xref: /openbmc/linux/drivers/s390/cio/css.c (revision b4e18b29)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * driver for channel subsystem
4  *
5  * Copyright IBM Corp. 2002, 2010
6  *
7  * Author(s): Arnd Bergmann (arndb@de.ibm.com)
8  *	      Cornelia Huck (cornelia.huck@de.ibm.com)
9  */
10 
11 #define KMSG_COMPONENT "cio"
12 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
13 
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/device.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 #include <linux/list.h>
20 #include <linux/reboot.h>
21 #include <linux/proc_fs.h>
22 #include <linux/genalloc.h>
23 #include <linux/dma-mapping.h>
24 #include <asm/isc.h>
25 #include <asm/crw.h>
26 
27 #include "css.h"
28 #include "cio.h"
29 #include "blacklist.h"
30 #include "cio_debug.h"
31 #include "ioasm.h"
32 #include "chsc.h"
33 #include "device.h"
34 #include "idset.h"
35 #include "chp.h"
36 
37 int css_init_done = 0;
38 int max_ssid;
39 
40 #define MAX_CSS_IDX 0
41 struct channel_subsystem *channel_subsystems[MAX_CSS_IDX + 1];
42 static struct bus_type css_bus_type;
43 
44 int
45 for_each_subchannel(int(*fn)(struct subchannel_id, void *), void *data)
46 {
47 	struct subchannel_id schid;
48 	int ret;
49 
50 	init_subchannel_id(&schid);
51 	do {
52 		do {
53 			ret = fn(schid, data);
54 			if (ret)
55 				break;
56 		} while (schid.sch_no++ < __MAX_SUBCHANNEL);
57 		schid.sch_no = 0;
58 	} while (schid.ssid++ < max_ssid);
59 	return ret;
60 }
61 
62 struct cb_data {
63 	void *data;
64 	struct idset *set;
65 	int (*fn_known_sch)(struct subchannel *, void *);
66 	int (*fn_unknown_sch)(struct subchannel_id, void *);
67 };
68 
69 static int call_fn_known_sch(struct device *dev, void *data)
70 {
71 	struct subchannel *sch = to_subchannel(dev);
72 	struct cb_data *cb = data;
73 	int rc = 0;
74 
75 	if (cb->set)
76 		idset_sch_del(cb->set, sch->schid);
77 	if (cb->fn_known_sch)
78 		rc = cb->fn_known_sch(sch, cb->data);
79 	return rc;
80 }
81 
82 static int call_fn_unknown_sch(struct subchannel_id schid, void *data)
83 {
84 	struct cb_data *cb = data;
85 	int rc = 0;
86 
87 	if (idset_sch_contains(cb->set, schid))
88 		rc = cb->fn_unknown_sch(schid, cb->data);
89 	return rc;
90 }
91 
92 static int call_fn_all_sch(struct subchannel_id schid, void *data)
93 {
94 	struct cb_data *cb = data;
95 	struct subchannel *sch;
96 	int rc = 0;
97 
98 	sch = get_subchannel_by_schid(schid);
99 	if (sch) {
100 		if (cb->fn_known_sch)
101 			rc = cb->fn_known_sch(sch, cb->data);
102 		put_device(&sch->dev);
103 	} else {
104 		if (cb->fn_unknown_sch)
105 			rc = cb->fn_unknown_sch(schid, cb->data);
106 	}
107 
108 	return rc;
109 }
110 
111 int for_each_subchannel_staged(int (*fn_known)(struct subchannel *, void *),
112 			       int (*fn_unknown)(struct subchannel_id,
113 			       void *), void *data)
114 {
115 	struct cb_data cb;
116 	int rc;
117 
118 	cb.data = data;
119 	cb.fn_known_sch = fn_known;
120 	cb.fn_unknown_sch = fn_unknown;
121 
122 	if (fn_known && !fn_unknown) {
123 		/* Skip idset allocation in case of known-only loop. */
124 		cb.set = NULL;
125 		return bus_for_each_dev(&css_bus_type, NULL, &cb,
126 					call_fn_known_sch);
127 	}
128 
129 	cb.set = idset_sch_new();
130 	if (!cb.set)
131 		/* fall back to brute force scanning in case of oom */
132 		return for_each_subchannel(call_fn_all_sch, &cb);
133 
134 	idset_fill(cb.set);
135 
136 	/* Process registered subchannels. */
137 	rc = bus_for_each_dev(&css_bus_type, NULL, &cb, call_fn_known_sch);
138 	if (rc)
139 		goto out;
140 	/* Process unregistered subchannels. */
141 	if (fn_unknown)
142 		rc = for_each_subchannel(call_fn_unknown_sch, &cb);
143 out:
144 	idset_free(cb.set);
145 
146 	return rc;
147 }
148 
149 static void css_sch_todo(struct work_struct *work);
150 
151 static int css_sch_create_locks(struct subchannel *sch)
152 {
153 	sch->lock = kmalloc(sizeof(*sch->lock), GFP_KERNEL);
154 	if (!sch->lock)
155 		return -ENOMEM;
156 
157 	spin_lock_init(sch->lock);
158 	mutex_init(&sch->reg_mutex);
159 
160 	return 0;
161 }
162 
163 static void css_subchannel_release(struct device *dev)
164 {
165 	struct subchannel *sch = to_subchannel(dev);
166 
167 	sch->config.intparm = 0;
168 	cio_commit_config(sch);
169 	kfree(sch->driver_override);
170 	kfree(sch->lock);
171 	kfree(sch);
172 }
173 
174 static int css_validate_subchannel(struct subchannel_id schid,
175 				   struct schib *schib)
176 {
177 	int err;
178 
179 	switch (schib->pmcw.st) {
180 	case SUBCHANNEL_TYPE_IO:
181 	case SUBCHANNEL_TYPE_MSG:
182 		if (!css_sch_is_valid(schib))
183 			err = -ENODEV;
184 		else if (is_blacklisted(schid.ssid, schib->pmcw.dev)) {
185 			CIO_MSG_EVENT(6, "Blacklisted device detected "
186 				      "at devno %04X, subchannel set %x\n",
187 				      schib->pmcw.dev, schid.ssid);
188 			err = -ENODEV;
189 		} else
190 			err = 0;
191 		break;
192 	default:
193 		err = 0;
194 	}
195 	if (err)
196 		goto out;
197 
198 	CIO_MSG_EVENT(4, "Subchannel 0.%x.%04x reports subchannel type %04X\n",
199 		      schid.ssid, schid.sch_no, schib->pmcw.st);
200 out:
201 	return err;
202 }
203 
204 struct subchannel *css_alloc_subchannel(struct subchannel_id schid,
205 					struct schib *schib)
206 {
207 	struct subchannel *sch;
208 	int ret;
209 
210 	ret = css_validate_subchannel(schid, schib);
211 	if (ret < 0)
212 		return ERR_PTR(ret);
213 
214 	sch = kzalloc(sizeof(*sch), GFP_KERNEL | GFP_DMA);
215 	if (!sch)
216 		return ERR_PTR(-ENOMEM);
217 
218 	sch->schid = schid;
219 	sch->schib = *schib;
220 	sch->st = schib->pmcw.st;
221 
222 	ret = css_sch_create_locks(sch);
223 	if (ret)
224 		goto err;
225 
226 	INIT_WORK(&sch->todo_work, css_sch_todo);
227 	sch->dev.release = &css_subchannel_release;
228 	device_initialize(&sch->dev);
229 	/*
230 	 * The physical addresses of some the dma structures that can
231 	 * belong to a subchannel need to fit 31 bit width (e.g. ccw).
