xref: /openbmc/linux/drivers/s390/cio/cmf.c (revision 256ac037)
1 /*
2  * Linux on zSeries Channel Measurement Facility support
3  *
4  * Copyright IBM Corp. 2000, 2006
5  *
6  * Authors: Arnd Bergmann <arndb@de.ibm.com>
7  *	    Cornelia Huck <cornelia.huck@de.ibm.com>
8  *
9  * original idea from Natarajan Krishnaswami <nkrishna@us.ibm.com>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24  */
25 
26 #define KMSG_COMPONENT "cio"
27 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
28 
29 #include <linux/bootmem.h>
30 #include <linux/device.h>
31 #include <linux/init.h>
32 #include <linux/list.h>
33 #include <linux/export.h>
34 #include <linux/moduleparam.h>
35 #include <linux/slab.h>
36 #include <linux/timex.h>	/* get_tod_clock() */
37 
38 #include <asm/ccwdev.h>
39 #include <asm/cio.h>
40 #include <asm/cmb.h>
41 #include <asm/div64.h>
42 
43 #include "cio.h"
44 #include "css.h"
45 #include "device.h"
46 #include "ioasm.h"
47 #include "chsc.h"
48 
49 /*
50  * parameter to enable cmf during boot, possible uses are:
51  *  "s390cmf" -- enable cmf and allocate 2 MB of ram so measuring can be
52  *               used on any subchannel
53  *  "s390cmf=<num>" -- enable cmf and allocate enough memory to measure
54  *                     <num> subchannel, where <num> is an integer
55  *                     between 1 and 65535, default is 1024
56  */
57 #define ARGSTRING "s390cmf"
58 
59 /* indices for READCMB */
60 enum cmb_index {
61  /* basic and exended format: */
62 	cmb_ssch_rsch_count,
63 	cmb_sample_count,
64 	cmb_device_connect_time,
65 	cmb_function_pending_time,
66 	cmb_device_disconnect_time,
67 	cmb_control_unit_queuing_time,
68 	cmb_device_active_only_time,
69  /* extended format only: */
70 	cmb_device_busy_time,
71 	cmb_initial_command_response_time,
72 };
73 
74 /**
75  * enum cmb_format - types of supported measurement block formats
76  *
77  * @CMF_BASIC:      traditional channel measurement blocks supported
78  *		    by all machines that we run on
79  * @CMF_EXTENDED:   improved format that was introduced with the z990
80  *		    machine
81  * @CMF_AUTODETECT: default: use extended format when running on a machine
82  *		    supporting extended format, otherwise fall back to
83  *		    basic format
84  */
85 enum cmb_format {
86 	CMF_BASIC,
87 	CMF_EXTENDED,
88 	CMF_AUTODETECT = -1,
89 };
90 
91 /*
92  * format - actual format for all measurement blocks
93  *
94  * The format module parameter can be set to a value of 0 (zero)
95  * or 1, indicating basic or extended format as described for
96  * enum cmb_format.
97  */
98 static int format = CMF_AUTODETECT;
99 module_param(format, bint, 0444);
100 
101 /**
102  * struct cmb_operations - functions to use depending on cmb_format
103  *
104  * Most of these functions operate on a struct ccw_device. There is only
105  * one instance of struct cmb_operations because the format of the measurement
106  * data is guaranteed to be the same for every ccw_device.
