xref: /openbmc/linux/drivers/s390/cio/cmf.c (revision ae213c44)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Linux on zSeries Channel Measurement Facility support
4  *
5  * Copyright IBM Corp. 2000, 2006
6  *
7  * Authors: Arnd Bergmann <arndb@de.ibm.com>
8  *	    Cornelia Huck <cornelia.huck@de.ibm.com>
9  *
10  * original idea from Natarajan Krishnaswami <nkrishna@us.ibm.com>
11  */
12 
13 #define KMSG_COMPONENT "cio"
14 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
15 
16 #include <linux/memblock.h>
17 #include <linux/device.h>
18 #include <linux/init.h>
19 #include <linux/list.h>
20 #include <linux/export.h>
21 #include <linux/moduleparam.h>
22 #include <linux/slab.h>
23 #include <linux/timex.h>	/* get_tod_clock() */
24 
25 #include <asm/ccwdev.h>
26 #include <asm/cio.h>
27 #include <asm/cmb.h>
28 #include <asm/div64.h>
29 
30 #include "cio.h"
31 #include "css.h"
32 #include "device.h"
33 #include "ioasm.h"
34 #include "chsc.h"
35 
36 /*
37  * parameter to enable cmf during boot, possible uses are:
38  *  "s390cmf" -- enable cmf and allocate 2 MB of ram so measuring can be
39  *               used on any subchannel
40  *  "s390cmf=<num>" -- enable cmf and allocate enough memory to measure
41  *                     <num> subchannel, where <num> is an integer
42  *                     between 1 and 65535, default is 1024
43  */
44 #define ARGSTRING "s390cmf"
45 
46 /* indices for READCMB */
47 enum cmb_index {
48 	avg_utilization = -1,
49  /* basic and exended format: */
50 	cmb_ssch_rsch_count = 0,
51 	cmb_sample_count,
52 	cmb_device_connect_time,
53 	cmb_function_pending_time,
54 	cmb_device_disconnect_time,
55 	cmb_control_unit_queuing_time,
56 	cmb_device_active_only_time,
57  /* extended format only: */
58 	cmb_device_busy_time,
59 	cmb_initial_command_response_time,
60 };
61 
62 /**
63  * enum cmb_format - types of supported measurement block formats
64  *
65  * @CMF_BASIC:      traditional channel measurement blocks supported
66  *		    by all machines that we run on
67  * @CMF_EXTENDED:   improved format that was introduced with the z990
68  *		    machine
69  * @CMF_AUTODETECT: default: use extended format when running on a machine
70  *		    supporting extended format, otherwise fall back to
71  *		    basic format
72  */
73 enum cmb_format {
74 	CMF_BASIC,
75 	CMF_EXTENDED,
76 	CMF_AUTODETECT = -1,
77 };
78 
79 /*
80  * format - actual format for all measurement blocks
81  *
82  * The format module parameter can be set to a value of 0 (zero)
83  * or 1, indicating basic or extended format as described for
84  * enum cmb_format.
85  */
86 static int format = CMF_AUTODETECT;
87 module_param(format, bint, 0444);
88 
89 /**
90  * struct cmb_operations - functions to use depending on cmb_format
91  *
92  * Most of these functions operate on a struct ccw_device. There is only
93  * one instance of struct cmb_operations because the format of the measurement
94  * data is guaranteed to be the same for every ccw_device.
95  *
96  * @alloc:	allocate memory for a channel measurement block,
97  *		either with the help of a special pool or with kmalloc
98  * @free:	free memory allocated with @alloc
99  * @set:	enable or disable measurement
100  * @read:	read a measurement entry at an index
101  * @readall:	read a measurement block in a common format
102  * @reset:	clear the data in the associated measurement block and
103  *		reset its time stamp
104  */
105 struct cmb_operations {
106 	int  (*alloc)  (struct ccw_device *);
107 	void (*free)   (struct ccw_device *);
108 	int  (*set)    (struct ccw_device *, u32);
109 	u64  (*read)   (struct ccw_device *, int);
110 	int  (*readall)(struct ccw_device *, struct cmbdata *);
111 	void (*reset)  (struct ccw_device *);
112 /* private: */
113 	struct attribute_group *attr_group;
114 };
115 static struct cmb_operations *cmbops;
116 
117 struct cmb_data {
118 	void *hw_block;   /* Pointer to block updated by hardware */
119 	void *last_block; /* Last changed block copied from hardware block */
120 	int size;	  /* Size of hw_block and last_block */
121 	unsigned long long last_update;  /* when last_block was updated */
122 };
123 
124 /*
125  * Our user interface is designed in terms of nanoseconds,
126  * while the hardware measures total times in its own
127  * unit.
128  */
129 static inline u64 time_to_nsec(u32 value)
130 {
131 	return ((u64)value) * 128000ull;
132 }
133 
134 /*
135  * Users are usually interested in average times,
136  * not accumulated time.
137  * This also helps us with atomicity problems
138  * when reading sinlge values.
139  */
140 static inline u64 time_to_avg_nsec(u32 value, u32 count)
141 {
142 	u64 ret;
143 
144 	/* no samples yet, avoid division by 0 */
145 	if (count == 0)
146 		return 0;
147 
148 	/* value comes in units of 128 µsec */
149 	ret = time_to_nsec(value);
150 	do_div(ret, count);
151 
152 	return ret;
153 }
154 
155 #define CMF_OFF 0
156 #define CMF_ON	2
157 
158 /*
159  * Activate or deactivate the channel monitor. When area is NULL,
160  * the monitor is deactivated. The channel monitor needs to
161  * be active in order to measure subchannels, which also need
162  * to be enabled.
