1 /* 2 * linux/drivers/s390/cio/cmf.c 3 * 4 * Linux on zSeries Channel Measurement Facility support 5 * 6 * Copyright 2000,2006 IBM Corporation 7 * 8 * Authors: Arnd Bergmann <arndb@de.ibm.com> 9 * Cornelia Huck <cornelia.huck@de.ibm.com> 10 * 11 * original idea from Natarajan Krishnaswami <nkrishna@us.ibm.com> 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * This program is distributed in the hope that it will be useful, 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 * GNU General Public License for more details. 22 * 23 * You should have received a copy of the GNU General Public License 24 * along with this program; if not, write to the Free Software 25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 26 */ 27 28 #include <linux/bootmem.h> 29 #include <linux/device.h> 30 #include <linux/init.h> 31 #include <linux/list.h> 32 #include <linux/module.h> 33 #include <linux/moduleparam.h> 34 #include <linux/slab.h> 35 #include <linux/timex.h> /* get_clock() */ 36 37 #include <asm/ccwdev.h> 38 #include <asm/cio.h> 39 #include <asm/cmb.h> 40 #include <asm/div64.h> 41 42 #include "cio.h" 43 #include "css.h" 44 #include "device.h" 45 #include "ioasm.h" 46 #include "chsc.h" 47 48 /* 49 * parameter to enable cmf during boot, possible uses are: 50 * "s390cmf" -- enable cmf and allocate 2 MB of ram so measuring can be 51 * used on any subchannel 52 * "s390cmf=<num>" -- enable cmf and allocate enough memory to measure 53 * <num> subchannel, where <num> is an integer 54 * between 1 and 65535, default is 1024 55 */ 56 #define ARGSTRING "s390cmf" 57 58 /* indices for READCMB */ 59 enum cmb_index { 60 /* basic and exended format: */ 61 cmb_ssch_rsch_count, 62 cmb_sample_count, 63 cmb_device_connect_time, 64 cmb_function_pending_time, 65 cmb_device_disconnect_time, 66 cmb_control_unit_queuing_time, 67 cmb_device_active_only_time, 68 /* extended format only: */ 69 cmb_device_busy_time, 70 cmb_initial_command_response_time, 71 }; 72 73 /** 74 * enum cmb_format - types of supported measurement block formats 75 * 76 * @CMF_BASIC: traditional channel measurement blocks supported 77 * by all machines that we run on 78 * @CMF_EXTENDED: improved format that was introduced with the z990 79 * machine 80 * @CMF_AUTODETECT: default: use extended format when running on a machine 81 * supporting extended format, otherwise fall back to 82 * basic format 83 */ 84 enum cmb_format { 85 CMF_BASIC, 86 CMF_EXTENDED, 87 CMF_AUTODETECT = -1, 88 }; 89 90 /* 91 * format - actual format for all measurement blocks 92 * 93 * The format module parameter can be set to a value of 0 (zero) 94 * or 1, indicating basic or extended format as described for 95 * enum cmb_format. 96 */ 97 static int format = CMF_AUTODETECT; 98 module_param(format, bool, 0444); 99 100 /** 101 * struct cmb_operations - functions to use depending on cmb_format 102 * 103 * Most of these functions operate on a struct ccw_device. There is only 104 * one instance of struct cmb_operations because the format of the measurement 105 * data is guaranteed to be the same for every ccw_device. 106 * 107 * @alloc: allocate memory for a channel measurement block, 108 * either with the help of a special pool or with kmalloc 109 * @free: free memory allocated with @alloc 110 * @set: enable or disable measurement 111 * @read: read a measurement entry at an index 112 * @readall: read a measurement block in a common format 113 * @reset: clear the data in the associated measurement block and 114 * reset its time stamp 115 * @align: align an allocated block so that the hardware can use it 116 */ 117 struct cmb_operations { 118 int (*alloc) (struct ccw_device *); 119 void (*free) (struct ccw_device *); 120 int (*set) (struct ccw_device *, u32); 121 u64 (*read) (struct ccw_device *, int); 122 int (*readall)(struct ccw_device *, struct cmbdata *); 123 void (*reset) (struct ccw_device *); 124 void *(*align) (void *); 125 /* private: */ 126 struct attribute_group *attr_group; 127 }; 128 static struct cmb_operations *cmbops; 129 130 struct cmb_data { 131 void *hw_block; /* Pointer to block updated by hardware */ 132 void *last_block; /* Last changed block copied from hardware block */ 133 int size; /* Size of hw_block and last_block */ 134 unsigned long long last_update; /* when last_block was updated */ 135 }; 136 137 /* 138 * Our user interface is designed in terms of nanoseconds, 139 * while the hardware measures total times in its own 140 * unit. 141 */ 142 static inline u64 time_to_nsec(u32 value) 143 { 144 return ((u64)value) * 128000ull; 145 } 146 147 /* 148 * Users are usually interested in average times, 149 * not accumulated time. 150 * This also helps us with atomicity problems 151 * when reading sinlge values. 