107  *
108  * @alloc:	allocate memory for a channel measurement block,
109  *		either with the help of a special pool or with kmalloc
110  * @free:	free memory allocated with @alloc
111  * @set:	enable or disable measurement
112  * @read:	read a measurement entry at an index
113  * @readall:	read a measurement block in a common format
114  * @reset:	clear the data in the associated measurement block and
115  *		reset its time stamp
116  */
117 struct cmb_operations {
118 	int  (*alloc)  (struct ccw_device *);
119 	void (*free)   (struct ccw_device *);
120 	int  (*set)    (struct ccw_device *, u32);
121 	u64  (*read)   (struct ccw_device *, int);
122 	int  (*readall)(struct ccw_device *, struct cmbdata *);
123 	void (*reset)  (struct ccw_device *);
124 /* private: */
125 	struct attribute_group *attr_group;
126 };
127 static struct cmb_operations *cmbops;
128 
129 struct cmb_data {
130 	void *hw_block;   /* Pointer to block updated by hardware */
131 	void *last_block; /* Last changed block copied from hardware block */
132 	int size;	  /* Size of hw_block and last_block */
133 	unsigned long long last_update;  /* when last_block was updated */
134 };
135 
136 /*
137  * Our user interface is designed in terms of nanoseconds,
138  * while the hardware measures total times in its own
139  * unit.
140  */
141 static inline u64 time_to_nsec(u32 value)
142 {
143 	return ((u64)value) * 128000ull;
144 }
145 
146 /*
147  * Users are usually interested in average times,
148  * not accumulated time.
149  * This also helps us with atomicity problems
150  * when reading sinlge values.
151  */
152 static inline u64 time_to_avg_nsec(u32 value, u32 count)
153 {
154 	u64 ret;
155 
156 	/* no samples yet, avoid division by 0 */
157 	if (count == 0)
158 		return 0;
159 
160 	/* value comes in units of 128 µsec */
161 	ret = time_to_nsec(value);
162 	do_div(ret, count);
163 
164 	return ret;
165 }
166 
167 #define CMF_OFF 0
168 #define CMF_ON	2
169 
170 /*
171  * Activate or deactivate the channel monitor. When area is NULL,
172  * the monitor is deactivated. The channel monitor needs to
173  * be active in order to measure subchannels, which also need
174  * to be enabled.
175  */
176 static inline void cmf_activate(void *area, unsigned int onoff)
177 {
178 	register void * __gpr2 asm("2");
179 	register long __gpr1 asm("1");
180 
181 	__gpr2 = area;
182 	__gpr1 = onoff;
183 	/* activate channel measurement */
184 	asm("schm" : : "d" (__gpr2), "d" (__gpr1) );
185 }
186 
187 static int set_schib(struct ccw_device *cdev, u32 mme, int mbfc,
188 		     unsigned long address)
189 {
190 	struct subchannel *sch = to_subchannel(cdev->dev.parent);
191 	int ret;
192 
193 	sch->config.mme = mme;
194 	sch->config.mbfc = mbfc;
195 	/* address can be either a block address or a block index */
196 	if (mbfc)
197 		sch->config.mba = address;
198 	else
199 		sch->config.mbi = address;
200 
201 	ret = cio_commit_config(sch);
202 	if (!mme && ret == -ENODEV) {
203 		/*
204 		 * The task was to disable measurement block updates but
205 		 * the subchannel is already gone. Report success.
