1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * driver for channel subsystem 4 * 5 * Copyright IBM Corp. 2002, 2010 6 * 7 * Author(s): Arnd Bergmann (arndb@de.ibm.com) 8 * Cornelia Huck (cornelia.huck@de.ibm.com) 9 */ 10 11 #define KMSG_COMPONENT "cio" 12 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 13 14 #include <linux/export.h> 15 #include <linux/init.h> 16 #include <linux/device.h> 17 #include <linux/slab.h> 18 #include <linux/errno.h> 19 #include <linux/list.h> 20 #include <linux/reboot.h> 21 #include <linux/suspend.h> 22 #include <linux/proc_fs.h> 23 #include <linux/genalloc.h> 24 #include <linux/dma-mapping.h> 25 #include <asm/isc.h> 26 #include <asm/crw.h> 27 28 #include "css.h" 29 #include "cio.h" 30 #include "blacklist.h" 31 #include "cio_debug.h" 32 #include "ioasm.h" 33 #include "chsc.h" 34 #include "device.h" 35 #include "idset.h" 36 #include "chp.h" 37 38 int css_init_done = 0; 39 int max_ssid; 40 41 #define MAX_CSS_IDX 0 42 struct channel_subsystem *channel_subsystems[MAX_CSS_IDX + 1]; 43 static struct bus_type css_bus_type; 44 45 int 46 for_each_subchannel(int(*fn)(struct subchannel_id, void *), void *data) 47 { 48 struct subchannel_id schid; 49 int ret; 50 51 init_subchannel_id(&schid); 52 do { 53 do { 54 ret = fn(schid, data); 55 if (ret) 56 break; 57 } while (schid.sch_no++ < __MAX_SUBCHANNEL); 58 schid.sch_no = 0; 59 } while (schid.ssid++ < max_ssid); 60 return ret; 61 } 62 63 struct cb_data { 64 void *data; 65 struct idset *set; 66 int (*fn_known_sch)(struct subchannel *, void *); 67 int (*fn_unknown_sch)(struct subchannel_id, void *); 68 }; 69 70 static int call_fn_known_sch(struct device *dev, void *data) 71 { 72 struct subchannel *sch = to_subchannel(dev); 73 struct cb_data *cb = data; 74 int rc = 0; 75 76 if (cb->set) 77 idset_sch_del(cb->set, sch->schid); 78 if (cb->fn_known_sch) 79 rc = cb->fn_known_sch(sch, cb->data); 80 return rc; 81 } 82 83 static int call_fn_unknown_sch(struct subchannel_id schid, void *data) 84 { 85 struct cb_data *cb = data; 86 int rc = 0; 87 88 if (idset_sch_contains(cb->set, schid)) 89 rc = cb->fn_unknown_sch(schid, cb->data); 90 return rc; 91 } 92 93 static int call_fn_all_sch(struct subchannel_id schid, void *data) 94 { 95 struct cb_data *cb = data; 96 struct subchannel *sch; 97 int rc = 0; 98 99 sch = get_subchannel_by_schid(schid); 100 if (sch) { 101 if (cb->fn_known_sch) 102 rc = cb->fn_known_sch(sch, cb->data); 103 put_device(&sch->dev); 104 } else { 105 if (cb->fn_unknown_sch) 106 rc = cb->fn_unknown_sch(schid, cb->data); 107 } 108 109 return rc; 110 } 111 112 int for_each_subchannel_staged(int (*fn_known)(struct subchannel *, void *), 113 int (*fn_unknown)(struct subchannel_id, 114 void *), void *data) 115 { 116 struct cb_data cb; 117 int rc; 118 119 cb.data = data; 120 cb.fn_known_sch = fn_known; 121 cb.fn_unknown_sch = fn_unknown; 122 123 if (fn_known && !fn_unknown) { 124 /* Skip idset allocation in case of known-only loop. */ 125 cb.set = NULL; 126 return bus_for_each_dev(&css_bus_type, NULL, &cb, 127 call_fn_known_sch); 128 } 129 130 cb.set = idset_sch_new(); 131 if (!cb.set) 132 /* fall back to brute force scanning in case of oom */ 133 return for_each_subchannel(call_fn_all_sch, &cb); 134 135 idset_fill(cb.set); 136 137 /* Process registered subchannels. */ 138 rc = bus_for_each_dev(&css_bus_type, NULL, &cb, call_fn_known_sch); 139 if (rc) 140 goto out; 141 /* Process unregistered subchannels. */ 142 if (fn_unknown) 143 rc = for_each_subchannel(call_fn_unknown_sch, &cb); 144 out: 145 idset_free(cb.set); 146 147 return rc; 148 } 149 150 static void css_sch_todo(struct work_struct *work); 151 152 static int css_sch_create_locks(struct subchannel *sch) 153 { 154 sch->lock = kmalloc(sizeof(*sch->lock), GFP_KERNEL); 155 if (!sch->lock) 156 return -ENOMEM; 157 158 spin_lock_init(sch->lock); 159 mutex_init(&sch->reg_mutex); 160 161 return 0; 162 } 163 164 static void css_subchannel_release(struct device *dev) 165 { 166 struct subchannel *sch = to_subchannel(dev); 167 168 sch->config.intparm = 0; 169 cio_commit_config(sch); 170 kfree(sch->driver_override); 171 kfree(sch->lock); 172 kfree(sch); 173 } 174 175 static int css_validate_subchannel(struct subchannel_id schid, 176 struct schib *schib) 177 { 178 int err; 179 180 switch (schib->pmcw.st) { 181 case SUBCHANNEL_TYPE_IO: 182 case SUBCHANNEL_TYPE_MSG: 183 if (!css_sch_is_valid(schib)) 184 err = -ENODEV; 185 else if (is_blacklisted(schid.ssid, schib->pmcw.dev)) { 186 CIO_MSG_EVENT(6, "Blacklisted device detected " 187 "at devno %04X, subchannel set %x\n", 188 schib->pmcw.dev, schid.ssid); 189 err = -ENODEV; 190 } else 191 err = 0; 192 break; 193 default: 194 err = 0; 195 } 196 if (err) 197 goto out; 198 199 CIO_MSG_EVENT(4, "Subchannel 0.%x.