163  */
164 static inline void cmf_activate(void *area, unsigned int onoff)
165 {
166 	register void * __gpr2 asm("2");
167 	register long __gpr1 asm("1");
168 
169 	__gpr2 = area;
170 	__gpr1 = onoff;
171 	/* activate channel measurement */
172 	asm("schm" : : "d" (__gpr2), "d" (__gpr1) );
173 }
174 
175 static int set_schib(struct ccw_device *cdev, u32 mme, int mbfc,
176 		     unsigned long address)
177 {
178 	struct subchannel *sch = to_subchannel(cdev->dev.parent);
179 	int ret;
180 
181 	sch->config.mme = mme;
182 	sch->config.mbfc = mbfc;
183 	/* address can be either a block address or a block index */
184 	if (mbfc)
185 		sch->config.mba = address;
186 	else
187 		sch->config.mbi = address;
188 
189 	ret = cio_commit_config(sch);
190 	if (!mme && ret == -ENODEV) {
191 		/*
192 		 * The task was to disable measurement block updates but
193 		 * the subchannel is already gone. Report success.
194 		 */
195 		ret = 0;
196 	}
197 	return ret;
198 }
199 
200 struct set_schib_struct {
201 	u32 mme;
202 	int mbfc;
203 	unsigned long address;
204 	wait_queue_head_t wait;
205 	int ret;
206 };
207 
208 #define CMF_PENDING 1
209 #define SET_SCHIB_TIMEOUT (10 * HZ)
210 
211 static int set_schib_wait(struct ccw_device *cdev, u32 mme,
212 			  int mbfc, unsigned long address)
213 {
214 	struct set_schib_struct set_data;
215 	int ret = -ENODEV;
216 
217 	spin_lock_irq(cdev->ccwlock);
218 	if (!cdev->private->cmb)
219 		goto out;
220 
221 	ret = set_schib(cdev, mme, mbfc, address);
222 	if (ret != -EBUSY)
223 		goto out;
224 
225 	/* if the device is not online, don't even try again */
226 	if (cdev->private->state != DEV_STATE_ONLINE)
227 		goto out;
228 
229 	init_waitqueue_head(&set_data.wait);
230 	set_data.mme = mme;
231 	set_data.mbfc = mbfc;
232 	set_data.address = address;
233 	set_data.ret = CMF_PENDING;
234 
235 	cdev->private->state = DEV_STATE_CMFCHANGE;
236 	cdev->private->cmb_wait = &set_data;
237 	spin_unlock_irq(cdev->ccwlock);
238 
239 	ret = wait_event_interruptible_timeout(set_data.wait,
240 					       set_data.ret != CMF_PENDING,
241 					       SET_SCHIB_TIMEOUT);
242 	spin_lock_irq(cdev->ccwlock);
243 	if (ret <= 0) {
244 		if (set_data.ret == CMF_PENDING) {
245 			set_data.ret = (ret == 0) ? -ETIME : ret;
246 			if (cdev->private->state == DEV_STATE_CMFCHANGE)
247 				cdev->private->state = DEV_STATE_ONLINE;
248 		}
249 	}
250 	cdev->private->cmb_wait = NULL;
251 	ret = set_data.ret;
252 out:
253 	spin_unlock_irq(cdev->ccwlock);
254 	return ret;
255 }
256 
257 void retry_set_schib(struct ccw_device *cdev)
258 {
259 	struct set_schib_struct *set_data = cdev->private->cmb_wait;
260 
261 	if (!set_data)
262 		return;
263 
264 	set_data->ret = set_schib(cdev, set_data->mme, set_data->mbfc,
265 				  set_data->address);
266 	wake_up(&set_data->wait);
267 }
268 
269 static int cmf_copy_block(struct ccw_device *cdev)
270 {
271 	struct subchannel *sch = to_subchannel(cdev->dev.parent);
272 	struct cmb_data *cmb_data;
273 	void *hw_block;
274 
275 	if (cio_update_schib(sch))
276 		return -ENODEV;
277 
278 	if (scsw_fctl(&sch->schib.scsw) & SCSW_FCTL_START_FUNC) {
279 		/* Don't copy if a start function is in progress. */
280 		if ((!(scsw_actl(&sch->schib.scsw) & SCSW_ACTL_SUSPENDED)) &&
281 		    (scsw_actl(&sch->schib.scsw) &
282 		     (SCSW_ACTL_DEVACT | SCSW_ACTL_SCHACT)) &&
283 		    (!(scsw_stctl(&sch->schib.scsw) & SCSW_STCTL_SEC_STATUS)))
284 			return -EBUSY;
285 	}
286 	cmb_data = cdev->private->cmb;
287 	hw_block = cmb_data->hw_block;
288 	memcpy(cmb_data->last_block, hw_block, cmb_data->size);
289 	cmb_data->last_update = get_tod_clock();
290 	return 0;
291 }
292 
293 struct copy_block_struct {
294 	wait_queue_head_t wait;
295 	int ret;
296 };
297 
298 static int cmf_cmb_copy_wait(struct ccw_device *cdev)
299 {
300 	struct copy_block_struct copy_block;
301 	int ret = -ENODEV;
302 
303 	spin_lock_irq(cdev->ccwlock);
304 	if (!cdev->private->cmb)
305 		goto out;
306 
307 	ret = cmf_copy_block(cdev);
308 	if (ret != -EBUSY)
309 		goto out;
310 
311 	if (cdev->private->state != DEV_STATE_ONLINE)
312 		goto out;
313 
314 	init_waitqueue_head(&copy_block.wait);
315 	copy_block.ret = CMF_PENDING;
316 
317 	cdev->private->state = DEV_STATE_CMFUPDATE;
318 	cdev->private->cmb_wait = &copy_block;
319 	spin_unlock_irq(cdev->ccwlock);
320 
321 	ret = wait_event_interruptible(copy_block.wait,
322 				       copy_block.ret != CMF_PENDING);
323 	spin_lock_irq(cdev->ccwlock);
324 	if (ret) {
325 		if (copy_block.ret == CMF_PENDING) {
326 			copy_block.ret = -ERESTARTSYS;
327 			if (cdev->private->state == DEV_STATE_CMFUPDATE)
328 				cdev->private->state = DEV_STATE_ONLINE;
329 		}
330 	}
331 	cdev->private->cmb_wait = NULL;
332 	ret = copy_block.ret;
333 out:
334 	spin_unlock_irq(cdev->ccwlock);
335 	return ret;
336 }
337 
338 void cmf_retry_copy_block(struct ccw_device *cdev)
339 {
340 	struct copy_block_struct *copy_block = cdev->private->cmb_wait;
341 
342 	if (!copy_block)
343 		return;
344 
345 	copy_block->ret = cmf_copy_block(cdev);
346 	wake_up(&copy_block->wait);
347 }
348 
349 static void cmf_generic_reset(struct ccw_device *cdev)
350 {
351 	struct cmb_data *cmb_data;
352 
353 	spin_lock_irq(cdev->ccwlock);
354 	cmb_data = cdev->private->cmb;
355 	if (cmb_data) {
356 		memset(cmb_data->last_block, 0, cmb_data->size);
357 		/*
358 		 * Need to reset hw block as well to make the hardware start
359 		 * from 0 again.