206 		 */
207 		ret = 0;
208 	}
209 	return ret;
210 }
211 
212 struct set_schib_struct {
213 	u32 mme;
214 	int mbfc;
215 	unsigned long address;
216 	wait_queue_head_t wait;
217 	int ret;
218 	struct kref kref;
219 };
220 
221 static void cmf_set_schib_release(struct kref *kref)
222 {
223 	struct set_schib_struct *set_data;
224 
225 	set_data = container_of(kref, struct set_schib_struct, kref);
226 	kfree(set_data);
227 }
228 
229 #define CMF_PENDING 1
230 
231 static int set_schib_wait(struct ccw_device *cdev, u32 mme,
232 				int mbfc, unsigned long address)
233 {
234 	struct set_schib_struct *set_data;
235 	int ret;
236 
237 	spin_lock_irq(cdev->ccwlock);
238 	if (!cdev->private->cmb) {
239 		ret = -ENODEV;
240 		goto out;
241 	}
242 	set_data = kzalloc(sizeof(struct set_schib_struct), GFP_ATOMIC);
243 	if (!set_data) {
244 		ret = -ENOMEM;
245 		goto out;
246 	}
247 	init_waitqueue_head(&set_data->wait);
248 	kref_init(&set_data->kref);
249 	set_data->mme = mme;
250 	set_data->mbfc = mbfc;
251 	set_data->address = address;
252 
253 	ret = set_schib(cdev, mme, mbfc, address);
254 	if (ret != -EBUSY)
255 		goto out_put;
256 
257 	if (cdev->private->state != DEV_STATE_ONLINE) {
258 		/* if the device is not online, don't even try again */
259 		ret = -EBUSY;
260 		goto out_put;
261 	}
262 
263 	cdev->private->state = DEV_STATE_CMFCHANGE;
264 	set_data->ret = CMF_PENDING;
265 	cdev->private->cmb_wait = set_data;
266 
267 	spin_unlock_irq(cdev->ccwlock);
268 	if (wait_event_interruptible(set_data->wait,
269 				     set_data->ret != CMF_PENDING)) {
270 		spin_lock_irq(cdev->ccwlock);
271 		if (set_data->ret == CMF_PENDING) {
272 			set_data->ret = -ERESTARTSYS;
273 			if (cdev->private->state == DEV_STATE_CMFCHANGE)
274 				cdev->private->state = DEV_STATE_ONLINE;
275 		}
276 		spin_unlock_irq(cdev->ccwlock);
277 	}
278 	spin_lock_irq(cdev->ccwlock);
279 	cdev->private->cmb_wait = NULL;
280 	ret = set_data->ret;
281 out_put:
282 	kref_put(&set_data->kref, cmf_set_schib_release);
283 out:
284 	spin_unlock_irq(cdev->ccwlock);
285 	return ret;
286 }
287 
288 void retry_set_schib(struct ccw_device *cdev)
289 {
290 	struct set_schib_struct *set_data;
291 
292 	set_data = cdev->private->cmb_wait;
293 	if (!set_data) {
294 		WARN_ON(1);
295 		return;
296 	}
297 	kref_get(&set_data->kref);
298 	set_data->ret = set_schib(cdev, set_data->mme, set_data->mbfc,
299 				  set_data->address);
300 	wake_up(&set_data->wait);
301 	kref_put(&set_data->kref, cmf_set_schib_release);
302 }
303 
304 static int cmf_copy_block(struct ccw_device *cdev)
305 {
306 	struct subchannel *sch;
307 	void *reference_buf;
308 	void *hw_block;
309 	struct cmb_data *cmb_data;
310 
311 	sch = to_subchannel(cdev->dev.parent);
312 
313 	if (cio_update_schib(sch))
314 		return -ENODEV;
315 
316 	if (scsw_fctl(&sch->schib.scsw) & SCSW_FCTL_START_FUNC) {
317 		/* Don't copy if a start function is in progress. */
318 		if ((!(scsw_actl(&sch->schib.scsw) & SCSW_ACTL_SUSPENDED)) &&
319 		    (scsw_actl(&sch->schib.scsw) &
320 		     (SCSW_ACTL_DEVACT | SCSW_ACTL_SCHACT)) &&
321 		    (!(scsw_stctl(&sch->schib.scsw) & SCSW_STCTL_SEC_STATUS)))
322 			return -EBUSY;
323 	}
324 	cmb_data = cdev->private->cmb;
