xref: /openbmc/linux/drivers/s390/cio/css.c (revision 234489ac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * driver for channel subsystem
4  *
5  * Copyright IBM Corp. 2002, 2010
6  *
7  * Author(s): Arnd Bergmann (arndb@de.ibm.com)
8  *	      Cornelia Huck (cornelia.huck@de.ibm.com)
9  */
10 
11 #define KMSG_COMPONENT "cio"
12 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
13 
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/device.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 #include <linux/list.h>
20 #include <linux/reboot.h>
21 #include <linux/proc_fs.h>
22 #include <linux/genalloc.h>
23 #include <linux/dma-mapping.h>
24 #include <asm/isc.h>
25 #include <asm/crw.h>
26 
27 #include "css.h"
28 #include "cio.h"
29 #include "blacklist.h"
30 #include "cio_debug.h"
31 #include "ioasm.h"
32 #include "chsc.h"
33 #include "device.h"
34 #include "idset.h"
35 #include "chp.h"
36 
37 int css_init_done = 0;
38 int max_ssid;
39 
40 #define MAX_CSS_IDX 0
41 struct channel_subsystem *channel_subsystems[MAX_CSS_IDX + 1];
42 static struct bus_type css_bus_type;
43 
44 int
45 for_each_subchannel(int(*fn)(struct subchannel_id, void *), void *data)
46 {
47 	struct subchannel_id schid;
48 	int ret;
49 
50 	init_subchannel_id(&schid);
51 	do {
52 		do {
53 			ret = fn(schid, data);
54 			if (ret)
55 				break;
56 		} while (schid.sch_no++ < __MAX_SUBCHANNEL);
57 		schid.sch_no = 0;
58 	} while (schid.ssid++ < max_ssid);
59 	return ret;
60 }
61 
62 struct cb_data {
63 	void *data;
64 	struct idset *set;
65 	int (*fn_known_sch)(struct subchannel *, void *);
66 	int (*fn_unknown_sch)(struct subchannel_id, void *);
67 };
68 
69 static int call_fn_known_sch(struct device *dev, void *data)
70 {
71 	struct subchannel *sch = to_subchannel(dev);
72 	struct cb_data *cb = data;
73 	int rc = 0;
74 
75 	if (cb->set)
76 		idset_sch_del(cb->set, sch->schid);
77 	if (cb->fn_known_sch)
78 		rc = cb->fn_known_sch(sch, cb->data);
79 	return rc;
80 }
81 
82 static int call_fn_unknown_sch(struct subchannel_id schid, void *data)
83 {
84 	struct cb_data *cb = data;
85 	int rc = 0;
86 
87 	if (idset_sch_contains(cb->set, schid))
88 		rc = cb->fn_unknown_sch(schid, cb->data);
89 	return rc;
90 }
91 
92 static int call_fn_all_sch(struct subchannel_id schid, void *data)
93 {
94 	struct cb_data *cb = data;
95 	struct subchannel *sch;
96 	int rc = 0;
97 
98 	sch = get_subchannel_by_schid(schid);
99 	if (sch) {
100 		if (cb->fn_known_sch)
101 			rc = cb->fn_known_sch(sch, cb->data);
102 		put_device(&sch->dev);
103 	} else {
104 		if (cb->fn_unknown_sch)
105 			rc = cb->fn_unknown_sch(schid, cb->data);
106 	}
107 
108 	return rc;
109 }
110 
111 int for_each_subchannel_staged(int (*fn_known)(struct subchannel *, void *),
112 			       int (*fn_unknown)(struct subchannel_id,
113 			       void *), void *data)
114 {
115 	struct cb_data cb;
116 	int rc;
117 
118 	cb.data = data;
119 	cb.fn_known_sch = fn_known;
120 	cb.fn_unknown_sch = fn_unknown;
121 
122 	if (fn_known && !fn_unknown) {
123 		/* Skip idset allocation in case of known-only loop. */
124 		cb.set = NULL;
125 		return bus_for_each_dev(&css_bus_type, NULL, &cb,
126 					call_fn_known_sch);
127 	}
128 
129 	cb.set = idset_sch_new();
130 	if (!cb.set)
131 		/* fall back to brute force scanning in case of oom */
132 		return for_each_subchannel(call_fn_all_sch, &cb);
133 
134 	idset_fill(cb.set);
135 
136 	/* Process registered subchannels. */
137 	rc = bus_for_each_dev(&css_bus_type, NULL, &cb, call_fn_known_sch);
138 	if (rc)
139 		goto out;
140 	/* Process unregistered subchannels. */
141 	if (fn_unknown)
142 		rc = for_each_subchannel(call_fn_unknown_sch, &cb);
143 out:
144 	idset_free(cb.set);
145 
146 	return rc;
147 }
148 
149 static void css_sch_todo(struct work_struct *work);
150 
151 static int css_sch_create_locks(struct subchannel *sch)
152 {
153 	sch->lock = kmalloc(sizeof(*sch->lock), GFP_KERNEL);
154 	if (!sch->lock)
155 		return -ENOMEM;
156 
157 	spin_lock_init(sch->lock);
158 	mutex_init(&sch->reg_mutex);
159 
160 	return 0;
161 }
162 
163 static void css_subchannel_release(struct device *dev)
164 {
165 	struct subchannel *sch = to_subchannel(dev);
166 
167 	sch->config.intparm = 0;
168 	cio_commit_config(sch);
169 	kfree(sch->driver_override);
170 	kfree(sch->lock);
171 	kfree(sch);
172 }
173 
174 static int css_validate_subchannel(struct subchannel_id schid,
175 				   struct schib *schib)
176 {
177 	int err;
178 
179 	switch (schib->pmcw.st) {
180 	case SUBCHANNEL_TYPE_IO:
181 	case SUBCHANNEL_TYPE_MSG:
182 		if (!css_sch_is_valid(schib))
183 			err = -ENODEV;
184 		else if (is_blacklisted(schid.ssid, schib->pmcw.dev)) {
185 			CIO_MSG_EVENT(6, "Blacklisted device detected "
186 				      "at devno %04X, subchannel set %x\n",
187 				      schib->pmcw.dev, schid.ssid);
188 			err = -ENODEV;
189 		} else
190 			err = 0;
191 		break;
192 	default:
193 		err = 0;
194 	}
195 	if (err)
196 		goto out;
197 
198 	CIO_MSG_EVENT(4, "Subchannel 0.%x.%04x reports subchannel type %04X\n",
199 		      schid.ssid, schid.sch_no, schib->pmcw.st);
200 out:
201 	return err;
202 }
203 
204 struct subchannel *css_alloc_subchannel(struct subchannel_id schid,
205 					struct schib *schib)
206 {
207 	struct subchannel *sch;
208 	int ret;
209 
210 	ret = css_validate_subchannel(schid, schib);
211 	if (ret < 0)
212 		return ERR_PTR(ret);
213 
214 	sch = kzalloc(sizeof(*sch), GFP_KERNEL | GFP_DMA);
215 	if (!sch)
216 		return ERR_PTR(-ENOMEM);
217 
218 	sch->schid = schid;
219 	sch->schib = *schib;
220 	sch->st = schib->pmcw.st;
221 
222 	ret = css_sch_create_locks(sch);
223 	if (ret)
224 		goto err;
225 
226 	INIT_WORK(&sch->todo_work, css_sch_todo);
227 	sch->dev.release = &css_subchannel_release;
228 	sch->dev.dma_mask = &sch->dma_mask;
229 	device_initialize(&sch->dev);
230 	/*
231 	 * The physical addresses for some of the dma structures that can
232 	 * belong to a subchannel need to fit 31 bit width (e.g. ccw).