%04x reports subchannel type %04X\n", 200 schid.ssid, schid.sch_no, schib->pmcw.st); 201 out: 202 return err; 203 } 204 205 struct subchannel *css_alloc_subchannel(struct subchannel_id schid, 206 struct schib *schib) 207 { 208 struct subchannel *sch; 209 int ret; 210 211 ret = css_validate_subchannel(schid, schib); 212 if (ret < 0) 213 return ERR_PTR(ret); 214 215 sch = kzalloc(sizeof(*sch), GFP_KERNEL | GFP_DMA); 216 if (!sch) 217 return ERR_PTR(-ENOMEM); 218 219 sch->schid = schid; 220 sch->schib = *schib; 221 sch->st = schib->pmcw.st; 222 223 ret = css_sch_create_locks(sch); 224 if (ret) 225 goto err; 226 227 INIT_WORK(&sch->todo_work, css_sch_todo); 228 sch->dev.release = &css_subchannel_release; 229 device_initialize(&sch->dev); 230 /* 231 * The physical addresses of some the dma structures that can 232 * belong to a subchannel need to fit 31 bit width (e.g. ccw). 233 */ 234 sch->dev.coherent_dma_mask = DMA_BIT_MASK(31); 235 /* 236 * But we don't have such restrictions imposed on the stuff that 237 * is handled by the streaming API. 238 */ 239 sch->dma_mask = DMA_BIT_MASK(64); 240 sch->dev.dma_mask = &sch->dma_mask; 241 return sch; 242 243 err: 244 kfree(sch); 245 return ERR_PTR(ret); 246 } 247 248 static int css_sch_device_register(struct subchannel *sch) 249 { 250 int ret; 251 252 mutex_lock(&sch->reg_mutex); 253 dev_set_name(&sch->dev, "0.%x.%04x", sch->schid.ssid, 254 sch->schid.sch_no); 255 ret = device_add(&sch->dev); 256 mutex_unlock(&sch->reg_mutex); 257 return ret; 258 } 259 260 /** 261 * css_sch_device_unregister - unregister a subchannel 262 * @sch: subchannel to be unregistered 263 */ 264 void css_sch_device_unregister(struct subchannel *sch) 265 { 266 mutex_lock(&sch->reg_mutex); 267 if (device_is_registered(&sch->dev)) 268 device_unregister(&sch->dev); 269 mutex_unlock(&sch->reg_mutex); 270 } 271 EXPORT_SYMBOL_GPL(css_sch_device_unregister); 272 273 static void ssd_from_pmcw(struct chsc_ssd_info *ssd, struct pmcw *pmcw) 274 { 275 int i; 276 int mask; 277 278 memset(ssd, 0, sizeof(struct chsc_ssd_info)); 279 ssd->path_mask = pmcw->pim; 280 for (i = 0; i < 8; i++) { 281 mask = 0x80 >> i; 282 if (pmcw->pim & mask) { 283 chp_id_init(&ssd->chpid[i]); 284 ssd->chpid[i].id = pmcw->chpid[i]; 285 } 286 } 287 } 288 289 static void ssd_register_chpids(struct chsc_ssd_info *ssd) 290 { 291 int i; 292 int mask; 293 294 for (i = 0; i < 8; i++) { 295 mask = 0x80 >> i; 296 if (ssd->path_mask & mask) 297 chp_new(ssd->chpid[i]); 298 } 299 } 300 301 void css_update_ssd_info(struct subchannel *sch) 302 { 303 int ret; 304 305 ret = chsc_get_ssd_info(sch->schid, &sch->ssd_info); 306 if (ret) 307 ssd_from_pmcw(&sch->ssd_info, &sch->schib.pmcw); 308 309 ssd_register_chpids(&sch->ssd_info); 310 } 311 312 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 313 char *buf) 314 { 315 struct subchannel *sch = to_subchannel(dev); 316 317 return sprintf(buf, "%01x\n", sch->st); 318 } 319 320 static DEVICE_ATTR_RO(type); 321 322 static ssize_t modalias_show(struct device *dev, struct device_attribute *attr, 323 char *buf) 324 { 325 struct subchannel *sch = to_subchannel(dev); 326 327 return sprintf(buf, "css:t%01X\n", sch->st); 328 } 329 330 static DEVICE_ATTR_RO(modalias); 331 332 static ssize_t driver_override_store(struct device *dev, 333 struct device_attribute *attr, 334 const char *buf, size_t count) 335 { 336 struct subchannel *sch = to_subchannel(dev); 337 char *driver_override, *old, *cp; 338 339 /* We need to keep extra room for a newline */ 340 if (count >= (PAGE_SIZE - 1)) 341 return -EINVAL; 342 343 driver_override = kstrndup(buf, count, GFP_KERNEL); 344 if (!driver_override) 345 return -ENOMEM; 346 347 cp = strchr(driver_override, '\n'); 348 if (cp) 349 *cp = '\0'; 350 351 device_lock(dev); 352 old = sch->driver_override; 353 if (strlen(driver_override)) { 354 sch->driver_override = driver_override; 355 } else { 356 kfree(driver_override); 357 sch->driver_override = NULL; 358 } 359 device_unlock(dev); 360 361 kfree(old); 362 363 return count; 364 } 365 366 static ssize_t driver_override_show(struct device *dev, 367 struct device_attribute *attr, char *buf) 368 { 369 struct subchannel *sch = to_subchannel(dev); 370 ssize_t len; 371 372 device_lock(dev); 373 len = snprintf(buf, PAGE_SIZE, "%s\n", sch->driver_override); 374 device_unlock(dev); 375 return len; 376 } 377 static DEVICE_ATTR_RW(driver_override); 378 379 static struct attribute *subch_attrs[] = { 380 &dev_attr_type.attr, 381 &dev_attr_modalias.attr, 382 &dev_attr_driver_override.attr, 383 NULL, 384 }; 385 386 static struct attribute_group subch_attr_group = { 387 .attrs = subch_attrs, 388 }; 389 390 static const struct attribute_group *default_subch_attr_groups[] = { 391 &subch_attr_group, 392 NULL, 393 }; 394 395 static ssize_t chpids_show(struct device *dev, 396 struct device_attribute *attr, 397 char *buf) 398 { 399 struct subchannel *sch = to_subchannel(dev); 400 struct chsc_ssd_info *ssd = &sch->ssd_info; 401 ssize_t ret = 0; 402 int mask; 403 int chp; 404 405 for (chp = 0; chp < 8; chp++) { 406 mask = 0x80 >> chp; 407 if (ssd->path_mask & mask) 408 ret += sprintf(buf + ret, "%02x ", ssd->chpid[chp].id); 409 else 410 ret += sprintf(buf + ret, "00 "); 411 } 412 ret += sprintf(buf + ret, "\n"); 413 return ret; 414 } 415 static DEVICE_ATTR_RO(chpids); 416 417 static ssize_t pimpampom_show(struct device *dev, 418 struct device_attribute *attr, 419 char *buf) 420 { 421 struct subchannel *sch = to_subchannel(dev); 422 struct pmcw *pmcw = &sch->schib.pmcw; 423 424 return sprintf(buf, "%02x %02x %02x\n", 425 pmcw->pim, pmcw->pam, pmcw->pom); 426 } 427 static