325 	hw_block = cmb_data->hw_block;
326 	if (!memcmp(cmb_data->last_block, hw_block, cmb_data->size))
327 		/* No need to copy. */
328 		return 0;
329 	reference_buf = kzalloc(cmb_data->size, GFP_ATOMIC);
330 	if (!reference_buf)
331 		return -ENOMEM;
332 	/* Ensure consistency of block copied from hardware. */
333 	do {
334 		memcpy(cmb_data->last_block, hw_block, cmb_data->size);
335 		memcpy(reference_buf, hw_block, cmb_data->size);
336 	} while (memcmp(cmb_data->last_block, reference_buf, cmb_data->size));
337 	cmb_data->last_update = get_tod_clock();
338 	kfree(reference_buf);
339 	return 0;
340 }
341 
342 struct copy_block_struct {
343 	wait_queue_head_t wait;
344 	int ret;
345 	struct kref kref;
346 };
347 
348 static void cmf_copy_block_release(struct kref *kref)
349 {
350 	struct copy_block_struct *copy_block;
351 
352 	copy_block = container_of(kref, struct copy_block_struct, kref);
353 	kfree(copy_block);
354 }
355 
356 static int cmf_cmb_copy_wait(struct ccw_device *cdev)
357 {
358 	struct copy_block_struct *copy_block;
359 	int ret;
360 	unsigned long flags;
361 
362 	spin_lock_irqsave(cdev->ccwlock, flags);
363 	if (!cdev->private->cmb) {
364 		ret = -ENODEV;
365 		goto out;
366 	}
367 	copy_block = kzalloc(sizeof(struct copy_block_struct), GFP_ATOMIC);
368 	if (!copy_block) {
369 		ret = -ENOMEM;
370 		goto out;
371 	}
372 	init_waitqueue_head(&copy_block->wait);
373 	kref_init(&copy_block->kref);
374 
375 	ret = cmf_copy_block(cdev);
376 	if (ret != -EBUSY)
377 		goto out_put;
378 
379 	if (cdev->private->state != DEV_STATE_ONLINE) {
380 		ret = -EBUSY;
381 		goto out_put;
382 	}
383 
384 	cdev->private->state = DEV_STATE_CMFUPDATE;
385 	copy_block->ret = CMF_PENDING;
386 	cdev->private->cmb_wait = copy_block;
387 
388 	spin_unlock_irqrestore(cdev->ccwlock, flags);
389 	if (wait_event_interruptible(copy_block->wait,
390 				     copy_block->ret != CMF_PENDING)) {
391 		spin_lock_irqsave(cdev->ccwlock, flags);
392 		if (copy_block->ret == CMF_PENDING) {
393 			copy_block->ret = -ERESTARTSYS;
394 			if (cdev->private->state == DEV_STATE_CMFUPDATE)
395 				cdev->private->state = DEV_STATE_ONLINE;
396 		}
397 		spin_unlock_irqrestore(cdev->ccwlock, flags);
398 	}
399 	spin_lock_irqsave(cdev->ccwlock, flags);
400 	cdev->private->cmb_wait = NULL;
401 	ret = copy_block->ret;
402 out_put:
403 	kref_put(&copy_block->kref, cmf_copy_block_release);
404 out:
405 	spin_unlock_irqrestore(cdev->ccwlock, flags);
406 	return ret;
407 }
408 
409 void cmf_retry_copy_block(struct ccw_device *cdev)
410 {
411 	struct copy_block_struct *copy_block;
412 
413 	copy_block = cdev->private->cmb_wait;
414 	if (!copy_block) {
415 		WARN_ON(1);
416 		return;
417 	}
418 	kref_get(&copy_block->kref);
419 	copy_block->ret = cmf_copy_block(cdev);
420 	wake_up(&copy_block->wait);
421 	kref_put(&copy_block->kref, cmf_copy_block_release);
422 }
423 
424 static void cmf_generic_reset(struct ccw_device *cdev)
425 {
426 	struct cmb_data *cmb_data;
427 
428 	spin_lock_irq(cdev->ccwlock);
429 	cmb_data = cdev->private->cmb;
430 	if (cmb_data) {
431 		memset(cmb_data->last_block, 0, cmb_data->size);
432 		/*
433 		 * Need to reset hw block as well to make the hardware start
434 		 * from 0 again.
