xref: /openbmc/linux/drivers/s390/cio/cmf.c (revision 93dc544c)
1 /*
2  * linux/drivers/s390/cio/cmf.c
3  *
4  * Linux on zSeries Channel Measurement Facility support
5  *
6  * Copyright 2000,2006 IBM Corporation
7  *
8  * Authors: Arnd Bergmann <arndb@de.ibm.com>
9  *	    Cornelia Huck <cornelia.huck@de.ibm.com>
10  *
11  * original idea from Natarajan Krishnaswami <nkrishna@us.ibm.com>
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2, or (at your option)
16  * any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26  */
27 
28 #include <linux/bootmem.h>
29 #include <linux/device.h>
30 #include <linux/init.h>
31 #include <linux/list.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/slab.h>
35 #include <linux/timex.h>	/* get_clock() */
36 
37 #include <asm/ccwdev.h>
38 #include <asm/cio.h>
39 #include <asm/cmb.h>
40 #include <asm/div64.h>
41 
42 #include "cio.h"
43 #include "css.h"
44 #include "device.h"
45 #include "ioasm.h"
46 #include "chsc.h"
47 
48 /*
49  * parameter to enable cmf during boot, possible uses are:
50  *  "s390cmf" -- enable cmf and allocate 2 MB of ram so measuring can be
51  *               used on any subchannel
52  *  "s390cmf=<num>" -- enable cmf and allocate enough memory to measure
53  *                     <num> subchannel, where <num> is an integer
54  *                     between 1 and 65535, default is 1024
55  */
56 #define ARGSTRING "s390cmf"
57 
58 /* indices for READCMB */
59 enum cmb_index {
60  /* basic and exended format: */
61 	cmb_ssch_rsch_count,
62 	cmb_sample_count,
63 	cmb_device_connect_time,
64 	cmb_function_pending_time,
65 	cmb_device_disconnect_time,
66 	cmb_control_unit_queuing_time,
67 	cmb_device_active_only_time,
68  /* extended format only: */
69 	cmb_device_busy_time,
70 	cmb_initial_command_response_time,
71 };
72 
73 /**
74  * enum cmb_format - types of supported measurement block formats
75  *
76  * @CMF_BASIC:      traditional channel measurement blocks supported
77  *		    by all machines that we run on
78  * @CMF_EXTENDED:   improved format that was introduced with the z990
79  *		    machine
80  * @CMF_AUTODETECT: default: use extended format when running on a machine
81  *		    supporting extended format, otherwise fall back to
82  *		    basic format
83  */
84 enum cmb_format {
85 	CMF_BASIC,
86 	CMF_EXTENDED,
87 	CMF_AUTODETECT = -1,
88 };
89 
90 /*
91  * format - actual format for all measurement blocks
92  *
93  * The format module parameter can be set to a value of 0 (zero)
94  * or 1, indicating basic or extended format as described for
95  * enum cmb_format.
96  */
97 static int format = CMF_AUTODETECT;
98 module_param(format, bool, 0444);
99 
100 /**
101  * struct cmb_operations - functions to use depending on cmb_format
102  *
103  * Most of these functions operate on a struct ccw_device. There is only
104  * one instance of struct cmb_operations because the format of the measurement
105  * data is guaranteed to be the same for every ccw_device.
106  *
107  * @alloc:	allocate memory for a channel measurement block,
108  *		either with the help of a special pool or with kmalloc
109  * @free:	free memory allocated with @alloc
110  * @set:	enable or disable measurement
111  * @read:	read a measurement entry at an index
112  * @readall:	read a measurement block in a common format
113  * @reset:	clear the data in the associated measurement block and
114  *		reset its time stamp
115  * @align:	align an allocated block so that the hardware can use it
116  */
117 struct cmb_operations {
118 	int  (*alloc)  (struct ccw_device *);
119 	void (*free)   (struct ccw_device *);
120 	int  (*set)    (struct ccw_device *, u32);
121 	u64  (*read)   (struct ccw_device *, int);
122 	int  (*readall)(struct ccw_device *, struct cmbdata *);
123 	void (*reset)  (struct ccw_device *);
124 	void *(*align) (void *);
125 /* private: */
126 	struct attribute_group *attr_group;
127 };
128 static struct cmb_operations *cmbops;
129 
130 struct cmb_data {
131 	void *hw_block;   /* Pointer to block updated by hardware */
132 	void *last_block; /* Last changed block copied from hardware block */
133 	int size;	  /* Size of hw_block and last_block */
134 	unsigned long long last_update;  /* when last_block was updated */
135 };
136 
137 /*
138  * Our user interface is designed in terms of nanoseconds,
139  * while the hardware measures total times in its own
140  * unit.
141  */
142 static inline u64 time_to_nsec(u32 value)
143 {
144 	return ((u64)value) * 128000ull;
145 }
146 
147 /*
148  * Users are usually interested in average times,
149  * not accumulated time.
150  * This also helps us with atomicity problems
151  * when reading sinlge values.
152  */
153 static inline u64 time_to_avg_nsec(u32 value, u32 count)
154 {
155 	u64 ret;
156 
157 	/* no samples yet, avoid division by 0 */
158 	if (count == 0)
159 		return 0;
160 
161 	/* value comes in units of 128 µsec */
162 	ret = time_to_nsec(value);
163 	do_div(ret, count);
164 
165 	return ret;
166 }
167 
168 /*
169  * Activate or deactivate the channel monitor. When area is NULL,
170  * the monitor is deactivated. The channel monitor needs to
171  * be active in order to measure subchannels, which also need
172  * to be enabled.