152 */ 153 static inline u64 time_to_avg_nsec(u32 value, u32 count) 154 { 155 u64 ret; 156 157 /* no samples yet, avoid division by 0 */ 158 if (count == 0) 159 return 0; 160 161 /* value comes in units of 128 µsec */ 162 ret = time_to_nsec(value); 163 do_div(ret, count); 164 165 return ret; 166 } 167 168 /* 169 * Activate or deactivate the channel monitor. When area is NULL, 170 * the monitor is deactivated. The channel monitor needs to 171 * be active in order to measure subchannels, which also need 172 * to be enabled. 173 */ 174 static inline void cmf_activate(void *area, unsigned int onoff) 175 { 176 register void * __gpr2 asm("2"); 177 register long __gpr1 asm("1"); 178 179 __gpr2 = area; 180 __gpr1 = onoff ? 2 : 0; 181 /* activate channel measurement */ 182 asm("schm" : : "d" (__gpr2), "d" (__gpr1) ); 183 } 184 185 static int set_schib(struct ccw_device *cdev, u32 mme, int mbfc, 186 unsigned long address) 187 { 188 int ret; 189 int retry; 190 struct subchannel *sch; 191 struct schib *schib; 192 193 sch = to_subchannel(cdev->dev.parent); 194 schib = &sch->schib; 195 /* msch can silently fail, so do it again if necessary */ 196 for (retry = 0; retry < 3; retry++) { 197 /* prepare schib */ 198 stsch(sch->schid, schib); 199 schib->pmcw.mme = mme; 200 schib->pmcw.mbfc = mbfc; 201 /* address can be either a block address or a block index */ 202 if (mbfc) 203 schib->mba = address; 204 else 205 schib->pmcw.mbi = address; 206 207 /* try to submit it */ 208 switch(ret = msch_err(sch->schid, schib)) { 209 case 0: 210 break; 211 case 1: 212 case 2: /* in I/O or status pending */ 213 ret = -EBUSY; 214 break; 215 case 3: /* subchannel is no longer valid */ 216 ret = -ENODEV; 217 break; 218 default: /* msch caught an exception */ 219 ret = -EINVAL; 220 break; 221 } 222 stsch(sch->schid, schib); /* restore the schib */ 223 224 if (ret) 225 break; 226 227 /* check if it worked */ 228 if (schib->pmcw.mme == mme && 229 schib->pmcw.mbfc == mbfc && 230 (mbfc ? (schib->mba == address) 231 : (schib->pmcw.mbi == address))) 232 return 0; 233 234 ret = -EINVAL; 235 } 236 237 return ret; 238 } 239 240 struct set_schib_struct { 241 u32 mme; 242 int mbfc; 243 unsigned long address; 244 wait_queue_head_t wait; 245 int ret; 246 struct kref kref; 247 }; 248 249 static void cmf_set_schib_release(struct kref *kref) 250 { 251 struct set_schib_struct *set_data; 252 253 set_data = container_of(kref, struct set_schib_struct, kref); 254 kfree(set_data); 255 } 256 257 #define CMF_PENDING 1 258 259 static int set_schib_wait(struct ccw_device *cdev, u32 mme, 260 int mbfc, unsigned long address) 261 { 262 struct set_schib_struct *set_data; 263 int ret; 264 265 spin_lock_irq(cdev->ccwlock); 266 if (!cdev->private->cmb) { 267 ret = -ENODEV; 268 goto out; 269 } 270 set_data = kzalloc(sizeof(struct set_schib_struct), GFP_ATOMIC); 271 if (!set_data) { 272 ret = -ENOMEM; 273 goto out; 274 } 275 init_waitqueue_head(&set_data->wait); 276 kref_init(&set_data->kref); 277 set_data->mme = mme; 278 set_data->mbfc = mbfc; 279 set_data->address = address; 280 281 ret = set_schib(cdev, mme, mbfc, address); 282 if (ret != -EBUSY) 283 goto out_put; 284 285 if (cdev->private->state != DEV_STATE_ONLINE) { 286 /* if the device is not online, don't even try again */ 287 ret = -EBUSY; 288 goto out_put; 289 } 290 291 cdev->private->state = DEV_STATE_CMFCHANGE; 292 set_data->ret = CMF_PENDING; 293 cdev->private->cmb_wait = set_data; 294 295 spin_unlock_irq(cdev->ccwlock); 296 if (wait_event_interruptible(set_data->wait, 297 set_data->ret != CMF_PENDING)) { 298 spin_lock_irq(cdev->ccwlock); 299 if (set_data->ret == CMF_PENDING) { 300 set_data->ret = -ERESTARTSYS; 301 if (cdev->private->state == DEV_STATE_CMFCHANGE) 302 cdev->private->state = DEV_STATE_ONLINE; 303 } 304 spin_unlock_irq(cdev->ccwlock); 305 } 306 spin_lock_irq(cdev->ccwlock); 307 cdev->private->cmb_wait = NULL; 308 ret = set_data->ret; 309 out_put: 310 kref_put(&set_data->kref, cmf_set_schib_release); 311 out: 312 spin_unlock_irq(cdev->ccwlock); 313 return ret; 314 } 315 316 void retry_set_schib(struct ccw_device *cdev) 317 { 318 struct set_schib_struct *set_data; 319 320 set_data = cdev->private->cmb_wait; 321 if (!set_data) { 322 WARN_ON(1); 323 return; 324 } 325 kref_get(&set_data->kref); 326 set_data->ret = set_schib(cdev, set_data->mme, set_data->mbfc, 327 set_data->address); 328 wake_up(&set_data->wait); 329 kref_put(&set_data->kref, cmf_set_schib_release); 330 } 331 332 static int cmf_copy_block(struct ccw_device *cdev) 333 { 334 struct subchannel *sch; 335 void *reference_buf; 336 void *hw_block; 337 struct cmb_data *cmb_data; 338 339 sch = to_subchannel(cdev->dev.parent); 340 341 if (stsch(sch->schid, &sch->schib)) 342 return -ENODEV; 343 344 if (scsw_fctl(&sch->schib.scsw) & SCSW_FCTL_START_FUNC) { 345 /* Don't copy if a start function is in progress. */ 346 if ((!