435 		 */
436 		memset(cmb_data->hw_block, 0, cmb_data->size);
437 		cmb_data->last_update = 0;
438 	}
439 	cdev->private->cmb_start_time = get_tod_clock();
440 	spin_unlock_irq(cdev->ccwlock);
441 }
442 
443 /**
444  * struct cmb_area - container for global cmb data
445  *
446  * @mem:	pointer to CMBs (only in basic measurement mode)
447  * @list:	contains a linked list of all subchannels
448  * @num_channels: number of channels to be measured
449  * @lock:	protect concurrent access to @mem and @list
450  */
451 struct cmb_area {
452 	struct cmb *mem;
453 	struct list_head list;
454 	int num_channels;
455 	spinlock_t lock;
456 };
457 
458 static struct cmb_area cmb_area = {
459 	.lock = __SPIN_LOCK_UNLOCKED(cmb_area.lock),
460 	.list = LIST_HEAD_INIT(cmb_area.list),
461 	.num_channels  = 1024,
462 };
463 
464 /* ****** old style CMB handling ********/
465 
466 /*
467  * Basic channel measurement blocks are allocated in one contiguous
468  * block of memory, which can not be moved as long as any channel
469  * is active. Therefore, a maximum number of subchannels needs to
470  * be defined somewhere. This is a module parameter, defaulting to
471  * a reasonable value of 1024, or 32 kb of memory.
472  * Current kernels don't allow kmalloc with more than 128kb, so the
473  * maximum is 4096.
474  */
475 
476 module_param_named(maxchannels, cmb_area.num_channels, uint, 0444);
477 
478 /**
479  * struct cmb - basic channel measurement block
480  * @ssch_rsch_count: number of ssch and rsch
481  * @sample_count: number of samples
482  * @device_connect_time: time of device connect
483  * @function_pending_time: time of function pending
484  * @device_disconnect_time: time of device disconnect
485  * @control_unit_queuing_time: time of control unit queuing
486  * @device_active_only_time: time of device active only
487  * @reserved: unused in basic measurement mode
488  *
489  * The measurement block as used by the hardware. The fields are described
490  * further in z/Architecture Principles of Operation, chapter 17.
491  *
492  * The cmb area made up from these blocks must be a contiguous array and may
493  * not be reallocated or freed.
494  * Only one cmb area can be present in the system.
495  */
496 struct cmb {
497 	u16 ssch_rsch_count;
498 	u16 sample_count;
499 	u32 device_connect_time;
500 	u32 function_pending_time;
501 	u32 device_disconnect_time;
502 	u32 control_unit_queuing_time;
503 	u32 device_active_only_time;
504 	u32 reserved[2];
505 };
506 
507 /*
508  * Insert a single device into the cmb_area list.
509  * Called with cmb_area.lock held from alloc_cmb.
510  */
511 static int alloc_cmb_single(struct ccw_device *cdev,
512 			    struct cmb_data *cmb_data)
513 {
514 	struct cmb *cmb;
515 	struct ccw_device_private *node;
516 	int ret;
517 
518 	spin_lock_irq(cdev->ccwlock);
519 	if (!list_empty(&cdev->private->cmb_list)) {
520 		ret = -EBUSY;
521 		goto out;
522 	}
523 
524 	/*
525 	 * Find first unused cmb in cmb_area.mem.
526 	 * This is a little tricky: cmb_area.list
527 	 * remains sorted by ->cmb->hw_data pointers.