360 		 */
361 		memset(cmb_data->hw_block, 0, cmb_data->size);
362 		cmb_data->last_update = 0;
363 	}
364 	cdev->private->cmb_start_time = get_tod_clock();
365 	spin_unlock_irq(cdev->ccwlock);
366 }
367 
368 /**
369  * struct cmb_area - container for global cmb data
370  *
371  * @mem:	pointer to CMBs (only in basic measurement mode)
372  * @list:	contains a linked list of all subchannels
373  * @num_channels: number of channels to be measured
374  * @lock:	protect concurrent access to @mem and @list
375  */
376 struct cmb_area {
377 	struct cmb *mem;
378 	struct list_head list;
379 	int num_channels;
380 	spinlock_t lock;
381 };
382 
383 static struct cmb_area cmb_area = {
384 	.lock = __SPIN_LOCK_UNLOCKED(cmb_area.lock),
385 	.list = LIST_HEAD_INIT(cmb_area.list),
386 	.num_channels  = 1024,
387 };
388 
389 /* ****** old style CMB handling ********/
390 
391 /*
392  * Basic channel measurement blocks are allocated in one contiguous
393  * block of memory, which can not be moved as long as any channel
394  * is active. Therefore, a maximum number of subchannels needs to
395  * be defined somewhere. This is a module parameter, defaulting to
396  * a reasonable value of 1024, or 32 kb of memory.
397  * Current kernels don't allow kmalloc with more than 128kb, so the
398  * maximum is 4096.
399  */
400 
401 module_param_named(maxchannels, cmb_area.num_channels, uint, 0444);
402 
403 /**
404  * struct cmb - basic channel measurement block
405  * @ssch_rsch_count: number of ssch and rsch
406  * @sample_count: number of samples
407  * @device_connect_time: time of device connect
408  * @function_pending_time: time of function pending
409  * @device_disconnect_time: time of device disconnect
410  * @control_unit_queuing_time: time of control unit queuing
411  * @device_active_only_time: time of device active only
412  * @reserved: unused in basic measurement mode
413  *
414  * The measurement block as used by the hardware. The fields are described
415  * further in z/Architecture Principles of Operation, chapter 17.
416  *
417  * The cmb area made up from these blocks must be a contiguous array and may
418  * not be reallocated or freed.
419  * Only one cmb area can be present in the system.
420  */
421 struct cmb {
422 	u16 ssch_rsch_count;
423 	u16 sample_count;
424 	u32 device_connect_time;
425 	u32 function_pending_time;
426 	u32 device_disconnect_time;
427 	u32 control_unit_queuing_time;
428 	u32 device_active_only_time;
429 	u32 reserved[2];
430 };
431 
432 /*
433  * Insert a single device into the cmb_area list.
434  * Called with cmb_area.lock held from alloc_cmb.
435  */
436 static int alloc_cmb_single(struct ccw_device *cdev,
437 			    struct cmb_data *cmb_data)
438 {
439 	struct cmb *cmb;
440 	struct ccw_device_private *node;
441 	int ret;
442 
443 	spin_lock_irq(cdev->ccwlock);
444 	if (!list_empty(&cdev->private->cmb_list)) {
445 		ret = -EBUSY;
446 		goto out;
447 	}
448 
449 	/*
450 	 * Find first unused cmb in cmb_area.mem.
451 	 * This is a little tricky: cmb_area.list
452 	 * remains sorted by ->cmb->hw_data pointers.
