ap_interrupts_available()) { 1529 rc = register_adapter_interrupt(&ap_airq); 1530 ap_airq_flag = (rc == 0); 1531 } 1532 1533 /* Create /sys/bus/ap. */ 1534 rc = bus_register(&ap_bus_type); 1535 if (rc) 1536 goto out; 1537 for (i = 0; ap_bus_attrs[i]; i++) { 1538 rc = bus_create_file(&ap_bus_type, ap_bus_attrs[i]); 1539 if (rc) 1540 goto out_bus; 1541 } 1542 1543 /* Create /sys/devices/ap. */ 1544 ap_root_device = root_device_register("ap"); 1545 rc = PTR_ERR_OR_ZERO(ap_root_device); 1546 if (rc) 1547 goto out_bus; 1548 1549 /* Setup the AP bus rescan timer. */ 1550 timer_setup(&ap_config_timer, ap_config_timeout, 0); 1551 1552 /* 1553 * Setup the high resultion poll timer. 1554 * If we are running under z/VM adjust polling to z/VM polling rate. 1555 */ 1556 if (MACHINE_IS_VM) 1557 poll_timeout = 1500000; 1558 spin_lock_init(&ap_poll_timer_lock); 1559 hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1560 ap_poll_timer.function = ap_poll_timeout; 1561 1562 /* Start the low priority AP bus poll thread. */ 1563 if (ap_thread_flag) { 1564 rc = ap_poll_thread_start(); 1565 if (rc) 1566 goto out_work; 1567 } 1568 1569 queue_work(system_long_wq, &ap_scan_work); 1570 initialised = true; 1571 1572 return 0; 1573 1574 out_work: 1575 hrtimer_cancel(&ap_poll_timer); 1576 root_device_unregister(ap_root_device); 1577 out_bus: 1578 while (i--) 1579 bus_remove_file(&ap_bus_type, ap_bus_attrs[i]); 1580 bus_unregister(&ap_bus_type); 1581 out: 1582 if (ap_using_interrupts()) 1583 unregister_adapter_interrupt(&ap_airq); 1584 kfree(ap_configuration); 1585 return rc; 1586 } 1587 device_initcall(ap_module_init); 1588