528 	 */
529 	cmb = cmb_area.mem;
530 	list_for_each_entry(node, &cmb_area.list, cmb_list) {
531 		struct cmb_data *data;
532 		data = node->cmb;
533 		if ((struct cmb*)data->hw_block > cmb)
534 			break;
535 		cmb++;
536 	}
537 	if (cmb - cmb_area.mem >= cmb_area.num_channels) {
538 		ret = -ENOMEM;
539 		goto out;
540 	}
541 
542 	/* insert new cmb */
543 	list_add_tail(&cdev->private->cmb_list, &node->cmb_list);
544 	cmb_data->hw_block = cmb;
545 	cdev->private->cmb = cmb_data;
546 	ret = 0;
547 out:
548 	spin_unlock_irq(cdev->ccwlock);
549 	return ret;
550 }
551 
552 static int alloc_cmb(struct ccw_device *cdev)
553 {
554 	int ret;
555 	struct cmb *mem;
556 	ssize_t size;
557 	struct cmb_data *cmb_data;
558 
559 	/* Allocate private cmb_data. */
560 	cmb_data = kzalloc(sizeof(struct cmb_data), GFP_KERNEL);
561 	if (!cmb_data)
562 		return -ENOMEM;
563 
564 	cmb_data->last_block = kzalloc(sizeof(struct cmb), GFP_KERNEL);
565 	if (!cmb_data->last_block) {
566 		kfree(cmb_data);
567 		return -ENOMEM;
568 	}
569 	cmb_data->size = sizeof(struct cmb);
570 	spin_lock(&cmb_area.lock);
571 
572 	if (!cmb_area.mem) {
573 		/* there is no user yet, so we need a new area */
574 		size = sizeof(struct cmb) * cmb_area.num_channels;
575 		WARN_ON(!list_empty(&cmb_area.list));
576 
577 		spin_unlock(&cmb_area.lock);
578 		mem = (void*)__get_free_pages(GFP_KERNEL | GFP_DMA,
579 				 get_order(size));
580 		spin_lock(&cmb_area.lock);
581 
582 		if (cmb_area.mem) {
583 			/* ok, another thread was faster */
584 			free_pages((unsigned long)mem, get_order(size));
585 		} else if (!mem) {
586 			/* no luck */
587 			ret = -ENOMEM;
588 			goto out;
589 		} else {
590 			/* everything ok */
591 			memset(mem, 0, size);
592 			cmb_area.mem = mem;
593 			cmf_activate(cmb_area.mem, CMF_ON);
594 		}
595 	}
596 
597 	/* do the actual allocation */
598 	ret = alloc_cmb_single(cdev, cmb_data);
599 out:
600 	spin_unlock(&cmb_area.lock);
601 	if (ret) {
602 		kfree(cmb_data->last_block);
603 		kfree(cmb_data);
604 	}
605 	return ret;
606 }
607 
608 static void free_cmb(struct ccw_device *cdev)
609 {
610 	struct ccw_device_private *priv;
611 	struct cmb_data *cmb_data;
612 
613 	spin_lock(&cmb_area.lock);
614 	spin_lock_irq(cdev->ccwlock);
615 
616 	priv = cdev->private;
617 	cmb_data = priv->cmb;
618 	priv->cmb = NULL;
619 	if (cmb_data)
620 		kfree(cmb_data->last_block);
621 	kfree(cmb_data);
622 	list_del_init(&priv->cmb_list);
623 
624 	if (list_empty(&cmb_area.list)) {
625 		ssize_t size;
626 		size = sizeof(struct cmb) * cmb_area.num_channels;
627 		cmf_activate(NULL, CMF_OFF);
628 		free_pages((unsigned long)cmb_area.mem, get_order(size));
629 		cmb_area.mem = NULL;
630 	}
631 	spin_unlock_irq(cdev->ccwlock);
632 	spin_unlock(&cmb_area.lock);
633 }
634 
635 static int set_cmb(struct ccw_device *cdev, u32 mme)
636 {
637 	u16 offset;
638 	struct cmb_data *cmb_data;
639 	unsigned long flags;
640 
641 	spin_lock_irqsave(cdev->ccwlock, flags);
642 	if (!cdev->private->cmb) {
643 		spin_unlock_irqrestore(cdev->ccwlock, flags);
644 		return -EINVAL;
645 	}
646 	cmb_data = cdev->private->cmb;
647 	offset = mme ? (struct cmb *)cmb_data->hw_block - cmb_area.mem : 0;
648 	spin_unlock_irqrestore(cdev->ccwlock, flags);