(scsw_actl(&sch->schib.scsw) & SCSW_ACTL_SUSPENDED)) && 347 (scsw_actl(&sch->schib.scsw) & 348 (SCSW_ACTL_DEVACT | SCSW_ACTL_SCHACT)) && 349 (!(scsw_stctl(&sch->schib.scsw) & SCSW_STCTL_SEC_STATUS))) 350 return -EBUSY; 351 } 352 cmb_data = cdev->private->cmb; 353 hw_block = cmbops->align(cmb_data->hw_block); 354 if (!memcmp(cmb_data->last_block, hw_block, cmb_data->size)) 355 /* No need to copy. */ 356 return 0; 357 reference_buf = kzalloc(cmb_data->size, GFP_ATOMIC); 358 if (!reference_buf) 359 return -ENOMEM; 360 /* Ensure consistency of block copied from hardware. */ 361 do { 362 memcpy(cmb_data->last_block, hw_block, cmb_data->size); 363 memcpy(reference_buf, hw_block, cmb_data->size); 364 } while (memcmp(cmb_data->last_block, reference_buf, cmb_data->size)); 365 cmb_data->last_update = get_clock(); 366 kfree(reference_buf); 367 return 0; 368 } 369 370 struct copy_block_struct { 371 wait_queue_head_t wait; 372 int ret; 373 struct kref kref; 374 }; 375 376 static void cmf_copy_block_release(struct kref *kref) 377 { 378 struct copy_block_struct *copy_block; 379 380 copy_block = container_of(kref, struct copy_block_struct, kref); 381 kfree(copy_block); 382 } 383 384 static int cmf_cmb_copy_wait(struct ccw_device *cdev) 385 { 386 struct copy_block_struct *copy_block; 387 int ret; 388 unsigned long flags; 389 390 spin_lock_irqsave(cdev->ccwlock, flags); 391 if (!cdev->private->cmb) { 392 ret = -ENODEV; 393 goto out; 394 } 395 copy_block = kzalloc(sizeof(struct copy_block_struct), GFP_ATOMIC); 396 if (!copy_block) { 397 ret = -ENOMEM; 398 goto out; 399 } 400 init_waitqueue_head(©_block->wait); 401 kref_init(©_block->kref); 402 403 ret = cmf_copy_block(cdev); 404 if (ret != -EBUSY) 405 goto out_put; 406 407 if (cdev->private->state != DEV_STATE_ONLINE) { 408 ret = -EBUSY; 409 goto out_put; 410 } 411 412 cdev->private->state = DEV_STATE_CMFUPDATE; 413 copy_block->ret = CMF_PENDING; 414 cdev->private->cmb_wait = copy_block; 415 416 spin_unlock_irqrestore(cdev->ccwlock, flags); 417 if (wait_event_interruptible(copy_block->wait, 418 copy_block->ret != CMF_PENDING)) { 419 spin_lock_irqsave(cdev->ccwlock, flags); 420 if (copy_block->ret == CMF_PENDING) { 421 copy_block->ret = -ERESTARTSYS; 422 if (cdev->private->state == DEV_STATE_CMFUPDATE) 423 cdev->private->state = DEV_STATE_ONLINE; 424 } 425 spin_unlock_irqrestore(cdev->ccwlock, flags); 426 } 427 spin_lock_irqsave(cdev->ccwlock, flags); 428 cdev->private->cmb_wait = NULL; 429 ret = copy_block->ret; 430 out_put: 431 kref_put(©_block->kref, cmf_copy_block_release); 432 out: 433 spin_unlock_irqrestore(cdev->ccwlock, flags); 434 return ret; 435 } 436 437 void cmf_retry_copy_block(struct ccw_device *cdev) 438 { 439 struct copy_block_struct *copy_block; 440 441 copy_block = cdev->private->cmb_wait; 442 if (!copy_block) { 443 WARN_ON(1); 444 return; 445 } 446 kref_get(©_block->kref); 447 copy_block->ret = cmf_copy_block(cdev); 448 wake_up(©_block->wait); 449 kref_put(©_block->kref, cmf_copy_block_release); 450 } 451 452 static void cmf_generic_reset(struct ccw_device *cdev) 453 { 454 struct cmb_data *cmb_data; 455 456 spin_lock_irq(cdev->ccwlock); 457 cmb_data = cdev->private->cmb; 458 if (cmb_data) { 459 memset(cmb_data->last_block, 0, cmb_data->size); 460 /* 461 * Need to reset hw block as well to make the hardware start 462 * from 0 again. 463 */ 464 memset(cmbops->align(cmb_data->hw_block), 0, cmb_data->size); 465 cmb_data->last_update = 0; 466 } 467 cdev->private->cmb_start_time = get_clock(); 468 spin_unlock_irq(cdev->ccwlock); 469 } 470 471 /** 472 * struct cmb_area - container for global cmb data 473 * 474 * @mem: pointer to CMBs (only in basic measurement mode) 475 * @list: contains a linked list of all subchannels 476 * @num_channels: number of channels to be measured 477 * @lock: protect concurrent access to @mem and @list 478 */ 479 struct cmb_area { 480 struct cmb *mem; 481 struct list_head list; 482 int num_channels; 483 spinlock_t lock; 484 }; 485 486 static struct cmb_area cmb_area = { 487 .lock = __SPIN_LOCK_UNLOCKED(cmb_area.lock), 488 .list = LIST_HEAD_INIT(cmb_area.list), 489 .num_channels = 1024, 490 }; 491 492 /* ****** old style CMB handling ********/ 493 494 /* 495 * Basic channel measurement blocks are allocated in one contiguous 496 * block of memory, which can not be moved as long as any channel 497 * is active. Therefore, a maximum number of subchannels needs to 498 * be defined somewhere. This is a module parameter, defaulting to 499 * a resonable value of 1024, or 32 kb of memory. 500 * Current kernels don't allow kmalloc with more than 128kb, so the 501 * maximum is 4096. 