453 	 */
454 	cmb = cmb_area.mem;
455 	list_for_each_entry(node, &cmb_area.list, cmb_list) {
456 		struct cmb_data *data;
457 		data = node->cmb;
458 		if ((struct cmb*)data->hw_block > cmb)
459 			break;
460 		cmb++;
461 	}
462 	if (cmb - cmb_area.mem >= cmb_area.num_channels) {
463 		ret = -ENOMEM;
464 		goto out;
465 	}
466 
467 	/* insert new cmb */
468 	list_add_tail(&cdev->private->cmb_list, &node->cmb_list);
469 	cmb_data->hw_block = cmb;
470 	cdev->private->cmb = cmb_data;
471 	ret = 0;
472 out:
473 	spin_unlock_irq(cdev->ccwlock);
474 	return ret;
475 }
476 
477 static int alloc_cmb(struct ccw_device *cdev)
478 {
479 	int ret;
480 	struct cmb *mem;
481 	ssize_t size;
482 	struct cmb_data *cmb_data;
483 
484 	/* Allocate private cmb_data. */
485 	cmb_data = kzalloc(sizeof(struct cmb_data), GFP_KERNEL);
486 	if (!cmb_data)
487 		return -ENOMEM;
488 
489 	cmb_data->last_block = kzalloc(sizeof(struct cmb), GFP_KERNEL);
490 	if (!cmb_data->last_block) {
491 		kfree(cmb_data);
492 		return -ENOMEM;
493 	}
494 	cmb_data->size = sizeof(struct cmb);
495 	spin_lock(&cmb_area.lock);
496 
497 	if (!cmb_area.mem) {
498 		/* there is no user yet, so we need a new area */
499 		size = sizeof(struct cmb) * cmb_area.num_channels;
500 		WARN_ON(!list_empty(&cmb_area.list));
501 
502 		spin_unlock(&cmb_area.lock);
503 		mem = (void*)__get_free_pages(GFP_KERNEL | GFP_DMA,
504 				 get_order(size));
505 		spin_lock(&cmb_area.lock);
506 
507 		if (cmb_area.mem) {
508 			/* ok, another thread was faster */
509 			free_pages((unsigned long)mem, get_order(size));
510 		} else if (!mem) {
511 			/* no luck */
512 			ret = -ENOMEM;
513 			goto out;
514 		} else {
515 			/* everything ok */
516 			memset(mem, 0, size);
517 			cmb_area.mem = mem;
518 			cmf_activate(cmb_area.mem, CMF_ON);
519 		}
520 	}
521 
522 	/* do the actual allocation */
523 	ret = alloc_cmb_single(cdev, cmb_data);
524 out:
525 	spin_unlock(&cmb_area.lock);
526 	if (ret) {
527 		kfree(cmb_data->last_block);
528 		kfree(cmb_data);
529 	}
530 	return ret;
531 }
532 
533 static void free_cmb(struct ccw_device *cdev)
534 {
535 	struct ccw_device_private *priv;
536 	struct cmb_data *cmb_data;
537 
538 	spin_lock(&cmb_area.lock);
539 	spin_lock_irq(cdev->ccwlock);
540 
541 	priv = cdev->private;
542 	cmb_data = priv->cmb;
543 	priv->cmb = NULL;
544 	if (cmb_data)
545 		kfree(cmb_data->last_block);
546 	kfree(cmb_data);
547 	list_del_init(&priv->cmb_list);
548 
549 	if (list_empty(&cmb_area.list)) {
550 		ssize_t size;
551 		size = sizeof(struct cmb) * cmb_area.num_channels;
552 		cmf_activate(NULL, CMF_OFF);
553 		free_pages((unsigned long)cmb_area.mem, get_order(size));
554 		cmb_area.mem = NULL;
555 	}
556 	spin_unlock_irq(cdev->ccwlock);
557 	spin_unlock(&cmb_area.lock);
558 }
559 
560 static int set_cmb(struct ccw_device *cdev, u32 mme)
561 {
562 	u16 offset;
563 	struct cmb_data *cmb_data;
564 	unsigned long flags;
565 
566 	spin_lock_irqsave(cdev->ccwlock, flags);
567 	if (!cdev->private->cmb) {
568 		spin_unlock_irqrestore(cdev->ccwlock, flags);
569 		return -EINVAL;
570 	}
571 	cmb_data = cdev->private->cmb;
572 	offset = mme ? (struct cmb *)cmb_data->hw_block - cmb_area.mem : 0;
573 	spin_unlock_irqrestore(cdev->ccwlock, flags);
574 
575 	return set_schib_wait(cdev, mme, 0, offset);
576 }
577 
578 /* calculate utilization in 0.1 percent units */
579 static u64 __cmb_utilization(u64 device_connect_time, u64 function_pending_time,
580 			     u64 device_disconnect_time, u64 start_time)
581 {
582 	u64 utilization, elapsed_time;
583 
584 	utilization = time_to_nsec(device_connect_time +
585 				   function_pending_time +
586 				   device_disconnect_time);
587 
588 	elapsed_time = get_tod_clock() - start_time;
589 	elapsed_time = tod_to_ns(elapsed_time);
590 	elapsed_time /= 1000;
591 
592 	return elapsed_time ? (utilization / elapsed_time) : 0;
593 }
594 
595 static u64 read_cmb(struct ccw_device *cdev, int index)
596 {
597 	struct cmb_data *cmb_data;
598 	unsigned long flags;
599 	struct cmb *cmb;
600 	u64 ret = 0;
601 	u32 val;
602 
603 	spin_lock_irqsave(cdev->ccwlock, flags);
604 	cmb_data = cdev->private->cmb;
605 	if (!cmb_data)
606 		goto out;
607 
608 	cmb = cmb_data->hw_block;
609 	switch (index) {
610 	case avg_utilization:
611 		ret = __cmb_utilization(cmb->device_connect_time,
612 					cmb->function_pending_time,
613 					cmb->device_disconnect_time,
614 					cdev->private->cmb_start_time);
615 		goto out;
616 	case cmb_ssch_rsch_count:
617 		ret = cmb->ssch_rsch_count;
618 		goto out;
619 	case cmb_sample_count:
620 		ret = cmb->sample_count;
621 		goto out;
622 	case cmb_device_connect_time:
623 		val = cmb->device_connect_time;
624 		break;
625 	case cmb_function_pending_time:
626 		val = cmb->function_pending_time;
627 		break;
628 	case cmb_device_disconnect_time:
629 		val = cmb->device_disconnect_time;
630 		break;
631 	case cmb_control_unit_queuing_time:
632 		val = cmb->control_unit_queuing_time;
633 		break;
634 	case cmb_device_active_only_time:
635 		val = cmb->device_active_only_time;
636 		break;
637 	default:
638 		goto out;
639 	}
640 	ret = time_to_avg_nsec(val, cmb->sample_count);
641 out:
642 	spin_unlock_irqrestore(cdev->ccwlock, flags);
643 	return ret;
644 }
645 
646 static int readall_cmb(struct ccw_device *cdev, struct cmbdata *data)
647 {
648 	struct cmb *cmb;
649 	struct cmb_data *cmb_data;
650 	u64 time;
651 	unsigned long flags;
652 	int ret;
653 
654 	ret = cmf_cmb_copy_wait(cdev);
655 	if (ret < 0)
656 		return ret;
657 	spin_lock_irqsave(cdev->ccwlock, flags);
658 	cmb_data = cdev->private->cmb;
659 	if (!cmb_data) {
660 		ret = -ENODEV;
661 		goto out;
662 	}
663 	if (cmb_data->last_update == 0) {
664 		ret = -EAGAIN;
665 		goto out;
666 	}
667 	cmb = cmb_data->last_block;
668 	time = cmb_data->last_update - cdev->private->cmb_start_time;
669 
670 	memset(data, 0, sizeof(struct cmbdata));
671 
672 	/* we only know values before device_busy_time */
673 	data->size = offsetof(struct cmbdata, device_busy_time);
674 
675 	data->elapsed_time = tod_to_ns(time);
676 
677 	/* copy data to new structure */
678 	data->ssch_rsch_count = cmb->ssch_rsch_count;
679 	data->sample_count = cmb->sample_count;
680 
681 	/* time fields are converted to nanoseconds while copying */
682 	data->device_connect_time = time_to_nsec(cmb->device_connect_time);
683 	data->function_pending_time = time_to_nsec(cmb->function_pending_time);
684 	data->device_disconnect_time =
685 		time_to_nsec(cmb->device_disconnect_time);
686 	data->control_unit_queuing_time
687 		= time_to_nsec(cmb->control_unit_queuing_time);
688 	data->device_active_only_time
689 		= time_to_nsec(cmb->device_active_only_time);
690 	ret = 0;
691 out:
692 	spin_unlock_irqrestore(cdev->ccwlock, flags);
693 	return ret;
694 }
695 
696 static void reset_cmb(struct ccw_device *cdev)
697 {
698 	cmf_generic_reset(cdev);
699 }
700 
701 static int cmf_enabled(struct ccw_device *cdev)
702 {
703 	int enabled;
704 
705 	spin_lock_irq(cdev->ccwlock);
706 	enabled = !!cdev->private->cmb;
707 	spin_unlock_irq(cdev->ccwlock);
708 
709 	return enabled;
710 }
711 
712 static struct attribute_group cmf_attr_group;
713 
714 static struct cmb_operations cmbops_basic = {
715 	.alloc	= alloc_cmb,
716 	.free	= free_cmb,
717 	.set	= set_cmb,
718 	.read	= read_cmb,
719 	.readall    = readall_cmb,
720 	.reset	    = reset_cmb,
721 	.attr_group = &cmf_attr_group,
722 };
723 
724 /* ******** extended cmb handling ********/
725 
726 /**
727  * struct cmbe - extended channel measurement block
728  * @ssch_rsch_count: number of ssch and rsch
729  * @sample_count: number of samples
730  * @device_connect_time: time of device connect
731  * @function_pending_time: time of function pending
732  * @device_disconnect_time: time of device disconnect
733  * @control_unit_queuing_time: time of control unit queuing
734  * @device_active_only_time: time of device active only
735  * @device_busy_time: time of device busy
736  * @initial_command_response_time: initial command response time
737  * @reserved: unused
738  *
739  * The measurement block as used by the hardware. May be in any 64 bit physical
740  * location.
741  * The fields are described further in z/Architecture Principles of Operation,
742  * third edition, chapter 17.
743  */
744 struct cmbe {
745 	u32 ssch_rsch_count;
746 	u32 sample_count;
747 	u32 device_connect_time;
748 	u32 function_pending_time;
749 	u32 device_disconnect_time;
750 	u32 control_unit_queuing_time;
751 	u32 device_active_only_time;
752 	u32 device_busy_time;
753 	u32 initial_command_response_time;
754 	u32 reserved[7];
755 } __packed __aligned(64);
756 
757 static struct kmem_cache *cmbe_cache;
758 
759 static int alloc_cmbe(struct ccw_device *cdev)
760 {
761 	struct cmb_data *cmb_data;
762 	struct cmbe *cmbe;
763 	int ret = -ENOMEM;
764 
765 	cmbe = kmem_cache_zalloc(cmbe_cache, GFP_KERNEL);
766 	if (!cmbe)
767 		return ret;
768 
769 	cmb_data = kzalloc(sizeof(*cmb_data), GFP_KERNEL);
770 	if (!cmb_data)
771 		goto out_free;
772 
773 	cmb_data->last_block = kzalloc(sizeof(struct cmbe), GFP_KERNEL);
774 	if (!cmb_data->last_block)
775 		goto out_free;
776 
777 	cmb_data->size = sizeof(*cmbe);
778 	cmb_data->hw_block = cmbe;
779 
780 	spin_lock(&cmb_area.lock);
781 	spin_lock_irq(cdev->ccwlock);
782 	if (cdev->private->cmb)
783 		goto out_unlock;
784 
785 	cdev->private->cmb = cmb_data;
786 
787 	/* activate global measurement if this is the first channel */
788 	if (list_empty(&cmb_area.list))
789 		cmf_activate(NULL, CMF_ON);
790 	list_add_tail(&cdev->private->cmb_list, &cmb_area.list);
791 
792 	spin_unlock_irq(cdev->ccwlock);
793 	spin_unlock(&cmb_area.lock);
794 	return 0;
795 
796 out_unlock:
797 	spin_unlock_irq(cdev->ccwlock);
798 	spin_unlock(&cmb_area.lock);
799 	ret = -EBUSY;
800 out_free:
801 	if (cmb_data)