232 	 */
233 	sch->dev.coherent_dma_mask = DMA_BIT_MASK(31);
234 	/*
235 	 * But we don't have such restrictions imposed on the stuff that
236 	 * is handled by the streaming API.
237 	 */
238 	sch->dma_mask = DMA_BIT_MASK(64);
239 	sch->dev.dma_mask = &sch->dma_mask;
240 	return sch;
241 
242 err:
243 	kfree(sch);
244 	return ERR_PTR(ret);
245 }
246 
247 static int css_sch_device_register(struct subchannel *sch)
248 {
249 	int ret;
250 
251 	mutex_lock(&sch->reg_mutex);
252 	dev_set_name(&sch->dev, "0.%x.%04x", sch->schid.ssid,
253 		     sch->schid.sch_no);
254 	ret = device_add(&sch->dev);
255 	mutex_unlock(&sch->reg_mutex);
256 	return ret;
257 }
258 
259 /**
260  * css_sch_device_unregister - unregister a subchannel
261  * @sch: subchannel to be unregistered
262  */
263 void css_sch_device_unregister(struct subchannel *sch)
264 {
265 	mutex_lock(&sch->reg_mutex);
266 	if (device_is_registered(&sch->dev))
267 		device_unregister(&sch->dev);
268 	mutex_unlock(&sch->reg_mutex);
269 }
270 EXPORT_SYMBOL_GPL(css_sch_device_unregister);
271 
272 static void ssd_from_pmcw(struct chsc_ssd_info *ssd, struct pmcw *pmcw)
273 {
274 	int i;
275 	int mask;
276 
277 	memset(ssd, 0, sizeof(struct chsc_ssd_info));
278 	ssd->path_mask = pmcw->pim;
279 	for (i = 0; i < 8; i++) {
280 		mask = 0x80 >> i;
281 		if (pmcw->pim & mask) {
282 			chp_id_init(&ssd->chpid[i]);
283 			ssd->chpid[i].id = pmcw->chpid[i];
284 		}
285 	}
286 }
287 
288 static void ssd_register_chpids(struct chsc_ssd_info *ssd)
289 {
290 	int i;
291 	int mask;
292 
293 	for (i = 0; i < 8; i++) {
294 		mask = 0x80 >> i;
295 		if (ssd->path_mask & mask)
296 			chp_new(ssd->chpid[i]);
297 	}
298 }
299 
300 void css_update_ssd_info(struct subchannel *sch)
301 {
302 	int ret;
303 
304 	ret = chsc_get_ssd_info(sch->schid, &sch->ssd_info);
305 	if (ret)
306 		ssd_from_pmcw(&sch->ssd_info, &sch->schib.pmcw);
307 
308 	ssd_register_chpids(&sch->ssd_info);
309 }
310 
311 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
312 			 char *buf)
313 {
314 	struct subchannel *sch = to_subchannel(dev);
315 
316 	return sprintf(buf, "%01x\n", sch->st);
317 }
318 
319 static DEVICE_ATTR_RO(type);
320 
321 static ssize_t modalias_show(struct device *dev, struct device_attribute *attr,
322 			     char *buf)
323 {
324 	struct subchannel *sch = to_subchannel(dev);
325 
326 	return sprintf(buf, "css:t%01X\n", sch->st);
327 }
328 
329 static DEVICE_ATTR_RO(modalias);
330 
331 static ssize_t driver_override_store(struct device *dev,
332 				     struct device_attribute *attr,
333 				     const char *buf, size_t count)
334 {
335 	struct subchannel *sch = to_subchannel(dev);
336 	char *driver_override, *old, *cp;
337 
338 	/* We need to keep extra room for a newline */
339 	if (count >= (PAGE_SIZE - 1))
340 		return -EINVAL;
341 
342 	driver_override = kstrndup(buf, count, GFP_KERNEL);
343 	if (!driver_override)
344 		return -ENOMEM;
345 
346 	cp = strchr(driver_override, '\n');
347 	if (cp)
348 		*cp = '\0';
349 
350 	device_lock(dev);
351 	old = sch->driver_override;
352 	if (strlen(driver_override)) {
353 		sch->driver_override = driver_override;
354 	} else {
355 		kfree(driver_override);
356 		sch->driver_override = NULL;
357 	}
358 	device_unlock(dev);
359 
360 	kfree(old);
361 
362 	return count;
363 }
364 
365 static ssize_t driver_override_show(struct device *dev,
366 				    struct device_attribute *attr, char *buf)
367 {
368 	struct subchannel *sch = to_subchannel(dev);
369 	ssize_t len;
370 
371 	device_lock(dev);
372 	len = snprintf(buf, PAGE_SIZE, "%s\n", sch->driver_override);
373 	device_unlock(dev);
374 	return len;
375 }
376 static DEVICE_ATTR_RW(driver_override);
377 
378 static struct attribute *subch_attrs[] = {
379 	&dev_attr_type.attr,
380 	&dev_attr_modalias.attr,
381 	&dev_attr_driver_override.attr,
382 	NULL,
383 };
384 
385 static struct attribute_group subch_attr_group = {
386 	.attrs = subch_attrs,
387 };
388 
389 static const struct attribute_group *default_subch_attr_groups[] = {
390 	&subch_attr_group,
391 	NULL,
392 };
393 
394 static ssize_t chpids_show(struct device *dev,
395 			   struct device_attribute *attr,
396 			   char *buf)
397 {
398 	struct subchannel *sch = to_subchannel(dev);
399 	struct chsc_ssd_info *ssd = &sch->ssd_info;