173  */
174 static inline void cmf_activate(void *area, unsigned int onoff)
175 {
176 	register void * __gpr2 asm("2");
177 	register long __gpr1 asm("1");
178 
179 	__gpr2 = area;
180 	__gpr1 = onoff ? 2 : 0;
181 	/* activate channel measurement */
182 	asm("schm" : : "d" (__gpr2), "d" (__gpr1) );
183 }
184 
185 static int set_schib(struct ccw_device *cdev, u32 mme, int mbfc,
186 		     unsigned long address)
187 {
188 	int ret;
189 	int retry;
190 	struct subchannel *sch;
191 	struct schib *schib;
192 
193 	sch = to_subchannel(cdev->dev.parent);
194 	schib = &sch->schib;
195 	/* msch can silently fail, so do it again if necessary */
196 	for (retry = 0; retry < 3; retry++) {
197 		/* prepare schib */
198 		stsch(sch->schid, schib);
199 		schib->pmcw.mme  = mme;
200 		schib->pmcw.mbfc = mbfc;
201 		/* address can be either a block address or a block index */
202 		if (mbfc)
203 			schib->mba = address;
204 		else
205 			schib->pmcw.mbi = address;
206 
207 		/* try to submit it */
208 		switch(ret = msch_err(sch->schid, schib)) {
209 			case 0:
210 				break;
211 			case 1:
212 			case 2: /* in I/O or status pending */
213 				ret = -EBUSY;
214 				break;
215 			case 3: /* subchannel is no longer valid */
216 				ret = -ENODEV;
217 				break;
218 			default: /* msch caught an exception */
219 				ret = -EINVAL;
220 				break;
221 		}
222 		stsch(sch->schid, schib); /* restore the schib */
223 
224 		if (ret)
225 			break;
226 
227 		/* check if it worked */
228 		if (schib->pmcw.mme  == mme &&
229 		    schib->pmcw.mbfc == mbfc &&
230 		    (mbfc ? (schib->mba == address)
231 			  : (schib->pmcw.mbi == address)))
232 			return 0;
233 
234 		ret = -EINVAL;
235 	}
236 
237 	return ret;
238 }
239 
240 struct set_schib_struct {
241 	u32 mme;
242 	int mbfc;
243 	unsigned long address;
244 	wait_queue_head_t wait;
245 	int ret;
246 	struct kref kref;
247 };
248 
249 static void cmf_set_schib_release(struct kref *kref)
250 {
251 	struct set_schib_struct *set_data;
252 
253 	set_data = container_of(kref, struct set_schib_struct, kref);
254 	kfree(set_data);
255 }
256 
257 #define CMF_PENDING 1
258 
259 static int set_schib_wait(struct ccw_device *cdev, u32 mme,
260 				int mbfc, unsigned long address)
261 {
262 	struct set_schib_struct *set_data;
263 	int ret;
264 
265 	spin_lock_irq(cdev->ccwlock);
266 	if (!cdev->private->cmb) {
267 		ret = -ENODEV;
268 		goto out;
269 	}
270 	set_data = kzalloc(sizeof(struct set_schib_struct), GFP_ATOMIC);
271 	if (!set_data) {
272 		ret = -ENOMEM;
273 		goto out;
274 	}
275 	init_waitqueue_head(&set_data->wait);
276 	kref_init(&set_data->kref);
277 	set_data->mme = mme;
278 	set_data->mbfc = mbfc;
279 	set_data->address = address;
280 
281 	ret = set_schib(cdev, mme, mbfc, address);
282 	if (ret != -EBUSY)
283 		goto out_put;
284 
285 	if (cdev->private->state != DEV_STATE_ONLINE) {
286 		/* if the device is not online, don't even try again */
287 		ret = -EBUSY;
288 		goto out_put;
289 	}
290 
291 	cdev->private->state = DEV_STATE_CMFCHANGE;
292 	set_data->ret = CMF_PENDING;
293 	cdev->private->cmb_wait = set_data;
294 
295 	spin_unlock_irq(cdev->ccwlock);
296 	if (wait_event_interruptible(set_data->wait,
297 				     set_data->ret != CMF_PENDING)) {
298 		spin_lock_irq(cdev->ccwlock);
299 		if (set_data->ret == CMF_PENDING) {
300 			set_data->ret = -ERESTARTSYS;
301 			if (cdev->private->state == DEV_STATE_CMFCHANGE)
302 				cdev->private->state = DEV_STATE_ONLINE;
303 		}
304 		spin_unlock_irq(cdev->ccwlock);
305 	}
306 	spin_lock_irq(cdev->ccwlock);
307 	cdev->private->cmb_wait = NULL;
308 	ret = set_data->ret;
309 out_put:
310 	kref_put(&set_data->kref, cmf_set_schib_release);
311 out:
312 	spin_unlock_irq(cdev->ccwlock);
313 	return ret;
314 }
315 
316 void retry_set_schib(struct ccw_device *cdev)
317 {
318 	struct set_schib_struct *set_data;
319 
320 	set_data = cdev->private->cmb_wait;
321 	if (!set_data) {
322 		WARN_ON(1);
323 		return;
324 	}
325 	kref_get(&set_data->kref);
326 	set_data->ret = set_schib(cdev, set_data->mme, set_data->mbfc,
327 				  set_data->address);
328 	wake_up(&set_data->wait);
329 	kref_put(&set_data->kref, cmf_set_schib_release);
330 }
331 
332 static int cmf_copy_block(struct ccw_device *cdev)
333 {
334 	struct subchannel *sch;
335 	void *reference_buf;
336 	void *hw_block;
337 	struct cmb_data *cmb_data;
338 
339 	sch = to_subchannel(cdev->dev.parent);
340 
341 	if (stsch(sch->schid, &sch->schib))
342 		return -ENODEV;
343 
344 	if (scsw_fctl(&sch->schib.scsw) & SCSW_FCTL_START_FUNC) {
345 		/* Don't copy if a start function is in progress. */
346 		if ((!(scsw_actl(&sch->schib.scsw) & SCSW_ACTL_SUSPENDED)) &&
347 		    (scsw_actl(&sch->schib.scsw) &
348 		     (SCSW_ACTL_DEVACT | SCSW_ACTL_SCHACT)) &&
349 		    (!(scsw_stctl(&sch->schib.scsw) & SCSW_STCTL_SEC_STATUS)))
350 			return -EBUSY;
351 	}
352 	cmb_data = cdev->private->cmb;
353 	hw_block = cmbops->align(cmb_data->hw_block);
354 	if (!memcmp(cmb_data->last_block, hw_block, cmb_data->size))
355 		/* No need to copy. */
356 		return 0;
357 	reference_buf = kzalloc(cmb_data->size, GFP_ATOMIC);
358 	if (!reference_buf)
359 		return -ENOMEM;