DEVICE_ATTR_RO(pimpampom); 428 429 static struct attribute *io_subchannel_type_attrs[] = { 430 &dev_attr_chpids.attr, 431 &dev_attr_pimpampom.attr, 432 NULL, 433 }; 434 ATTRIBUTE_GROUPS(io_subchannel_type); 435 436 static const struct device_type io_subchannel_type = { 437 .groups = io_subchannel_type_groups, 438 }; 439 440 int css_register_subchannel(struct subchannel *sch) 441 { 442 int ret; 443 444 /* Initialize the subchannel structure */ 445 sch->dev.parent = &channel_subsystems[0]->device; 446 sch->dev.bus = &css_bus_type; 447 sch->dev.groups = default_subch_attr_groups; 448 449 if (sch->st == SUBCHANNEL_TYPE_IO) 450 sch->dev.type = &io_subchannel_type; 451 452 /* 453 * We don't want to generate uevents for I/O subchannels that don't 454 * have a working ccw device behind them since they will be 455 * unregistered before they can be used anyway, so we delay the add 456 * uevent until after device recognition was successful. 457 * Note that we suppress the uevent for all subchannel types; 458 * the subchannel driver can decide itself when it wants to inform 459 * userspace of its existence. 460 */ 461 dev_set_uevent_suppress(&sch->dev, 1); 462 css_update_ssd_info(sch); 463 /* make it known to the system */ 464 ret = css_sch_device_register(sch); 465 if (ret) { 466 CIO_MSG_EVENT(0, "Could not register sch 0.%x.%04x: %d\n", 467 sch->schid.ssid, sch->schid.sch_no, ret); 468 return ret; 469 } 470 if (!sch->driver) { 471 /* 472 * No driver matched. Generate the uevent now so that 473 * a fitting driver module may be loaded based on the 474 * modalias. 475 */ 476 dev_set_uevent_suppress(&sch->dev, 0); 477 kobject_uevent(&sch->dev.kobj, KOBJ_ADD); 478 } 479 return ret; 480 } 481 482 static int css_probe_device(struct subchannel_id schid, struct schib *schib) 483 { 484 struct subchannel *sch; 485 int ret; 486 487 sch = css_alloc_subchannel(schid, schib); 488 if (IS_ERR(sch)) 489 return PTR_ERR(sch); 490 491 ret = css_register_subchannel(sch); 492 if (ret) 493 put_device(&sch->dev); 494 495 return ret; 496 } 497 498 static int 499 check_subchannel(struct device *dev, const void *data) 500 { 501 struct subchannel *sch; 502 struct subchannel_id *schid = (void *)data; 503 504 sch = to_subchannel(dev); 505 return schid_equal(&sch->schid, schid); 506 } 507 508 struct subchannel * 509 get_subchannel_by_schid(struct subchannel_id schid) 510 { 511 struct device *dev; 512 513 dev = bus_find_device(&css_bus_type, NULL, 514 &schid, check_subchannel); 515 516 return dev ? to_subchannel(dev) : NULL; 517 } 518 519 /** 520 * css_sch_is_valid() - check if a subchannel is valid 521 * @schib: subchannel information block for the subchannel 522 */ 523 int css_sch_is_valid(struct schib *schib) 524 { 525 if ((schib->pmcw.st == SUBCHANNEL_TYPE_IO) && !schib->pmcw.dnv) 526 return 0; 527 if ((schib->pmcw.st == SUBCHANNEL_TYPE_MSG) && !schib->pmcw.w) 528 return 0; 529 return 1; 530 } 531 EXPORT_SYMBOL_GPL(css_sch_is_valid); 532 533 static int css_evaluate_new_subchannel(struct subchannel_id schid, int slow) 534 { 535 struct schib schib; 536 int ccode; 537 538 if (!slow) { 539 /* Will be done on the slow path. */ 540 return -EAGAIN; 541 } 542 /* 543 * The first subchannel that is not-operational (ccode==3) 544 * indicates that there aren't any more devices available. 545 * If stsch gets an exception, it means the current subchannel set 546 * is not valid. 547 */ 548 ccode = stsch(schid, &schib); 549 if (ccode) 550 return (ccode == 3) ? -ENXIO : ccode; 551 552 return css_probe_device(schid, &schib); 553 } 554 555 static int css_evaluate_known_subchannel(struct subchannel *sch, int slow) 556 { 557 int ret = 0; 558 559 if (sch->driver) { 560 if (sch->driver->sch_event) 561 ret = sch->driver->sch_event(sch, slow); 562 else 563 dev_dbg(&sch->dev, 564 "Got subchannel machine check but " 565 "no sch_event handler provided.\n"); 566 } 567 if (ret != 0 && ret != -EAGAIN) { 568 CIO_MSG_EVENT(2, "eval: sch 0.%x.%04x, rc=%d\n", 569 sch->schid.ssid, sch->schid.sch_no, ret); 570 } 571 return ret; 572 } 573 574 static void css_evaluate_subchannel(struct subchannel_id schid, int slow) 575 { 576 struct subchannel *sch; 577 int ret; 578 579 sch = get_subchannel_by_schid(schid); 580 if (sch) { 581 ret = css_evaluate_known_subchannel(sch, slow); 582 put_device(&sch->dev); 583 } else 584 ret = css_evaluate_new_subchannel(schid, slow); 585 if (ret == -EAGAIN) 586 css_schedule_eval(schid); 587 } 588 589 /** 590 * css_sched_sch_todo - schedule a subchannel operation 591 * @sch: subchannel 592 * @todo: todo 593 * 594 * Schedule the operation identified by @todo to be performed on the slow path 595 * workqueue. Do nothing if another operation with higher priority is already 596 * scheduled. Needs to be called with subchannel lock held. 597 */ 598 void css_sched_sch_todo(struct subchannel *sch, enum sch_todo todo) 599 { 600 CIO_MSG_EVENT(4, "sch_todo: sched sch=0.%x.