1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * driver for channel subsystem 4 * 5 * Copyright IBM Corp. 2002, 2010 6 * 7 * Author(s): Arnd Bergmann (arndb@de.ibm.com) 8 * Cornelia Huck (cornelia.huck@de.ibm.com) 9 */ 10 11 #define KMSG_COMPONENT "cio" 12 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 13 14 #include <linux/export.h> 15 #include <linux/init.h> 16 #include <linux/device.h> 17 #include <linux/slab.h> 18 #include <linux/errno.h> 19 #include <linux/list.h> 20 #include <linux/reboot.h> 21 #include <linux/suspend.h> 22 #include <linux/proc_fs.h> 23 #include <linux/genalloc.h> 24 #include <linux/dma-mapping.h> 25 #include <asm/isc.h> 26 #include <asm/crw.h> 27 28 #include "css.h" 29 #include "cio.h" 30 #include "blacklist.h" 31 #include "cio_debug.h" 32 #include "ioasm.h" 33 #include "chsc.h" 34 #include "device.h" 35 #include "idset.h" 36 #include "chp.h" 37 38 int css_init_done = 0; 39 int max_ssid; 40 41 #define MAX_CSS_IDX 0 42 struct channel_subsystem *channel_subsystems[MAX_CSS_IDX + 1]; 43 static struct bus_type css_bus_type; 44 45 int 46 for_each_subchannel(int(*fn)(struct subchannel_id, void *), void *data) 47 { 48 struct subchannel_id schid; 49 int ret; 50 51 init_subchannel_id(&schid); 52 do { 53 do { 54 ret = fn(schid, data); 55 if (ret) 56 break; 57 } while (schid.sch_no++ < __MAX_SUBCHANNEL); 58 schid.sch_no = 0; 59 } while (schid.ssid++ < max_ssid); 60 return ret; 61 } 62 63 struct cb_data { 64 void *data; 65 struct idset *set; 66 int (*fn_known_sch)(struct subchannel *, void *); 67 int (*fn_unknown_sch)(struct subchannel_id, void *); 68 }; 69 70 static int call_fn_known_sch(struct device *dev, void *data) 71 { 72 struct subchannel *sch = to_subchannel(dev); 73 struct cb_data *cb = data; 74 int rc = 0; 75 76 if (cb->set) 77 idset_sch_del(cb->set, sch->schid); 78 if (cb->fn_known_sch) 79 rc = cb->fn_known_sch(sch, cb->data); 80 return rc; 81 } 82 83 static int call_fn_unknown_sch(struct subchannel_id schid, void *data) 84 { 85 struct cb_data *cb = data; 86 int rc = 0; 87 88 if (idset_sch_contains(cb->set, schid)) 89 rc = cb->fn_unknown_sch(schid, cb->data); 90 return rc; 91 } 92 93 static int call_fn_all_sch(struct subchannel_id schid, void *data) 94 { 95 struct cb_data *cb = data; 96 struct subchannel *sch; 97 int rc = 0; 98 99 sch = get_subchannel_by_schid(schid); 100 if (sch) { 101 if (cb->fn_known_sch) 102 rc = cb->fn_known_sch(sch, cb->data); 103 put_device(&sch->dev); 104 } else { 105 if (cb->fn_unknown_sch) 106 rc = cb->fn_unknown_sch(schid, cb->data); 107 } 108 109 return rc; 110 } 111 112 int for_each_subchannel_staged(int (*fn_known)(struct subchannel *, void *), 113 int (*fn_unknown)(struct subchannel_id, 114 void *), void *data) 115 { 116 struct cb_data cb; 117 int rc; 118 119 cb.data = data; 120 cb.fn_known_sch = fn_known; 121 cb.fn_unknown_sch = fn_unknown; 122 123 if (fn_known && !fn_unknown) { 124 /* Skip idset allocation in case of known-only loop. */ 125 cb.set = NULL; 126 return bus_for_each_dev(&css_bus_type, NULL, &cb, 127 call_fn_known_sch); 128 } 129 130 cb.set = idset_sch_new(); 131 if (!cb.set) 132 /* fall back to brute force scanning in case of oom */ 133 return for_each_subchannel(call_fn_all_sch, &cb); 134 135 idset_fill(cb.set); 136 137 /* Process registered subchannels. */ 138 rc = bus_for_each_dev(&css_bus_type, NULL, &cb, call_fn_known_sch); 139 if (rc) 140 goto out; 141 /* Process unregistered subchannels. */ 142 if (fn_unknown) 143 rc = for_each_subchannel(call_fn_unknown_sch, &cb); 144 out: 145 idset_free(cb.set); 146 147 return rc; 148 } 149 150 static void css_sch_todo(struct work_struct *work); 151 152 static int css_sch_create_locks(struct subchannel *sch) 153 { 154 sch->lock = kmalloc(sizeof(*sch->lock), GFP_KERNEL); 155 if (!sch->lock) 156 return -ENOMEM; 157 158 spin_lock_init(sch->lock); 159 mutex_init(&sch->reg_mutex); 160 161 return 0; 162 } 163 164 static void css_subchannel_release(struct device *dev) 165 { 166 struct subchannel *sch = to_subchannel(dev); 167 168 sch->config.intparm = 0; 169 cio_commit_config(sch); 170 kfree(sch->driver_override); 171 kfree(sch->lock); 172 kfree(sch); 173 } 174 175 static int css_validate_subchannel(struct subchannel_id schid, 176 struct schib *schib) 177 { 178 int err; 179 180 switch (schib->pmcw.st) { 181 case SUBCHANNEL_TYPE_IO: 182 case SUBCHANNEL_TYPE_MSG: 183 if (!css_sch_is_valid(schib)) 184 err = -ENODEV; 185 else if (is_blacklisted(schid.ssid, schib->pmcw.dev)) { 186 CIO_MSG_EVENT(6, "Blacklisted device detected " 187 "at devno %04X, subchannel set %x\n", 188 schib->pmcw.dev, schid.ssid); 189 err = -ENODEV; 190 } else 191 err = 0; 192 break; 193 default: 194 err = 0; 195 } 196 if (err) 197 goto out; 198 199 CIO_MSG_EVENT(4, "Subchannel 0.%x.