360 	/* Ensure consistency of block copied from hardware. */
361 	do {
362 		memcpy(cmb_data->last_block, hw_block, cmb_data->size);
363 		memcpy(reference_buf, hw_block, cmb_data->size);
364 	} while (memcmp(cmb_data->last_block, reference_buf, cmb_data->size));
365 	cmb_data->last_update = get_clock();
366 	kfree(reference_buf);
367 	return 0;
368 }
369 
370 struct copy_block_struct {
371 	wait_queue_head_t wait;
372 	int ret;
373 	struct kref kref;
374 };
375 
376 static void cmf_copy_block_release(struct kref *kref)
377 {
378 	struct copy_block_struct *copy_block;
379 
380 	copy_block = container_of(kref, struct copy_block_struct, kref);
381 	kfree(copy_block);
382 }
383 
384 static int cmf_cmb_copy_wait(struct ccw_device *cdev)
385 {
386 	struct copy_block_struct *copy_block;
387 	int ret;
388 	unsigned long flags;
389 
390 	spin_lock_irqsave(cdev->ccwlock, flags);
391 	if (!cdev->private->cmb) {
392 		ret = -ENODEV;
393 		goto out;
394 	}
395 	copy_block = kzalloc(sizeof(struct copy_block_struct), GFP_ATOMIC);
396 	if (!copy_block) {
397 		ret = -ENOMEM;
398 		goto out;
399 	}
400 	init_waitqueue_head(&copy_block->wait);
401 	kref_init(&copy_block->kref);
402 
403 	ret = cmf_copy_block(cdev);
404 	if (ret != -EBUSY)
405 		goto out_put;
406 
407 	if (cdev->private->state != DEV_STATE_ONLINE) {
408 		ret = -EBUSY;
409 		goto out_put;
410 	}
411 
412 	cdev->private->state = DEV_STATE_CMFUPDATE;
413 	copy_block->ret = CMF_PENDING;
414 	cdev->private->cmb_wait = copy_block;
415 
416 	spin_unlock_irqrestore(cdev->ccwlock, flags);
417 	if (wait_event_interruptible(copy_block->wait,
418 				     copy_block->ret != CMF_PENDING)) {
419 		spin_lock_irqsave(cdev->ccwlock, flags);
420 		if (copy_block->ret == CMF_PENDING) {
421 			copy_block->ret = -ERESTARTSYS;
422 			if (cdev->private->state == DEV_STATE_CMFUPDATE)
423 				cdev->private->state = DEV_STATE_ONLINE;
424 		}
425 		spin_unlock_irqrestore(cdev->ccwlock, flags);
426 	}
427 	spin_lock_irqsave(cdev->ccwlock, flags);
428 	cdev->private->cmb_wait = NULL;
429 	ret = copy_block->ret;
430 out_put:
431 	kref_put(&copy_block->kref, cmf_copy_block_release);
432 out:
433 	spin_unlock_irqrestore(cdev->ccwlock, flags);
434 	return ret;
435 }
436 
437 void cmf_retry_copy_block(struct ccw_device *cdev)
438 {
439 	struct copy_block_struct *copy_block;
440 
441 	copy_block = cdev->private->cmb_wait;
442 	if (!copy_block) {
443 		WARN_ON(1);
444 		return;
445 	}
446 	kref_get(&copy_block->kref);
447 	copy_block->ret = cmf_copy_block(cdev);
448 	wake_up(&copy_block->wait);
449 	kref_put(&copy_block->kref, cmf_copy_block_release);
450 }
451 
452 static void cmf_generic_reset(struct ccw_device *cdev)
453 {
454 	struct cmb_data *cmb_data;
455 
456 	spin_lock_irq(cdev->ccwlock);
457 	cmb_data = cdev->private->cmb;
458 	if (cmb_data) {
459 		memset(cmb_data->last_block, 0, cmb_data->size);
460 		/*
461 		 * Need to reset hw block as well to make the hardware start
462 		 * from 0 again.
463 		 */
464 		memset(cmbops->align(cmb_data->hw_block), 0, cmb_data->size);
465 		cmb_data->last_update = 0;
466 	}
467 	cdev->private->cmb_start_time = get_clock();
468 	spin_unlock_irq(cdev->ccwlock);
469 }
470 
471 /**
472  * struct cmb_area - container for global cmb data
473  *
474  * @mem:	pointer to CMBs (only in basic measurement mode)
475  * @list:	contains a linked list of all subchannels
476  * @num_channels: number of channels to be measured
477  * @lock:	protect concurrent access to @mem and @list
478  */
479 struct cmb_area {
480 	struct cmb *mem;
481 	struct list_head list;
482 	int num_channels;
483 	spinlock_t lock;
484 };
485 
486 static struct cmb_area cmb_area = {
487 	.lock = __SPIN_LOCK_UNLOCKED(cmb_area.lock),
488 	.list = LIST_HEAD_INIT(cmb_area.list),
489 	.num_channels  = 1024,
490 };
491 
492 /* ****** old style CMB handling ********/
493 
494 /*
495  * Basic channel measurement blocks are allocated in one contiguous
496  * block of memory, which can not be moved as long as any channel
497  * is active. Therefore, a maximum number of subchannels needs to
498  * be defined somewhere. This is a module parameter, defaulting to
499  * a resonable value of 1024, or 32 kb of memory.
500  * Current kernels don't allow kmalloc with more than 128kb, so the
501  * maximum is 4096.
502  */
503 
504 module_param_named(maxchannels, cmb_area.num_channels, uint, 0444);
505 
506 /**
507  * struct cmb - basic channel measurement block
508  * @ssch_rsch_count: number of ssch and rsch
509  * @sample_count: number of samples
510  * @device_connect_time: time of device connect
511  * @function_pending_time: time of function pending
512  * @device_disconnect_time: time of device disconnect
513  * @control_unit_queuing_time: time of control unit queuing
514  * @device_active_only_time: time of device active only
515  * @reserved: unused in basic measurement mode
516  *
517  * The measurement block as used by the hardware. The fields are described
518  * further in z/Architecture Principles of Operation, chapter 17.
519  *
520  * The cmb area made up from these blocks must be a contiguous array and may
521  * not be reallocated or freed.
522  * Only one cmb area can be present in the system.