502 */ 503 504 module_param_named(maxchannels, cmb_area.num_channels, uint, 0444); 505 506 /** 507 * struct cmb - basic channel measurement block 508 * @ssch_rsch_count: number of ssch and rsch 509 * @sample_count: number of samples 510 * @device_connect_time: time of device connect 511 * @function_pending_time: time of function pending 512 * @device_disconnect_time: time of device disconnect 513 * @control_unit_queuing_time: time of control unit queuing 514 * @device_active_only_time: time of device active only 515 * @reserved: unused in basic measurement mode 516 * 517 * The measurement block as used by the hardware. The fields are described 518 * further in z/Architecture Principles of Operation, chapter 17. 519 * 520 * The cmb area made up from these blocks must be a contiguous array and may 521 * not be reallocated or freed. 522 * Only one cmb area can be present in the system. 523 */ 524 struct cmb { 525 u16 ssch_rsch_count; 526 u16 sample_count; 527 u32 device_connect_time; 528 u32 function_pending_time; 529 u32 device_disconnect_time; 530 u32 control_unit_queuing_time; 531 u32 device_active_only_time; 532 u32 reserved[2]; 533 }; 534 535 /* 536 * Insert a single device into the cmb_area list. 537 * Called with cmb_area.lock held from alloc_cmb. 538 */ 539 static int alloc_cmb_single(struct ccw_device *cdev, 540 struct cmb_data *cmb_data) 541 { 542 struct cmb *cmb; 543 struct ccw_device_private *node; 544 int ret; 545 546 spin_lock_irq(cdev->ccwlock); 547 if (!list_empty(&cdev->private->cmb_list)) { 548 ret = -EBUSY; 549 goto out; 550 } 551 552 /* 553 * Find first unused cmb in cmb_area.mem. 554 * This is a little tricky: cmb_area.list 555 * remains sorted by ->cmb->hw_data pointers. 556 */ 557 cmb = cmb_area.mem; 558 list_for_each_entry(node, &cmb_area.list, cmb_list) { 559 struct cmb_data *data; 560 data = node->cmb; 561 if ((struct cmb*)data->hw_block > cmb) 562 break; 563 cmb++; 564 } 565 if (cmb - cmb_area.mem >= cmb_area.num_channels) { 566 ret = -ENOMEM; 567 goto out; 568 } 569 570 /* insert new cmb */ 571 list_add_tail(&cdev->private->cmb_list, &node->cmb_list); 572 cmb_data->hw_block = cmb; 573 cdev->private->cmb = cmb_data; 574 ret = 0; 575 out: 576 spin_unlock_irq(cdev->ccwlock); 577 return ret; 578 } 579 580 static int alloc_cmb(struct ccw_device *cdev) 581 { 582 int ret; 583 struct cmb *mem; 584 ssize_t size; 585 struct cmb_data *cmb_data; 586 587 /* Allocate private cmb_data. */ 588 cmb_data = kzalloc(sizeof(struct cmb_data), GFP_KERNEL); 589 if (!cmb_data) 590 return -ENOMEM; 591 592 cmb_data->last_block = kzalloc(sizeof(struct cmb), GFP_KERNEL); 593 if (!cmb_data->last_block) { 594 kfree(cmb_data); 595 return -ENOMEM; 596 } 597 cmb_data->size = sizeof(struct cmb); 598 spin_lock(&cmb_area.lock); 599 600 if (!cmb_area.mem) { 601 /* there is no user yet, so we need a new area */ 602 size = sizeof(struct cmb) * cmb_area.num_channels; 603 WARN_ON(!list_empty(&cmb_area.list)); 604 605 spin_unlock(&cmb_area.lock); 606 mem = (void*)__get_free_pages(GFP_KERNEL | GFP_DMA, 607 get_order(size)); 608 spin_lock(&cmb_area.lock); 609 610 if (cmb_area.mem) { 611 /* ok, another thread was faster */ 612 free_pages((unsigned long)mem, get_order(size)); 613 } else if (!mem) { 614 /* no luck */ 615 ret = -ENOMEM; 616 goto out; 617 } else { 618 /* everything ok */ 619 memset(mem, 0, size); 620 cmb_area.mem = mem; 621 cmf_activate(cmb_area.mem, 1); 622 } 623 } 624 625 /* do the actual allocation */ 626 ret = alloc_cmb_single(cdev, cmb_data); 627 out: 628 spin_unlock(&cmb_area.lock); 629 if (ret) { 630 kfree(cmb_data->last_block); 631 kfree(cmb_data); 632 } 633 return ret; 634 } 635 636 static void free_cmb(struct ccw_device *cdev) 637 { 638 struct ccw_device_private *priv; 639 struct cmb_data *cmb_data; 640 641 spin_lock(&cmb_area.lock); 642 spin_lock_irq(cdev->ccwlock); 643 644 priv = cdev->private; 645 646 if (list_empty(&priv->cmb_list)) { 647 /* already freed */ 648 goto out; 649 } 650 651 cmb_data = priv->cmb; 652 priv->cmb = NULL; 653 if (cmb_data) 654 kfree(cmb_data->last_block); 655 kfree(cmb_data); 656 list_del_init(&priv->cmb_list); 657 658 if (list_empty(&cmb_area.list)) { 659 ssize_t size; 660 size = sizeof(struct cmb) * cmb_area.num_channels; 661 cmf_activate(NULL, 0); 662 free_pages((unsigned long)cmb_area.mem, get_order(size)); 663 cmb_area.mem = NULL; 664 } 665 out: 666 spin_unlock_irq(cdev->ccwlock); 667 spin_unlock(&cmb_area.lock); 668 } 669 670 static int set_cmb(struct ccw_device *cdev, u32 mme) 671 { 672 u16 offset; 673 struct cmb_data *cmb_data; 674 unsigned long flags; 675 676 spin_lock_irqsave(cdev->ccwlock, flags); 677 if (!cdev->private->cmb) { 678 spin_unlock_irqrestore(cdev->ccwlock, flags); 679 return -EINVAL; 680 } 681 cmb_data = cdev->private->cmb; 682 offset = mme ? (struct cmb *)cmb_data->hw_block - cmb_area.mem : 0; 683 spin_unlock_irqrestore(cdev->ccwlock, flags); 684 685 return set_schib_wait(cdev, mme, 0, offset); 686 } 687 688 