%04x reports subchannel type %04X\n", 200 schid.ssid, schid.sch_no, schib->pmcw.st); 201 out: 202 return err; 203 } 204 205 struct subchannel *css_alloc_subchannel(struct subchannel_id schid, 206 struct schib *schib) 207 { 208 struct subchannel *sch; 209 int ret; 210 211 ret = css_validate_subchannel(schid, schib); 212 if (ret < 0) 213 return ERR_PTR(ret); 214 215 sch = kzalloc(sizeof(*sch), GFP_KERNEL | GFP_DMA); 216 if (!sch) 217 return ERR_PTR(-ENOMEM); 218 219 sch->schid = schid; 220 sch->schib = *schib; 221 sch->st = schib->pmcw.st; 222 223 ret = css_sch_create_locks(sch); 224 if (ret) 225 goto err; 226 227 INIT_WORK(&sch->todo_work, css_sch_todo); 228 sch->dev.release = &css_subchannel_release; 229 device_initialize(&sch->dev); 230 /* 231 * The physical addresses of some the dma structures that can 232 * belong to a subchannel need to fit 31 bit width (e.g. ccw). 233 */ 234 sch->dev.coherent_dma_mask = DMA_BIT_MASK(31); 235 /* 236 * But we don't have such restrictions imposed on the stuff that 237 * is handled by the streaming API. 238 */ 239 sch->dma_mask = DMA_BIT_MASK(64); 240 sch->dev.dma_mask = &sch->dma_mask; 241 return sch; 242 243 err: 244 kfree(sch); 245 return ERR_PTR(ret); 246 } 247 248 static int css_sch_device_register(struct subchannel *sch) 249 { 250 int ret; 251 252 mutex_lock(&sch->reg_mutex); 253 dev_set_name(&sch->dev, "0.%x.%04x", sch->schid.ssid, 254 sch->schid.sch_no); 255 ret = device_add(&sch->dev); 256 mutex_unlock(&sch->reg_mutex); 257 return ret; 258 } 259 260 /** 261 * css_sch_device_unregister - unregister a subchannel 262 * @sch: subchannel to be unregistered 263 */ 264 void css_sch_device_unregister(struct subchannel *sch) 265 { 266 mutex_lock(&sch->reg_mutex); 267 if (device_is_registered(&sch->dev)) 268 device_unregister(&sch->dev); 269 mutex_unlock(&sch->reg_mutex); 270 } 271 EXPORT_SYMBOL_GPL(css_sch_device_unregister); 272 273 static void ssd_from_pmcw(struct chsc_ssd_info *ssd, struct pmcw *pmcw) 274 { 275 int i; 276 int mask; 277 278 memset(ssd, 0, sizeof(struct chsc_ssd_info)); 279 ssd->path_mask = pmcw->pim; 280 for (i = 0; i < 8; i++) { 281 mask = 0x80 >> i; 282 if (pmcw->pim & mask) { 283 chp_id_init(&ssd->chpid[i]); 284 ssd->chpid[i].id = pmcw->chpid[i]; 285 } 286 } 287 } 288 289 static void ssd_register_chpids(struct chsc_ssd_info *ssd) 290 { 291 int i; 292 int mask; 293 294 for (i = 0; i < 8; i++) { 295 mask = 0x80 >> i; 296 if (ssd->path_mask & mask) 297 chp_new(ssd->chpid[i]); 298 } 299 } 300 301 void css_update_ssd_info(struct subchannel *sch) 302 { 303 int ret; 304 305 ret = chsc_get_ssd_info(sch->schid, &sch->ssd_info); 306 if (ret) 307 ssd_from_pmcw(&sch->ssd_info, &sch->schib.pmcw); 308 309 ssd_register_chpids(&sch->ssd_info); 310 } 311 312 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 313 char *buf) 314 { 315 struct subchannel *sch = to_subchannel(dev); 316 317 return sprintf(buf, "%01x\n", sch->st); 318 } 319 320 static DEVICE_ATTR_RO(type); 321 322 static ssize_t modalias_show(struct device *dev, struct device_attribute *attr, 323 char *buf) 324 { 325 struct subchannel *sch = to_subchannel(dev); 326 327 return sprintf(buf, "css:t%01X\n", sch->st); 328 } 329 330 static DEVICE_ATTR_RO(modalias); 331 332 static ssize_t driver_override_store(struct device *dev, 333 struct device_attribute *attr, 334 const char *buf, size_t count) 335 { 336 struct subchannel *sch = to_subchannel(dev); 337 char *driver_override, *old, *cp; 338 339 /* We need to keep extra room for a newline */ 340 if (count >= (PAGE_SIZE - 1)) 341 return -EINVAL; 342 343 driver_override = kstrndup(buf, count, GFP_KERNEL); 344 if (!driver_override) 345 return -ENOMEM; 346 347 cp = strchr(driver_override, '\n'); 348 if (cp) 349 *cp = '\0'; 350 351 device_lock(dev); 352 old = sch->driver_override; 353 if (strlen(driver_override)) { 354 sch->driver_override = driver_override; 355 } else { 356 kfree(driver_override); 357 sch->driver_override = NULL; 358 } 359 device_unlock(dev); 360 361 kfree(old); 362 363 return count; 364 } 365 366 static ssize_t driver_override_show(struct device *dev, 367 struct device_attribute *attr, char *buf) 368 { 369 struct subchannel *sch = to_subchannel(dev); 370 ssize_t len; 371 372 device_lock(dev); 373 len = snprintf(buf, PAGE_SIZE, "%s\n", sch->driver_override); 374 device_unlock(dev); 375 return len; 376 } 377 static DEVICE_ATTR_RW(driver_override); 378 379 static struct attribute *subch_attrs[] = { 380 &dev_attr_type.attr, 381 &dev_attr_modalias.attr, 382 &dev_attr_driver_override.attr, 383 NULL, 384 }; 385 386 static struct attribute_group subch_attr_group = { 387 .attrs = subch_attrs, 388 }; 389 390 static const struct attribute_group *default_subch_attr_groups[] = { 391 &subch_attr_group, 392 NULL, 393 }; 394 395 static ssize_t chpids_show(struct device *dev, 396 struct device_attribute *attr, 397 char *buf) 398 { 399 struct subchannel *sch = to_subchannel(dev); 400 struct chsc_ssd_info *ssd = &sch->ssd_info; 401 ssize_t ret = 0; 402 int mask; 403 int chp; 404 405 for (chp = 0; chp < 8; chp++) { 406 mask = 0x80 >> chp; 407 if (ssd->path_mask & mask) 408 ret += sprintf(buf + ret, "%02x ", ssd->chpid[chp].id); 409 else 410 ret += sprintf(buf + ret, "00 "); 411 } 412 ret += sprintf(buf + ret, "\n"); 413 return ret; 414 } 415 static DEVICE_ATTR_RO(chpids); 416 417 static ssize_t pimpampom_show(struct device *dev, 418 struct device_attribute *attr, 419 char *buf) 420 { 421 struct subchannel *sch = to_subchannel(dev); 422 struct pmcw *pmcw = &sch->schib.pmcw; 423 424 return sprintf(buf, "%02x %02x %02x\n", 425 