%04x todo=%d\n", 601 sch->schid.ssid, sch->schid.sch_no, todo); 602 if (sch->todo >= todo) 603 return; 604 /* Get workqueue ref. */ 605 if (!get_device(&sch->dev)) 606 return; 607 sch->todo = todo; 608 if (!queue_work(cio_work_q, &sch->todo_work)) { 609 /* Already queued, release workqueue ref. */ 610 put_device(&sch->dev); 611 } 612 } 613 EXPORT_SYMBOL_GPL(css_sched_sch_todo); 614 615 static void css_sch_todo(struct work_struct *work) 616 { 617 struct subchannel *sch; 618 enum sch_todo todo; 619 int ret; 620 621 sch = container_of(work, struct subchannel, todo_work); 622 /* Find out todo. */ 623 spin_lock_irq(sch->lock); 624 todo = sch->todo; 625 CIO_MSG_EVENT(4, "sch_todo: sch=0.%x.%04x, todo=%d\n", sch->schid.ssid, 626 sch->schid.sch_no, todo); 627 sch->todo = SCH_TODO_NOTHING; 628 spin_unlock_irq(sch->lock); 629 /* Perform todo. */ 630 switch (todo) { 631 case SCH_TODO_NOTHING: 632 break; 633 case SCH_TODO_EVAL: 634 ret = css_evaluate_known_subchannel(sch, 1); 635 if (ret == -EAGAIN) { 636 spin_lock_irq(sch->lock); 637 css_sched_sch_todo(sch, todo); 638 spin_unlock_irq(sch->lock); 639 } 640 break; 641 case SCH_TODO_UNREG: 642 css_sch_device_unregister(sch); 643 break; 644 } 645 /* Release workqueue ref. */ 646 put_device(&sch->dev); 647 } 648 649 static struct idset *slow_subchannel_set; 650 static spinlock_t slow_subchannel_lock; 651 static wait_queue_head_t css_eval_wq; 652 static atomic_t css_eval_scheduled; 653 654 static int __init slow_subchannel_init(void) 655 { 656 spin_lock_init(&slow_subchannel_lock); 657 atomic_set(&css_eval_scheduled, 0); 658 init_waitqueue_head(&css_eval_wq); 659 slow_subchannel_set = idset_sch_new(); 660 if (!slow_subchannel_set) { 661 CIO_MSG_EVENT(0, "could not allocate slow subchannel set\n"); 662 return -ENOMEM; 663 } 664 return 0; 665 } 666 667 static int slow_eval_known_fn(struct subchannel *sch, void *data) 668 { 669 int eval; 670 int rc; 671 672 spin_lock_irq(&slow_subchannel_lock); 673 eval = idset_sch_contains(slow_subchannel_set, sch->schid); 674 idset_sch_del(slow_subchannel_set, sch->schid); 675 spin_unlock_irq(&slow_subchannel_lock); 676 if (eval) { 677 rc = css_evaluate_known_subchannel(sch, 1); 678 if (rc == -EAGAIN) 679 css_schedule_eval(sch->schid); 680 /* 681 * The loop might take long time for platforms with lots of 682 * known devices. Allow scheduling here. 683 */ 684 cond_resched(); 685 } 686 return 0; 687 } 688 689 static int slow_eval_unknown_fn(struct subchannel_id schid, void *data) 690 { 691 int eval; 692 int rc = 0; 693 694 spin_lock_irq(&slow_subchannel_lock); 695 eval = idset_sch_contains(slow_subchannel_set, schid); 696 idset_sch_del(slow_subchannel_set, schid); 697 spin_unlock_irq(&slow_subchannel_lock); 698 if (eval) { 699 rc = css_evaluate_new_subchannel(schid, 1); 700 switch (rc) { 701 case -EAGAIN: 702 css_schedule_eval(schid); 703 rc = 0; 704 break; 705 case -ENXIO: 706 case -ENOMEM: 707 case -EIO: 708 /* These should abort looping */ 709 spin_lock_irq(&slow_subchannel_lock); 710 idset_sch_del_subseq(slow_subchannel_set, schid); 711 spin_unlock_irq(&slow_subchannel_lock); 712 break; 713 default: 714 rc = 0; 715 } 716 /* Allow scheduling here since the containing loop might 717 * take a while. */ 718 cond_resched(); 719 } 720 return rc; 721 } 722 723 static void css_slow_path_func(struct work_struct *unused) 724 { 725 unsigned long flags; 726 727 CIO_TRACE_EVENT(4, "slowpath"); 728 for_each_subchannel_staged(slow_eval_known_fn, slow_eval_unknown_fn, 729 NULL); 730 spin_lock_irqsave(&slow_subchannel_lock, flags); 731 if (idset_is_empty(slow_subchannel_set)) { 732 atomic_set(&css_eval_scheduled, 0); 733 wake_up(&css_eval_wq); 734 } 735 spin_unlock_irqrestore(&slow_subchannel_lock, flags); 736 } 737 738 static DECLARE_DELAYED_WORK(slow_path_work, css_slow_path_func); 739 struct workqueue_struct *cio_work_q; 740 741 void css_schedule_eval(struct subchannel_id schid) 742 { 743 unsigned long flags; 744 745 spin_lock_irqsave(&slow_subchannel_lock, flags); 746 idset_sch_add(slow_subchannel_set, schid); 747 atomic_set(&css_eval_scheduled, 1); 748 queue_delayed_work(cio_work_q, &slow_path_work, 0); 749 spin_unlock_irqrestore(&slow_subchannel_lock, flags); 750 } 751 752 void css_schedule_eval_all(void) 753 { 754 unsigned long flags; 755 756 spin_lock_irqsave(&slow_subchannel_lock, flags); 757 idset_fill(slow_subchannel_set); 758 atomic_set(&css_eval_scheduled, 1); 759 queue_delayed_work(cio_work_q, &slow_path_work, 0); 760 spin_unlock_irqrestore(&slow_subchannel_lock, flags); 761 } 762 763 static int __unset_registered(struct device *dev, void *data) 764 { 765 struct idset *set = data; 766 struct subchannel *sch = to_subchannel(dev); 767 768 idset_sch_del(set, sch->schid); 769 return 0; 770 } 771 772 void css_schedule_eval_all_unreg(unsigned long delay) 773 { 774 unsigned long flags; 775 struct idset *unreg_set; 776 777 /* Find unregistered subchannels. */ 778 unreg_set = idset_sch_new(); 779 if (!unreg_set) { 780 /* Fallback. */ 781 css_schedule_eval_all(); 782 return; 783 } 784 idset_fill(unreg_set); 785 bus_for_each_dev(&css_bus_type, NULL, unreg_set, __unset_registered); 786 /* Apply to slow_subchannel_set. */ 787 spin_lock_irqsave(&slow_subchannel_lock, flags); 788 idset_add_set(slow_subchannel_set, unreg_set); 789 atomic_set(&css_eval_scheduled, 1); 790 queue_delayed_work(cio_work_q, &slow_path_work, delay); 791 spin_unlock_irqrestore(&slow_subchannel_lock, flags); 792 idset_free(unreg_set); 793 } 794 795 void css_wait_for_slow_path(void) 796 { 797 flush_workqueue(cio_work_q); 798 } 799 800 /* Schedule reprobing of all unregistered subchannels. */ 801 void css_schedule_reprobe(void) 802 { 803 /* Schedule with a delay to allow merging of subsequent calls. */ 804 css_schedule_eval_all_unreg(1 * HZ); 805 } 806 EXPORT_SYMBOL_GPL(css_schedule_reprobe); 807 808 /* 809 * Called from the machine check handler for subchannel report words. 