400 	ssize_t ret = 0;
401 	int mask;
402 	int chp;
403 
404 	for (chp = 0; chp < 8; chp++) {
405 		mask = 0x80 >> chp;
406 		if (ssd->path_mask & mask)
407 			ret += sprintf(buf + ret, "%02x ", ssd->chpid[chp].id);
408 		else
409 			ret += sprintf(buf + ret, "00 ");
410 	}
411 	ret += sprintf(buf + ret, "\n");
412 	return ret;
413 }
414 static DEVICE_ATTR_RO(chpids);
415 
416 static ssize_t pimpampom_show(struct device *dev,
417 			      struct device_attribute *attr,
418 			      char *buf)
419 {
420 	struct subchannel *sch = to_subchannel(dev);
421 	struct pmcw *pmcw = &sch->schib.pmcw;
422 
423 	return sprintf(buf, "%02x %02x %02x\n",
424 		       pmcw->pim, pmcw->pam, pmcw->pom);
425 }
426 static DEVICE_ATTR_RO(pimpampom);
427 
428 static struct attribute *io_subchannel_type_attrs[] = {
429 	&dev_attr_chpids.attr,
430 	&dev_attr_pimpampom.attr,
431 	NULL,
432 };
433 ATTRIBUTE_GROUPS(io_subchannel_type);
434 
435 static const struct device_type io_subchannel_type = {
436 	.groups = io_subchannel_type_groups,
437 };
438 
439 int css_register_subchannel(struct subchannel *sch)
440 {
441 	int ret;
442 
443 	/* Initialize the subchannel structure */
444 	sch->dev.parent = &channel_subsystems[0]->device;
445 	sch->dev.bus = &css_bus_type;
446 	sch->dev.groups = default_subch_attr_groups;
447 
448 	if (sch->st == SUBCHANNEL_TYPE_IO)
449 		sch->dev.type = &io_subchannel_type;
450 
451 	/*
452 	 * We don't want to generate uevents for I/O subchannels that don't
453 	 * have a working ccw device behind them since they will be
454 	 * unregistered before they can be used anyway, so we delay the add
455 	 * uevent until after device recognition was successful.
456 	 * Note that we suppress the uevent for all subchannel types;
457 	 * the subchannel driver can decide itself when it wants to inform
458 	 * userspace of its existence.
459 	 */
460 	dev_set_uevent_suppress(&sch->dev, 1);
461 	css_update_ssd_info(sch);
462 	/* make it known to the system */
463 	ret = css_sch_device_register(sch);
464 	if (ret) {
465 		CIO_MSG_EVENT(0, "Could not register sch 0.%x.%04x: %d\n",
466 			      sch->schid.ssid, sch->schid.sch_no, ret);
467 		return ret;
468 	}
469 	if (!sch->driver) {
470 		/*
471 		 * No driver matched. Generate the uevent now so that
472 		 * a fitting driver module may be loaded based on the
473 		 * modalias.
474 		 */
475 		dev_set_uevent_suppress(&sch->dev, 0);
476 		kobject_uevent(&sch->dev.kobj, KOBJ_ADD);
477 	}
478 	return ret;
479 }
480 
481 static int css_probe_device(struct subchannel_id schid, struct schib *schib)
482 {
483 	struct subchannel *sch;
484 	int ret;
485 
486 	sch = css_alloc_subchannel(schid, schib);
487 	if (IS_ERR(sch))
488 		return PTR_ERR(sch);
489 
490 	ret = css_register_subchannel(sch);
491 	if (ret)
492 		put_device(&sch->dev);
493 
494 	return ret;
495 }
496 
497 static int
498 check_subchannel(struct device *dev, const void *data)
499 {
500 	struct subchannel *sch;
501 	struct subchannel_id *schid = (void *)data;
502 
503 	sch = to_subchannel(dev);
504 	return schid_equal(&sch->schid, schid);
505 }
506 
507 struct subchannel *
508 get_subchannel_by_schid(struct subchannel_id schid)
509 {
510 	struct device *dev;
511 
512 	dev = bus_find_device(&css_bus_type, NULL,
513 			      &schid, check_subchannel);
514 
515 	return dev ? to_subchannel(dev) : NULL;
516 }
517 
518 /**
519  * css_sch_is_valid() - check if a subchannel is valid
520  * @schib: subchannel information block for the subchannel
521  */
522 int css_sch_is_valid(struct schib *schib)
523 {
524 	if ((schib->pmcw.st == SUBCHANNEL_TYPE_IO) && !schib->pmcw.dnv)
525 		return 0;
526 	if ((schib->pmcw.st == SUBCHANNEL_TYPE_MSG) && !schib->pmcw.w)
527 		return 0;
528 	return 1;
529 }
530 EXPORT_SYMBOL_GPL(css_sch_is_valid);
531 
532 static int css_evaluate_new_subchannel(struct subchannel_id schid, int slow)
533 {
534 	struct schib schib;
535 	int ccode;
536 
537 	if (!slow) {
538 		/* Will be done on the slow path. */
539 		return -EAGAIN;
540 	}
541 	/*
542 	 * The first subchannel that is not-operational (ccode==3)
543 	 * indicates that there aren't any more devices available.
544 	 * If stsch gets an exception, it means the current subchannel set
545 	 * is not valid.