pmcw->pim, pmcw->pam, pmcw->pom); 426 } 427 static DEVICE_ATTR_RO(pimpampom); 428 429 static struct attribute *io_subchannel_type_attrs[] = { 430 &dev_attr_chpids.attr, 431 &dev_attr_pimpampom.attr, 432 NULL, 433 }; 434 ATTRIBUTE_GROUPS(io_subchannel_type); 435 436 static const struct device_type io_subchannel_type = { 437 .groups = io_subchannel_type_groups, 438 }; 439 440 int css_register_subchannel(struct subchannel *sch) 441 { 442 int ret; 443 444 /* Initialize the subchannel structure */ 445 sch->dev.parent = &channel_subsystems[0]->device; 446 sch->dev.bus = &css_bus_type; 447 sch->dev.groups = default_subch_attr_groups; 448 449 if (sch->st == SUBCHANNEL_TYPE_IO) 450 sch->dev.type = &io_subchannel_type; 451 452 /* 453 * We don't want to generate uevents for I/O subchannels that don't 454 * have a working ccw device behind them since they will be 455 * unregistered before they can be used anyway, so we delay the add 456 * uevent until after device recognition was successful. 457 * Note that we suppress the uevent for all subchannel types; 458 * the subchannel driver can decide itself when it wants to inform 459 * userspace of its existence. 460 */ 461 dev_set_uevent_suppress(&sch->dev, 1); 462 css_update_ssd_info(sch); 463 /* make it known to the system */ 464 ret = css_sch_device_register(sch); 465 if (ret) { 466 CIO_MSG_EVENT(0, "Could not register sch 0.%x.%04x: %d\n", 467 sch->schid.ssid, sch->schid.sch_no, ret); 468 return ret; 469 } 470 if (!sch->driver) { 471 /* 472 * No driver matched. Generate the uevent now so that 473 * a fitting driver module may be loaded based on the 474 * modalias. 475 */ 476 dev_set_uevent_suppress(&sch->dev, 0); 477 kobject_uevent(&sch->dev.kobj, KOBJ_ADD); 478 } 479 return ret; 480 } 481 482 static int css_probe_device(struct subchannel_id schid, struct schib *schib) 483 { 484 struct subchannel *sch; 485 int ret; 486 487 sch = css_alloc_subchannel(schid, schib); 488 if (IS_ERR(sch)) 489 return PTR_ERR(sch); 490 491 ret = css_register_subchannel(sch); 492 if (ret) 493 put_device(&sch->dev); 494 495 return ret; 496 } 497 498 static int 499 check_subchannel(struct device *dev, const void *data) 500 { 501 struct subchannel *sch; 502 struct subchannel_id *schid = (void *)data; 503 504 sch = to_subchannel(dev); 505 return schid_equal(&sch->schid, schid); 506 } 507 508 struct subchannel * 509 get_subchannel_by_schid(struct subchannel_id schid) 510 { 511 struct device *dev; 512 513 dev = bus_find_device(&css_bus_type, NULL, 514 &schid, check_subchannel); 515 516 return dev ? to_subchannel(dev) : NULL; 517 } 518 519 /** 520 * css_sch_is_valid() - check if a subchannel is valid 521 * @schib: subchannel information block for the subchannel 522 */ 523 int css_sch_is_valid(struct schib *schib) 524 { 525 if ((schib->pmcw.st == SUBCHANNEL_TYPE_IO) && !schib->pmcw.dnv) 526 return 0; 527 if ((schib->pmcw.st == SUBCHANNEL_TYPE_MSG) && !schib->pmcw.w) 528 return 0; 529 return 1; 530 } 531 EXPORT_SYMBOL_GPL(css_sch_is_valid); 532 533 static int css_evaluate_new_subchannel(struct subchannel_id schid, int slow) 534 { 535 struct schib schib; 536 int ccode; 537 538 if (!slow) { 539 /* Will be done on the slow path. */ 540 return -EAGAIN; 541 } 542 /* 543 * The first subchannel that is not-operational (ccode==3) 544 * indicates that there aren't any more devices available. 545 * If stsch gets an exception, it means the current subchannel set 546 * is not valid. 547 */ 548 ccode = stsch(schid, &schib); 549 if (ccode) 550 return (ccode == 3) ? -ENXIO : ccode; 551 552 return css_probe_device(schid, &schib); 553 } 554 555 static int css_evaluate_known_subchannel(struct subchannel *sch, int slow) 556 { 557 int ret = 0; 558 559 if (sch->driver) { 560 if (sch->driver->sch_event) 561 ret = sch->driver->sch_event(sch, slow); 562 else 563 dev_dbg(&sch->dev, 564 "Got subchannel machine check but " 565 "no sch_event handler provided.\n"); 566 } 567 if (ret != 0 && ret != -EAGAIN) { 568 CIO_MSG_EVENT(2, "eval: sch 0.%x.%04x, rc=%d\n", 569 sch->schid.ssid, sch->schid.sch_no, ret); 570 } 571 return ret; 572 } 573 574 static void css_evaluate_subchannel(struct subchannel_id schid, int slow) 575 { 576 struct subchannel *sch; 577 int ret; 578 579 sch = get_subchannel_by_schid(schid); 580 if (sch) { 581 ret = css_evaluate_known_subchannel(sch, slow); 582 put_device(&sch->dev); 583 } else 584 ret = css_evaluate_new_subchannel(schid, slow); 585 if (ret == -EAGAIN) 586 css_schedule_eval(schid); 587 } 588 589 /** 590 * css_sched_sch_todo - schedule a subchannel operation 591 * @sch: subchannel 592 * @todo: todo 593 * 594 * Schedule the operation identified by @todo to be performed on the slow path 595 * workqueue. Do nothing if another operation with higher priority is already 596 * scheduled. Needs to be called with subchannel lock held. 597 */ 598 void css_sched_sch_todo(struct subchannel *sch, enum sch_todo todo) 599 { 600 CIO_MSG_EVENT(4, "sch_todo: sched sch=0.%x.