810 */ 811 static void css_process_crw(struct crw *crw0, struct crw *crw1, int overflow) 812 { 813 struct subchannel_id mchk_schid; 814 struct subchannel *sch; 815 816 if (overflow) { 817 css_schedule_eval_all(); 818 return; 819 } 820 CIO_CRW_EVENT(2, "CRW0 reports slct=%d, oflw=%d, " 821 "chn=%d, rsc=%X, anc=%d, erc=%X, rsid=%X\n", 822 crw0->slct, crw0->oflw, crw0->chn, crw0->rsc, crw0->anc, 823 crw0->erc, crw0->rsid); 824 if (crw1) 825 CIO_CRW_EVENT(2, "CRW1 reports slct=%d, oflw=%d, " 826 "chn=%d, rsc=%X, anc=%d, erc=%X, rsid=%X\n", 827 crw1->slct, crw1->oflw, crw1->chn, crw1->rsc, 828 crw1->anc, crw1->erc, crw1->rsid); 829 init_subchannel_id(&mchk_schid); 830 mchk_schid.sch_no = crw0->rsid; 831 if (crw1) 832 mchk_schid.ssid = (crw1->rsid >> 4) & 3; 833 834 if (crw0->erc == CRW_ERC_PMOD) { 835 sch = get_subchannel_by_schid(mchk_schid); 836 if (sch) { 837 css_update_ssd_info(sch); 838 put_device(&sch->dev); 839 } 840 } 841 /* 842 * Since we are always presented with IPI in the CRW, we have to 843 * use stsch() to find out if the subchannel in question has come 844 * or gone. 845 */ 846 css_evaluate_subchannel(mchk_schid, 0); 847 } 848 849 static void __init 850 css_generate_pgid(struct channel_subsystem *css, u32 tod_high) 851 { 852 struct cpuid cpu_id; 853 854 if (css_general_characteristics.mcss) { 855 css->global_pgid.pgid_high.ext_cssid.version = 0x80; 856 css->global_pgid.pgid_high.ext_cssid.cssid = 857 (css->cssid < 0) ? 0 : css->cssid; 858 } else { 859 css->global_pgid.pgid_high.cpu_addr = stap(); 860 } 861 get_cpu_id(&cpu_id); 862 css->global_pgid.cpu_id = cpu_id.ident; 863 css->global_pgid.cpu_model = cpu_id.machine; 864 css->global_pgid.tod_high = tod_high; 865 } 866 867 static void channel_subsystem_release(struct device *dev) 868 { 869 struct channel_subsystem *css = to_css(dev); 870 871 mutex_destroy(&css->mutex); 872 kfree(css); 873 } 874 875 static ssize_t real_cssid_show(struct device *dev, struct device_attribute *a, 876 char *buf) 877 { 878 struct channel_subsystem *css = to_css(dev); 879 880 if (css->cssid < 0) 881 return -EINVAL; 882 883 return sprintf(buf, "%x\n", css->cssid); 884 } 885 static DEVICE_ATTR_RO(real_cssid); 886 887 static ssize_t cm_enable_show(struct device *dev, struct device_attribute *a, 888 char *buf) 889 { 890 struct channel_subsystem *css = to_css(dev); 891 int ret; 892 893 mutex_lock(&css->mutex); 894 ret = sprintf(buf, "%x\n", css->cm_enabled); 895 mutex_unlock(&css->mutex); 896 return ret; 897 } 898 899 static ssize_t cm_enable_store(struct device *dev, struct device_attribute *a, 900 const char *buf, size_t count) 901 { 902 struct channel_subsystem *css = to_css(dev); 903 unsigned long val; 904 int ret; 905 906 ret = kstrtoul(buf, 16, &val); 907 if (ret) 908 return ret; 909 mutex_lock(&css->mutex); 910 switch (val) { 911 case 0: 912 ret = css->cm_enabled ? chsc_secm(css, 0) : 0; 913 break; 914 case 1: 915 ret = css->cm_enabled ? 0 : chsc_secm(css, 1); 916 break; 917 default: 918 ret = -EINVAL; 919 } 920 mutex_unlock(&css->mutex); 921 return ret < 0 ? ret : count; 922 } 923 static DEVICE_ATTR_RW(cm_enable); 924 925 static umode_t cm_enable_mode(struct kobject *kobj, struct attribute *attr, 926 int index) 927 { 928 return css_chsc_characteristics.secm ? attr->mode : 0; 929 } 930 931 static struct attribute *cssdev_attrs[] = { 932 &dev_attr_real_cssid.attr, 933 NULL, 934 }; 935 936 static struct attribute_group cssdev_attr_group = { 937 .attrs = cssdev_attrs, 938 }; 939 940 static struct attribute *cssdev_cm_attrs[] = { 941 &dev_attr_cm_enable.attr, 942 NULL, 943 }; 944 945 static struct attribute_group cssdev_cm_attr_group = { 946 .attrs = cssdev_cm_attrs, 947 .is_visible = cm_enable_mode, 948 }; 949 950 static const struct attribute_group *cssdev_attr_groups[] = { 951 &cssdev_attr_group, 952 &cssdev_cm_attr_group, 953 NULL, 954 }; 955 956 static int __init setup_css(int nr) 957 { 958 struct channel_subsystem *css; 959 int ret; 960 961 css = kzalloc(sizeof(*css), GFP_KERNEL); 962 if (!css) 963 return -ENOMEM; 964 965 channel_subsystems[nr] = css; 966 dev_set_name(&css->device, "css%x", nr); 967 css->device.groups = cssdev_attr_groups; 968 css->device.release = channel_subsystem_release; 969 /* 970 * We currently allocate notifier bits with this (using 971 * css->device as the device argument with the DMA API) 972 * and are fine with 64 bit addresses. 