546 	 */
547 	ccode = stsch(schid, &schib);
548 	if (ccode)
549 		return (ccode == 3) ? -ENXIO : ccode;
550 
551 	return css_probe_device(schid, &schib);
552 }
553 
554 static int css_evaluate_known_subchannel(struct subchannel *sch, int slow)
555 {
556 	int ret = 0;
557 
558 	if (sch->driver) {
559 		if (sch->driver->sch_event)
560 			ret = sch->driver->sch_event(sch, slow);
561 		else
562 			dev_dbg(&sch->dev,
563 				"Got subchannel machine check but "
564 				"no sch_event handler provided.\n");
565 	}
566 	if (ret != 0 && ret != -EAGAIN) {
567 		CIO_MSG_EVENT(2, "eval: sch 0.%x.%04x, rc=%d\n",
568 			      sch->schid.ssid, sch->schid.sch_no, ret);
569 	}
570 	return ret;
571 }
572 
573 static void css_evaluate_subchannel(struct subchannel_id schid, int slow)
574 {
575 	struct subchannel *sch;
576 	int ret;
577 
578 	sch = get_subchannel_by_schid(schid);
579 	if (sch) {
580 		ret = css_evaluate_known_subchannel(sch, slow);
581 		put_device(&sch->dev);
582 	} else
583 		ret = css_evaluate_new_subchannel(schid, slow);
584 	if (ret == -EAGAIN)
585 		css_schedule_eval(schid);
586 }
587 
588 /**
589  * css_sched_sch_todo - schedule a subchannel operation
590  * @sch: subchannel
591  * @todo: todo
592  *
593  * Schedule the operation identified by @todo to be performed on the slow path
594  * workqueue. Do nothing if another operation with higher priority is already
595  * scheduled. Needs to be called with subchannel lock held.
596  */
597 void css_sched_sch_todo(struct subchannel *sch, enum sch_todo todo)
598 {
599 	CIO_MSG_EVENT(4, "sch_todo: sched sch=0.%x.%04x todo=%d\n",
600 		      sch->schid.ssid, sch->schid.sch_no, todo);
601 	if (sch->todo >= todo)
602 		return;
603 	/* Get workqueue ref. */
604 	if (!get_device(&sch->dev))
605 		return;
606 	sch->todo = todo;
607 	if (!queue_work(cio_work_q, &sch->todo_work)) {
608 		/* Already queued, release workqueue ref. */
609 		put_device(&sch->dev);
610 	}
611 }
612 EXPORT_SYMBOL_GPL(css_sched_sch_todo);
613 
614 static void css_sch_todo(struct work_struct *work)
615 {
616 	struct subchannel *sch;
617 	enum sch_todo todo;
618 	int ret;
619 
620 	sch = container_of(work, struct subchannel, todo_work);
621 	/* Find out todo. */
622 	spin_lock_irq(sch->lock);
623 	todo = sch->todo;
624 	CIO_MSG_EVENT(4, "sch_todo: sch=0.%x.%04x, todo=%d\n", sch->schid.ssid,
625 		      sch->schid.sch_no, todo);
626 	sch->todo = SCH_TODO_NOTHING;
627 	spin_unlock_irq(sch->lock);
628 	/* Perform todo. */
629 	switch (todo) {
630 	case SCH_TODO_NOTHING:
631 		break;
632 	case SCH_TODO_EVAL:
633 		ret = css_evaluate_known_subchannel(sch, 1);
634 		if (ret == -EAGAIN) {
635 			spin_lock_irq(sch->lock);
636 			css_sched_sch_todo(sch, todo);
637 			spin_unlock_irq(sch->lock);
638 		}
639 		break;
640 	case SCH_TODO_UNREG:
641 		css_sch_device_unregister(sch);
642 		break;
643 	}
644 	/* Release workqueue ref. */
645 	put_device(&sch->dev);
646 }
647 
648 static struct idset *slow_subchannel_set;
649 static spinlock_t slow_subchannel_lock;
650 static wait_queue_head_t css_eval_wq;
651 static atomic_t css_eval_scheduled;
652 
653 static int __init slow_subchannel_init(void)
654 {
655 	spin_lock_init(&slow_subchannel_lock);
656 	atomic_set(&css_eval_scheduled, 0);
657 	init_waitqueue_head(&css_eval_wq);
658 	slow_subchannel_set = idset_sch_new();
659 	if (!slow_subchannel_set) {
660 		CIO_MSG_EVENT(0, "could not allocate slow subchannel set\n");
661 		return -ENOMEM;
662 	}
663 	return 0;
664 }
665 
666 static int slow_eval_known_fn(struct subchannel *sch, void *data)
667 {
668 	int eval;
669 	int rc;
670 
671 	spin_lock_irq(&slow_subchannel_lock);
672 	eval = idset_sch_contains(slow_subchannel_set, sch->schid);
673 	idset_sch_del(slow_subchannel_set, sch->schid);
674 	spin_unlock_irq(&slow_subchannel_lock);
675 	if (eval) {
676 		rc = css_evaluate_known_subchannel(sch, 1);
677 		if (rc == -EAGAIN)
678 			css_schedule_eval(sch->schid);
679 		/*
680 		 * The loop might take long time for platforms with lots of
681 		 * known devices. Allow scheduling here.
682 		 */
683 		cond_resched();
684 	}
685 	return 0;
686 }
687 
688 static int slow_eval_unknown_fn(struct subchannel_id schid, void *data)
689 {
690 	int eval;
691 	int rc = 0;
692 
693 	spin_lock_irq(&slow_subchannel_lock);
694 	eval = idset_sch_contains(slow_subchannel_set, schid);
695 	idset_sch_del(slow_subchannel_set, schid);
696 	spin_unlock_irq(&slow_subchannel_lock);
697 	if (eval) {
698 		rc = css_evaluate_new_subchannel(schid, 1);
699 		switch (rc) {
700 		case -EAGAIN:
701 			css_schedule_eval(schid);
702 			rc = 0;
703 			break;
704 		case -ENXIO:
705 		case -ENOMEM:
706 		case -EIO:
707 			/* These should abort looping */
708 			spin_lock_irq(&slow_subchannel_lock);
709 			idset_sch_del_subseq(slow_subchannel_set, schid);
710 			spin_unlock_irq(&slow_subchannel_lock);
711 			break;
712 		default:
713 			rc = 0;
714 		}
715 		/* Allow scheduling here since the containing loop might
716 		 * take a while.  */
717 		cond_resched();
718 	}
719 	return rc;
720 }
721 
722 static void css_slow_path_func(struct work_struct *unused)
723 {
724 	unsigned long flags;
725 
726 	CIO_TRACE_EVENT(4, "slowpath");
727 	for_each_subchannel_staged(slow_eval_known_fn, slow_eval_unknown_fn,
728 				   NULL);
729 	spin_lock_irqsave(&slow_subchannel_lock, flags);