%04x todo=%d\n", 601 sch->schid.ssid, sch->schid.sch_no, todo); 602 if (sch->todo >= todo) 603 return; 604 /* Get workqueue ref. */ 605 if (!get_device(&sch->dev)) 606 return; 607 sch->todo = todo; 608 if (!queue_work(cio_work_q, &sch->todo_work)) { 609 /* Already queued, release workqueue ref. */ 610 put_device(&sch->dev); 611 } 612 } 613 EXPORT_SYMBOL_GPL(css_sched_sch_todo); 614 615 static void css_sch_todo(struct work_struct *work) 616 { 617 struct subchannel *sch; 618 enum sch_todo todo; 619 int ret; 620 621 sch = container_of(work, struct subchannel, todo_work); 622 /* Find out todo. */ 623 spin_lock_irq(sch->lock); 624 todo = sch->todo; 625 CIO_MSG_EVENT(4, "sch_todo: sch=0.%x.%04x, todo=%d\n", sch->schid.ssid, 626 sch->schid.sch_no, todo); 627 sch->todo = SCH_TODO_NOTHING; 628 spin_unlock_irq(sch->lock); 629 /* Perform todo. */ 630 switch (todo) { 631 case SCH_TODO_NOTHING: 632 break; 633 case SCH_TODO_EVAL: 634 ret = css_evaluate_known_subchannel(sch, 1); 635 if (ret == -EAGAIN) { 636 spin_lock_irq(sch->lock); 637 css_sched_sch_todo(sch, todo); 638 spin_unlock_irq(sch->lock); 639 } 640 break; 641 case SCH_TODO_UNREG: 642 css_sch_device_unregister(sch); 643 break; 644 } 645 /* Release workqueue ref. */ 646 put_device(&sch->dev); 647 } 648 649 static struct idset *slow_subchannel_set; 650 static spinlock_t slow_subchannel_lock; 651 static wait_queue_head_t css_eval_wq; 652 static atomic_t css_eval_scheduled; 653 654 static int __init slow_subchannel_init(void) 655 { 656 spin_lock_init(&slow_subchannel_lock); 657 atomic_set(&css_eval_scheduled, 0); 658 init_waitqueue_head(&css_eval_wq); 659 slow_subchannel_set = idset_sch_new(); 660 if (!slow_subchannel_set) { 661 CIO_MSG_EVENT(0, "could not allocate slow subchannel set\n"); 662 return -ENOMEM; 663 } 664 return 0; 665 } 666 667 static int slow_eval_known_fn(struct subchannel *sch, void *data) 668 { 669 int eval; 670 int rc; 671 672 spin_lock_irq(&slow_subchannel_lock); 673 eval = idset_sch_contains(slow_subchannel_set, sch->schid); 674 idset_sch_del(slow_subchannel_set, sch->schid); 675 spin_unlock_irq(&slow_subchannel_lock); 676 if (eval) { 677 rc = css_evaluate_known_subchannel(sch, 1); 678 if (rc == -EAGAIN) 679 css_schedule_eval(sch->schid); 680 } 681 return 0; 682 } 683 684 static int slow_eval_unknown_fn(struct subchannel_id schid, void *data) 685 { 686 int eval; 687 int rc = 0; 688 689 spin_lock_irq(&slow_subchannel_lock); 690 eval = idset_sch_contains(slow_subchannel_set, schid); 691 idset_sch_del(slow_subchannel_set, schid); 692 spin_unlock_irq(&slow_subchannel_lock); 693 if (eval) { 694 rc = css_evaluate_new_subchannel(schid, 1); 695 switch (rc) { 696 case -EAGAIN: 697 css_schedule_eval(schid); 698 rc = 0; 699 break; 700 case -ENXIO: 701 case -ENOMEM: 702 case -EIO: 703 /* These should abort looping */ 704 spin_lock_irq(&slow_subchannel_lock); 705 idset_sch_del_subseq(slow_subchannel_set, schid); 706 spin_unlock_irq(&slow_subchannel_lock); 707 break; 708 default: 709 rc = 0; 710 } 711 /* Allow scheduling here since the containing loop might 712 * take a while. */ 713 cond_resched(); 714 } 715 return rc; 716 } 717 718 static void css_slow_path_func(struct work_struct *unused) 719 { 720 unsigned long flags; 721 722 CIO_TRACE_EVENT(4, "slowpath"); 723 for_each_subchannel_staged(slow_eval_known_fn, slow_eval_unknown_fn, 724 NULL); 725 spin_lock_irqsave(&slow_subchannel_lock, flags); 726 if (idset_is_empty(slow_subchannel_set)) { 727 atomic_set(&css_eval_scheduled, 0); 728 wake_up(&css_eval_wq); 729 } 730 spin_unlock_irqrestore(&slow_subchannel_lock, flags); 731 } 732 733 static DECLARE_DELAYED_WORK(slow_path_work, css_slow_path_func); 734 struct workqueue_struct *cio_work_q; 735 736 void css_schedule_eval(struct subchannel_id schid) 737 { 738 unsigned long flags; 739 740 spin_lock_irqsave(&slow_subchannel_lock, flags); 741 idset_sch_add(slow_subchannel_set, schid); 742 atomic_set(&css_eval_scheduled, 1); 743 queue_delayed_work(cio_work_q, &slow_path_work, 0); 744 spin_unlock_irqrestore(&slow_subchannel_lock, flags); 745 } 746 747 void css_schedule_eval_all(void) 748 { 749 unsigned long flags; 750 751 spin_lock_irqsave(&slow_subchannel_lock, flags); 752 idset_fill(slow_subchannel_set); 753 atomic_set(&css_eval_scheduled, 1); 754 queue_delayed_work(cio_work_q, &slow_path_work, 0); 755 spin_unlock_irqrestore(&slow_subchannel_lock, flags); 756 } 757 758 static int __unset_registered(struct device *dev, void *data) 759 { 760 struct idset *set = data; 761 struct subchannel *sch = to_subchannel(dev); 762 763 idset_sch_del(set, sch->schid); 764 return 0; 765 } 766 767 void css_schedule_eval_all_unreg(unsigned long delay) 768 { 769 unsigned long flags; 770 struct idset *unreg_set; 771 772 /* Find unregistered subchannels. */ 773 unreg_set = idset_sch_new(); 774 if (!unreg_set) { 775 /* Fallback. */ 776 css_schedule_eval_all(); 777 return; 778 } 779 idset_fill(unreg_set); 780 bus_for_each_dev(&css_bus_type, NULL, unreg_set, __unset_registered); 781 /* Apply to slow_subchannel_set. */ 782 spin_lock_irqsave(&slow_subchannel_lock, flags); 783 idset_add_set(slow_subchannel_set, unreg_set); 784 atomic_set(&css_eval_scheduled, 1); 785 queue_delayed_work(cio_work_q, &slow_path_work, delay); 786 spin_unlock_irqrestore(&slow_subchannel_lock, flags); 787 idset_free(unreg_set); 788 } 789 790 void css_wait_for_slow_path(void) 791 { 792 flush_workqueue(cio_work_q); 793 } 794 795 /* Schedule reprobing of all unregistered subchannels. */ 796 void css_schedule_reprobe(void) 797 { 798 /* Schedule with a delay to allow merging of subsequent calls. */ 799 css_schedule_eval_all_unreg(1 * HZ); 800 } 801 EXPORT_SYMBOL_GPL(css_schedule_reprobe); 802 803 /* 804 * Called from the machine check handler for subchannel report words. 