523  */
524 struct cmb {
525 	u16 ssch_rsch_count;
526 	u16 sample_count;
527 	u32 device_connect_time;
528 	u32 function_pending_time;
529 	u32 device_disconnect_time;
530 	u32 control_unit_queuing_time;
531 	u32 device_active_only_time;
532 	u32 reserved[2];
533 };
534 
535 /*
536  * Insert a single device into the cmb_area list.
537  * Called with cmb_area.lock held from alloc_cmb.
538  */
539 static int alloc_cmb_single(struct ccw_device *cdev,
540 			    struct cmb_data *cmb_data)
541 {
542 	struct cmb *cmb;
543 	struct ccw_device_private *node;
544 	int ret;
545 
546 	spin_lock_irq(cdev->ccwlock);
547 	if (!list_empty(&cdev->private->cmb_list)) {
548 		ret = -EBUSY;
549 		goto out;
550 	}
551 
552 	/*
553 	 * Find first unused cmb in cmb_area.mem.
554 	 * This is a little tricky: cmb_area.list
555 	 * remains sorted by ->cmb->hw_data pointers.
556 	 */
557 	cmb = cmb_area.mem;
558 	list_for_each_entry(node, &cmb_area.list, cmb_list) {
559 		struct cmb_data *data;
560 		data = node->cmb;
561 		if ((struct cmb*)data->hw_block > cmb)
562 			break;
563 		cmb++;
564 	}
565 	if (cmb - cmb_area.mem >= cmb_area.num_channels) {
566 		ret = -ENOMEM;
567 		goto out;
568 	}
569 
570 	/* insert new cmb */
571 	list_add_tail(&cdev->private->cmb_list, &node->cmb_list);
572 	cmb_data->hw_block = cmb;
573 	cdev->private->cmb = cmb_data;
574 	ret = 0;
575 out:
576 	spin_unlock_irq(cdev->ccwlock);
577 	return ret;
578 }
579 
580 static int alloc_cmb(struct ccw_device *cdev)
581 {
582 	int ret;
583 	struct cmb *mem;
584 	ssize_t size;
585 	struct cmb_data *cmb_data;
586 
587 	/* Allocate private cmb_data. */
588 	cmb_data = kzalloc(sizeof(struct cmb_data), GFP_KERNEL);
589 	if (!cmb_data)
590 		return -ENOMEM;
591 
592 	cmb_data->last_block = kzalloc(sizeof(struct cmb), GFP_KERNEL);
593 	if (!cmb_data->last_block) {
594 		kfree(cmb_data);
595 		return -ENOMEM;
596 	}
597 	cmb_data->size = sizeof(struct cmb);
598 	spin_lock(&cmb_area.lock);
599 
600 	if (!cmb_area.mem) {
601 		/* there is no user yet, so we need a new area */
602 		size = sizeof(struct cmb) * cmb_area.num_channels;
603 		WARN_ON(!list_empty(&cmb_area.list));
604 
605 		spin_unlock(&cmb_area.lock);
606 		mem = (void*)__get_free_pages(GFP_KERNEL | GFP_DMA,
607 				 get_order(size));
608 		spin_lock(&cmb_area.lock);
609 
610 		if (cmb_area.mem) {
611 			/* ok, another thread was faster */
612 			free_pages((unsigned long)mem, get_order(size));
613 		} else if (!mem) {
614 			/* no luck */
615 			ret = -ENOMEM;
616 			goto out;
617 		} else {
618 			/* everything ok */
619 			memset(mem, 0, size);
620 			cmb_area.mem = mem;
621 			cmf_activate(cmb_area.mem, 1);
622 		}
623 	}
624 
625 	/* do the actual allocation */
626 	ret = alloc_cmb_single(cdev, cmb_data);
627 out:
628 	spin_unlock(&cmb_area.lock);
629 	if (ret) {
630 		kfree(cmb_data->last_block);
631 		kfree(cmb_data);
632 	}
633 	return ret;
634 }
635 
636 static void free_cmb(struct ccw_device *cdev)
637 {
638 	struct ccw_device_private *priv;
639 	struct cmb_data *cmb_data;
640 
641 	spin_lock(&cmb_area.lock);
642 	spin_lock_irq(cdev->ccwlock);
643 
644 	priv = cdev->private;
645 
646 	if (list_empty(&priv->cmb_list)) {
647 		/* already freed */
648 		goto out;
649 	}
650 
651 	cmb_data = priv->cmb;
652 	priv->cmb = NULL;
653 	if (cmb_data)
654 		kfree(cmb_data->last_block);
655 	kfree(cmb_data);
656 	list_del_init(&priv->cmb_list);
657 
658 	if (list_empty(&cmb_area.list)) {
659 		ssize_t size;
660 		size = sizeof(struct cmb) * cmb_area.num_channels;
661 		cmf_activate(NULL, 0);
662 		free_pages((unsigned long)cmb_area.mem, get_order(size));
663 		cmb_area.mem = NULL;
664 	}
665 out:
666 	spin_unlock_irq(cdev->ccwlock);
667 	spin_unlock(&cmb_area.lock);
668 }
669 
670 static int set_cmb(struct ccw_device *cdev, u32 mme)
671 {
672 	u16 offset;
673 	struct cmb_data *cmb_data;
674 	unsigned long flags;
675 
676 	spin_lock_irqsave(cdev->ccwlock, flags);
677 	if (!cdev->private->cmb) {
678 		spin_unlock_irqrestore(cdev->ccwlock, flags);
679 		return -EINVAL;
680 	}
681 	cmb_data = cdev->private->cmb;
682 	offset = mme ? (struct cmb *)cmb_data->hw_block - cmb_area.mem : 0;
683 	spin_unlock_irqrestore(cdev->ccwlock, flags);
684 
685 	return set_schib_wait(cdev, mme, 0, offset);
686 }
687 
688 static u64 read_cmb(struct ccw_device *cdev, int index)
689 {
690 	struct cmb *cmb;
691 	u32 val;
692 	int ret;
693 	unsigned long flags;
694 
695 	ret = cmf_cmb_copy_wait(cdev);
696 	if (ret < 0)
697 		return 0;