static u64 read_cmb(struct ccw_device *cdev, int index) 689 { 690 struct cmb *cmb; 691 u32 val; 692 int ret; 693 unsigned long flags; 694 695 ret = cmf_cmb_copy_wait(cdev); 696 if (ret < 0) 697 return 0; 698 699 spin_lock_irqsave(cdev->ccwlock, flags); 700 if (!cdev->private->cmb) { 701 ret = 0; 702 goto out; 703 } 704 cmb = ((struct cmb_data *)cdev->private->cmb)->last_block; 705 706 switch (index) { 707 case cmb_ssch_rsch_count: 708 ret = cmb->ssch_rsch_count; 709 goto out; 710 case cmb_sample_count: 711 ret = cmb->sample_count; 712 goto out; 713 case cmb_device_connect_time: 714 val = cmb->device_connect_time; 715 break; 716 case cmb_function_pending_time: 717 val = cmb->function_pending_time; 718 break; 719 case cmb_device_disconnect_time: 720 val = cmb->device_disconnect_time; 721 break; 722 case cmb_control_unit_queuing_time: 723 val = cmb->control_unit_queuing_time; 724 break; 725 case cmb_device_active_only_time: 726 val = cmb->device_active_only_time; 727 break; 728 default: 729 ret = 0; 730 goto out; 731 } 732 ret = time_to_avg_nsec(val, cmb->sample_count); 733 out: 734 spin_unlock_irqrestore(cdev->ccwlock, flags); 735 return ret; 736 } 737 738 static int readall_cmb(struct ccw_device *cdev, struct cmbdata *data) 739 { 740 struct cmb *cmb; 741 struct cmb_data *cmb_data; 742 u64 time; 743 unsigned long flags; 744 int ret; 745 746 ret = cmf_cmb_copy_wait(cdev); 747 if (ret < 0) 748 return ret; 749 spin_lock_irqsave(cdev->ccwlock, flags); 750 cmb_data = cdev->private->cmb; 751 if (!cmb_data) { 752 ret = -ENODEV; 753 goto out; 754 } 755 if (cmb_data->last_update == 0) { 756 ret = -EAGAIN; 757 goto out; 758 } 759 cmb = cmb_data->last_block; 760 time = cmb_data->last_update - cdev->private->cmb_start_time; 761 762 memset(data, 0, sizeof(struct cmbdata)); 763 764 /* we only know values before device_busy_time */ 765 data->size = offsetof(struct cmbdata, device_busy_time); 766 767 /* convert to nanoseconds */ 768 data->elapsed_time = (time * 1000) >> 12; 769 770 /* copy data to new structure */ 771 data->ssch_rsch_count = cmb->ssch_rsch_count; 772 data->sample_count = cmb->sample_count; 773 774 /* time fields are converted to nanoseconds while copying */ 775 data->device_connect_time = time_to_nsec(cmb->device_connect_time); 776 data->function_pending_time = time_to_nsec(cmb->function_pending_time); 777 data->device_disconnect_time = 778 time_to_nsec(cmb->device_disconnect_time); 779 data->control_unit_queuing_time 780 = time_to_nsec(cmb->control_unit_queuing_time); 781 data->device_active_only_time 782 = time_to_nsec(cmb->device_active_only_time); 783 ret = 0; 784 out: 785 spin_unlock_irqrestore(cdev->ccwlock, flags); 786 return ret; 787 } 788 789 static void reset_cmb(struct ccw_device *cdev) 790 { 791 cmf_generic_reset(cdev); 792 } 793 794 static void * align_cmb(void *area) 795 { 796 return area; 797 } 798 799 static struct attribute_group cmf_attr_group; 800 801 static struct cmb_operations cmbops_basic = { 802 .alloc = alloc_cmb, 803 .free = free_cmb, 804 .set = set_cmb, 805 .read = read_cmb, 806 .readall = readall_cmb, 807 .reset = reset_cmb, 808 .align = align_cmb, 809 .attr_group = &cmf_attr_group, 810 }; 811 812 /* ******** extended cmb handling ********/ 813 814 /** 815 * struct cmbe - extended channel measurement block 816 * @ssch_rsch_count: number of ssch and rsch 817 * @sample_count: number of samples 818 * @device_connect_time: time of device connect 819 * @function_pending_time: time of function pending 820 * @device_disconnect_time: time of device disconnect 821 * @control_unit_queuing_time: time of control unit queuing 822 * @device_active_only_time: time of device active only 823 * @device_busy_time: time of device busy 824 * @initial_command_response_time: initial command response time 825 * @reserved: unused 826 * 827 * The measurement block as used by the hardware. May be in any 64 bit physical 828 * location. 829 * The fields are described further in z/Architecture Principles of Operation, 830 * third edition, chapter 17. 831 */ 832 struct cmbe { 833 u32 ssch_rsch_count; 834 u32 sample_count; 835 u32 device_connect_time; 836 u32 function_pending_time; 837 u32 device_disconnect_time; 838 u32 control_unit_queuing_time; 839 u32 device_active_only_time; 840 u32 device_busy_time; 841 u32 initial_command_response_time; 842 u32 reserved[7]; 843 }; 844 845 /* 846 * kmalloc only guarantees 8 byte alignment, but we need cmbe 847 * pointers to be naturally aligned. Make sure to allocate 848 * enough space for two cmbes. 