805 */ 806 static void css_process_crw(struct crw *crw0, struct crw *crw1, int overflow) 807 { 808 struct subchannel_id mchk_schid; 809 struct subchannel *sch; 810 811 if (overflow) { 812 css_schedule_eval_all(); 813 return; 814 } 815 CIO_CRW_EVENT(2, "CRW0 reports slct=%d, oflw=%d, " 816 "chn=%d, rsc=%X, anc=%d, erc=%X, rsid=%X\n", 817 crw0->slct, crw0->oflw, crw0->chn, crw0->rsc, crw0->anc, 818 crw0->erc, crw0->rsid); 819 if (crw1) 820 CIO_CRW_EVENT(2, "CRW1 reports slct=%d, oflw=%d, " 821 "chn=%d, rsc=%X, anc=%d, erc=%X, rsid=%X\n", 822 crw1->slct, crw1->oflw, crw1->chn, crw1->rsc, 823 crw1->anc, crw1->erc, crw1->rsid); 824 init_subchannel_id(&mchk_schid); 825 mchk_schid.sch_no = crw0->rsid; 826 if (crw1) 827 mchk_schid.ssid = (crw1->rsid >> 4) & 3; 828 829 if (crw0->erc == CRW_ERC_PMOD) { 830 sch = get_subchannel_by_schid(mchk_schid); 831 if (sch) { 832 css_update_ssd_info(sch); 833 put_device(&sch->dev); 834 } 835 } 836 /* 837 * Since we are always presented with IPI in the CRW, we have to 838 * use stsch() to find out if the subchannel in question has come 839 * or gone. 840 */ 841 css_evaluate_subchannel(mchk_schid, 0); 842 } 843 844 static void __init 845 css_generate_pgid(struct channel_subsystem *css, u32 tod_high) 846 { 847 struct cpuid cpu_id; 848 849 if (css_general_characteristics.mcss) { 850 css->global_pgid.pgid_high.ext_cssid.version = 0x80; 851 css->global_pgid.pgid_high.ext_cssid.cssid = 852 (css->cssid < 0) ? 0 : css->cssid; 853 } else { 854 css->global_pgid.pgid_high.cpu_addr = stap(); 855 } 856 get_cpu_id(&cpu_id); 857 css->global_pgid.cpu_id = cpu_id.ident; 858 css->global_pgid.cpu_model = cpu_id.machine; 859 css->global_pgid.tod_high = tod_high; 860 } 861 862 static void channel_subsystem_release(struct device *dev) 863 { 864 struct channel_subsystem *css = to_css(dev); 865 866 mutex_destroy(&css->mutex); 867 kfree(css); 868 } 869 870 static ssize_t real_cssid_show(struct device *dev, struct device_attribute *a, 871 char *buf) 872 { 873 struct channel_subsystem *css = to_css(dev); 874 875 if (css->cssid < 0) 876 return -EINVAL; 877 878 return sprintf(buf, "%x\n", css->cssid); 879 } 880 static DEVICE_ATTR_RO(real_cssid); 881 882 static ssize_t cm_enable_show(struct device *dev, struct device_attribute *a, 883 char *buf) 884 { 885 struct channel_subsystem *css = to_css(dev); 886 int ret; 887 888 mutex_lock(&css->mutex); 889 ret = sprintf(buf, "%x\n", css->cm_enabled); 890 mutex_unlock(&css->mutex); 891 return ret; 892 } 893 894 static ssize_t cm_enable_store(struct device *dev, struct device_attribute *a, 895 const char *buf, size_t count) 896 { 897 struct channel_subsystem *css = to_css(dev); 898 unsigned long val; 899 int ret; 900 901 ret = kstrtoul(buf, 16, &val); 902 if (ret) 903 return ret; 904 mutex_lock(&css->mutex); 905 switch (val) { 906 case 0: 907 ret = css->cm_enabled ? chsc_secm(css, 0) : 0; 908 break; 909 case 1: 910 ret = css->cm_enabled ? 0 : chsc_secm(css, 1); 911 break; 912 default: 913 ret = -EINVAL; 914 } 915 mutex_unlock(&css->mutex); 916 return ret < 0 ? ret : count; 917 } 918 static DEVICE_ATTR_RW(cm_enable); 919 920 static umode_t cm_enable_mode(struct kobject *kobj, struct attribute *attr, 921 int index) 922 { 923 return css_chsc_characteristics.secm ? attr->mode : 0; 924 } 925 926 static struct attribute *cssdev_attrs[] = { 927 &dev_attr_real_cssid.attr, 928 NULL, 929 }; 930 931 static struct attribute_group cssdev_attr_group = { 932 .attrs = cssdev_attrs, 933 }; 934 935 static struct attribute *cssdev_cm_attrs[] = { 936 &dev_attr_cm_enable.attr, 937 NULL, 938 }; 939 940 static struct attribute_group cssdev_cm_attr_group = { 941 .attrs = cssdev_cm_attrs, 942 .is_visible = cm_enable_mode, 943 }; 944 945 static const struct attribute_group *cssdev_attr_groups[] = { 946 &cssdev_attr_group, 947 &cssdev_cm_attr_group, 948 NULL, 949 }; 950 951 static int __init setup_css(int nr) 952 { 953 struct channel_subsystem *css; 954 int ret; 955 956 css = kzalloc(sizeof(*css), GFP_KERNEL); 957 if (!css) 958 return -ENOMEM; 959 960 channel_subsystems[nr] = css; 961 dev_set_name(&css->device, "css%x", nr); 962 css->device.groups = cssdev_attr_groups; 963 css->device.release = channel_subsystem_release; 964 /* 965 * We currently allocate notifier bits with this (using 966 * css->device as the device argument with the DMA API) 967 * and are fine with 64 bit addresses. 