973 */ 974 css->device.coherent_dma_mask = DMA_BIT_MASK(64); 975 css->device.dma_mask = &css->device.coherent_dma_mask; 976 977 mutex_init(&css->mutex); 978 css->cssid = chsc_get_cssid(nr); 979 css_generate_pgid(css, (u32) (get_tod_clock() >> 32)); 980 981 ret = device_register(&css->device); 982 if (ret) { 983 put_device(&css->device); 984 goto out_err; 985 } 986 987 css->pseudo_subchannel = kzalloc(sizeof(*css->pseudo_subchannel), 988 GFP_KERNEL); 989 if (!css->pseudo_subchannel) { 990 device_unregister(&css->device); 991 ret = -ENOMEM; 992 goto out_err; 993 } 994 995 css->pseudo_subchannel->dev.parent = &css->device; 996 css->pseudo_subchannel->dev.release = css_subchannel_release; 997 mutex_init(&css->pseudo_subchannel->reg_mutex); 998 ret = css_sch_create_locks(css->pseudo_subchannel); 999 if (ret) { 1000 kfree(css->pseudo_subchannel); 1001 device_unregister(&css->device); 1002 goto out_err; 1003 } 1004 1005 dev_set_name(&css->pseudo_subchannel->dev, "defunct"); 1006 ret = device_register(&css->pseudo_subchannel->dev); 1007 if (ret) { 1008 put_device(&css->pseudo_subchannel->dev); 1009 device_unregister(&css->device); 1010 goto out_err; 1011 } 1012 1013 return ret; 1014 out_err: 1015 channel_subsystems[nr] = NULL; 1016 return ret; 1017 } 1018 1019 static int css_reboot_event(struct notifier_block *this, 1020 unsigned long event, 1021 void *ptr) 1022 { 1023 struct channel_subsystem *css; 1024 int ret; 1025 1026 ret = NOTIFY_DONE; 1027 for_each_css(css) { 1028 mutex_lock(&css->mutex); 1029 if (css->cm_enabled) 1030 if (chsc_secm(css, 0)) 1031 ret = NOTIFY_BAD; 1032 mutex_unlock(&css->mutex); 1033 } 1034 1035 return ret; 1036 } 1037 1038 static struct notifier_block css_reboot_notifier = { 1039 .notifier_call = css_reboot_event, 1040 }; 1041 1042 /* 1043 * Since the css devices are neither on a bus nor have a class 1044 * nor have a special device type, we cannot stop/restart channel 1045 * path measurements via the normal suspend/resume callbacks, but have 1046 * to use notifiers. 1047 */ 1048 static int css_power_event(struct notifier_block *this, unsigned long event, 1049 void *ptr) 1050 { 1051 struct channel_subsystem *css; 1052 int ret; 1053 1054 switch (event) { 1055 case PM_HIBERNATION_PREPARE: 1056 case PM_SUSPEND_PREPARE: 1057 ret = NOTIFY_DONE; 1058 for_each_css(css) { 1059 mutex_lock(&css->mutex); 1060 if (!css->cm_enabled) { 1061 mutex_unlock(&css->mutex); 1062 continue; 1063 } 1064 ret = __chsc_do_secm(css, 0); 1065 ret = notifier_from_errno(ret); 1066 mutex_unlock(&css->mutex); 1067 } 1068 break; 1069 case PM_POST_HIBERNATION: 1070 case PM_POST_SUSPEND: 1071 ret = NOTIFY_DONE; 1072 for_each_css(css) { 1073 mutex_lock(&css->mutex); 1074 if (!css->cm_enabled) { 1075 mutex_unlock(&css->mutex); 1076 continue; 1077 } 1078 ret = __chsc_do_secm(css, 1); 1079 ret = notifier_from_errno(ret); 1080 mutex_unlock(&css->mutex); 1081 } 1082 /* search for subchannels, which appeared during hibernation */ 1083 css_schedule_reprobe(); 1084 break; 1085 default: 1086 ret = NOTIFY_DONE; 1087 } 1088 return ret; 1089 1090 } 1091 static struct notifier_block css_power_notifier = { 1092 .notifier_call = css_power_event, 1093 }; 1094 1095 #define CIO_DMA_GFP (GFP_KERNEL | __GFP_ZERO) 1096 static struct gen_pool *cio_dma_pool; 1097 1098 /* Currently cio supports only a single css */ 1099 struct device *cio_get_dma_css_dev(void) 1100 { 1101 return &channel_subsystems[0]->device; 1102 } 1103 1104 struct gen_pool *cio_gp_dma_create(struct device *dma_dev, int nr_pages) 1105 { 1106 struct gen_pool *gp_dma; 1107 void *cpu_addr; 1108 dma_addr_t dma_addr; 1109 int i; 1110 1111 gp_dma = gen_pool_create(3, -1); 1112 if (!gp_dma) 1113 return NULL; 1114 for (i = 0; i < nr_pages; ++i) { 1115 cpu_addr = dma_alloc_coherent(dma_dev, PAGE_SIZE, &dma_addr, 1116 CIO_DMA_GFP); 1117 if (!cpu_addr) 1118 return gp_dma; 1119 gen_pool_add_virt(gp_dma, (unsigned long) cpu_addr, 1120 dma_addr, PAGE_SIZE, -1); 1121 } 1122 return gp_dma; 1123 } 1124 1125 static void __gp_dma_free_dma(struct gen_pool *pool, 1126 struct gen_pool_chunk *chunk, void *data) 1127 { 1128 size_t chunk_size = chunk->end_addr - chunk->start_addr + 1; 1129 1130 dma_free_coherent((struct device *) data, chunk_size, 1131 (void *) chunk->start_addr, 1132 (dma_addr_t) chunk->phys_addr); 1133 } 1134 1135 void cio_gp_dma_destroy(struct gen_pool *gp_dma, struct device *dma_dev) 1136 { 1137 if (!gp_dma) 1138 return; 1139 /* this is quite ugly but no better idea */ 1140 gen_pool_for_each_chunk(gp_dma, __gp_dma_free_dma, dma_dev); 1141 gen_pool_destroy(gp_dma); 1142 } 1143 1144 static int cio_dma_pool_init(void) 1145 { 1146 /* No need to free up the resources: compiled in */ 1147 cio_dma_pool = cio_gp_dma_create(cio_get_dma_css_dev(), 1); 1148 if (!cio_dma_pool) 1149 return -ENOMEM; 1150 return 0; 1151 } 1152 1153 void *cio_gp_dma_zalloc(struct gen_pool *gp_dma, struct device *dma_dev, 1154 size_t size) 1155 { 1156 dma_addr_t dma_addr; 1157 unsigned long addr; 1158 size_t chunk_size; 1159 1160 if (!gp_dma) 1161 return NULL; 1162 addr = gen_pool_alloc(gp_dma, size); 1163 while (!addr) { 1164 chunk_size = round_up(size, PAGE_SIZE); 1165 addr = (unsigned long) dma_alloc_coherent(dma_dev, 1166 chunk_size, &dma_addr, CIO_DMA_GFP); 1167 if (!addr) 1168 return NULL; 1169 gen_pool_add_virt(gp_dma, addr, dma_addr, chunk_size, -1); 1170 addr = gen_pool_alloc(gp_dma, size); 1171 } 1172 return (void *) addr; 1173 } 1174 1175 void cio_gp_dma_free(struct gen_pool *gp_dma, void *cpu_addr, size_t size) 1176 { 1177 if (!cpu_addr) 1178 return; 1179 memset(cpu_addr, 0, size); 1180 gen_pool_free(gp_dma, (unsigned long) cpu_addr, size); 1181 } 1182 1183 /* 1184 * Allocate dma memory from the css global pool. Intended for memory not 1185 * specific to any single device within the css. The allocated memory 1186 * is not guaranteed to be 31-bit addressable. 