802 		kfree(cmb_data->last_block);
803 	kfree(cmb_data);
804 	kmem_cache_free(cmbe_cache, cmbe);
805 
806 	return ret;
807 }
808 
809 static void free_cmbe(struct ccw_device *cdev)
810 {
811 	struct cmb_data *cmb_data;
812 
813 	spin_lock(&cmb_area.lock);
814 	spin_lock_irq(cdev->ccwlock);
815 	cmb_data = cdev->private->cmb;
816 	cdev->private->cmb = NULL;
817 	if (cmb_data) {
818 		kfree(cmb_data->last_block);
819 		kmem_cache_free(cmbe_cache, cmb_data->hw_block);
820 	}
821 	kfree(cmb_data);
822 
823 	/* deactivate global measurement if this is the last channel */
824 	list_del_init(&cdev->private->cmb_list);
825 	if (list_empty(&cmb_area.list))
826 		cmf_activate(NULL, CMF_OFF);
827 	spin_unlock_irq(cdev->ccwlock);
828 	spin_unlock(&cmb_area.lock);
829 }
830 
831 static int set_cmbe(struct ccw_device *cdev, u32 mme)
832 {
833 	unsigned long mba;
834 	struct cmb_data *cmb_data;
835 	unsigned long flags;
836 
837 	spin_lock_irqsave(cdev->ccwlock, flags);
838 	if (!cdev->private->cmb) {
839 		spin_unlock_irqrestore(cdev->ccwlock, flags);
840 		return -EINVAL;
841 	}
842 	cmb_data = cdev->private->cmb;
843 	mba = mme ? (unsigned long) cmb_data->hw_block : 0;
844 	spin_unlock_irqrestore(cdev->ccwlock, flags);
845 
846 	return set_schib_wait(cdev, mme, 1, mba);
847 }
848 
849 static u64 read_cmbe(struct ccw_device *cdev, int index)
850 {
851 	struct cmb_data *cmb_data;
852 	unsigned long flags;
853 	struct cmbe *cmb;
854 	u64 ret = 0;
855 	u32 val;
856 
857 	spin_lock_irqsave(cdev->ccwlock, flags);
858 	cmb_data = cdev->private->cmb;
859 	if (!cmb_data)
860 		goto out;
861 
862 	cmb = cmb_data->hw_block;
863 	switch (index) {
864 	case avg_utilization:
865 		ret = __cmb_utilization(cmb->device_connect_time,
866 					cmb->function_pending_time,
867 					cmb->device_disconnect_time,
868 					cdev->private->cmb_start_time);
869 		goto out;
870 	case cmb_ssch_rsch_count:
871 		ret = cmb->ssch_rsch_count;
872 		goto out;
873 	case cmb_sample_count:
874 		ret = cmb->sample_count;
875 		goto out;
876 	case cmb_device_connect_time:
877 		val = cmb->device_connect_time;
878 		break;
879 	case cmb_function_pending_time:
880 		val = cmb->function_pending_time;
881 		break;
882 	case cmb_device_disconnect_time:
883 		val = cmb->device_disconnect_time;
884 		break;
885 	case cmb_control_unit_queuing_time:
886 		val = cmb->control_unit_queuing_time;
887 		break;
888 	case cmb_device_active_only_time:
889 		val = cmb->device_active_only_time;
890 		break;
891 	case cmb_device_busy_time:
892 		val = cmb->device_busy_time;
893 		break;
894 	case cmb_initial_command_response_time:
895 		val = cmb->initial_command_response_time;
896 		break;
897 	default:
898 		goto out;
899 	}
900 	ret = time_to_avg_nsec(val, cmb->sample_count);
901 out:
902 	spin_unlock_irqrestore(cdev->ccwlock, flags);
903 	return ret;
904 }
905 
906 static int readall_cmbe(struct ccw_device *cdev, struct cmbdata *data)
907 {
908 	struct cmbe *cmb;
909 	struct cmb_data *cmb_data;
910 	u64 time;
911 	unsigned long flags;
912 	int ret;
913 
914 	ret = cmf_cmb_copy_wait(cdev);
915 	if (ret < 0)
916 		return ret;
917 	spin_lock_irqsave(cdev->ccwlock, flags);
918 	cmb_data = cdev->private->cmb;
919 	if (!cmb_data) {
920 		ret = -ENODEV;
921 		goto out;
922 	}
923 	if (cmb_data->last_update == 0) {
924 		ret = -EAGAIN;
925 		goto out;
926 	}
927 	time = cmb_data->last_update - cdev->private->cmb_start_time;
928 
929 	memset (data, 0, sizeof(struct cmbdata));
930 
931 	/* we only know values before device_busy_time */
932 	data->size = offsetof(struct cmbdata, device_busy_time);
933 
934 	data->elapsed_time = tod_to_ns(time);
935 
936 	cmb = cmb_data->last_block;
937 	/* copy data to new structure */
938 	data->ssch_rsch_count = cmb->ssch_rsch_count;
939 	data->sample_count = cmb->sample_count;
940 
941 	/* time fields are converted to nanoseconds while copying */
942 	data->device_connect_time = time_to_nsec(cmb->device_connect_time);
943 	data->function_pending_time = time_to_nsec(cmb->function_pending_time);
944 	data->device_disconnect_time =
945 		time_to_nsec(cmb->device_disconnect_time);
946 	data->control_unit_queuing_time
947 		= time_to_nsec(cmb->control_unit_queuing_time);
948 	data->device_active_only_time
949 		= time_to_nsec(cmb->device_active_only_time);
950 	data->device_busy_time = time_to_nsec(cmb->device_busy_time);
951 	data->initial_command_response_time
952 		= time_to_nsec(cmb->initial_command_response_time);
953 
954 	ret = 0;
955 out:
956 	spin_unlock_irqrestore(cdev->ccwlock, flags);
957 	return ret;
958 }
959 
960 static void reset_cmbe(struct ccw_device *cdev)
961 {
962 	cmf_generic_reset(cdev);
963 }
964 
965 static struct attribute_group cmf_attr_group_ext;
966 
967 static struct cmb_operations cmbops_extended = {
968 	.alloc	    = alloc_cmbe,
969 	.free	    = free_cmbe,
970 	.set	    = set_cmbe,
971 	.read	    = read_cmbe,
972 	.readall    = readall_cmbe,