968 */ 969 css->device.coherent_dma_mask = DMA_BIT_MASK(64); 970 css->device.dma_mask = &css->device.coherent_dma_mask; 971 972 mutex_init(&css->mutex); 973 css->cssid = chsc_get_cssid(nr); 974 css_generate_pgid(css, (u32) (get_tod_clock() >> 32)); 975 976 ret = device_register(&css->device); 977 if (ret) { 978 put_device(&css->device); 979 goto out_err; 980 } 981 982 css->pseudo_subchannel = kzalloc(sizeof(*css->pseudo_subchannel), 983 GFP_KERNEL); 984 if (!css->pseudo_subchannel) { 985 device_unregister(&css->device); 986 ret = -ENOMEM; 987 goto out_err; 988 } 989 990 css->pseudo_subchannel->dev.parent = &css->device; 991 css->pseudo_subchannel->dev.release = css_subchannel_release; 992 mutex_init(&css->pseudo_subchannel->reg_mutex); 993 ret = css_sch_create_locks(css->pseudo_subchannel); 994 if (ret) { 995 kfree(css->pseudo_subchannel); 996 device_unregister(&css->device); 997 goto out_err; 998 } 999 1000 dev_set_name(&css->pseudo_subchannel->dev, "defunct"); 1001 ret = device_register(&css->pseudo_subchannel->dev); 1002 if (ret) { 1003 put_device(&css->pseudo_subchannel->dev); 1004 device_unregister(&css->device); 1005 goto out_err; 1006 } 1007 1008 return ret; 1009 out_err: 1010 channel_subsystems[nr] = NULL; 1011 return ret; 1012 } 1013 1014 static int css_reboot_event(struct notifier_block *this, 1015 unsigned long event, 1016 void *ptr) 1017 { 1018 struct channel_subsystem *css; 1019 int ret; 1020 1021 ret = NOTIFY_DONE; 1022 for_each_css(css) { 1023 mutex_lock(&css->mutex); 1024 if (css->cm_enabled) 1025 if (chsc_secm(css, 0)) 1026 ret = NOTIFY_BAD; 1027 mutex_unlock(&css->mutex); 1028 } 1029 1030 return ret; 1031 } 1032 1033 static struct notifier_block css_reboot_notifier = { 1034 .notifier_call = css_reboot_event, 1035 }; 1036 1037 /* 1038 * Since the css devices are neither on a bus nor have a class 1039 * nor have a special device type, we cannot stop/restart channel 1040 * path measurements via the normal suspend/resume callbacks, but have 1041 * to use notifiers. 1042 */ 1043 static int css_power_event(struct notifier_block *this, unsigned long event, 1044 void *ptr) 1045 { 1046 struct channel_subsystem *css; 1047 int ret; 1048 1049 switch (event) { 1050 case PM_HIBERNATION_PREPARE: 1051 case PM_SUSPEND_PREPARE: 1052 ret = NOTIFY_DONE; 1053 for_each_css(css) { 1054 mutex_lock(&css->mutex); 1055 if (!css->cm_enabled) { 1056 mutex_unlock(&css->mutex); 1057 continue; 1058 } 1059 ret = __chsc_do_secm(css, 0); 1060 ret = notifier_from_errno(ret); 1061 mutex_unlock(&css->mutex); 1062 } 1063 break; 1064 case PM_POST_HIBERNATION: 1065 case PM_POST_SUSPEND: 1066 ret = NOTIFY_DONE; 1067 for_each_css(css) { 1068 mutex_lock(&css->mutex); 1069 if (!css->cm_enabled) { 1070 mutex_unlock(&css->mutex); 1071 continue; 1072 } 1073 ret = __chsc_do_secm(css, 1); 1074 ret = notifier_from_errno(ret); 1075 mutex_unlock(&css->mutex); 1076 } 1077 /* search for subchannels, which appeared during hibernation */ 1078 css_schedule_reprobe(); 1079 break; 1080 default: 1081 ret = NOTIFY_DONE; 1082 } 1083 return ret; 1084 1085 } 1086 static struct notifier_block css_power_notifier = { 1087 .notifier_call = css_power_event, 1088 }; 1089 1090 #define CIO_DMA_GFP (GFP_KERNEL | __GFP_ZERO) 1091 static struct gen_pool *cio_dma_pool; 1092 1093 /* Currently cio supports only a single css */ 1094 struct device *cio_get_dma_css_dev(void) 1095 { 1096 return &channel_subsystems[0]->device; 1097 } 1098 1099 struct gen_pool *cio_gp_dma_create(struct device *dma_dev, int nr_pages) 1100 { 1101 struct gen_pool *gp_dma; 1102 void *cpu_addr; 1103 dma_addr_t dma_addr; 1104 int i; 1105 1106 gp_dma = gen_pool_create(3, -1); 1107 if (!gp_dma) 1108 return NULL; 1109 for (i = 0; i < nr_pages; ++i) { 1110 cpu_addr = dma_alloc_coherent(dma_dev, PAGE_SIZE, &dma_addr, 1111 CIO_DMA_GFP); 1112 if (!cpu_addr) 1113 return gp_dma; 1114 gen_pool_add_virt(gp_dma, (unsigned long) cpu_addr, 1115 dma_addr, PAGE_SIZE, -1); 1116 } 1117 return gp_dma; 1118 } 1119 1120 static void __gp_dma_free_dma(struct gen_pool *pool, 1121 struct gen_pool_chunk *chunk, void *data) 1122 { 1123 size_t chunk_size = chunk->end_addr - chunk->start_addr + 1; 1124 1125 dma_free_coherent((struct device *) data, chunk_size, 1126 (void *) chunk->start_addr, 1127 (dma_addr_t) chunk->phys_addr); 1128 } 1129 1130 void cio_gp_dma_destroy(struct gen_pool *gp_dma, struct device *dma_dev) 1131 { 1132 if (!gp_dma) 1133 return; 1134 /* this is quite ugly but no better idea */ 1135 gen_pool_for_each_chunk(gp_dma, __gp_dma_free_dma, dma_dev); 1136 gen_pool_destroy(gp_dma); 1137 } 1138 1139 static int cio_dma_pool_init(void) 1140 { 1141 /* No need to free up the resources: compiled in */ 1142 cio_dma_pool = cio_gp_dma_create(cio_get_dma_css_dev(), 1); 1143 if (!cio_dma_pool) 1144 return -ENOMEM; 1145 return 0; 1146 } 1147 1148 void *cio_gp_dma_zalloc(struct gen_pool *gp_dma, struct device *dma_dev, 1149 size_t size) 1150 { 1151 dma_addr_t dma_addr; 1152 unsigned long addr; 1153 size_t chunk_size; 1154 1155 if (!gp_dma) 1156 return NULL; 1157 addr = gen_pool_alloc(gp_dma, size); 1158 while (!addr) { 1159 chunk_size = round_up(size, PAGE_SIZE); 1160 addr = (unsigned long) dma_alloc_coherent(dma_dev, 1161 chunk_size, &dma_addr, CIO_DMA_GFP); 1162 if (!addr) 1163 return NULL; 1164 gen_pool_add_virt(gp_dma, addr, dma_addr, chunk_size, -1); 1165 addr = gen_pool_alloc(gp_dma, size); 1166 } 1167 return (void *) addr; 1168 } 1169 1170 void cio_gp_dma_free(struct gen_pool *gp_dma, void *cpu_addr, size_t size) 1171 { 1172 if (!cpu_addr) 1173 return; 1174 memset(cpu_addr, 0, size); 1175 gen_pool_free(gp_dma, (unsigned long) cpu_addr, size); 1176 } 1177 1178 /* 1179 * Allocate dma memory from the css global pool. Intended for memory not 1180 * specific to any single device within the css. The allocated memory 1181 * is not guaranteed to be 31-bit addressable. 