233 	 */
234 	ret = dma_set_coherent_mask(&sch->dev, DMA_BIT_MASK(31));
235 	if (ret)
236 		goto err;
237 	/*
238 	 * But we don't have such restrictions imposed on the stuff that
239 	 * is handled by the streaming API.
240 	 */
241 	ret = dma_set_mask(&sch->dev, DMA_BIT_MASK(64));
242 	if (ret)
243 		goto err;
244 
245 	return sch;
246 
247 err:
248 	kfree(sch);
249 	return ERR_PTR(ret);
250 }
251 
252 static int css_sch_device_register(struct subchannel *sch)
253 {
254 	int ret;
255 
256 	mutex_lock(&sch->reg_mutex);
257 	dev_set_name(&sch->dev, "0.%x.%04x", sch->schid.ssid,
258 		     sch->schid.sch_no);
259 	ret = device_add(&sch->dev);
260 	mutex_unlock(&sch->reg_mutex);
261 	return ret;
262 }
263 
264 /**
265  * css_sch_device_unregister - unregister a subchannel
266  * @sch: subchannel to be unregistered
267  */
268 void css_sch_device_unregister(struct subchannel *sch)
269 {
270 	mutex_lock(&sch->reg_mutex);
271 	if (device_is_registered(&sch->dev))
272 		device_unregister(&sch->dev);
273 	mutex_unlock(&sch->reg_mutex);
274 }
275 EXPORT_SYMBOL_GPL(css_sch_device_unregister);
276 
277 static void ssd_from_pmcw(struct chsc_ssd_info *ssd, struct pmcw *pmcw)
278 {
279 	int i;
280 	int mask;
281 
282 	memset(ssd, 0, sizeof(struct chsc_ssd_info));
283 	ssd->path_mask = pmcw->pim;
284 	for (i = 0; i < 8; i++) {
285 		mask = 0x80 >> i;
286 		if (pmcw->pim & mask) {
287 			chp_id_init(&ssd->chpid[i]);
288 			ssd->chpid[i].id = pmcw->chpid[i];
289 		}
290 	}
291 }
292 
293 static void ssd_register_chpids(struct chsc_ssd_info *ssd)
294 {
295 	int i;
296 	int mask;
297 
298 	for (i = 0; i < 8; i++) {
299 		mask = 0x80 >> i;
300 		if (ssd->path_mask & mask)
301 			chp_new(ssd->chpid[i]);
302 	}
303 }
304 
305 void css_update_ssd_info(struct subchannel *sch)
306 {
307 	int ret;
308 
309 	ret = chsc_get_ssd_info(sch->schid, &sch->ssd_info);
310 	if (ret)
311 		ssd_from_pmcw(&sch->ssd_info, &sch->schib.pmcw);
312 
313 	ssd_register_chpids(&sch->ssd_info);
314 }
315 
316 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
317 			 char *buf)
318 {
319 	struct subchannel *sch = to_subchannel(dev);
320 
321 	return sprintf(buf, "%01x\n", sch->st);
322 }
323 
324 static DEVICE_ATTR_RO(type);
325 
326 static ssize_t modalias_show(struct device *dev, struct device_attribute *attr,
327 			     char *buf)
328 {
329 	struct subchannel *sch = to_subchannel(dev);
330 
331 	return sprintf(buf, "css:t%01X\n", sch->st);
332 }
333 
334 static DEVICE_ATTR_RO(modalias);
335 
336 static ssize_t driver_override_store(struct device *dev,
337 				     struct device_attribute *attr,
338 				     const char *buf, size_t count)
339 {
340 	struct subchannel *sch = to_subchannel(dev);
341 	int ret;
342 
343 	ret = driver_set_override(dev, &sch->driver_override, buf, count);
344 	if (ret)
345 		return ret;
346 
347 	return count;
348 }
349 
350 static ssize_t driver_override_show(struct device *dev,
351 				    struct device_attribute *attr, char *buf)
352 {
353 	struct subchannel *sch = to_subchannel(dev);
354 	ssize_t len;
355 
356 	device_lock(dev);
357 	len = snprintf(buf, PAGE_SIZE, "%s\n", sch->driver_override);
358 	device_unlock(dev);
359 	return len;
360 }
361 static DEVICE_ATTR_RW(driver_override);
362 
363 static struct attribute *subch_attrs[] = {
364 	&dev_attr_type.attr,
365 	&dev_attr_modalias.attr,
366 	&dev_attr_driver_override.attr,
367 	NULL,
368 };
369 
370 static struct attribute_group subch_attr_group = {
371 	.attrs = subch_attrs,
372 };
373 
374 static const struct attribute_group *default_subch_attr_groups[] = {
375 	&subch_attr_group,
376 	NULL,
377 };
378 
379 static ssize_t chpids_show(struct device *dev,
380 			   struct device_attribute *attr,
381 			   char *buf)
382 {
383 	struct subchannel *sch = to_subchannel(dev);
384 	struct chsc_ssd_info *ssd = &sch->ssd_info;
385 	ssize_t ret = 0;
386 	int mask;
387 	int chp;
388 
389 	for (chp = 0; chp < 8; chp++) {
390 		mask = 0x80 >> chp;
391 		if (ssd->path_mask & mask)
392 			ret += sprintf(buf + ret, "%02x ", ssd->chpid[chp].id);
393 		else
394 			ret += sprintf(buf + ret, "00 ");
395 	}
396 	ret += sprintf(buf + ret, "\n");
397 	return ret;
398 }
399 static DEVICE_ATTR_RO(chpids);
400 
401 static ssize_t pimpampom_show(struct device *dev,
402 			      struct device_attribute *attr,
403 			      char *buf)
404 {
405 	struct subchannel *sch = to_subchannel(dev);
406 	struct pmcw *pmcw = &sch->schib.pmcw;
407 
408 	return sprintf(buf, "%02x %02x %02x\n",
409 		       pmcw->pim, pmcw->pam, pmcw->pom);
410 }
411 static DEVICE_ATTR_RO(pimpampom);
412 
413 static ssize_t dev_busid_show(struct device *dev,