1187 * 1188 * Caution: Not suitable for early stuff like console. 1189 */ 1190 void *cio_dma_zalloc(size_t size) 1191 { 1192 return cio_gp_dma_zalloc(cio_dma_pool, cio_get_dma_css_dev(), size); 1193 } 1194 1195 void cio_dma_free(void *cpu_addr, size_t size) 1196 { 1197 cio_gp_dma_free(cio_dma_pool, cpu_addr, size); 1198 } 1199 1200 /* 1201 * Now that the driver core is running, we can setup our channel subsystem. 1202 * The struct subchannel's are created during probing. 1203 */ 1204 static int __init css_bus_init(void) 1205 { 1206 int ret, i; 1207 1208 ret = chsc_init(); 1209 if (ret) 1210 return ret; 1211 1212 chsc_determine_css_characteristics(); 1213 /* Try to enable MSS. */ 1214 ret = chsc_enable_facility(CHSC_SDA_OC_MSS); 1215 if (ret) 1216 max_ssid = 0; 1217 else /* Success. */ 1218 max_ssid = __MAX_SSID; 1219 1220 ret = slow_subchannel_init(); 1221 if (ret) 1222 goto out; 1223 1224 ret = crw_register_handler(CRW_RSC_SCH, css_process_crw); 1225 if (ret) 1226 goto out; 1227 1228 if ((ret = bus_register(&css_bus_type))) 1229 goto out; 1230 1231 /* Setup css structure. */ 1232 for (i = 0; i <= MAX_CSS_IDX; i++) { 1233 ret = setup_css(i); 1234 if (ret) 1235 goto out_unregister; 1236 } 1237 ret = register_reboot_notifier(&css_reboot_notifier); 1238 if (ret) 1239 goto out_unregister; 1240 ret = register_pm_notifier(&css_power_notifier); 1241 if (ret) 1242 goto out_unregister_rn; 1243 ret = cio_dma_pool_init(); 1244 if (ret) 1245 goto out_unregister_pmn; 1246 airq_init(); 1247 css_init_done = 1; 1248 1249 /* Enable default isc for I/O subchannels. */ 1250 isc_register(IO_SCH_ISC); 1251 1252 return 0; 1253 out_unregister_pmn: 1254 unregister_pm_notifier(&css_power_notifier); 1255 out_unregister_rn: 1256 unregister_reboot_notifier(&css_reboot_notifier); 1257 out_unregister: 1258 while (i-- > 0) { 1259 struct channel_subsystem *css = channel_subsystems[i]; 1260 device_unregister(&css->pseudo_subchannel->dev); 1261 device_unregister(&css->device); 1262 } 1263 bus_unregister(&css_bus_type); 1264 out: 1265 crw_unregister_handler(CRW_RSC_SCH); 1266 idset_free(slow_subchannel_set); 1267 chsc_init_cleanup(); 1268 pr_alert("The CSS device driver initialization failed with " 1269 "errno=%d\n", ret); 1270 return ret; 1271 } 1272 1273 static void __init css_bus_cleanup(void) 1274 { 1275 struct channel_subsystem *css; 1276 1277 for_each_css(css) { 1278 device_unregister(&css->pseudo_subchannel->dev); 1279 device_unregister(&css->device); 1280 } 1281 bus_unregister(&css_bus_type); 1282 crw_unregister_handler(CRW_RSC_SCH); 1283 idset_free(slow_subchannel_set); 1284 chsc_init_cleanup(); 1285 isc_unregister(IO_SCH_ISC); 1286 } 1287 1288 static int __init channel_subsystem_init(void) 1289 { 1290 int ret; 1291 1292 ret = css_bus_init(); 1293 if (ret) 1294 return ret; 1295 cio_work_q = create_singlethread_workqueue("cio"); 1296 if (!cio_work_q) { 1297 ret = -ENOMEM; 1298 goto out_bus; 1299 } 1300 ret = io_subchannel_init(); 1301 if (ret) 1302 goto out_wq; 1303 1304 /* Register subchannels which are already in use. */ 1305 cio_register_early_subchannels(); 1306 /* Start initial subchannel evaluation. */ 1307 css_schedule_eval_all(); 1308 1309 return ret; 1310 out_wq: 1311 destroy_workqueue(cio_work_q); 1312 out_bus: 1313 css_bus_cleanup(); 1314 return ret; 1315 } 1316 subsys_initcall(channel_subsystem_init); 1317 1318 static int css_settle(struct device_driver *drv, void *unused) 1319 { 1320 struct css_driver *cssdrv = to_cssdriver(drv); 1321 1322 if (cssdrv->settle) 1323 return cssdrv->settle(); 1324 return 0; 1325 } 1326 1327 int css_complete_work(void) 1328 { 1329 int ret; 1330 1331 /* Wait for the evaluation of subchannels to finish. */ 1332 ret = wait_event_interruptible(css_eval_wq, 1333 atomic_read(&css_eval_scheduled) == 0); 1334 if (ret) 1335 return -EINTR; 1336 flush_workqueue(cio_work_q); 1337 /* Wait for the subchannel type specific initialization to finish */ 1338 return bus_for_each_drv(&css_bus_type, NULL, NULL, css_settle); 1339 } 1340 1341 1342 /* 1343 * Wait for the initialization of devices to finish, to make sure we are 1344 * done with our setup if the search for the root device starts. 