1182 * 1183 * Caution: Not suitable for early stuff like console. 1184 */ 1185 void *cio_dma_zalloc(size_t size) 1186 { 1187 return cio_gp_dma_zalloc(cio_dma_pool, cio_get_dma_css_dev(), size); 1188 } 1189 1190 void cio_dma_free(void *cpu_addr, size_t size) 1191 { 1192 cio_gp_dma_free(cio_dma_pool, cpu_addr, size); 1193 } 1194 1195 /* 1196 * Now that the driver core is running, we can setup our channel subsystem. 1197 * The struct subchannel's are created during probing. 1198 */ 1199 static int __init css_bus_init(void) 1200 { 1201 int ret, i; 1202 1203 ret = chsc_init(); 1204 if (ret) 1205 return ret; 1206 1207 chsc_determine_css_characteristics(); 1208 /* Try to enable MSS. */ 1209 ret = chsc_enable_facility(CHSC_SDA_OC_MSS); 1210 if (ret) 1211 max_ssid = 0; 1212 else /* Success. */ 1213 max_ssid = __MAX_SSID; 1214 1215 ret = slow_subchannel_init(); 1216 if (ret) 1217 goto out; 1218 1219 ret = crw_register_handler(CRW_RSC_SCH, css_process_crw); 1220 if (ret) 1221 goto out; 1222 1223 if ((ret = bus_register(&css_bus_type))) 1224 goto out; 1225 1226 /* Setup css structure. */ 1227 for (i = 0; i <= MAX_CSS_IDX; i++) { 1228 ret = setup_css(i); 1229 if (ret) 1230 goto out_unregister; 1231 } 1232 ret = register_reboot_notifier(&css_reboot_notifier); 1233 if (ret) 1234 goto out_unregister; 1235 ret = register_pm_notifier(&css_power_notifier); 1236 if (ret) 1237 goto out_unregister_rn; 1238 ret = cio_dma_pool_init(); 1239 if (ret) 1240 goto out_unregister_pmn; 1241 airq_init(); 1242 css_init_done = 1; 1243 1244 /* Enable default isc for I/O subchannels. */ 1245 isc_register(IO_SCH_ISC); 1246 1247 return 0; 1248 out_unregister_pmn: 1249 unregister_pm_notifier(&css_power_notifier); 1250 out_unregister_rn: 1251 unregister_reboot_notifier(&css_reboot_notifier); 1252 out_unregister: 1253 while (i-- > 0) { 1254 struct channel_subsystem *css = channel_subsystems[i]; 1255 device_unregister(&css->pseudo_subchannel->dev); 1256 device_unregister(&css->device); 1257 } 1258 bus_unregister(&css_bus_type); 1259 out: 1260 crw_unregister_handler(CRW_RSC_SCH); 1261 idset_free(slow_subchannel_set); 1262 chsc_init_cleanup(); 1263 pr_alert("The CSS device driver initialization failed with " 1264 "errno=%d\n", ret); 1265 return ret; 1266 } 1267 1268 static void __init css_bus_cleanup(void) 1269 { 1270 struct channel_subsystem *css; 1271 1272 for_each_css(css) { 1273 device_unregister(&css->pseudo_subchannel->dev); 1274 device_unregister(&css->device); 1275 } 1276 bus_unregister(&css_bus_type); 1277 crw_unregister_handler(CRW_RSC_SCH); 1278 idset_free(slow_subchannel_set); 1279 chsc_init_cleanup(); 1280 isc_unregister(IO_SCH_ISC); 1281 } 1282 1283 static int __init channel_subsystem_init(void) 1284 { 1285 int ret; 1286 1287 ret = css_bus_init(); 1288 if (ret) 1289 return ret; 1290 cio_work_q = create_singlethread_workqueue("cio"); 1291 if (!cio_work_q) { 1292 ret = -ENOMEM; 1293 goto out_bus; 1294 } 1295 ret = io_subchannel_init(); 1296 if (ret) 1297 goto out_wq; 1298 1299 /* Register subchannels which are already in use. */ 1300 cio_register_early_subchannels(); 1301 /* Start initial subchannel evaluation. */ 1302 css_schedule_eval_all(); 1303 1304 return ret; 1305 out_wq: 1306 destroy_workqueue(cio_work_q); 1307 out_bus: 1308 css_bus_cleanup(); 1309 return ret; 1310 } 1311 subsys_initcall(channel_subsystem_init); 1312 1313 static int css_settle(struct device_driver *drv, void *unused) 1314 { 1315 struct css_driver *cssdrv = to_cssdriver(drv); 1316 1317 if (cssdrv->settle) 1318 return cssdrv->settle(); 1319 return 0; 1320 } 1321 1322 int css_complete_work(void) 1323 { 1324 int ret; 1325 1326 /* Wait for the evaluation of subchannels to finish. */ 1327 ret = wait_event_interruptible(css_eval_wq, 1328 atomic_read(&css_eval_scheduled) == 0); 1329 if (ret) 1330 return -EINTR; 1331 flush_workqueue(cio_work_q); 1332 /* Wait for the subchannel type specific initialization to finish */ 1333 return bus_for_each_drv(&css_bus_type, NULL, NULL, css_settle); 1334 } 1335 1336 1337 /* 1338 * Wait for the initialization of devices to finish, to make sure we are 1339 * done with our setup if the search for the root device starts. 