414 			      struct device_attribute *attr,
415 			      char *buf)
416 {
417 	struct subchannel *sch = to_subchannel(dev);
418 	struct pmcw *pmcw = &sch->schib.pmcw;
419 
420 	if ((pmcw->st == SUBCHANNEL_TYPE_IO && pmcw->dnv) ||
421 	    (pmcw->st == SUBCHANNEL_TYPE_MSG && pmcw->w))
422 		return sysfs_emit(buf, "0.%x.%04x\n", sch->schid.ssid,
423 				  pmcw->dev);
424 	else
425 		return sysfs_emit(buf, "none\n");
426 }
427 static DEVICE_ATTR_RO(dev_busid);
428 
429 static struct attribute *io_subchannel_type_attrs[] = {
430 	&dev_attr_chpids.attr,
431 	&dev_attr_pimpampom.attr,
432 	&dev_attr_dev_busid.attr,
433 	NULL,
434 };
435 ATTRIBUTE_GROUPS(io_subchannel_type);
436 
437 static const struct device_type io_subchannel_type = {
438 	.groups = io_subchannel_type_groups,
439 };
440 
441 int css_register_subchannel(struct subchannel *sch)
442 {
443 	int ret;
444 
445 	/* Initialize the subchannel structure */
446 	sch->dev.parent = &channel_subsystems[0]->device;
447 	sch->dev.bus = &css_bus_type;
448 	sch->dev.groups = default_subch_attr_groups;
449 
450 	if (sch->st == SUBCHANNEL_TYPE_IO)
451 		sch->dev.type = &io_subchannel_type;
452 
453 	css_update_ssd_info(sch);
454 	/* make it known to the system */
455 	ret = css_sch_device_register(sch);
456 	if (ret) {
457 		CIO_MSG_EVENT(0, "Could not register sch 0.%x.%04x: %d\n",
458 			      sch->schid.ssid, sch->schid.sch_no, ret);
459 		return ret;
460 	}
461 	return ret;
462 }
463 
464 static int css_probe_device(struct subchannel_id schid, struct schib *schib)
465 {
466 	struct subchannel *sch;
467 	int ret;
468 
469 	sch = css_alloc_subchannel(schid, schib);
470 	if (IS_ERR(sch))
471 		return PTR_ERR(sch);
472 
473 	ret = css_register_subchannel(sch);
474 	if (ret)
475 		put_device(&sch->dev);
476 
477 	return ret;
478 }
479 
480 static int
481 check_subchannel(struct device *dev, const void *data)
482 {
483 	struct subchannel *sch;
484 	struct subchannel_id *schid = (void *)data;
485 
486 	sch = to_subchannel(dev);
487 	return schid_equal(&sch->schid, schid);
488 }
489 
490 struct subchannel *
491 get_subchannel_by_schid(struct subchannel_id schid)
492 {
493 	struct device *dev;
494 
495 	dev = bus_find_device(&css_bus_type, NULL,
496 			      &schid, check_subchannel);
497 
498 	return dev ? to_subchannel(dev) : NULL;
499 }
500 
501 /**
502  * css_sch_is_valid() - check if a subchannel is valid
503  * @schib: subchannel information block for the subchannel
504  */
505 int css_sch_is_valid(struct schib *schib)
506 {
507 	if ((schib->pmcw.st == SUBCHANNEL_TYPE_IO) && !schib->pmcw.dnv)
508 		return 0;
509 	if ((schib->pmcw.st == SUBCHANNEL_TYPE_MSG) && !schib->pmcw.w)
510 		return 0;
511 	return 1;
512 }
513 EXPORT_SYMBOL_GPL(css_sch_is_valid);
514 
515 static int css_evaluate_new_subchannel(struct subchannel_id schid, int slow)
516 {
517 	struct schib schib;
518 	int ccode;
519 
520 	if (!slow) {
521 		/* Will be done on the slow path. */
522 		return -EAGAIN;
523 	}
524 	/*
525 	 * The first subchannel that is not-operational (ccode==3)
526 	 * indicates that there aren't any more devices available.
527 	 * If stsch gets an exception, it means the current subchannel set
528 	 * is not valid.
529 	 */
530 	ccode = stsch(schid, &schib);
531 	if (ccode)
532 		return (ccode == 3) ? -ENXIO : ccode;
533 
534 	return css_probe_device(schid, &schib);
535 }
536 
537 static int css_evaluate_known_subchannel(struct subchannel *sch, int slow)
538 {
539 	int ret = 0;
540 
541 	if (sch->driver) {
542 		if (sch->driver->sch_event)
543 			ret = sch->driver->sch_event(sch, slow);
544 		else
545 			dev_dbg(&sch->dev,
546 				"Got subchannel machine check but "
547 				"no sch_event handler provided.\n");
548 	}
549 	if (ret != 0 && ret != -EAGAIN) {
550 		CIO_MSG_EVENT(2, "eval: sch 0.%x.%04x, rc=%d\n",
551 			      sch->schid.ssid, sch->schid.sch_no, ret);
552 	}
553 	return ret;
554 }
555 
556 static void css_evaluate_subchannel(struct subchannel_id schid, int slow)
557 {
558 	struct subchannel *sch;
559 	int ret;
560 
561 	sch = get_subchannel_by_schid(schid);
562 	if (sch) {
563 		ret = css_evaluate_known_subchannel(sch, slow);
564 		put_device(&sch->dev);
565 	} else
566 		ret = css_evaluate_new_subchannel(schid, slow);
567 	if (ret == -EAGAIN)
568 		css_schedule_eval(schid);
569 }
570 
571 /**
572  * css_sched_sch_todo - schedule a subchannel operation
573  * @sch: subchannel
574  * @todo: todo
575  *
576  * Schedule the operation identified by @todo to be performed on the slow path
577  * workqueue. Do nothing if another operation with higher priority is already
578  * scheduled. Needs to be called with subchannel lock held.