698 
699 	spin_lock_irqsave(cdev->ccwlock, flags);
700 	if (!cdev->private->cmb) {
701 		ret = 0;
702 		goto out;
703 	}
704 	cmb = ((struct cmb_data *)cdev->private->cmb)->last_block;
705 
706 	switch (index) {
707 	case cmb_ssch_rsch_count:
708 		ret = cmb->ssch_rsch_count;
709 		goto out;
710 	case cmb_sample_count:
711 		ret = cmb->sample_count;
712 		goto out;
713 	case cmb_device_connect_time:
714 		val = cmb->device_connect_time;
715 		break;
716 	case cmb_function_pending_time:
717 		val = cmb->function_pending_time;
718 		break;
719 	case cmb_device_disconnect_time:
720 		val = cmb->device_disconnect_time;
721 		break;
722 	case cmb_control_unit_queuing_time:
723 		val = cmb->control_unit_queuing_time;
724 		break;
725 	case cmb_device_active_only_time:
726 		val = cmb->device_active_only_time;
727 		break;
728 	default:
729 		ret = 0;
730 		goto out;
731 	}
732 	ret = time_to_avg_nsec(val, cmb->sample_count);
733 out:
734 	spin_unlock_irqrestore(cdev->ccwlock, flags);
735 	return ret;
736 }
737 
738 static int readall_cmb(struct ccw_device *cdev, struct cmbdata *data)
739 {
740 	struct cmb *cmb;
741 	struct cmb_data *cmb_data;
742 	u64 time;
743 	unsigned long flags;
744 	int ret;
745 
746 	ret = cmf_cmb_copy_wait(cdev);
747 	if (ret < 0)
748 		return ret;
749 	spin_lock_irqsave(cdev->ccwlock, flags);
750 	cmb_data = cdev->private->cmb;
751 	if (!cmb_data) {
752 		ret = -ENODEV;
753 		goto out;
754 	}
755 	if (cmb_data->last_update == 0) {
756 		ret = -EAGAIN;
757 		goto out;
758 	}
759 	cmb = cmb_data->last_block;
760 	time = cmb_data->last_update - cdev->private->cmb_start_time;
761 
762 	memset(data, 0, sizeof(struct cmbdata));
763 
764 	/* we only know values before device_busy_time */
765 	data->size = offsetof(struct cmbdata, device_busy_time);
766 
767 	/* convert to nanoseconds */
768 	data->elapsed_time = (time * 1000) >> 12;
769 
770 	/* copy data to new structure */
771 	data->ssch_rsch_count = cmb->ssch_rsch_count;
772 	data->sample_count = cmb->sample_count;
773 
774 	/* time fields are converted to nanoseconds while copying */
775 	data->device_connect_time = time_to_nsec(cmb->device_connect_time);
776 	data->function_pending_time = time_to_nsec(cmb->function_pending_time);
777 	data->device_disconnect_time =
778 		time_to_nsec(cmb->device_disconnect_time);
779 	data->control_unit_queuing_time
780 		= time_to_nsec(cmb->control_unit_queuing_time);
781 	data->device_active_only_time
782 		= time_to_nsec(cmb->device_active_only_time);
783 	ret = 0;
784 out:
785 	spin_unlock_irqrestore(cdev->ccwlock, flags);
786 	return ret;
787 }
788 
789 static void reset_cmb(struct ccw_device *cdev)
790 {
791 	cmf_generic_reset(cdev);
792 }
793 
794 static void * align_cmb(void *area)
795 {
796 	return area;
797 }
798 
799 static struct attribute_group cmf_attr_group;
800 
801 static struct cmb_operations cmbops_basic = {
802 	.alloc	= alloc_cmb,
803 	.free	= free_cmb,
804 	.set	= set_cmb,
805 	.read	= read_cmb,
806 	.readall    = readall_cmb,
807 	.reset	    = reset_cmb,
808 	.align	    = align_cmb,
809 	.attr_group = &cmf_attr_group,
810 };
811 
812 /* ******** extended cmb handling ********/
813 
814 /**
815  * struct cmbe - extended channel measurement block
816  * @ssch_rsch_count: number of ssch and rsch
817  * @sample_count: number of samples
818  * @device_connect_time: time of device connect
819  * @function_pending_time: time of function pending
820  * @device_disconnect_time: time of device disconnect
821  * @control_unit_queuing_time: time of control unit queuing
822  * @device_active_only_time: time of device active only
823  * @device_busy_time: time of device busy
824  * @initial_command_response_time: initial command response time
825  * @reserved: unused
826  *
827  * The measurement block as used by the hardware. May be in any 64 bit physical
828  * location.
829  * The fields are described further in z/Architecture Principles of Operation,
830  * third edition, chapter 17.
831  */
832 struct cmbe {
833 	u32 ssch_rsch_count;
834 	u32 sample_count;
835 	u32 device_connect_time;
836 	u32 function_pending_time;
837 	u32 device_disconnect_time;
838 	u32 control_unit_queuing_time;
839 	u32 device_active_only_time;
840 	u32 device_busy_time;
841 	u32 initial_command_response_time;
842 	u32 reserved[7];
843 };
844 
845 /*
846  * kmalloc only guarantees 8 byte alignment, but we need cmbe
847  * pointers to be naturally aligned. Make sure to allocate
848  * enough space for two cmbes.