849 */ 850 static inline struct cmbe *cmbe_align(struct cmbe *c) 851 { 852 unsigned long addr; 853 addr = ((unsigned long)c + sizeof (struct cmbe) - sizeof(long)) & 854 ~(sizeof (struct cmbe) - sizeof(long)); 855 return (struct cmbe*)addr; 856 } 857 858 static int alloc_cmbe(struct ccw_device *cdev) 859 { 860 struct cmbe *cmbe; 861 struct cmb_data *cmb_data; 862 int ret; 863 864 cmbe = kzalloc (sizeof (*cmbe) * 2, GFP_KERNEL); 865 if (!cmbe) 866 return -ENOMEM; 867 cmb_data = kzalloc(sizeof(struct cmb_data), GFP_KERNEL); 868 if (!cmb_data) { 869 ret = -ENOMEM; 870 goto out_free; 871 } 872 cmb_data->last_block = kzalloc(sizeof(struct cmbe), GFP_KERNEL); 873 if (!cmb_data->last_block) { 874 ret = -ENOMEM; 875 goto out_free; 876 } 877 cmb_data->size = sizeof(struct cmbe); 878 spin_lock_irq(cdev->ccwlock); 879 if (cdev->private->cmb) { 880 spin_unlock_irq(cdev->ccwlock); 881 ret = -EBUSY; 882 goto out_free; 883 } 884 cmb_data->hw_block = cmbe; 885 cdev->private->cmb = cmb_data; 886 spin_unlock_irq(cdev->ccwlock); 887 888 /* activate global measurement if this is the first channel */ 889 spin_lock(&cmb_area.lock); 890 if (list_empty(&cmb_area.list)) 891 cmf_activate(NULL, 1); 892 list_add_tail(&cdev->private->cmb_list, &cmb_area.list); 893 spin_unlock(&cmb_area.lock); 894 895 return 0; 896 out_free: 897 if (cmb_data) 898 kfree(cmb_data->last_block); 899 kfree(cmb_data); 900 kfree(cmbe); 901 return ret; 902 } 903 904 static void free_cmbe(struct ccw_device *cdev) 905 { 906 struct cmb_data *cmb_data; 907 908 spin_lock_irq(cdev->ccwlock); 909 cmb_data = cdev->private->cmb; 910 cdev->private->cmb = NULL; 911 if (cmb_data) 912 kfree(cmb_data->last_block); 913 kfree(cmb_data); 914 spin_unlock_irq(cdev->ccwlock); 915 916 /* deactivate global measurement if this is the last channel */ 917 spin_lock(&cmb_area.lock); 918 list_del_init(&cdev->private->cmb_list); 919 if (list_empty(&cmb_area.list)) 920 cmf_activate(NULL, 0); 921 spin_unlock(&cmb_area.lock); 922 } 923 924 static int set_cmbe(struct ccw_device *cdev, u32 mme) 925 { 926 unsigned long mba; 927 struct cmb_data *cmb_data; 928 unsigned long flags; 929 930 spin_lock_irqsave(cdev->ccwlock, flags); 931 if (!cdev->private->cmb) { 932 spin_unlock_irqrestore(cdev->ccwlock, flags); 933 return -EINVAL; 934 } 935 cmb_data = cdev->private->cmb; 936 mba = mme ? (unsigned long) cmbe_align(cmb_data->hw_block) : 0; 937 spin_unlock_irqrestore(cdev->ccwlock, flags); 938 939 return set_schib_wait(cdev, mme, 1, mba); 940 } 941 942 943 static u64 read_cmbe(struct ccw_device *cdev, int index) 944 { 945 struct cmbe *cmb; 946 struct cmb_data *cmb_data; 947 u32 val; 948 int ret; 949 unsigned long flags; 950 951 ret = cmf_cmb_copy_wait(cdev); 952 if (ret < 0) 953 return 0; 954 955 spin_lock_irqsave(cdev->ccwlock, flags); 956 cmb_data = cdev->private->cmb; 957 if (!cmb_data) { 958 ret = 0; 959 goto out; 960 } 961 cmb = cmb_data->last_block; 962 963 switch (index) { 964 case cmb_ssch_rsch_count: 965 ret = cmb->ssch_rsch_count; 966 goto out; 967 case cmb_sample_count: 968 ret = cmb->sample_count; 969 goto out; 970 case cmb_device_connect_time: 971 val = cmb->device_connect_time; 972 break; 973 case cmb_function_pending_time: 974 val = cmb->function_pending_time; 975 break; 976 case cmb_device_disconnect_time: 977 val = cmb->device_disconnect_time; 978 break; 979 case cmb_control_unit_queuing_time: 980 val = cmb->control_unit_queuing_time; 981 break; 982 case cmb_device_active_only_time: 983 val = cmb->device_active_only_time; 984 break; 985 case cmb_device_busy_time: 986 val = cmb->device_busy_time; 987 break; 988 case cmb_initial_command_response_time: 989 val = cmb->initial_command_response_time; 990 break; 991 default: 992 ret = 0; 993 goto out; 994 } 995 ret = time_to_avg_nsec(val, cmb->sample_count); 996 out: 997 spin_unlock_irqrestore(cdev->ccwlock, flags); 998 return ret; 999 } 1000 1001 static int readall_cmbe(struct ccw_device *cdev, struct cmbdata *data) 1002 { 1003 struct cmbe *cmb; 1004 struct cmb_data *cmb_data; 1005 u64 time; 1006 unsigned long flags; 1007 int ret; 1008 1009 ret = cmf_cmb_copy_wait(cdev); 1010 if (ret < 0) 1011 return ret; 1012 spin_lock_irqsave(cdev->ccwlock, flags); 1013 cmb_data = cdev->private->cmb; 1014 if (!cmb_data) { 1015 ret = -ENODEV; 1016 goto out; 1017 } 1018 if (cmb_data->last_update == 0) { 1019 ret = -EAGAIN; 1020 goto out; 1021 } 1022 time = cmb_data->last_update - cdev->private->cmb_start_time; 1023 1024 memset (data, 0, sizeof(struct cmbdata)); 1025 1026 /* we only know values before device_busy_time */ 1027 data->size = offsetof(struct cmbdata, device_busy_time); 1028 1029 /* conver to nanoseconds */ 1030 data->elapsed_time = (time * 1000) >> 12; 1031 1032 cmb = cmb_data->last_block; 1033 /* copy data to new structure */ 1034 data->ssch_rsch_count = cmb->ssch_rsch_count; 1035 data->sample_count = cmb->sample_count; 1036 1037 /* time fields are converted to nanoseconds while copying */ 1038 data->device_connect_time = time_to_nsec(cmb->device_connect_time); 1039 data->function_pending_time = time_to_nsec(cmb->function_pending_time); 1040 data->device_disconnect_time = 1041 time_to_nsec(cmb->device_disconnect_time); 1042 data->control_unit_queuing_time 1043 = time_to_nsec(cmb->control_unit_queuing_time); 1044 data->device_active_only_time 1045 = time_to_nsec(cmb->device_active_only_time); 1046 data->device_busy_time = time_to_nsec(cmb->device_busy_time); 1047 data->initial_command_response_time 1048 = time_to_nsec(cmb->initial_command_response_time); 1049 1050 ret = 0; 1051 out: 1052 spin_unlock_irqrestore(cdev->ccwlock, flags); 1053 return ret; 1054 } 1055 1056 static void reset_cmbe(struct ccw_device *cdev) 1057 { 1058 cmf_generic_reset(cdev); 1059 } 1060 1061 static void * align_cmbe(void *area) 1062 { 1063 return cmbe_align(area); 1064 } 1065 1066 static struct attribute_group cmf_attr_group_ext; 1067 1068 static struct cmb_operations cmbops_extended = { 1069 .alloc = alloc_cmbe, 1070 .free = free_cmbe, 1071 .set = set_cmbe, 1072 .read = read_cmbe, 1073 .readall = readall_cmbe, 1074 .reset = reset_cmbe, 1075 .align = align_cmbe, 1076 .attr_group = &cmf_attr_group_ext, 1077 }; 1078 1079 static ssize_t cmb_show_attr(struct device *dev, char *buf, enum cmb_index idx) 1080 { 1081 return sprintf(buf, "%lld\n", 1082 (unsigned long long) cmf_read(to_ccwdev(dev), idx)); 1083 } 1084 1085 static ssize_t cmb_show_avg_sample_interval(struct device *dev, 1086 struct device_attribute *attr, 1087 char *buf) 1088 { 1089 struct ccw_device *cdev; 1090 long interval; 1091 unsigned long count; 1092 struct cmb_data *cmb_data; 1093 1094 cdev = to_ccwdev(dev); 1095 count = cmf_read(cdev, cmb_sample_count); 1096 spin_lock_irq(cdev->ccwlock); 1097 cmb_data = cdev->private->cmb; 1098 if (count) { 1099 interval = cmb_data->last_update - 1100 cdev->private->cmb_start_time; 1101 interval = (interval * 1000) >> 12; 1102 interval /= count; 1103 } else 1104 interval = -1; 1105 spin_unlock_irq(cdev->ccwlock); 1106 return sprintf(buf, "%ld\n", interval); 1107 } 1108 1109 static ssize_t cmb_show_avg_utilization(struct device *dev, 1110 struct device_attribute *attr, 1111 char *buf) 1112 { 1113 struct cmbdata data; 1114 u64 utilization; 1115 unsigned long t, u; 1116 int ret; 1117 1118 ret = cmf_readall(to_ccwdev(dev), &data); 1119 if (ret == -EAGAIN || ret == -ENODEV) 1120 /* No data (yet/currently) available to use for calculation. */ 1121 return sprintf(buf, "n/a\n"); 1122 else if (ret) 1123 return ret; 1124 1125 utilization = data.device_connect_time + 1126 data.function_pending_time + 1127 data.device_disconnect_time; 1128 1129 /* shift to avoid long long division */ 1130 while (-1ul < (data.elapsed_time | utilization)) { 1131 utilization >>= 8; 1132 data.elapsed_time >>= 8; 1133 } 1134 1135 /* calculate value in 0.1 percent units */ 1136 t = (unsigned long) data.elapsed_time / 1000; 1137 u = (unsigned long) utilization / t; 1138 1139 return sprintf(buf, "%02ld.%01ld%%\n", u/ 10, u - (u/ 10) * 10); 1140 } 1141 1142 #define cmf_attr(name) \ 1143 static ssize_t show_##name(struct device *dev, \ 1144 struct device_attribute *attr, char *buf) \ 1145 { return cmb_show_attr((dev), buf, cmb_##name); } \ 1146 static DEVICE_ATTR(name, 0444, show_##name, NULL); 1147 1148 #define cmf_attr_avg(name) \ 1149 static ssize_t show_avg_##name(struct device *dev, \ 1150 struct device_attribute *attr, char *buf) \ 1151 { return cmb_show_attr((dev), buf, cmb_##name); } \ 1152 static DEVICE_ATTR(avg_##name, 0444, show_avg_##name, NULL); 1153 1154 cmf_attr(ssch_rsch_count); 1155 cmf_attr(sample_count); 1156 cmf_attr_avg(device_connect_time); 1157 cmf_attr_avg(function_pending_time); 1158 cmf_attr_avg(device_disconnect_time); 1159 cmf_attr_avg(control_unit_queuing_time); 1160 cmf_attr_avg(device_active_only_time); 1161 cmf_attr_avg(device_busy_time); 1162 cmf_attr_avg(initial_command_response_time); 1163 1164 static DEVICE_ATTR(avg_sample_interval, 0444, cmb_show_avg_sample_interval, 1165 NULL); 1166 static DEVICE_ATTR(avg_utilization, 0444, cmb_show_avg_utilization, NULL); 1167 1168 static struct attribute *cmf_attributes[] = { 1169 &dev_attr_avg_sample_interval.attr, 1170 &dev_attr_avg_utilization.attr, 1171 &dev_attr_ssch_rsch_count.attr, 1172 &dev_attr_sample_count.attr, 1173 &dev_attr_avg_device_connect_time.attr, 1174 &dev_attr_avg_function_pending_time.attr, 1175 &dev_attr_avg_device_disconnect_time.attr, 1176 &dev_attr_avg_control_unit_queuing_time.attr, 1177 &dev_attr_avg_device_active_only_time.attr, 1178 NULL, 1179 }; 1180 1181 static struct attribute_group cmf_attr_group = { 1182 .name = "cmf", 1183 .attrs = cmf_attributes, 1184 }; 1185 1186 static struct attribute *cmf_attributes_ext[] = { 1187 &dev_attr_avg_sample_interval.attr, 1188 &dev_attr_avg_utilization.attr, 1189 &dev_attr_ssch_rsch_count.attr, 1190 &dev_attr_sample_count.attr, 1191 &dev_attr_avg_device_connect_time.attr, 1192 &dev_attr_avg_function_pending_time.attr, 1193 &dev_attr_avg_device_disconnect_time.attr, 1194 &dev_attr_avg_control_unit_queuing_time.attr, 1195 &dev_attr_avg_device_active_only_time.attr, 1196 &dev_attr_avg_device_busy_time.attr, 1197 &dev_attr_avg_initial_command_response_time.attr, 1198 NULL, 1199 }; 1200 1201 static struct attribute_group cmf_attr_group_ext = { 1202 .name = "cmf", 1203 .attrs = cmf_attributes_ext, 1204 }; 1205 1206 static ssize_t cmb_enable_show(struct device *dev, 1207 struct device_attribute *attr, 1208 char *buf) 1209 { 1210 return sprintf(buf, "%d\n", to_ccwdev(dev)->private->cmb ? 