579  */
580 void css_sched_sch_todo(struct subchannel *sch, enum sch_todo todo)
581 {
582 	CIO_MSG_EVENT(4, "sch_todo: sched sch=0.%x.%04x todo=%d\n",
583 		      sch->schid.ssid, sch->schid.sch_no, todo);
584 	if (sch->todo >= todo)
585 		return;
586 	/* Get workqueue ref. */
587 	if (!get_device(&sch->dev))
588 		return;
589 	sch->todo = todo;
590 	if (!queue_work(cio_work_q, &sch->todo_work)) {
591 		/* Already queued, release workqueue ref. */
592 		put_device(&sch->dev);
593 	}
594 }
595 EXPORT_SYMBOL_GPL(css_sched_sch_todo);
596 
597 static void css_sch_todo(struct work_struct *work)
598 {
599 	struct subchannel *sch;
600 	enum sch_todo todo;
601 	int ret;
602 
603 	sch = container_of(work, struct subchannel, todo_work);
604 	/* Find out todo. */
605 	spin_lock_irq(sch->lock);
606 	todo = sch->todo;
607 	CIO_MSG_EVENT(4, "sch_todo: sch=0.%x.%04x, todo=%d\n", sch->schid.ssid,
608 		      sch->schid.sch_no, todo);
609 	sch->todo = SCH_TODO_NOTHING;
610 	spin_unlock_irq(sch->lock);
611 	/* Perform todo. */
612 	switch (todo) {
613 	case SCH_TODO_NOTHING:
614 		break;
615 	case SCH_TODO_EVAL:
616 		ret = css_evaluate_known_subchannel(sch, 1);
617 		if (ret == -EAGAIN) {
618 			spin_lock_irq(sch->lock);
619 			css_sched_sch_todo(sch, todo);
620 			spin_unlock_irq(sch->lock);
621 		}
622 		break;
623 	case SCH_TODO_UNREG:
624 		css_sch_device_unregister(sch);
625 		break;
626 	}
627 	/* Release workqueue ref. */
628 	put_device(&sch->dev);
629 }
630 
631 static struct idset *slow_subchannel_set;
632 static DEFINE_SPINLOCK(slow_subchannel_lock);
633 static DECLARE_WAIT_QUEUE_HEAD(css_eval_wq);
634 static atomic_t css_eval_scheduled;
635 
636 static int __init slow_subchannel_init(void)
637 {
638 	atomic_set(&css_eval_scheduled, 0);
639 	slow_subchannel_set = idset_sch_new();
640 	if (!slow_subchannel_set) {
641 		CIO_MSG_EVENT(0, "could not allocate slow subchannel set\n");
642 		return -ENOMEM;
643 	}
644 	return 0;
645 }
646 
647 static int slow_eval_known_fn(struct subchannel *sch, void *data)
648 {
649 	int eval;
650 	int rc;
651 
652 	spin_lock_irq(&slow_subchannel_lock);
653 	eval = idset_sch_contains(slow_subchannel_set, sch->schid);
654 	idset_sch_del(slow_subchannel_set, sch->schid);
655 	spin_unlock_irq(&slow_subchannel_lock);
656 	if (eval) {
657 		rc = css_evaluate_known_subchannel(sch, 1);
658 		if (rc == -EAGAIN)
659 			css_schedule_eval(sch->schid);
660 		/*
661 		 * The loop might take long time for platforms with lots of
662 		 * known devices. Allow scheduling here.
663 		 */
664 		cond_resched();
665 	}
666 	return 0;
667 }
668 
669 static int slow_eval_unknown_fn(struct subchannel_id schid, void *data)
670 {
671 	int eval;
672 	int rc = 0;
673 
674 	spin_lock_irq(&slow_subchannel_lock);
675 	eval = idset_sch_contains(slow_subchannel_set, schid);
676 	idset_sch_del(slow_subchannel_set, schid);
677 	spin_unlock_irq(&slow_subchannel_lock);
678 	if (eval) {
679 		rc = css_evaluate_new_subchannel(schid, 1);
680 		switch (rc) {
681 		case -EAGAIN:
682 			css_schedule_eval(schid);
683 			rc = 0;
684 			break;
685 		case -ENXIO:
686 		case -ENOMEM:
687 		case -EIO:
688 			/* These should abort looping */
689 			spin_lock_irq(&slow_subchannel_lock);
690 			idset_sch_del_subseq(slow_subchannel_set, schid);
691 			spin_unlock_irq(&slow_subchannel_lock);
692 			break;
693 		default:
694 			rc = 0;
695 		}
696 		/* Allow scheduling here since the containing loop might
697 		 * take a while.  */
698 		cond_resched();
699 	}
700 	return rc;
701 }
702 
703 static void css_slow_path_func(struct work_struct *unused)
704 {
705 	unsigned long flags;
706 
707 	CIO_TRACE_EVENT(4, "slowpath");
708 	for_each_subchannel_staged(slow_eval_known_fn, slow_eval_unknown_fn,
709 				   NULL);
710 	spin_lock_irqsave(&slow_subchannel_lock, flags);
711 	if (idset_is_empty(slow_subchannel_set)) {
712 		atomic_set(&css_eval_scheduled, 0);
713 		wake_up(&css_eval_wq);
714 	}
715 	spin_unlock_irqrestore(&slow_subchannel_lock, flags);
716 }
717 
718 static DECLARE_DELAYED_WORK(slow_path_work, css_slow_path_func);
719 struct workqueue_struct *cio_work_q;
720 
721 void css_schedule_eval(struct subchannel_id schid)
722 {
723 	unsigned long flags;
724 
725 	spin_lock_irqsave(&slow_subchannel_lock, flags);
726 	idset_sch_add(slow_subchannel_set, schid);
727 	atomic_set(&css_eval_scheduled, 1);
728 	queue_delayed_work(cio_work_q, &slow_path_work, 0);
729 	spin_unlock_irqrestore(&slow_subchannel_lock, flags);
730 }
731 
732 void css_schedule_eval_all(void)
733 {
734 	unsigned long flags;
735 
736 	spin_lock_irqsave(&slow_subchannel_lock, flags);
737 	idset_fill(slow_subchannel_set);
738 	atomic_set(&css_eval_scheduled, 1);
739 	queue_delayed_work(cio_work_q, &slow_path_work, 0);
740 	spin_unlock_irqrestore(&slow_subchannel_lock, flags);
741 }
742 
743 static int __unset_validpath(struct device *dev, void *data)
744 {
745 	struct idset *set = data;
746 	struct subchannel *sch = to_subchannel(dev);
747 	struct pmcw *pmcw = &sch->schib.pmcw;
748 
749 	/* Here we want to make sure that we are considering only those subchannels
750 	 * which do not have an operational device attached to it. This can be found
751 	 * with the help of PAM and POM values of pmcw. OPM provides the information
752 	 * about any path which is currently vary-off, so that we should not consider.