1345 */ 1346 static int __init channel_subsystem_init_sync(void) 1347 { 1348 css_complete_work(); 1349 return 0; 1350 } 1351 subsys_initcall_sync(channel_subsystem_init_sync); 1352 1353 void channel_subsystem_reinit(void) 1354 { 1355 struct channel_path *chp; 1356 struct chp_id chpid; 1357 1358 chsc_enable_facility(CHSC_SDA_OC_MSS); 1359 chp_id_for_each(&chpid) { 1360 chp = chpid_to_chp(chpid); 1361 if (chp) 1362 chp_update_desc(chp); 1363 } 1364 cmf_reactivate(); 1365 } 1366 1367 #ifdef CONFIG_PROC_FS 1368 static ssize_t cio_settle_write(struct file *file, const char __user *buf, 1369 size_t count, loff_t *ppos) 1370 { 1371 int ret; 1372 1373 /* Handle pending CRW's. */ 1374 crw_wait_for_channel_report(); 1375 ret = css_complete_work(); 1376 1377 return ret ? ret : count; 1378 } 1379 1380 static const struct proc_ops cio_settle_proc_ops = { 1381 .proc_open = nonseekable_open, 1382 .proc_write = cio_settle_write, 1383 .proc_lseek = no_llseek, 1384 }; 1385 1386 static int __init cio_settle_init(void) 1387 { 1388 struct proc_dir_entry *entry; 1389 1390 entry = proc_create("cio_settle", S_IWUSR, NULL, &cio_settle_proc_ops); 1391 if (!entry) 1392 return -ENOMEM; 1393 return 0; 1394 } 1395 device_initcall(cio_settle_init); 1396 #endif /*CONFIG_PROC_FS*/ 1397 1398 int sch_is_pseudo_sch(struct subchannel *sch) 1399 { 1400 if (!sch->dev.parent) 1401 return 0; 1402 return sch == to_css(sch->dev.parent)->pseudo_subchannel; 1403 } 1404 1405 static int css_bus_match(struct device *dev, struct device_driver *drv) 1406 { 1407 struct subchannel *sch = to_subchannel(dev); 1408 struct css_driver *driver = to_cssdriver(drv); 1409 struct css_device_id *id; 1410 1411 /* When driver_override is set, only bind to the matching driver */ 1412 if (sch->driver_override && strcmp(sch->driver_override, drv->name)) 1413 return 0; 1414 1415 for (id = driver->subchannel_type; id->match_flags; id++) { 1416 if (sch->st == id->type) 1417 return 1; 1418 } 1419 1420 return 0; 1421 } 1422 1423 static int css_probe(struct device *dev) 1424 { 1425 struct subchannel *sch; 1426 int ret; 1427 1428 sch = to_subchannel(dev); 1429 sch->driver = to_cssdriver(dev->driver); 1430 ret = sch->driver->probe ? sch->driver->probe(sch) : 0; 1431 if (ret) 1432 sch->driver = NULL; 1433 return ret; 1434 } 1435 1436 static int css_remove(struct device *dev) 1437 { 1438 struct subchannel *sch; 1439 int ret; 1440 1441 sch = to_subchannel(dev); 1442 ret = sch->driver->remove ? sch->driver->remove(sch) : 0; 1443 sch->driver = NULL; 1444 return ret; 1445 } 1446 1447 static void css_shutdown(struct device *dev) 1448 { 1449 struct subchannel *sch; 1450 1451 sch = to_subchannel(dev); 1452 if (sch->driver && sch->driver->shutdown) 1453 sch->driver->shutdown(sch); 1454 } 1455 1456 static int css_uevent(struct device *dev, struct kobj_uevent_env *env) 1457 { 1458 struct subchannel *sch = to_subchannel(dev); 1459 int ret; 1460 1461 ret = add_uevent_var(env, "ST=%01X", sch->st); 1462 if (ret) 1463 return ret; 1464 ret = add_uevent_var(env, "MODALIAS=css:t%01X", sch->st); 1465 return ret; 1466 } 1467 1468 static int css_pm_prepare(struct device *dev) 1469 { 1470 struct subchannel *sch = to_subchannel(dev); 1471 struct css_driver *drv; 1472 1473 if (mutex_is_locked(&sch->reg_mutex)) 1474 return -EAGAIN; 1475 if (!sch->dev.driver) 1476 return 0; 1477 drv = to_cssdriver(sch->dev.driver); 1478 /* Notify drivers that they may not register children. */ 1479 return drv->prepare ? drv->prepare(sch) : 0; 1480 } 1481 1482 static void css_pm_complete(struct device *dev) 1483 { 1484 struct subchannel *sch = to_subchannel(dev); 1485 struct css_driver *drv; 1486 1487 if (!sch->dev.driver) 1488 return; 1489 drv = to_cssdriver(sch->dev.driver); 1490 if (drv->complete) 1491 drv->complete(sch); 1492 } 1493 1494 static int css_pm_freeze(struct device *dev) 1495 { 1496 struct subchannel *sch = to_subchannel(dev); 1497 struct css_driver *drv; 1498 1499 if (!sch->dev.driver) 1500 return 0; 1501 drv = to_cssdriver(sch->dev.driver); 1502 return drv->freeze ? drv->freeze(sch) : 0; 1503 } 1504 1505 static int css_pm_thaw(struct device *dev) 1506 { 1507 struct subchannel *sch = to_subchannel(dev); 1508 struct css_driver *drv; 1509 1510 if (!sch->dev.driver) 1511 return 0; 1512 drv = to_cssdriver(sch->dev.driver); 1513 return drv->thaw ? drv->thaw(sch) : 0; 1514 } 1515 1516 static int css_pm_restore(struct device *dev) 1517 { 1518 struct subchannel *sch = to_subchannel(dev); 1519 struct css_driver *drv; 1520 1521 css_update_ssd_info(sch); 1522 if (!sch->dev.driver) 1523 return 0; 1524 drv = to_cssdriver(sch->dev.driver); 1525 return drv->restore ? drv->restore(sch) : 0; 1526 } 1527 1528 static const struct dev_pm_ops css_pm_ops = { 1529 .prepare = css_pm_prepare, 1530 .complete = css_pm_complete, 1531 .freeze = css_pm_freeze, 1532 .thaw = css_pm_thaw, 1533 .restore = css_pm_restore, 1534 }; 1535 1536 static struct bus_type css_bus_type = { 1537 .name = "css", 1538 .match = css_bus_match, 1539 .probe = css_probe, 1540 .remove = css_remove, 1541 .shutdown = css_shutdown, 1542 .uevent = css_uevent, 1543 .pm = &css_pm_ops, 1544 }; 1545 1546 /** 1547 * css_driver_register - register a css driver 1548 * @cdrv: css driver to register 1549 * 1550 * This is mainly a wrapper around driver_register that sets name 1551 * and bus_type in the embedded struct device_driver correctly. 1552 */ 1553 int css_driver_register(struct css_driver *cdrv) 1554 { 1555 cdrv->drv.bus = &css_bus_type; 1556 return driver_register(&cdrv->drv); 1557 } 1558 EXPORT_SYMBOL_GPL(css_driver_register); 1559 1560 /** 1561 * css_driver_unregister - unregister a css driver 1562 * @cdrv: css driver to unregister 1563 * 1564 * This is a wrapper around driver_unregister. 1565 */ 1566 void css_driver_unregister(struct css_driver *cdrv) 1567 { 1568 driver_unregister(&cdrv->drv); 1569 } 1570 EXPORT_SYMBOL_GPL(css_driver_unregister); 1571