1 : 0); 1211 } 1212 1213 static ssize_t cmb_enable_store(struct device *dev, 1214 struct device_attribute *attr, const char *buf, 1215 size_t c) 1216 { 1217 struct ccw_device *cdev; 1218 int ret; 1219 unsigned long val; 1220 1221 ret = strict_strtoul(buf, 16, &val); 1222 if (ret) 1223 return ret; 1224 1225 cdev = to_ccwdev(dev); 1226 1227 switch (val) { 1228 case 0: 1229 ret = disable_cmf(cdev); 1230 break; 1231 case 1: 1232 ret = enable_cmf(cdev); 1233 break; 1234 } 1235 1236 return c; 1237 } 1238 1239 DEVICE_ATTR(cmb_enable, 0644, cmb_enable_show, cmb_enable_store); 1240 1241 /** 1242 * enable_cmf() - switch on the channel measurement for a specific device 1243 * @cdev: The ccw device to be enabled 1244 * 1245 * Returns %0 for success or a negative error value. 1246 * 1247 * Context: 1248 * non-atomic 1249 */ 1250 int enable_cmf(struct ccw_device *cdev) 1251 { 1252 int ret; 1253 1254 ret = cmbops->alloc(cdev); 1255 cmbops->reset(cdev); 1256 if (ret) 1257 return ret; 1258 ret = cmbops->set(cdev, 2); 1259 if (ret) { 1260 cmbops->free(cdev); 1261 return ret; 1262 } 1263 ret = sysfs_create_group(&cdev->dev.kobj, cmbops->attr_group); 1264 if (!ret) 1265 return 0; 1266 cmbops->set(cdev, 0); //FIXME: this can fail 1267 cmbops->free(cdev); 1268 return ret; 1269 } 1270 1271 /** 1272 * disable_cmf() - switch off the channel measurement for a specific device 1273 * @cdev: The ccw device to be disabled 1274 * 1275 * Returns %0 for success or a negative error value. 1276 * 1277 * Context: 1278 * non-atomic 1279 */ 1280 int disable_cmf(struct ccw_device *cdev) 1281 { 1282 int ret; 1283 1284 ret = cmbops->set(cdev, 0); 1285 if (ret) 1286 return ret; 1287 cmbops->free(cdev); 1288 sysfs_remove_group(&cdev->dev.kobj, cmbops->attr_group); 1289 return ret; 1290 } 1291 1292 /** 1293 * cmf_read() - read one value from the current channel measurement block 1294 * @cdev: the channel to be read 1295 * @index: the index of the value to be read 1296 * 1297 * Returns the value read or %0 if the value cannot be read. 1298 * 1299 * Context: 1300 * any 1301 */ 1302 u64 cmf_read(struct ccw_device *cdev, int index) 1303 { 1304 return cmbops->read(cdev, index); 1305 } 1306 1307 /** 1308 * cmf_readall() - read the current channel measurement block 1309 * @cdev: the channel to be read 1310 * @data: a pointer to a data block that will be filled 1311 * 1312 * Returns %0 on success, a negative error value otherwise. 1313 * 1314 * Context: 1315 * any 1316 */ 1317 int cmf_readall(struct ccw_device *cdev, struct cmbdata *data) 1318 { 1319 return cmbops->readall(cdev, data); 1320 } 1321 1322 /* Reenable cmf when a disconnected device becomes available again. */ 1323 int cmf_reenable(struct ccw_device *cdev) 1324 { 1325 cmbops->reset(cdev); 1326 return cmbops->set(cdev, 2); 1327 } 1328 1329 static int __init init_cmf(void) 1330 { 1331 char *format_string; 1332 char *detect_string = "parameter"; 1333 1334 /* 1335 * If the user did not give a parameter, see if we are running on a 1336 * machine supporting extended measurement blocks, otherwise fall back 1337 * to basic mode. 1338 */ 1339 if (format == CMF_AUTODETECT) { 1340 if (!css_general_characteristics.ext_mb) { 1341 format = CMF_BASIC; 1342 } else { 1343 format = CMF_EXTENDED; 1344 } 1345 detect_string = "autodetected"; 1346 } else { 1347 detect_string = "parameter"; 1348 } 1349 1350 switch (format) { 1351 case CMF_BASIC: 1352 format_string = "basic"; 1353 cmbops = &cmbops_basic; 1354 break; 1355 case CMF_EXTENDED: 1356 format_string = "extended"; 1357 cmbops = &cmbops_extended; 1358 break; 1359 default: 1360 return 1; 1361 } 1362 1363 printk(KERN_INFO "cio: Channel measurement facility using %s " 1364 "format (%s)\n", format_string, detect_string); 1365 return 0; 1366 } 1367 1368 module_init(init_cmf); 1369 1370 1371 MODULE_AUTHOR("Arnd Bergmann <arndb@de.ibm.com>"); 1372 MODULE_LICENSE("GPL"); 1373 MODULE_DESCRIPTION("channel measurement facility base driver\n" 1374 "Copyright 2003 IBM Corporation\n"); 1375 1376 EXPORT_SYMBOL_GPL(enable_cmf); 1377 EXPORT_SYMBOL_GPL(disable_cmf); 1378 EXPORT_SYMBOL_GPL(cmf_read); 1379 EXPORT_SYMBOL_GPL(cmf_readall); 1380