849  */
850 static inline struct cmbe *cmbe_align(struct cmbe *c)
851 {
852 	unsigned long addr;
853 	addr = ((unsigned long)c + sizeof (struct cmbe) - sizeof(long)) &
854 				 ~(sizeof (struct cmbe) - sizeof(long));
855 	return (struct cmbe*)addr;
856 }
857 
858 static int alloc_cmbe(struct ccw_device *cdev)
859 {
860 	struct cmbe *cmbe;
861 	struct cmb_data *cmb_data;
862 	int ret;
863 
864 	cmbe = kzalloc (sizeof (*cmbe) * 2, GFP_KERNEL);
865 	if (!cmbe)
866 		return -ENOMEM;
867 	cmb_data = kzalloc(sizeof(struct cmb_data), GFP_KERNEL);
868 	if (!cmb_data) {
869 		ret = -ENOMEM;
870 		goto out_free;
871 	}
872 	cmb_data->last_block = kzalloc(sizeof(struct cmbe), GFP_KERNEL);
873 	if (!cmb_data->last_block) {
874 		ret = -ENOMEM;
875 		goto out_free;
876 	}
877 	cmb_data->size = sizeof(struct cmbe);
878 	spin_lock_irq(cdev->ccwlock);
879 	if (cdev->private->cmb) {
880 		spin_unlock_irq(cdev->ccwlock);
881 		ret = -EBUSY;
882 		goto out_free;
883 	}
884 	cmb_data->hw_block = cmbe;
885 	cdev->private->cmb = cmb_data;
886 	spin_unlock_irq(cdev->ccwlock);
887 
888 	/* activate global measurement if this is the first channel */
889 	spin_lock(&cmb_area.lock);
890 	if (list_empty(&cmb_area.list))
891 		cmf_activate(NULL, 1);
892 	list_add_tail(&cdev->private->cmb_list, &cmb_area.list);
893 	spin_unlock(&cmb_area.lock);
894 
895 	return 0;
896 out_free:
897 	if (cmb_data)
898 		kfree(cmb_data->last_block);
899 	kfree(cmb_data);
900 	kfree(cmbe);
901 	return ret;
902 }
903 
904 static void free_cmbe(struct ccw_device *cdev)
905 {
906 	struct cmb_data *cmb_data;
907 
908 	spin_lock_irq(cdev->ccwlock);
909 	cmb_data = cdev->private->cmb;
910 	cdev->private->cmb = NULL;
911 	if (cmb_data)
912 		kfree(cmb_data->last_block);
913 	kfree(cmb_data);
914 	spin_unlock_irq(cdev->ccwlock);
915 
916 	/* deactivate global measurement if this is the last channel */
917 	spin_lock(&cmb_area.lock);
918 	list_del_init(&cdev->private->cmb_list);
919 	if (list_empty(&cmb_area.list))
920 		cmf_activate(NULL, 0);
921 	spin_unlock(&cmb_area.lock);
922 }
923 
924 static int set_cmbe(struct ccw_device *cdev, u32 mme)
925 {
926 	unsigned long mba;
927 	struct cmb_data *cmb_data;
928 	unsigned long flags;
929 
930 	spin_lock_irqsave(cdev->ccwlock, flags);
931 	if (!cdev->private->cmb) {
932 		spin_unlock_irqrestore(cdev->ccwlock, flags);
933 		return -EINVAL;
934 	}
935 	cmb_data = cdev->private->cmb;
936 	mba = mme ? (unsigned long) cmbe_align(cmb_data->hw_block) : 0;
937 	spin_unlock_irqrestore(cdev->ccwlock, flags);
938 
939 	return set_schib_wait(cdev, mme, 1, mba);
940 }
941 
942 
943 static u64 read_cmbe(struct ccw_device *cdev, int index)
944 {
945 	struct cmbe *cmb;
946 	struct cmb_data *cmb_data;
947 	u32 val;
948 	int ret;
949 	unsigned long flags;
950 
951 	ret = cmf_cmb_copy_wait(cdev);
952 	if (ret < 0)
953 		return 0;
954 
955 	spin_lock_irqsave(cdev->ccwlock, flags);
956 	cmb_data = cdev->private->cmb;
957 	if (!cmb_data) {
958 		ret = 0;
959 		goto out;
960 	}
961 	cmb = cmb_data->last_block;
962 
963 	switch (index) {
964 	case cmb_ssch_rsch_count:
965 		ret = cmb->ssch_rsch_count;
966 		goto out;
967 	case cmb_sample_count:
968 		ret = cmb->sample_count;
969 		goto out;
970 	case cmb_device_connect_time:
971 		val = cmb->device_connect_time;
972 		break;
973 	case cmb_function_pending_time:
974 		val = cmb->function_pending_time;
975 		break;
976 	case cmb_device_disconnect_time:
977 		val = cmb->device_disconnect_time;
978 		break;
979 	case cmb_control_unit_queuing_time:
980 		val = cmb->control_unit_queuing_time;
981 		break;
982 	case cmb_device_active_only_time:
983 		val = cmb->device_active_only_time;
984 		break;
985 	case cmb_device_busy_time:
986 		val = cmb->device_busy_time;
987 		break;
988 	case cmb_initial_command_response_time:
989 		val = cmb->initial_command_response_time;
990 		break;
991 	default:
992 		ret = 0;
993 		goto out;
994 	}
995 	ret = time_to_avg_nsec(val, cmb->sample_count);
996 out:
997 	spin_unlock_irqrestore(cdev->ccwlock, flags);
998 	return ret;
999 }
1000 
1001 static int readall_cmbe(struct ccw_device *cdev, struct cmbdata *data)
1002 {
1003 	struct cmbe *cmb;
1004 	struct cmb_data *cmb_data;
1005 	u64 time;
1006 	unsigned long flags;
1007 	int ret;
1008 
1009 	ret = cmf_cmb_copy_wait(cdev);
1010 	if (ret < 0)
1011 		return ret;
1012 	spin_lock_irqsave(cdev->ccwlock, flags);
1013 	cmb_data = cdev->private->cmb;
1014 	if (!cmb_data) {
1015 		ret = -ENODEV;
1016 		goto out;
1017 	}
1018 	if (cmb_data->last_update == 0) {
1019 		ret = -EAGAIN;
1020 		goto out;
1021 	}
1022 	time = cmb_data->last_update - cdev->private->cmb_start_time;
1023 
1024 	memset (data, 0, sizeof(struct cmbdata));
1025 
1026 	/* we only know values before device_busy_time */
1027 	data->size = offsetof(struct cmbdata, device_busy_time);
1028 
1029 	/* conver to nanoseconds */
1030 	data->elapsed_time = (time * 1000) >> 12;
1031 
1032 	cmb = cmb_data->last_block;
1033 	/* copy data to new structure */
1034 	data->ssch_rsch_count = cmb->ssch_rsch_count;
1035 	data->sample_count = cmb->sample_count;
1036 
1037 	/* time fields are converted to nanoseconds while copying */
1038 	data->device_connect_time = time_to_nsec(cmb->device_connect_time);
1039 	data->function_pending_time = time_to_nsec(cmb->function_pending_time);
1040 	data->device_disconnect_time =
1041 		time_to_nsec(cmb->device_disconnect_time);
1042 	data->control_unit_queuing_time
1043 		= time_to_nsec(cmb->control_unit_queuing_time);
1044 	data->device_active_only_time
1045 		= time_to_nsec(cmb->device_active_only_time);
1046 	data->device_busy_time = time_to_nsec(cmb->device_busy_time);
1047 	data->initial_command_response_time
1048 		= time_to_nsec(cmb->initial_command_response_time);
1049 
1050 	ret = 0;
1051 out:
1052 	spin_unlock_irqrestore(cdev->ccwlock, flags);
1053 	return ret;
1054 }
1055 
1056 static void reset_cmbe(struct ccw_device *cdev)