973 	.reset	    = reset_cmbe,
974 	.attr_group = &cmf_attr_group_ext,
975 };
976 
977 static ssize_t cmb_show_attr(struct device *dev, char *buf, enum cmb_index idx)
978 {
979 	return sprintf(buf, "%lld\n",
980 		(unsigned long long) cmf_read(to_ccwdev(dev), idx));
981 }
982 
983 static ssize_t cmb_show_avg_sample_interval(struct device *dev,
984 					    struct device_attribute *attr,
985 					    char *buf)
986 {
987 	struct ccw_device *cdev = to_ccwdev(dev);
988 	unsigned long count;
989 	long interval;
990 
991 	count = cmf_read(cdev, cmb_sample_count);
992 	spin_lock_irq(cdev->ccwlock);
993 	if (count) {
994 		interval = get_tod_clock() - cdev->private->cmb_start_time;
995 		interval = tod_to_ns(interval);
996 		interval /= count;
997 	} else
998 		interval = -1;
999 	spin_unlock_irq(cdev->ccwlock);
1000 	return sprintf(buf, "%ld\n", interval);
1001 }
1002 
1003 static ssize_t cmb_show_avg_utilization(struct device *dev,
1004 					struct device_attribute *attr,
1005 					char *buf)
1006 {
1007 	unsigned long u = cmf_read(to_ccwdev(dev), avg_utilization);
1008 
1009 	return sprintf(buf, "%02lu.%01lu%%\n", u / 10, u % 10);
1010 }
1011 
1012 #define cmf_attr(name) \
1013 static ssize_t show_##name(struct device *dev, \
1014 			   struct device_attribute *attr, char *buf)	\
1015 { return cmb_show_attr((dev), buf, cmb_##name); } \
1016 static DEVICE_ATTR(name, 0444, show_##name, NULL);
1017 
1018 #define cmf_attr_avg(name) \
1019 static ssize_t show_avg_##name(struct device *dev, \
1020 			       struct device_attribute *attr, char *buf) \
1021 { return cmb_show_attr((dev), buf, cmb_##name); } \
1022 static DEVICE_ATTR(avg_##name, 0444, show_avg_##name, NULL);
1023 
1024 cmf_attr(ssch_rsch_count);
1025 cmf_attr(sample_count);
1026 cmf_attr_avg(device_connect_time);
1027 cmf_attr_avg(function_pending_time);
1028 cmf_attr_avg(device_disconnect_time);
1029 cmf_attr_avg(control_unit_queuing_time);
1030 cmf_attr_avg(device_active_only_time);
1031 cmf_attr_avg(device_busy_time);
1032 cmf_attr_avg(initial_command_response_time);
1033 
1034 static DEVICE_ATTR(avg_sample_interval, 0444, cmb_show_avg_sample_interval,
1035 		   NULL);
1036 static DEVICE_ATTR(avg_utilization, 0444, cmb_show_avg_utilization, NULL);
1037 
1038 static struct attribute *cmf_attributes[] = {
1039 	&dev_attr_avg_sample_interval.attr,
1040 	&dev_attr_avg_utilization.attr,
1041 	&dev_attr_ssch_rsch_count.attr,
1042 	&dev_attr_sample_count.attr,
1043 	&dev_attr_avg_device_connect_time.attr,
1044 	&dev_attr_avg_function_pending_time.attr,
1045 	&dev_attr_avg_device_disconnect_time.attr,
1046 	&dev_attr_avg_control_unit_queuing_time.attr,
1047 	&dev_attr_avg_device_active_only_time.attr,
1048 	NULL,
1049 };
1050 
1051 static struct attribute_group cmf_attr_group = {
1052 	.name  = "cmf",
1053 	.attrs = cmf_attributes,
1054 };
1055 
1056 static struct attribute *cmf_attributes_ext[] = {
1057 	&dev_attr_avg_sample_interval.attr,
1058 	&dev_attr_avg_utilization.attr,
1059 	&dev_attr_ssch_rsch_count.attr,
1060 	&dev_attr_sample_count.attr,
1061 	&dev_attr_avg_device_connect_time.attr,
1062 	&dev_attr_avg_function_pending_time.attr,
1063 	&dev_attr_avg_device_disconnect_time.attr,
1064 	&dev_attr_avg_control_unit_queuing_time.attr,
1065 	&dev_attr_avg_device_active_only_time.attr,
1066 	&dev_attr_avg_device_busy_time.attr,
1067 	&dev_attr_avg_initial_command_response_time.attr,
1068 	NULL,
1069 };
1070 
1071 static struct attribute_group cmf_attr_group_ext = {
1072 	.name  = "cmf",
1073 	.attrs = cmf_attributes_ext,
1074 };
1075 
1076 static ssize_t cmb_enable_show(struct device *dev,
1077 			       struct device_attribute *attr,
1078 			       char *buf)
1079 {
1080 	struct ccw_device *cdev = to_ccwdev(dev);
1081 
1082 	return sprintf(buf, "%d\n", cmf_enabled(cdev));
1083 }
1084 
1085 static ssize_t cmb_enable_store(struct device *dev,
1086 				struct device_attribute *attr, const char *buf,
1087 				size_t c)
1088 {
1089 	struct ccw_device *cdev = to_ccwdev(dev);
1090 	unsigned long val;
1091 	int ret;
1092 
1093 	ret = kstrtoul(buf, 16, &val);
1094 	if (ret)
1095 		return ret;
1096 
1097 	switch (val) {
1098 	case 0:
1099 		ret = disable_cmf(cdev);
1100 		break;
1101 	case 1:
1102 		ret = enable_cmf(cdev);
1103 		break;
1104 	default:
1105 		ret = -EINVAL;
1106 	}
1107 
1108 	return ret ? ret : c;
1109 }
1110 DEVICE_ATTR_RW(cmb_enable);
1111 
1112 int ccw_set_cmf(struct ccw_device *cdev, int enable)
1113 {
1114 	return cmbops->set(cdev, enable ? 2 : 0);
1115 }
1116 
1117 /**
1118  * enable_cmf() - switch on the channel measurement for a specific device
1119  *  @cdev:	The ccw device to be enabled
1120  *
1121  *  Enable channel measurements for @cdev. If this is called on a device
1122  *  for which channel measurement is already enabled a reset of the
1123  *  measurement data is triggered.
1124  *  Returns: %0 for success or a negative error value.