1340 */ 1341 static int __init channel_subsystem_init_sync(void) 1342 { 1343 css_complete_work(); 1344 return 0; 1345 } 1346 subsys_initcall_sync(channel_subsystem_init_sync); 1347 1348 void channel_subsystem_reinit(void) 1349 { 1350 struct channel_path *chp; 1351 struct chp_id chpid; 1352 1353 chsc_enable_facility(CHSC_SDA_OC_MSS); 1354 chp_id_for_each(&chpid) { 1355 chp = chpid_to_chp(chpid); 1356 if (chp) 1357 chp_update_desc(chp); 1358 } 1359 cmf_reactivate(); 1360 } 1361 1362 #ifdef CONFIG_PROC_FS 1363 static ssize_t cio_settle_write(struct file *file, const char __user *buf, 1364 size_t count, loff_t *ppos) 1365 { 1366 int ret; 1367 1368 /* Handle pending CRW's. */ 1369 crw_wait_for_channel_report(); 1370 ret = css_complete_work(); 1371 1372 return ret ? ret : count; 1373 } 1374 1375 static const struct proc_ops cio_settle_proc_ops = { 1376 .proc_open = nonseekable_open, 1377 .proc_write = cio_settle_write, 1378 .proc_lseek = no_llseek, 1379 }; 1380 1381 static int __init cio_settle_init(void) 1382 { 1383 struct proc_dir_entry *entry; 1384 1385 entry = proc_create("cio_settle", S_IWUSR, NULL, &cio_settle_proc_ops); 1386 if (!entry) 1387 return -ENOMEM; 1388 return 0; 1389 } 1390 device_initcall(cio_settle_init); 1391 #endif /*CONFIG_PROC_FS*/ 1392 1393 int sch_is_pseudo_sch(struct subchannel *sch) 1394 { 1395 if (!sch->dev.parent) 1396 return 0; 1397 return sch == to_css(sch->dev.parent)->pseudo_subchannel; 1398 } 1399 1400 static int css_bus_match(struct device *dev, struct device_driver *drv) 1401 { 1402 struct subchannel *sch = to_subchannel(dev); 1403 struct css_driver *driver = to_cssdriver(drv); 1404 struct css_device_id *id; 1405 1406 /* When driver_override is set, only bind to the matching driver */ 1407 if (sch->driver_override && strcmp(sch->driver_override, drv->name)) 1408 return 0; 1409 1410 for (id = driver->subchannel_type; id->match_flags; id++) { 1411 if (sch->st == id->type) 1412 return 1; 1413 } 1414 1415 return 0; 1416 } 1417 1418 static int css_probe(struct device *dev) 1419 { 1420 struct subchannel *sch; 1421 int ret; 1422 1423 sch = to_subchannel(dev); 1424 sch->driver = to_cssdriver(dev->driver); 1425 ret = sch->driver->probe ? sch->driver->probe(sch) : 0; 1426 if (ret) 1427 sch->driver = NULL; 1428 return ret; 1429 } 1430 1431 static int css_remove(struct device *dev) 1432 { 1433 struct subchannel *sch; 1434 int ret; 1435 1436 sch = to_subchannel(dev); 1437 ret = sch->driver->remove ? sch->driver->remove(sch) : 0; 1438 sch->driver = NULL; 1439 return ret; 1440 } 1441 1442 static void css_shutdown(struct device *dev) 1443 { 1444 struct subchannel *sch; 1445 1446 sch = to_subchannel(dev); 1447 if (sch->driver && sch->driver->shutdown) 1448 sch->driver->shutdown(sch); 1449 } 1450 1451 static int css_uevent(struct device *dev, struct kobj_uevent_env *env) 1452 { 1453 struct subchannel *sch = to_subchannel(dev); 1454 int ret; 1455 1456 ret = add_uevent_var(env, "ST=%01X", sch->st); 1457 if (ret) 1458 return ret; 1459 ret = add_uevent_var(env, "MODALIAS=css:t%01X", sch->st); 1460 return ret; 1461 } 1462 1463 static int css_pm_prepare(struct device *dev) 1464 { 1465 struct subchannel *sch = to_subchannel(dev); 1466 struct css_driver *drv; 1467 1468 if (mutex_is_locked(&sch->reg_mutex)) 1469 return -EAGAIN; 1470 if (!sch->dev.driver) 1471 return 0; 1472 drv = to_cssdriver(sch->dev.driver); 1473 /* Notify drivers that they may not register children. */ 1474 return drv->prepare ? drv->prepare(sch) : 0; 1475 } 1476 1477 static void css_pm_complete(struct device *dev) 1478 { 1479 struct subchannel *sch = to_subchannel(dev); 1480 struct css_driver *drv; 1481 1482 if (!sch->dev.driver) 1483 return; 1484 drv = to_cssdriver(sch->dev.driver); 1485 if (drv->complete) 1486 drv->complete(sch); 1487 } 1488 1489 static int css_pm_freeze(struct device *dev) 1490 { 1491 struct subchannel *sch = to_subchannel(dev); 1492 struct css_driver *drv; 1493 1494 if (!sch->dev.driver) 1495 return 0; 1496 drv = to_cssdriver(sch->dev.driver); 1497 return drv->freeze ? drv->freeze(sch) : 0; 1498 } 1499 1500 static int css_pm_thaw(struct device *dev) 1501 { 1502 struct subchannel *sch = to_subchannel(dev); 1503 struct css_driver *drv; 1504 1505 if (!sch->dev.driver) 1506 return 0; 1507 drv = to_cssdriver(sch->dev.driver); 1508 return drv->thaw ? drv->thaw(sch) : 0; 1509 } 1510 1511 static int css_pm_restore(struct device *dev) 1512 { 1513 struct subchannel *sch = to_subchannel(dev); 1514 struct css_driver *drv; 1515 1516 css_update_ssd_info(sch); 1517 if (!sch->dev.driver) 1518 return 0; 1519 drv = to_cssdriver(sch->dev.driver); 1520 return drv->restore ? drv->restore(sch) : 0; 1521 } 1522 1523 static const struct dev_pm_ops css_pm_ops = { 1524 .prepare = css_pm_prepare, 1525 .complete = css_pm_complete, 1526 .freeze = css_pm_freeze, 1527 .thaw = css_pm_thaw, 1528 .restore = css_pm_restore, 1529 }; 1530 1531 static struct bus_type css_bus_type = { 1532 .name = "css", 1533 .match = css_bus_match, 1534 .probe = css_probe, 1535 .remove = css_remove, 1536 .shutdown = css_shutdown, 1537 .uevent = css_uevent, 1538 .pm = &css_pm_ops, 1539 }; 1540 1541 /** 1542 * css_driver_register - register a css driver 1543 * @cdrv: css driver to register 1544 * 1545 * This is mainly a wrapper around driver_register that sets name 1546 * and bus_type in the embedded struct device_driver correctly. 1547 */ 1548 int css_driver_register(struct css_driver *cdrv) 1549 { 1550 cdrv->drv.bus = &css_bus_type; 1551 return driver_register(&cdrv->drv); 1552 } 1553 EXPORT_SYMBOL_GPL(css_driver_register); 1554 1555 /** 1556 * css_driver_unregister - unregister a css driver 1557 * @cdrv: css driver to unregister 1558 * 1559 * This is a wrapper around driver_unregister. 1560 */ 1561 void css_driver_unregister(struct css_driver *cdrv) 1562 { 1563 driver_unregister(&cdrv->drv); 1564 } 1565 EXPORT_SYMBOL_GPL(css_driver_unregister); 1566