1057 {
1058 	cmf_generic_reset(cdev);
1059 }
1060 
1061 static void * align_cmbe(void *area)
1062 {
1063 	return cmbe_align(area);
1064 }
1065 
1066 static struct attribute_group cmf_attr_group_ext;
1067 
1068 static struct cmb_operations cmbops_extended = {
1069 	.alloc	    = alloc_cmbe,
1070 	.free	    = free_cmbe,
1071 	.set	    = set_cmbe,
1072 	.read	    = read_cmbe,
1073 	.readall    = readall_cmbe,
1074 	.reset	    = reset_cmbe,
1075 	.align	    = align_cmbe,
1076 	.attr_group = &cmf_attr_group_ext,
1077 };
1078 
1079 static ssize_t cmb_show_attr(struct device *dev, char *buf, enum cmb_index idx)
1080 {
1081 	return sprintf(buf, "%lld\n",
1082 		(unsigned long long) cmf_read(to_ccwdev(dev), idx));
1083 }
1084 
1085 static ssize_t cmb_show_avg_sample_interval(struct device *dev,
1086 					    struct device_attribute *attr,
1087 					    char *buf)
1088 {
1089 	struct ccw_device *cdev;
1090 	long interval;
1091 	unsigned long count;
1092 	struct cmb_data *cmb_data;
1093 
1094 	cdev = to_ccwdev(dev);
1095 	count = cmf_read(cdev, cmb_sample_count);
1096 	spin_lock_irq(cdev->ccwlock);
1097 	cmb_data = cdev->private->cmb;
1098 	if (count) {
1099 		interval = cmb_data->last_update -
1100 			cdev->private->cmb_start_time;
1101 		interval = (interval * 1000) >> 12;
1102 		interval /= count;
1103 	} else
1104 		interval = -1;
1105 	spin_unlock_irq(cdev->ccwlock);
1106 	return sprintf(buf, "%ld\n", interval);
1107 }
1108 
1109 static ssize_t cmb_show_avg_utilization(struct device *dev,
1110 					struct device_attribute *attr,
1111 					char *buf)
1112 {
1113 	struct cmbdata data;
1114 	u64 utilization;
1115 	unsigned long t, u;
1116 	int ret;
1117 
1118 	ret = cmf_readall(to_ccwdev(dev), &data);
1119 	if (ret == -EAGAIN || ret == -ENODEV)
1120 		/* No data (yet/currently) available to use for calculation. */
1121 		return sprintf(buf, "n/a\n");
1122 	else if (ret)
1123 		return ret;
1124 
1125 	utilization = data.device_connect_time +
1126 		      data.function_pending_time +
1127 		      data.device_disconnect_time;
1128 
1129 	/* shift to avoid long long division */
1130 	while (-1ul < (data.elapsed_time | utilization)) {
1131 		utilization >>= 8;
1132 		data.elapsed_time >>= 8;
1133 	}
1134 
1135 	/* calculate value in 0.1 percent units */
1136 	t = (unsigned long) data.elapsed_time / 1000;
1137 	u = (unsigned long) utilization / t;
1138 
1139 	return sprintf(buf, "%02ld.%01ld%%\n", u/ 10, u - (u/ 10) * 10);
1140 }
1141 
1142 #define cmf_attr(name) \
1143 static ssize_t show_##name(struct device *dev, \
1144 			   struct device_attribute *attr, char *buf)	\
1145 { return cmb_show_attr((dev), buf, cmb_##name); } \
1146 static DEVICE_ATTR(name, 0444, show_##name, NULL);
1147 
1148 #define cmf_attr_avg(name) \
1149 static ssize_t show_avg_##name(struct device *dev, \
1150 			       struct device_attribute *attr, char *buf) \
1151 { return cmb_show_attr((dev), buf, cmb_##name); } \
1152 static DEVICE_ATTR(avg_##name, 0444, show_avg_##name, NULL);
1153 
1154 cmf_attr(ssch_rsch_count);
1155 cmf_attr(sample_count);
1156 cmf_attr_avg(device_connect_time);
1157 cmf_attr_avg(function_pending_time);
1158 cmf_attr_avg(device_disconnect_time);
1159 cmf_attr_avg(control_unit_queuing_time);
1160 cmf_attr_avg(device_active_only_time);
1161 cmf_attr_avg(device_busy_time);
1162 cmf_attr_avg(initial_command_response_time);
1163 
1164 static DEVICE_ATTR(avg_sample_interval, 0444, cmb_show_avg_sample_interval,
1165 		   NULL);
1166 static DEVICE_ATTR(avg_utilization, 0444, cmb_show_avg_utilization, NULL);
1167 
1168 static struct attribute *cmf_attributes[] = {
1169 	&dev_attr_avg_sample_interval.attr,
1170 	&dev_attr_avg_utilization.attr,
1171 	&dev_attr_ssch_rsch_count.attr,
1172 	&dev_attr_sample_count.attr,
1173 	&dev_attr_avg_device_connect_time.attr,
1174 	&dev_attr_avg_function_pending_time.attr,
1175 	&dev_attr_avg_device_disconnect_time.attr,
1176 	&dev_attr_avg_control_unit_queuing_time.attr,
1177 	&dev_attr_avg_device_active_only_time.attr,
1178 	NULL,
1179 };
1180 
1181 static struct attribute_group cmf_attr_group = {
1182 	.name  = "cmf",
1183 	.attrs = cmf_attributes,
1184 };
1185 
1186 static struct attribute *cmf_attributes_ext[] = {
1187 	&dev_attr_avg_sample_interval.attr,
1188 	&dev_attr_avg_utilization.attr,
1189 	&dev_attr_ssch_rsch_count.attr,
1190 	&dev_attr_sample_count.attr,
1191 	&dev_attr_avg_device_connect_time.attr,
1192 	&dev_attr_avg_function_pending_time.attr,
1193 	&dev_attr_avg_device_disconnect_time.attr,
1194 	&dev_attr_avg_control_unit_queuing_time.attr,
1195 	&dev_attr_avg_device_active_only_time.attr,
1196 	&dev_attr_avg_device_busy_time.attr,
1197 	&dev_attr_avg_initial_command_response_time.attr,
1198 	NULL,
1199 };
1200 
1201 static struct attribute_group cmf_attr_group_ext = {
1202 	.name  = "cmf",
1203 	.attrs = cmf_attributes_ext,
1204 };
1205 
1206 static ssize_t cmb_enable_show(struct device *dev,
1207 			       struct device_attribute *attr,
1208 			       char *buf)
1209 {
1210 	return sprintf(buf, "%d\n", to_ccwdev(dev)->private->cmb ? 1 : 0);
1211 }
1212 
1213 static ssize_t cmb_enable_store(struct device *dev,
1214 				struct device_attribute *attr, const char *buf,
1215 				size_t c)
1216 {
1217 	struct ccw_device *cdev;
1218 	int ret;
1219 	unsigned long val;
1220 
1221 	ret = strict_strtoul(buf, 16, &val);
1222 	if (ret)
1223 		return ret;
1224 
1225 	cdev = to_ccwdev(dev);
1226 
1227 	switch (val) {
1228 	case 0:
1229 		ret = disable_cmf(cdev);
1230 		break;
1231 	case 1:
1232 		ret = enable_cmf(cdev);
1233 		break;
1234 	}
1235 
1236 	return c;
1237 }
1238 
1239 DEVICE_ATTR(cmb_enable, 0644, cmb_enable_show, cmb_enable_store);
1240 
1241 /**
1242  * enable_cmf() - switch on the channel measurement for a specific device
1243  *  @cdev:	The ccw device to be enabled
1244  *
1245  *  Returns %0 for success or a negative error value.