753 	 */
754 	if (sch->st == SUBCHANNEL_TYPE_IO &&
755 	    (sch->opm & pmcw->pam & pmcw->pom))
756 		idset_sch_del(set, sch->schid);
757 
758 	return 0;
759 }
760 
761 static int __unset_online(struct device *dev, void *data)
762 {
763 	struct idset *set = data;
764 	struct subchannel *sch = to_subchannel(dev);
765 
766 	if (sch->st == SUBCHANNEL_TYPE_IO && sch->config.ena)
767 		idset_sch_del(set, sch->schid);
768 
769 	return 0;
770 }
771 
772 void css_schedule_eval_cond(enum css_eval_cond cond, unsigned long delay)
773 {
774 	unsigned long flags;
775 	struct idset *set;
776 
777 	/* Find unregistered subchannels. */
778 	set = idset_sch_new();
779 	if (!set) {
780 		/* Fallback. */
781 		css_schedule_eval_all();
782 		return;
783 	}
784 	idset_fill(set);
785 	switch (cond) {
786 	case CSS_EVAL_NO_PATH:
787 		bus_for_each_dev(&css_bus_type, NULL, set, __unset_validpath);
788 		break;
789 	case CSS_EVAL_NOT_ONLINE:
790 		bus_for_each_dev(&css_bus_type, NULL, set, __unset_online);
791 		break;
792 	default:
793 		break;
794 	}
795 
796 	/* Apply to slow_subchannel_set. */
797 	spin_lock_irqsave(&slow_subchannel_lock, flags);
798 	idset_add_set(slow_subchannel_set, set);
799 	atomic_set(&css_eval_scheduled, 1);
800 	queue_delayed_work(cio_work_q, &slow_path_work, delay);
801 	spin_unlock_irqrestore(&slow_subchannel_lock, flags);
802 	idset_free(set);
803 }
804 
805 void css_wait_for_slow_path(void)
806 {
807 	flush_workqueue(cio_work_q);
808 }
809 
810 /* Schedule reprobing of all subchannels with no valid operational path. */
811 void css_schedule_reprobe(void)
812 {
813 	/* Schedule with a delay to allow merging of subsequent calls. */
814 	css_schedule_eval_cond(CSS_EVAL_NO_PATH, 1 * HZ);
815 }
816 EXPORT_SYMBOL_GPL(css_schedule_reprobe);
817 
818 /*
819  * Called from the machine check handler for subchannel report words.
820  */
821 static void css_process_crw(struct crw *crw0, struct crw *crw1, int overflow)
822 {
823 	struct subchannel_id mchk_schid;
824 	struct subchannel *sch;
825 
826 	if (overflow) {
827 		css_schedule_eval_all();
828 		return;
829 	}
830 	CIO_CRW_EVENT(2, "CRW0 reports slct=%d, oflw=%d, "
831 		      "chn=%d, rsc=%X, anc=%d, erc=%X, rsid=%X\n",
832 		      crw0->slct, crw0->oflw, crw0->chn, crw0->rsc, crw0->anc,
833 		      crw0->erc, crw0->rsid);
834 	if (crw1)
835 		CIO_CRW_EVENT(2, "CRW1 reports slct=%d, oflw=%d, "
836 			      "chn=%d, rsc=%X, anc=%d, erc=%X, rsid=%X\n",
837 			      crw1->slct, crw1->oflw, crw1->chn, crw1->rsc,
838 			      crw1->anc, crw1->erc, crw1->rsid);
839 	init_subchannel_id(&mchk_schid);
840 	mchk_schid.sch_no = crw0->rsid;
841 	if (crw1)
842 		mchk_schid.ssid = (crw1->rsid >> 4) & 3;
843 
844 	if (crw0->erc == CRW_ERC_PMOD) {
845 		sch = get_subchannel_by_schid(mchk_schid);
846 		if (sch) {
847 			css_update_ssd_info(sch);
848 			put_device(&sch->dev);
849 		}
850 	}
851 	/*
852 	 * Since we are always presented with IPI in the CRW, we have to
853 	 * use stsch() to find out if the subchannel in question has come
854 	 * or gone.
855 	 */
856 	css_evaluate_subchannel(mchk_schid, 0);
857 }
858 
859 static void __init
860 css_generate_pgid(struct channel_subsystem *css, u32 tod_high)
861 {
862 	struct cpuid cpu_id;
863 
864 	if (css_general_characteristics.mcss) {
865 		css->global_pgid.pgid_high.ext_cssid.version = 0x80;
866 		css->global_pgid.pgid_high.ext_cssid.cssid =
867 			css->id_valid ? css->cssid : 0;
868 	} else {
869 		css->global_pgid.pgid_high.cpu_addr = stap();
870 	}
871 	get_cpu_id(&cpu_id);
872 	css->global_pgid.cpu_id = cpu_id.ident;
873 	css->global_pgid.cpu_model = cpu_id.machine;
874 	css->global_pgid.tod_high = tod_high;
875 }
876 
877 static void channel_subsystem_release(struct device *dev)
878 {
879 	struct channel_subsystem *css = to_css(dev);
880 
881 	mutex_destroy(&css->mutex);
882 	kfree(css);
883 }
884 
885 static ssize_t real_cssid_show(struct device *dev, struct device_attribute *a,
886 			       char *buf)
887 {
888 	struct channel_subsystem *css = to_css(dev);
889 
890 	if (!css->id_valid)
891 		return -EINVAL;
892 
893 	return sprintf(buf, "%x\n", css->cssid);
894 }
895 static DEVICE_ATTR_RO(real_cssid);
896 
897 static ssize_t rescan_store(struct device *dev, struct device_attribute *a,
898 			    const char *buf, size_t count)
899 {
900 	CIO_TRACE_EVENT(4, "usr-rescan");
901 
902 	css_schedule_eval_all();
903 	css_complete_work();
904 
905 	return count;
906 }
907 static DEVICE_ATTR_WO(rescan);
908 
909 static ssize_t cm_enable_show(struct device *dev, struct device_attribute *a,
910 			      char *buf)
911 {
912 	struct channel_subsystem *css = to_css(dev);
913 	int ret;
914 
915 	mutex_lock(&css->mutex);
916 	ret = sprintf(buf, "%x\n", css->cm_enabled);
917 	mutex_unlock(&css->mutex);
918 	return ret;
919 }
920 
921 static ssize_t cm_enable_store(struct device *dev, struct device_attribute *a,
922 			       const char *buf, size_t count)
923 {
924 	struct channel_subsystem *css = to_css(dev);
925 	unsigned long val;
926 	int ret;
927 
928 	ret = kstrtoul(buf, 16, &val);
929 	if (ret)
930 		return ret;
931 	mutex_lock(&css->mutex);
932 	switch (val) {
933 	case 0:
934 		ret = css->cm_enabled ? chsc_secm(css, 0) : 0;
935 		break;
936 	case 1:
937 		ret = css->cm_enabled ? 0 : chsc_secm(css, 1);