730 	if (idset_is_empty(slow_subchannel_set)) {
731 		atomic_set(&css_eval_scheduled, 0);
732 		wake_up(&css_eval_wq);
733 	}
734 	spin_unlock_irqrestore(&slow_subchannel_lock, flags);
735 }
736 
737 static DECLARE_DELAYED_WORK(slow_path_work, css_slow_path_func);
738 struct workqueue_struct *cio_work_q;
739 
740 void css_schedule_eval(struct subchannel_id schid)
741 {
742 	unsigned long flags;
743 
744 	spin_lock_irqsave(&slow_subchannel_lock, flags);
745 	idset_sch_add(slow_subchannel_set, schid);
746 	atomic_set(&css_eval_scheduled, 1);
747 	queue_delayed_work(cio_work_q, &slow_path_work, 0);
748 	spin_unlock_irqrestore(&slow_subchannel_lock, flags);
749 }
750 
751 void css_schedule_eval_all(void)
752 {
753 	unsigned long flags;
754 
755 	spin_lock_irqsave(&slow_subchannel_lock, flags);
756 	idset_fill(slow_subchannel_set);
757 	atomic_set(&css_eval_scheduled, 1);
758 	queue_delayed_work(cio_work_q, &slow_path_work, 0);
759 	spin_unlock_irqrestore(&slow_subchannel_lock, flags);
760 }
761 
762 static int __unset_registered(struct device *dev, void *data)
763 {
764 	struct idset *set = data;
765 	struct subchannel *sch = to_subchannel(dev);
766 
767 	idset_sch_del(set, sch->schid);
768 	return 0;
769 }
770 
771 void css_schedule_eval_all_unreg(unsigned long delay)
772 {
773 	unsigned long flags;
774 	struct idset *unreg_set;
775 
776 	/* Find unregistered subchannels. */
777 	unreg_set = idset_sch_new();
778 	if (!unreg_set) {
779 		/* Fallback. */
780 		css_schedule_eval_all();
781 		return;
782 	}
783 	idset_fill(unreg_set);
784 	bus_for_each_dev(&css_bus_type, NULL, unreg_set, __unset_registered);
785 	/* Apply to slow_subchannel_set. */
786 	spin_lock_irqsave(&slow_subchannel_lock, flags);
787 	idset_add_set(slow_subchannel_set, unreg_set);
788 	atomic_set(&css_eval_scheduled, 1);
789 	queue_delayed_work(cio_work_q, &slow_path_work, delay);
790 	spin_unlock_irqrestore(&slow_subchannel_lock, flags);
791 	idset_free(unreg_set);
792 }
793 
794 void css_wait_for_slow_path(void)
795 {
796 	flush_workqueue(cio_work_q);
797 }
798 
799 /* Schedule reprobing of all unregistered subchannels. */
800 void css_schedule_reprobe(void)
801 {
802 	/* Schedule with a delay to allow merging of subsequent calls. */
803 	css_schedule_eval_all_unreg(1 * HZ);
804 }
805 EXPORT_SYMBOL_GPL(css_schedule_reprobe);
806 
807 /*
808  * Called from the machine check handler for subchannel report words.
809  */
810 static void css_process_crw(struct crw *crw0, struct crw *crw1, int overflow)
811 {
812 	struct subchannel_id mchk_schid;
813 	struct subchannel *sch;
814 
815 	if (overflow) {
816 		css_schedule_eval_all();
817 		return;
818 	}
819 	CIO_CRW_EVENT(2, "CRW0 reports slct=%d, oflw=%d, "
820 		      "chn=%d, rsc=%X, anc=%d, erc=%X, rsid=%X\n",
821 		      crw0->slct, crw0->oflw, crw0->chn, crw0->rsc, crw0->anc,
822 		      crw0->erc, crw0->rsid);
823 	if (crw1)
824 		CIO_CRW_EVENT(2, "CRW1 reports slct=%d, oflw=%d, "
825 			      "chn=%d, rsc=%X, anc=%d, erc=%X, rsid=%X\n",
826 			      crw1->slct, crw1->oflw, crw1->chn, crw1->rsc,
827 			      crw1->anc, crw1->erc, crw1->rsid);
828 	init_subchannel_id(&mchk_schid);
829 	mchk_schid.sch_no = crw0->rsid;
830 	if (crw1)
831 		mchk_schid.ssid = (crw1->rsid >> 4) & 3;
832 
833 	if (crw0->erc == CRW_ERC_PMOD) {
834 		sch = get_subchannel_by_schid(mchk_schid);
835 		if (sch) {
836 			css_update_ssd_info(sch);
837 			put_device(&sch->dev);
838 		}
839 	}
840 	/*
841 	 * Since we are always presented with IPI in the CRW, we have to
842 	 * use stsch() to find out if the subchannel in question has come
843 	 * or gone.
844 	 */
845 	css_evaluate_subchannel(mchk_schid, 0);
846 }
847 
848 static void __init
849 css_generate_pgid(struct channel_subsystem *css, u32 tod_high)
850 {
851 	struct cpuid cpu_id;
852 
853 	if (css_general_characteristics.mcss) {
854 		css->global_pgid.pgid_high.ext_cssid.version = 0x80;
855 		css->global_pgid.pgid_high.ext_cssid.cssid =
856 			css->id_valid ? css->cssid : 0;
857 	} else {
858 		css->global_pgid.pgid_high.cpu_addr = stap();
859 	}
860 	get_cpu_id(&cpu_id);
861 	css->global_pgid.cpu_id = cpu_id.ident;
862 	css->global_pgid.cpu_model = cpu_id.machine;
863 	css->global_pgid.tod_high = tod_high;
864 }
865 
866 static void channel_subsystem_release(struct device *dev)
867 {
868 	struct channel_subsystem *css = to_css(dev);
869 
870 	mutex_destroy(&css->mutex);
871 	kfree(css);
872 }
873 
874 static ssize_t real_cssid_show(struct device *dev, struct device_attribute *a,
875 			       char *buf)
876 {
877 	struct channel_subsystem *css = to_css(dev);
878 
879 	if (!css->id_valid)
880 		return -EINVAL;
881 
882 	return sprintf(buf, "%x\n", css->cssid);
883 }
884 static DEVICE_ATTR_RO(real_cssid);
885 
886 static ssize_t cm_enable_show(struct device *dev, struct device_attribute *a,
887 			      char *buf)
888 {
889 	struct channel_subsystem *css = to_css(dev);
890 	int ret;
891 
892 	mutex_lock(&css->mutex);
893 	ret = sprintf(buf, "%x\n", css->cm_enabled);
894 	mutex_unlock(&css->mutex);
895 	return ret;
896 }
897 
898 static ssize_t cm_enable_store(struct device *dev, struct device_attribute *a,
899 			       const char *buf, size_t count)
900 {
901 	struct channel_subsystem *css = to_css(dev);
902 	unsigned long val;
903 	int ret;
904 
905 	ret = kstrtoul(buf, 16, &val);
906 	if (ret)