1246  *
1247  *  Context:
1248  *    non-atomic
1249  */
1250 int enable_cmf(struct ccw_device *cdev)
1251 {
1252 	int ret;
1253 
1254 	ret = cmbops->alloc(cdev);
1255 	cmbops->reset(cdev);
1256 	if (ret)
1257 		return ret;
1258 	ret = cmbops->set(cdev, 2);
1259 	if (ret) {
1260 		cmbops->free(cdev);
1261 		return ret;
1262 	}
1263 	ret = sysfs_create_group(&cdev->dev.kobj, cmbops->attr_group);
1264 	if (!ret)
1265 		return 0;
1266 	cmbops->set(cdev, 0);  //FIXME: this can fail
1267 	cmbops->free(cdev);
1268 	return ret;
1269 }
1270 
1271 /**
1272  * disable_cmf() - switch off the channel measurement for a specific device
1273  *  @cdev:	The ccw device to be disabled
1274  *
1275  *  Returns %0 for success or a negative error value.
1276  *
1277  *  Context:
1278  *    non-atomic
1279  */
1280 int disable_cmf(struct ccw_device *cdev)
1281 {
1282 	int ret;
1283 
1284 	ret = cmbops->set(cdev, 0);
1285 	if (ret)
1286 		return ret;
1287 	cmbops->free(cdev);
1288 	sysfs_remove_group(&cdev->dev.kobj, cmbops->attr_group);
1289 	return ret;
1290 }
1291 
1292 /**
1293  * cmf_read() - read one value from the current channel measurement block
1294  * @cdev:	the channel to be read
1295  * @index:	the index of the value to be read
1296  *
1297  * Returns the value read or %0 if the value cannot be read.
1298  *
1299  *  Context:
1300  *    any
1301  */
1302 u64 cmf_read(struct ccw_device *cdev, int index)
1303 {
1304 	return cmbops->read(cdev, index);
1305 }
1306 
1307 /**
1308  * cmf_readall() - read the current channel measurement block
1309  * @cdev:	the channel to be read
1310  * @data:	a pointer to a data block that will be filled
1311  *
1312  * Returns %0 on success, a negative error value otherwise.
1313  *
1314  *  Context:
1315  *    any
1316  */
1317 int cmf_readall(struct ccw_device *cdev, struct cmbdata *data)
1318 {
1319 	return cmbops->readall(cdev, data);
1320 }
1321 
1322 /* Reenable cmf when a disconnected device becomes available again. */
1323 int cmf_reenable(struct ccw_device *cdev)
1324 {
1325 	cmbops->reset(cdev);
1326 	return cmbops->set(cdev, 2);
1327 }
1328 
1329 static int __init init_cmf(void)
1330 {
1331 	char *format_string;
1332 	char *detect_string = "parameter";
1333 
1334 	/*
1335 	 * If the user did not give a parameter, see if we are running on a
1336 	 * machine supporting extended measurement blocks, otherwise fall back
1337 	 * to basic mode.
1338 	 */
1339 	if (format == CMF_AUTODETECT) {
1340 		if (!css_general_characteristics.ext_mb) {
1341 			format = CMF_BASIC;
1342 		} else {
1343 			format = CMF_EXTENDED;
1344 		}
1345 		detect_string = "autodetected";
1346 	} else {
1347 		detect_string = "parameter";
1348 	}
1349 
1350 	switch (format) {
1351 	case CMF_BASIC:
1352 		format_string = "basic";
1353 		cmbops = &cmbops_basic;
1354 		break;
1355 	case CMF_EXTENDED:
1356 		format_string = "extended";
1357 		cmbops = &cmbops_extended;
1358 		break;
1359 	default:
1360 		return 1;
1361 	}
1362 
1363 	printk(KERN_INFO "cio: Channel measurement facility using %s "
1364 	       "format (%s)\n", format_string, detect_string);
1365 	return 0;
1366 }
1367 
1368 module_init(init_cmf);
1369 
1370 
1371 MODULE_AUTHOR("Arnd Bergmann <arndb@de.ibm.com>");
1372 MODULE_LICENSE("GPL");
1373 MODULE_DESCRIPTION("channel measurement facility base driver\n"
1374 		   "Copyright 2003 IBM Corporation\n");
1375 
1376 EXPORT_SYMBOL_GPL(enable_cmf);
1377 EXPORT_SYMBOL_GPL(disable_cmf);
1378 EXPORT_SYMBOL_GPL(cmf_read);
1379 EXPORT_SYMBOL_GPL(cmf_readall);
1380