938 		break;
939 	default:
940 		ret = -EINVAL;
941 	}
942 	mutex_unlock(&css->mutex);
943 	return ret < 0 ? ret : count;
944 }
945 static DEVICE_ATTR_RW(cm_enable);
946 
947 static umode_t cm_enable_mode(struct kobject *kobj, struct attribute *attr,
948 			      int index)
949 {
950 	return css_chsc_characteristics.secm ? attr->mode : 0;
951 }
952 
953 static struct attribute *cssdev_attrs[] = {
954 	&dev_attr_real_cssid.attr,
955 	&dev_attr_rescan.attr,
956 	NULL,
957 };
958 
959 static struct attribute_group cssdev_attr_group = {
960 	.attrs = cssdev_attrs,
961 };
962 
963 static struct attribute *cssdev_cm_attrs[] = {
964 	&dev_attr_cm_enable.attr,
965 	NULL,
966 };
967 
968 static struct attribute_group cssdev_cm_attr_group = {
969 	.attrs = cssdev_cm_attrs,
970 	.is_visible = cm_enable_mode,
971 };
972 
973 static const struct attribute_group *cssdev_attr_groups[] = {
974 	&cssdev_attr_group,
975 	&cssdev_cm_attr_group,
976 	NULL,
977 };
978 
979 static int __init setup_css(int nr)
980 {
981 	struct channel_subsystem *css;
982 	int ret;
983 
984 	css = kzalloc(sizeof(*css), GFP_KERNEL);
985 	if (!css)
986 		return -ENOMEM;
987 
988 	channel_subsystems[nr] = css;
989 	dev_set_name(&css->device, "css%x", nr);
990 	css->device.groups = cssdev_attr_groups;
991 	css->device.release = channel_subsystem_release;
992 	/*
993 	 * We currently allocate notifier bits with this (using
994 	 * css->device as the device argument with the DMA API)
995 	 * and are fine with 64 bit addresses.
996 	 */
997 	ret = dma_coerce_mask_and_coherent(&css->device, DMA_BIT_MASK(64));
998 	if (ret) {
999 		kfree(css);
1000 		goto out_err;
1001 	}
1002 
1003 	mutex_init(&css->mutex);
1004 	ret = chsc_get_cssid_iid(nr, &css->cssid, &css->iid);
1005 	if (!ret) {
1006 		css->id_valid = true;
1007 		pr_info("Partition identifier %01x.%01x\n", css->cssid,
1008 			css->iid);
1009 	}
1010 	css_generate_pgid(css, (u32) (get_tod_clock() >> 32));
1011 
1012 	ret = device_register(&css->device);
1013 	if (ret) {
1014 		put_device(&css->device);
1015 		goto out_err;
1016 	}
1017 
1018 	css->pseudo_subchannel = kzalloc(sizeof(*css->pseudo_subchannel),
1019 					 GFP_KERNEL);
1020 	if (!css->pseudo_subchannel) {
1021 		device_unregister(&css->device);
1022 		ret = -ENOMEM;
1023 		goto out_err;
1024 	}
1025 
1026 	css->pseudo_subchannel->dev.parent = &css->device;
1027 	css->pseudo_subchannel->dev.release = css_subchannel_release;
1028 	mutex_init(&css->pseudo_subchannel->reg_mutex);
1029 	ret = css_sch_create_locks(css->pseudo_subchannel);
1030 	if (ret) {
1031 		kfree(css->pseudo_subchannel);
1032 		device_unregister(&css->device);
1033 		goto out_err;
1034 	}
1035 
1036 	dev_set_name(&css->pseudo_subchannel->dev, "defunct");
1037 	ret = device_register(&css->pseudo_subchannel->dev);
1038 	if (ret) {
1039 		put_device(&css->pseudo_subchannel->dev);
1040 		device_unregister(&css->device);
1041 		goto out_err;
1042 	}
1043 
1044 	return ret;
1045 out_err:
1046 	channel_subsystems[nr] = NULL;
1047 	return ret;
1048 }
1049 
1050 static int css_reboot_event(struct notifier_block *this,
1051 			    unsigned long event,
1052 			    void *ptr)
1053 {
1054 	struct channel_subsystem *css;
1055 	int ret;
1056 
1057 	ret = NOTIFY_DONE;
1058 	for_each_css(css) {
1059 		mutex_lock(&css->mutex);
1060 		if (css->cm_enabled)
1061 			if (chsc_secm(css, 0))
1062 				ret = NOTIFY_BAD;
1063 		mutex_unlock(&css->mutex);
1064 	}
1065 
1066 	return ret;
1067 }
1068 
1069 static struct notifier_block css_reboot_notifier = {
1070 	.notifier_call = css_reboot_event,
1071 };
1072 
1073 #define  CIO_DMA_GFP (GFP_KERNEL | __GFP_ZERO)
1074 static struct gen_pool *cio_dma_pool;
1075 
1076 /* Currently cio supports only a single css */
1077 struct device *cio_get_dma_css_dev(void)
1078 {
1079 	return &channel_subsystems[0]->device;
1080 }
1081 
1082 struct gen_pool *cio_gp_dma_create(struct device *dma_dev, int nr_pages)
1083 {
1084 	struct gen_pool *gp_dma;
1085 	void *cpu_addr;
1086 	dma_addr_t dma_addr;
1087 	int i;
1088 
1089 	gp_dma = gen_pool_create(3, -1);
1090 	if (!gp_dma)
1091 		return NULL;
1092 	for (i = 0; i < nr_pages; ++i) {
1093 		cpu_addr = dma_alloc_coherent(dma_dev, PAGE_SIZE, &dma_addr,
1094 					      CIO_DMA_GFP);
1095 		if (!cpu_addr)
1096 			return gp_dma;
1097 		gen_pool_add_virt(gp_dma, (unsigned long) cpu_addr,
1098 				  dma_addr, PAGE_SIZE, -1);
1099 	}
1100 	return gp_dma;
1101 }
1102 
1103 static void __gp_dma_free_dma(struct gen_pool *pool,
1104 			      struct gen_pool_chunk *chunk, void *data)
1105 {
1106 	size_t chunk_size = chunk->end_addr - chunk->start_addr + 1;
1107 
1108 	dma_free_coherent((struct device *) data, chunk_size,
1109 			 (void *) chunk->start_addr,
1110 			 (dma_addr_t) chunk->phys_addr);
1111 }
1112 
1113 void cio_gp_dma_destroy(struct gen_pool *gp_dma, struct device *dma_dev)
1114 {
1115 	if (!gp_dma)
1116 		return;
1117 	/* this is quite ugly but no better idea */
1118 	gen_pool_for_each_chunk(gp_dma, __gp_dma_free_dma, dma_dev);
1119 	gen_pool_destroy(gp_dma);
1120 }
1121 
1122 static int cio_dma_pool_init(void)
1123 {
1124 	/* No need to free up the resources: compiled in */
1125 	cio_dma_pool = cio_gp_dma_create(cio_get_dma_css_dev(), 1);
1126 	if (!cio_dma_pool)
1127 		return -ENOMEM;