907 		return ret;
908 	mutex_lock(&css->mutex);
909 	switch (val) {
910 	case 0:
911 		ret = css->cm_enabled ? chsc_secm(css, 0) : 0;
912 		break;
913 	case 1:
914 		ret = css->cm_enabled ? 0 : chsc_secm(css, 1);
915 		break;
916 	default:
917 		ret = -EINVAL;
918 	}
919 	mutex_unlock(&css->mutex);
920 	return ret < 0 ? ret : count;
921 }
922 static DEVICE_ATTR_RW(cm_enable);
923 
924 static umode_t cm_enable_mode(struct kobject *kobj, struct attribute *attr,
925 			      int index)
926 {
927 	return css_chsc_characteristics.secm ? attr->mode : 0;
928 }
929 
930 static struct attribute *cssdev_attrs[] = {
931 	&dev_attr_real_cssid.attr,
932 	NULL,
933 };
934 
935 static struct attribute_group cssdev_attr_group = {
936 	.attrs = cssdev_attrs,
937 };
938 
939 static struct attribute *cssdev_cm_attrs[] = {
940 	&dev_attr_cm_enable.attr,
941 	NULL,
942 };
943 
944 static struct attribute_group cssdev_cm_attr_group = {
945 	.attrs = cssdev_cm_attrs,
946 	.is_visible = cm_enable_mode,
947 };
948 
949 static const struct attribute_group *cssdev_attr_groups[] = {
950 	&cssdev_attr_group,
951 	&cssdev_cm_attr_group,
952 	NULL,
953 };
954 
955 static int __init setup_css(int nr)
956 {
957 	struct channel_subsystem *css;
958 	int ret;
959 
960 	css = kzalloc(sizeof(*css), GFP_KERNEL);
961 	if (!css)
962 		return -ENOMEM;
963 
964 	channel_subsystems[nr] = css;
965 	dev_set_name(&css->device, "css%x", nr);
966 	css->device.groups = cssdev_attr_groups;
967 	css->device.release = channel_subsystem_release;
968 	/*
969 	 * We currently allocate notifier bits with this (using
970 	 * css->device as the device argument with the DMA API)
971 	 * and are fine with 64 bit addresses.
972 	 */
973 	css->device.coherent_dma_mask = DMA_BIT_MASK(64);
974 	css->device.dma_mask = &css->device.coherent_dma_mask;
975 
976 	mutex_init(&css->mutex);
977 	ret = chsc_get_cssid_iid(nr, &css->cssid, &css->iid);
978 	if (!ret) {
979 		css->id_valid = true;
980 		pr_info("Partition identifier %01x.%01x\n", css->cssid,
981 			css->iid);
982 	}
983 	css_generate_pgid(css, (u32) (get_tod_clock() >> 32));
984 
985 	ret = device_register(&css->device);
986 	if (ret) {
987 		put_device(&css->device);
988 		goto out_err;
989 	}
990 
991 	css->pseudo_subchannel = kzalloc(sizeof(*css->pseudo_subchannel),
992 					 GFP_KERNEL);
993 	if (!css->pseudo_subchannel) {
994 		device_unregister(&css->device);
995 		ret = -ENOMEM;
996 		goto out_err;
997 	}
998 
999 	css->pseudo_subchannel->dev.parent = &css->device;
1000 	css->pseudo_subchannel->dev.release = css_subchannel_release;
1001 	mutex_init(&css->pseudo_subchannel->reg_mutex);
1002 	ret = css_sch_create_locks(css->pseudo_subchannel);
1003 	if (ret) {
1004 		kfree(css->pseudo_subchannel);
1005 		device_unregister(&css->device);
1006 		goto out_err;
1007 	}
1008 
1009 	dev_set_name(&css->pseudo_subchannel->dev, "defunct");
1010 	ret = device_register(&css->pseudo_subchannel->dev);
1011 	if (ret) {
1012 		put_device(&css->pseudo_subchannel->dev);
1013 		device_unregister(&css->device);
1014 		goto out_err;
1015 	}
1016 
1017 	return ret;
1018 out_err:
1019 	channel_subsystems[nr] = NULL;
1020 	return ret;
1021 }
1022 
1023 static int css_reboot_event(struct notifier_block *this,
1024 			    unsigned long event,
1025 			    void *ptr)
1026 {
1027 	struct channel_subsystem *css;
1028 	int ret;
1029 
1030 	ret = NOTIFY_DONE;
1031 	for_each_css(css) {
1032 		mutex_lock(&css->mutex);
1033 		if (css->cm_enabled)
1034 			if (chsc_secm(css, 0))
1035 				ret = NOTIFY_BAD;
1036 		mutex_unlock(&css->mutex);
1037 	}
1038 
1039 	return ret;
1040 }
1041 
1042 static struct notifier_block css_reboot_notifier = {
1043 	.notifier_call = css_reboot_event,
1044 };
1045 
1046 #define  CIO_DMA_GFP (GFP_KERNEL | __GFP_ZERO)
1047 static struct gen_pool *cio_dma_pool;
1048 
1049 /* Currently cio supports only a single css */
1050 struct device *cio_get_dma_css_dev(void)
1051 {
1052 	return &channel_subsystems[0]->device;
1053 }
1054 
1055 struct gen_pool *cio_gp_dma_create(struct device *dma_dev, int nr_pages)
1056 {
1057 	struct gen_pool *gp_dma;
1058 	void *cpu_addr;
1059 	dma_addr_t dma_addr;
1060 	int i;
1061 
1062 	gp_dma = gen_pool_create(3, -1);
1063 	if (!gp_dma)
1064 		return NULL;
1065 	for (i = 0; i < nr_pages; ++i) {
1066 		cpu_addr = dma_alloc_coherent(dma_dev, PAGE_SIZE, &dma_addr,
1067 					      CIO_DMA_GFP);
1068 		if (!cpu_addr)
1069 			return gp_dma;
1070 		gen_pool_add_virt(gp_dma, (unsigned long) cpu_addr,
1071 				  dma_addr, PAGE_SIZE, -1);
1072 	}
1073 	return gp_dma;
1074 }
1075 
1076 static void __gp_dma_free_dma(struct gen_pool *pool,
1077 			      struct gen_pool_chunk *chunk, void *data)
1078 {
1079 	size_t chunk_size = chunk->end_addr - chunk->start_addr + 1;
1080 
1081 	dma_free_coherent((struct device *) data, chunk_size,
1082 			 (void *) chunk->start_addr,
1083 			 (dma_addr_t) chunk->phys_addr);
1084 }
1085 
1086 void cio_gp_dma_destroy(struct gen_pool *gp_dma, struct device *dma_dev)
1087 {
1088 	if (!gp_dma)
1089 		return;
1090 	/* this is quite ugly but no better idea */
1091 	gen_pool_for_each_chunk(gp_dma, __gp_dma_free_dma, dma_dev);
1092 	gen_pool_destroy(gp_dma);
1093 }
1094 
1095 static int cio_dma_pool_init(void)
1096 {
1097 	/* No need to free up the resources: compiled in */
1098 	cio_dma_pool = cio_gp_dma_create(cio_get_dma_css_dev(), 1);