1125  *  Context:
1126  *    non-atomic
1127  */
1128 int enable_cmf(struct ccw_device *cdev)
1129 {
1130 	int ret = 0;
1131 
1132 	device_lock(&cdev->dev);
1133 	if (cmf_enabled(cdev)) {
1134 		cmbops->reset(cdev);
1135 		goto out_unlock;
1136 	}
1137 	get_device(&cdev->dev);
1138 	ret = cmbops->alloc(cdev);
1139 	if (ret)
1140 		goto out;
1141 	cmbops->reset(cdev);
1142 	ret = sysfs_create_group(&cdev->dev.kobj, cmbops->attr_group);
1143 	if (ret) {
1144 		cmbops->free(cdev);
1145 		goto out;
1146 	}
1147 	ret = cmbops->set(cdev, 2);
1148 	if (ret) {
1149 		sysfs_remove_group(&cdev->dev.kobj, cmbops->attr_group);
1150 		cmbops->free(cdev);
1151 	}
1152 out:
1153 	if (ret)
1154 		put_device(&cdev->dev);
1155 out_unlock:
1156 	device_unlock(&cdev->dev);
1157 	return ret;
1158 }
1159 
1160 /**
1161  * __disable_cmf() - switch off the channel measurement for a specific device
1162  *  @cdev:	The ccw device to be disabled
1163  *
1164  *  Returns: %0 for success or a negative error value.
1165  *
1166  *  Context:
1167  *    non-atomic, device_lock() held.
1168  */
1169 int __disable_cmf(struct ccw_device *cdev)
1170 {
1171 	int ret;
1172 
1173 	ret = cmbops->set(cdev, 0);
1174 	if (ret)
1175 		return ret;
1176 
1177 	sysfs_remove_group(&cdev->dev.kobj, cmbops->attr_group);
1178 	cmbops->free(cdev);
1179 	put_device(&cdev->dev);
1180 
1181 	return ret;
1182 }
1183 
1184 /**
1185  * disable_cmf() - switch off the channel measurement for a specific device
1186  *  @cdev:	The ccw device to be disabled
1187  *
1188  *  Returns: %0 for success or a negative error value.
1189  *
1190  *  Context:
1191  *    non-atomic
1192  */
1193 int disable_cmf(struct ccw_device *cdev)
1194 {
1195 	int ret;
1196 
1197 	device_lock(&cdev->dev);
1198 	ret = __disable_cmf(cdev);
1199 	device_unlock(&cdev->dev);
1200 
1201 	return ret;
1202 }
1203 
1204 /**
1205  * cmf_read() - read one value from the current channel measurement block
1206  * @cdev:	the channel to be read
1207  * @index:	the index of the value to be read
1208  *
1209  * Returns: The value read or %0 if the value cannot be read.
1210  *
1211  *  Context:
1212  *    any
1213  */
1214 u64 cmf_read(struct ccw_device *cdev, int index)
1215 {
1216 	return cmbops->read(cdev, index);
1217 }
1218 
1219 /**
1220  * cmf_readall() - read the current channel measurement block
1221  * @cdev:	the channel to be read
1222  * @data:	a pointer to a data block that will be filled
1223  *
1224  * Returns: %0 on success, a negative error value otherwise.
1225  *
1226  *  Context:
1227  *    any
1228  */
1229 int cmf_readall(struct ccw_device *cdev, struct cmbdata *data)
1230 {
1231 	return cmbops->readall(cdev, data);
1232 }
1233 
1234 /* Reenable cmf when a disconnected device becomes available again. */
1235 int cmf_reenable(struct ccw_device *cdev)
1236 {
1237 	cmbops->reset(cdev);
1238 	return cmbops->set(cdev, 2);
1239 }
1240 
1241 /**
1242  * cmf_reactivate() - reactivate measurement block updates
1243  *
1244  * Use this during resume from hibernate.
1245  */
1246 void cmf_reactivate(void)
1247 {
1248 	spin_lock(&cmb_area.lock);
1249 	if (!list_empty(&cmb_area.list))
1250 		cmf_activate(cmb_area.mem, CMF_ON);
1251 	spin_unlock(&cmb_area.lock);
1252 }
1253 
1254 static int __init init_cmbe(void)
1255 {
1256 	cmbe_cache = kmem_cache_create("cmbe_cache", sizeof(struct cmbe),
1257 				       __alignof__(struct cmbe), 0, NULL);
1258 
1259 	return cmbe_cache ? 0 : -ENOMEM;
1260 }
1261 
1262 static int __init init_cmf(void)
1263 {
1264 	char *format_string;
1265 	char *detect_string;
1266 	int ret;
1267 
1268 	/*
1269 	 * If the user did not give a parameter, see if we are running on a
1270 	 * machine supporting extended measurement blocks, otherwise fall back
1271 	 * to basic mode.
1272 	 */
1273 	if (format == CMF_AUTODETECT) {
1274 		if (!css_general_characteristics.ext_mb) {
1275 			format = CMF_BASIC;
1276 		} else {
1277 			format = CMF_EXTENDED;
1278 		}
1279 		detect_string = "autodetected";
1280 	} else {
1281 		detect_string = "parameter";
1282 	}
1283 
1284 	switch (format) {
1285 	case CMF_BASIC:
1286 		format_string = "basic";
1287 		cmbops = &cmbops_basic;
1288 		break;
1289 	case CMF_EXTENDED:
1290 		format_string = "extended";
1291 		cmbops = &cmbops_extended;
1292 
1293 		ret = init_cmbe();
1294 		if (ret)
1295 			return ret;
1296 		break;
1297 	default:
1298 		return -EINVAL;
1299 	}
1300 	pr_info("Channel measurement facility initialized using format "
1301 		"%s (mode %s)\n", format_string, detect_string);
1302 	return 0;
1303 }
1304 device_initcall(init_cmf);
1305 
1306 EXPORT_SYMBOL_GPL(enable_cmf);
1307 EXPORT_SYMBOL_GPL(disable_cmf);
1308 EXPORT_SYMBOL_GPL(cmf_read);
1309 EXPORT_SYMBOL_GPL(cmf_readall);
1310