1128 	return 0;
1129 }
1130 
1131 void *cio_gp_dma_zalloc(struct gen_pool *gp_dma, struct device *dma_dev,
1132 			size_t size)
1133 {
1134 	dma_addr_t dma_addr;
1135 	unsigned long addr;
1136 	size_t chunk_size;
1137 
1138 	if (!gp_dma)
1139 		return NULL;
1140 	addr = gen_pool_alloc(gp_dma, size);
1141 	while (!addr) {
1142 		chunk_size = round_up(size, PAGE_SIZE);
1143 		addr = (unsigned long) dma_alloc_coherent(dma_dev,
1144 					 chunk_size, &dma_addr, CIO_DMA_GFP);
1145 		if (!addr)
1146 			return NULL;
1147 		gen_pool_add_virt(gp_dma, addr, dma_addr, chunk_size, -1);
1148 		addr = gen_pool_alloc(gp_dma, size);
1149 	}
1150 	return (void *) addr;
1151 }
1152 
1153 void cio_gp_dma_free(struct gen_pool *gp_dma, void *cpu_addr, size_t size)
1154 {
1155 	if (!cpu_addr)
1156 		return;
1157 	memset(cpu_addr, 0, size);
1158 	gen_pool_free(gp_dma, (unsigned long) cpu_addr, size);
1159 }
1160 
1161 /*
1162  * Allocate dma memory from the css global pool. Intended for memory not
1163  * specific to any single device within the css. The allocated memory
1164  * is not guaranteed to be 31-bit addressable.
1165  *
1166  * Caution: Not suitable for early stuff like console.
1167  */
1168 void *cio_dma_zalloc(size_t size)
1169 {
1170 	return cio_gp_dma_zalloc(cio_dma_pool, cio_get_dma_css_dev(), size);
1171 }
1172 
1173 void cio_dma_free(void *cpu_addr, size_t size)
1174 {
1175 	cio_gp_dma_free(cio_dma_pool, cpu_addr, size);
1176 }
1177 
1178 /*
1179  * Now that the driver core is running, we can setup our channel subsystem.
1180  * The struct subchannel's are created during probing.
1181  */
1182 static int __init css_bus_init(void)
1183 {
1184 	int ret, i;
1185 
1186 	ret = chsc_init();
1187 	if (ret)
1188 		return ret;
1189 
1190 	chsc_determine_css_characteristics();
1191 	/* Try to enable MSS. */
1192 	ret = chsc_enable_facility(CHSC_SDA_OC_MSS);
1193 	if (ret)
1194 		max_ssid = 0;
1195 	else /* Success. */
1196 		max_ssid = __MAX_SSID;
1197 
1198 	ret = slow_subchannel_init();
1199 	if (ret)
1200 		goto out;
1201 
1202 	ret = crw_register_handler(CRW_RSC_SCH, css_process_crw);
1203 	if (ret)
1204 		goto out;
1205 
1206 	if ((ret = bus_register(&css_bus_type)))
1207 		goto out;
1208 
1209 	/* Setup css structure. */
1210 	for (i = 0; i <= MAX_CSS_IDX; i++) {
1211 		ret = setup_css(i);
1212 		if (ret)
1213 			goto out_unregister;
1214 	}
1215 	ret = register_reboot_notifier(&css_reboot_notifier);
1216 	if (ret)
1217 		goto out_unregister;
1218 	ret = cio_dma_pool_init();
1219 	if (ret)
1220 		goto out_unregister_rn;
1221 	airq_init();
1222 	css_init_done = 1;
1223 
1224 	/* Enable default isc for I/O subchannels. */
1225 	isc_register(IO_SCH_ISC);
1226 
1227 	return 0;
1228 out_unregister_rn:
1229 	unregister_reboot_notifier(&css_reboot_notifier);
1230 out_unregister:
1231 	while (i-- > 0) {
1232 		struct channel_subsystem *css = channel_subsystems[i];
1233 		device_unregister(&css->pseudo_subchannel->dev);
1234 		device_unregister(&css->device);
1235 	}
1236 	bus_unregister(&css_bus_type);
1237 out:
1238 	crw_unregister_handler(CRW_RSC_SCH);
1239 	idset_free(slow_subchannel_set);
1240 	chsc_init_cleanup();
1241 	pr_alert("The CSS device driver initialization failed with "
1242 		 "errno=%d\n", ret);
1243 	return ret;
1244 }
1245 
1246 static void __init css_bus_cleanup(void)
1247 {
1248 	struct channel_subsystem *css;
1249 
1250 	for_each_css(css) {
1251 		device_unregister(&css->pseudo_subchannel->dev);
1252 		device_unregister(&css->device);
1253 	}
1254 	bus_unregister(&css_bus_type);
1255 	crw_unregister_handler(CRW_RSC_SCH);
1256 	idset_free(slow_subchannel_set);
1257 	chsc_init_cleanup();
1258 	isc_unregister(IO_SCH_ISC);
1259 }
1260 
1261 static int __init channel_subsystem_init(void)
1262 {
1263 	int ret;
1264 
1265 	ret = css_bus_init();
1266 	if (ret)
1267 		return ret;
1268 	cio_work_q = create_singlethread_workqueue("cio");
1269 	if (!cio_work_q) {
1270 		ret = -ENOMEM;
1271 		goto out_bus;
1272 	}
1273 	ret = io_subchannel_init();
1274 	if (ret)
1275 		goto out_wq;
1276 
1277 	/* Register subchannels which are already in use. */
1278 	cio_register_early_subchannels();
1279 	/* Start initial subchannel evaluation. */
1280 	css_schedule_eval_all();
1281 
1282 	return ret;
1283 out_wq:
1284 	destroy_workqueue(cio_work_q);
1285 out_bus:
1286 	css_bus_cleanup();
1287 	return ret;
1288 }
1289 subsys_initcall(channel_subsystem_init);
1290 
1291 static int css_settle(struct device_driver *drv, void *unused)
1292 {
1293 	struct css_driver *cssdrv = to_cssdriver(drv);
1294 
1295 	if (cssdrv->settle)
1296 		return cssdrv->settle();
1297 	return 0;
1298 }
1299 
1300 int css_complete_work(void)
1301 {
1302 	int ret;
1303 
1304 	/* Wait for the evaluation of subchannels to finish. */
1305 	ret = wait_event_interruptible(css_eval_wq,
1306 				       atomic_read(&css_eval_scheduled) == 0);
1307 	if (ret)
1308 		return -EINTR;
1309 	flush_workqueue(cio_work_q);
1310 	/* Wait for the subchannel type specific initialization to finish */
1311 	return bus_for_each_drv(&css_bus_type, NULL, NULL, css_settle);
1312 }
1313 
1314 
1315 /*
1316  * Wait for the initialization of devices to finish, to make sure we are
1317  * done with our setup if the search for the root device starts.