1099 	if (!cio_dma_pool)
1100 		return -ENOMEM;
1101 	return 0;
1102 }
1103 
1104 void *cio_gp_dma_zalloc(struct gen_pool *gp_dma, struct device *dma_dev,
1105 			size_t size)
1106 {
1107 	dma_addr_t dma_addr;
1108 	unsigned long addr;
1109 	size_t chunk_size;
1110 
1111 	if (!gp_dma)
1112 		return NULL;
1113 	addr = gen_pool_alloc(gp_dma, size);
1114 	while (!addr) {
1115 		chunk_size = round_up(size, PAGE_SIZE);
1116 		addr = (unsigned long) dma_alloc_coherent(dma_dev,
1117 					 chunk_size, &dma_addr, CIO_DMA_GFP);
1118 		if (!addr)
1119 			return NULL;
1120 		gen_pool_add_virt(gp_dma, addr, dma_addr, chunk_size, -1);
1121 		addr = gen_pool_alloc(gp_dma, size);
1122 	}
1123 	return (void *) addr;
1124 }
1125 
1126 void cio_gp_dma_free(struct gen_pool *gp_dma, void *cpu_addr, size_t size)
1127 {
1128 	if (!cpu_addr)
1129 		return;
1130 	memset(cpu_addr, 0, size);
1131 	gen_pool_free(gp_dma, (unsigned long) cpu_addr, size);
1132 }
1133 
1134 /*
1135  * Allocate dma memory from the css global pool. Intended for memory not
1136  * specific to any single device within the css. The allocated memory
1137  * is not guaranteed to be 31-bit addressable.
1138  *
1139  * Caution: Not suitable for early stuff like console.
1140  */
1141 void *cio_dma_zalloc(size_t size)
1142 {
1143 	return cio_gp_dma_zalloc(cio_dma_pool, cio_get_dma_css_dev(), size);
1144 }
1145 
1146 void cio_dma_free(void *cpu_addr, size_t size)
1147 {
1148 	cio_gp_dma_free(cio_dma_pool, cpu_addr, size);
1149 }
1150 
1151 /*
1152  * Now that the driver core is running, we can setup our channel subsystem.
1153  * The struct subchannel's are created during probing.
1154  */
1155 static int __init css_bus_init(void)
1156 {
1157 	int ret, i;
1158 
1159 	ret = chsc_init();
1160 	if (ret)
1161 		return ret;
1162 
1163 	chsc_determine_css_characteristics();
1164 	/* Try to enable MSS. */
1165 	ret = chsc_enable_facility(CHSC_SDA_OC_MSS);
1166 	if (ret)
1167 		max_ssid = 0;
1168 	else /* Success. */
1169 		max_ssid = __MAX_SSID;
1170 
1171 	ret = slow_subchannel_init();
1172 	if (ret)
1173 		goto out;
1174 
1175 	ret = crw_register_handler(CRW_RSC_SCH, css_process_crw);
1176 	if (ret)
1177 		goto out;
1178 
1179 	if ((ret = bus_register(&css_bus_type)))
1180 		goto out;
1181 
1182 	/* Setup css structure. */
1183 	for (i = 0; i <= MAX_CSS_IDX; i++) {
1184 		ret = setup_css(i);
1185 		if (ret)
1186 			goto out_unregister;
1187 	}
1188 	ret = register_reboot_notifier(&css_reboot_notifier);
1189 	if (ret)
1190 		goto out_unregister;
1191 	ret = cio_dma_pool_init();
1192 	if (ret)
1193 		goto out_unregister_rn;
1194 	airq_init();
1195 	css_init_done = 1;
1196 
1197 	/* Enable default isc for I/O subchannels. */
1198 	isc_register(IO_SCH_ISC);
1199 
1200 	return 0;
1201 out_unregister_rn:
1202 	unregister_reboot_notifier(&css_reboot_notifier);
1203 out_unregister:
1204 	while (i-- > 0) {
1205 		struct channel_subsystem *css = channel_subsystems[i];
1206 		device_unregister(&css->pseudo_subchannel->dev);
1207 		device_unregister(&css->device);
1208 	}
1209 	bus_unregister(&css_bus_type);
1210 out:
1211 	crw_unregister_handler(CRW_RSC_SCH);
1212 	idset_free(slow_subchannel_set);
1213 	chsc_init_cleanup();
1214 	pr_alert("The CSS device driver initialization failed with "
1215 		 "errno=%d\n", ret);
1216 	return ret;
1217 }
1218 
1219 static void __init css_bus_cleanup(void)
1220 {
1221 	struct channel_subsystem *css;
1222 
1223 	for_each_css(css) {
1224 		device_unregister(&css->pseudo_subchannel->dev);
1225 		device_unregister(&css->device);
1226 	}
1227 	bus_unregister(&css_bus_type);
1228 	crw_unregister_handler(CRW_RSC_SCH);
1229 	idset_free(slow_subchannel_set);
1230 	chsc_init_cleanup();
1231 	isc_unregister(IO_SCH_ISC);
1232 }
1233 
1234 static int __init channel_subsystem_init(void)
1235 {
1236 	int ret;
1237 
1238 	ret = css_bus_init();
1239 	if (ret)
1240 		return ret;
1241 	cio_work_q = create_singlethread_workqueue("cio");
1242 	if (!cio_work_q) {
1243 		ret = -ENOMEM;
1244 		goto out_bus;
1245 	}
1246 	ret = io_subchannel_init();
1247 	if (ret)
1248 		goto out_wq;
1249 
1250 	/* Register subchannels which are already in use. */
1251 	cio_register_early_subchannels();
1252 	/* Start initial subchannel evaluation. */
1253 	css_schedule_eval_all();
1254 
1255 	return ret;
1256 out_wq:
1257 	destroy_workqueue(cio_work_q);
1258 out_bus:
1259 	css_bus_cleanup();
1260 	return ret;
1261 }
1262 subsys_initcall(channel_subsystem_init);
1263 
1264 static int css_settle(struct device_driver *drv, void *unused)
1265 {
1266 	struct css_driver *cssdrv = to_cssdriver(drv);
1267 
1268 	if (cssdrv->settle)
1269 		return cssdrv->settle();
1270 	return 0;
1271 }
1272 
1273 int css_complete_work(void)
1274 {
1275 	int ret;
1276 
1277 	/* Wait for the evaluation of subchannels to finish. */
1278 	ret = wait_event_interruptible(css_eval_wq,
1279 				       atomic_read(&css_eval_scheduled) == 0);
1280 	if (ret)
1281 		return -EINTR;
1282 	flush_workqueue(cio_work_q);
1283 	/* Wait for the subchannel type specific initialization to finish */
1284 	return bus_for_each_drv(&css_bus_type, NULL, NULL, css_settle);
1285 }
1286 
1287 
1288 /*
1289  * Wait for the initialization of devices to finish, to make sure we are
1290  * done with our setup if the search for the root device starts.
1291  */
1292 static int __init channel_subsystem_init_sync(void)
1293 {
1294 	css_complete_work();
1295 	return 0;
1296 }
1297 subsys_initcall_sync(channel_subsystem_init_sync);
1298 
1299 #ifdef CONFIG_PROC_FS
1300 static ssize_t cio_settle_write(struct file *file, const char __user *buf,
1301 				size_t count, loff_t *ppos)
1302 {
1303 	int ret;
1304 
1305 	/* Handle pending CRW's. */
1306 	crw_wait_for_channel_report();
1307 	ret = css_complete_work();
1308 
1309 	return ret ? ret : count;
1310 }
1311 
1312 static const struct proc_ops cio_settle_proc_ops = {
1313 	.proc_open	= nonseekable_open,
1314 	.proc_write	= cio_settle_write,
1315 	.proc_lseek	= no_llseek,
1316 };
1317 
1318 static int __init cio_settle_init(void)
1319 {
1320 	struct proc_dir_entry *entry;
1321 
1322 	entry = proc_create("cio_settle", S_IWUSR, NULL, &cio_settle_proc_ops);
1323 	if (!entry)
1324 		return -ENOMEM;
1325 	return 0;
1326 }
1327 device_initcall(cio_settle_init);
1328 #endif /*CONFIG_PROC_FS*/
1329 
1330 int sch_is_pseudo_sch(struct subchannel *sch)
1331 {
1332 	if (!sch->dev.parent)
1333 		return 0;
1334 	return sch == to_css(sch->dev.parent)->pseudo_subchannel;
1335 }
1336 
1337 static int css_bus_match(struct device *dev, struct device_driver *drv)
1338 {
1339 	struct subchannel *sch = to_subchannel(dev);
1340 	struct css_driver *driver = to_cssdriver(drv);
1341 	struct css_device_id *id;
1342 
1343 	/* When driver_override is set, only bind to the matching driver */
1344 	if (sch->driver_override && strcmp(sch->driver_override, drv->name))
1345 		return 0;
1346 
1347 	for (id = driver->subchannel_type; id->match_flags; id++) {
1348 		if (sch->st == id->type)
1349 			return 1;
1350 	}
1351 
1352 	return 0;
1353 }
1354 
1355 static int css_probe(struct device *dev)
1356 {
1357 	struct subchannel *sch;
1358 	int ret;
1359 
1360 	sch = to_subchannel(dev);
1361 	sch->driver = to_cssdriver(dev->driver);
1362 	ret = sch->driver->probe ? sch->driver->probe(sch) : 0;
1363 	if (ret)
1364 		sch->driver = NULL;
1365 	return ret;
1366 }
1367 
1368 static int css_remove(struct device *dev)
1369 {
1370 	struct subchannel *sch;
1371 	int ret;
1372 
1373 	sch = to_subchannel(dev);
1374 	ret = sch->driver->remove ? sch->driver->remove(sch) : 0;
1375 	sch->driver = NULL;
1376 	return ret;
1377 }
1378 
1379 static void css_shutdown(struct device *dev)
1380 {
1381 	struct subchannel *sch;
1382 
1383 	sch = to_subchannel(dev);
1384 	if (sch->driver && sch->driver->shutdown)
1385 		sch->driver->shutdown(sch);
1386 }
1387 
1388 static int css_uevent(struct device *dev, struct kobj_uevent_env *env)
1389 {
1390 	struct subchannel *sch = to_subchannel(dev);
1391 	int ret;
1392 
1393 	ret = add_uevent_var(env, "ST=%01X", sch->st);
1394 	if (ret)
1395 		return ret;
1396 	ret = add_uevent_var(env, "MODALIAS=css:t%01X", sch->st);
1397 	return ret;
1398 }
1399 
1400 static struct bus_type css_bus_type = {
1401 	.name     = "css",
1402 	.match    = css_bus_match,
1403 	.probe    = css_probe,
1404 	.remove   = css_remove,
1405 	.shutdown = css_shutdown,
1406 	.uevent   = css_uevent,
1407 };
1408 
1409 /**
1410  * css_driver_register - register a css driver
1411  * @cdrv: css driver to register
1412  *
1413  * This is mainly a wrapper around driver_register that sets name
1414  * and bus_type in the embedded struct device_driver correctly.
1415  */
1416 int css_driver_register(struct css_driver *cdrv)
1417 {
1418 	cdrv->drv.bus = &css_bus_type;
1419 	return driver_register(&cdrv->drv);
1420 }
1421 EXPORT_SYMBOL_GPL(css_driver_register);
1422 
1423 /**
1424  * css_driver_unregister - unregister a css driver
1425  * @cdrv: css driver to unregister
1426  *
1427  * This is a wrapper around driver_unregister.
1428  */
1429 void css_driver_unregister(struct css_driver *cdrv)
1430 {
1431 	driver_unregister(&cdrv->drv);
1432 }
1433 EXPORT_SYMBOL_GPL(css_driver_unregister);
1434