1318  */
1319 static int __init channel_subsystem_init_sync(void)
1320 {
1321 	css_complete_work();
1322 	return 0;
1323 }
1324 subsys_initcall_sync(channel_subsystem_init_sync);
1325 
1326 #ifdef CONFIG_PROC_FS
1327 static ssize_t cio_settle_write(struct file *file, const char __user *buf,
1328 				size_t count, loff_t *ppos)
1329 {
1330 	int ret;
1331 
1332 	/* Handle pending CRW's. */
1333 	crw_wait_for_channel_report();
1334 	ret = css_complete_work();
1335 
1336 	return ret ? ret : count;
1337 }
1338 
1339 static const struct proc_ops cio_settle_proc_ops = {
1340 	.proc_open	= nonseekable_open,
1341 	.proc_write	= cio_settle_write,
1342 	.proc_lseek	= no_llseek,
1343 };
1344 
1345 static int __init cio_settle_init(void)
1346 {
1347 	struct proc_dir_entry *entry;
1348 
1349 	entry = proc_create("cio_settle", S_IWUSR, NULL, &cio_settle_proc_ops);
1350 	if (!entry)
1351 		return -ENOMEM;
1352 	return 0;
1353 }
1354 device_initcall(cio_settle_init);
1355 #endif /*CONFIG_PROC_FS*/
1356 
1357 int sch_is_pseudo_sch(struct subchannel *sch)
1358 {
1359 	if (!sch->dev.parent)
1360 		return 0;
1361 	return sch == to_css(sch->dev.parent)->pseudo_subchannel;
1362 }
1363 
1364 static int css_bus_match(struct device *dev, struct device_driver *drv)
1365 {
1366 	struct subchannel *sch = to_subchannel(dev);
1367 	struct css_driver *driver = to_cssdriver(drv);
1368 	struct css_device_id *id;
1369 
1370 	/* When driver_override is set, only bind to the matching driver */
1371 	if (sch->driver_override && strcmp(sch->driver_override, drv->name))
1372 		return 0;
1373 
1374 	for (id = driver->subchannel_type; id->match_flags; id++) {
1375 		if (sch->st == id->type)
1376 			return 1;
1377 	}
1378 
1379 	return 0;
1380 }
1381 
1382 static int css_probe(struct device *dev)
1383 {
1384 	struct subchannel *sch;
1385 	int ret;
1386 
1387 	sch = to_subchannel(dev);
1388 	sch->driver = to_cssdriver(dev->driver);
1389 	ret = sch->driver->probe ? sch->driver->probe(sch) : 0;
1390 	if (ret)
1391 		sch->driver = NULL;
1392 	return ret;
1393 }
1394 
1395 static void css_remove(struct device *dev)
1396 {
1397 	struct subchannel *sch;
1398 
1399 	sch = to_subchannel(dev);
1400 	if (sch->driver->remove)
1401 		sch->driver->remove(sch);
1402 	sch->driver = NULL;
1403 }
1404 
1405 static void css_shutdown(struct device *dev)
1406 {
1407 	struct subchannel *sch;
1408 
1409 	sch = to_subchannel(dev);
1410 	if (sch->driver && sch->driver->shutdown)
1411 		sch->driver->shutdown(sch);
1412 }
1413 
1414 static int css_uevent(const struct device *dev, struct kobj_uevent_env *env)
1415 {
1416 	const struct subchannel *sch = to_subchannel(dev);
1417 	int ret;
1418 
1419 	ret = add_uevent_var(env, "ST=%01X", sch->st);
1420 	if (ret)
1421 		return ret;
1422 	ret = add_uevent_var(env, "MODALIAS=css:t%01X", sch->st);
1423 	return ret;
1424 }
1425 
1426 static struct bus_type css_bus_type = {
1427 	.name     = "css",
1428 	.match    = css_bus_match,
1429 	.probe    = css_probe,
1430 	.remove   = css_remove,
1431 	.shutdown = css_shutdown,
1432 	.uevent   = css_uevent,
1433 };
1434 
1435 /**
1436  * css_driver_register - register a css driver
1437  * @cdrv: css driver to register
1438  *
1439  * This is mainly a wrapper around driver_register that sets name
1440  * and bus_type in the embedded struct device_driver correctly.
1441  */
1442 int css_driver_register(struct css_driver *cdrv)
1443 {
1444 	cdrv->drv.bus = &css_bus_type;
1445 	return driver_register(&cdrv->drv);
1446 }
1447 EXPORT_SYMBOL_GPL(css_driver_register);
1448 
1449 /**
1450  * css_driver_unregister - unregister a css driver
1451  * @cdrv: css driver to unregister
1452  *
1453  * This is a wrapper around driver_unregister.
1454  */
1455 void css_driver_unregister(struct css_driver *cdrv)
1456 {
1457 	driver_unregister(&cdrv->drv);
1458 }
1459 EXPORT_SYMBOL_GPL(css_driver_unregister);
1460