649 
650 	return set_schib_wait(cdev, mme, 0, offset);
651 }
652 
653 static u64 read_cmb(struct ccw_device *cdev, int index)
654 {
655 	struct cmb *cmb;
656 	u32 val;
657 	int ret;
658 	unsigned long flags;
659 
660 	ret = cmf_cmb_copy_wait(cdev);
661 	if (ret < 0)
662 		return 0;
663 
664 	spin_lock_irqsave(cdev->ccwlock, flags);
665 	if (!cdev->private->cmb) {
666 		ret = 0;
667 		goto out;
668 	}
669 	cmb = ((struct cmb_data *)cdev->private->cmb)->last_block;
670 
671 	switch (index) {
672 	case cmb_ssch_rsch_count:
673 		ret = cmb->ssch_rsch_count;
674 		goto out;
675 	case cmb_sample_count:
676 		ret = cmb->sample_count;
677 		goto out;
678 	case cmb_device_connect_time:
679 		val = cmb->device_connect_time;
680 		break;
681 	case cmb_function_pending_time:
682 		val = cmb->function_pending_time;
683 		break;
684 	case cmb_device_disconnect_time:
685 		val = cmb->device_disconnect_time;
686 		break;
687 	case cmb_control_unit_queuing_time:
688 		val = cmb->control_unit_queuing_time;
689 		break;
690 	case cmb_device_active_only_time:
691 		val = cmb->device_active_only_time;
692 		break;
693 	default:
694 		ret = 0;
695 		goto out;
696 	}
697 	ret = time_to_avg_nsec(val, cmb->sample_count);
698 out:
699 	spin_unlock_irqrestore(cdev->ccwlock, flags);
700 	return ret;
701 }
702 
703 static int readall_cmb(struct ccw_device *cdev, struct cmbdata *data)
704 {
705 	struct cmb *cmb;
706 	struct cmb_data *cmb_data;
707 	u64 time;
708 	unsigned long flags;
709 	int ret;
710 
711 	ret = cmf_cmb_copy_wait(cdev);
712 	if (ret < 0)
713 		return ret;
714 	spin_lock_irqsave(cdev->ccwlock, flags);
715 	cmb_data = cdev->private->cmb;
716 	if (!cmb_data) {
717 		ret = -ENODEV;
718 		goto out;
719 	}
720 	if (cmb_data->last_update == 0) {
721 		ret = -EAGAIN;
722 		goto out;
723 	}
724 	cmb = cmb_data->last_block;
725 	time = cmb_data->last_update - cdev->private->cmb_start_time;
726 
727 	memset(data, 0, sizeof(struct cmbdata));
728 
729 	/* we only know values before device_busy_time */
730 	data->size = offsetof(struct cmbdata, device_busy_time);
731 
732 	/* convert to nanoseconds */
733 	data->elapsed_time = (time * 1000) >> 12;
734 
735 	/* copy data to new structure */
736 	data->ssch_rsch_count = cmb->ssch_rsch_count;
737 	data->sample_count = cmb->sample_count;
738 
739 	/* time fields are converted to nanoseconds while copying */
740 	data->device_connect_time = time_to_nsec(cmb->device_connect_time);
741 	data->function_pending_time = time_to_nsec(cmb->function_pending_time);
742 	data->device_disconnect_time =
743 		time_to_nsec(cmb->device_disconnect_time);
744 	data->control_unit_queuing_time
745 		= time_to_nsec(cmb->control_unit_queuing_time);
746 	data->device_active_only_time
747 		= time_to_nsec(cmb->device_active_only_time);
748 	ret = 0;
749 out:
750 	spin_unlock_irqrestore(cdev->ccwlock, flags);
751 	return ret;
752 }
753 
754 static void reset_cmb(struct ccw_device *cdev)
755 {
756 	cmf_generic_reset(cdev);
757 }
758 
759 static int cmf_enabled(struct ccw_device *cdev)
760 {
761 	int enabled;
762 
763 	spin_lock_irq(cdev->ccwlock);
764 	enabled = !!cdev->private->cmb;
765 	spin_unlock_irq(cdev->ccwlock);
766 
767 	return enabled;
768 }
769 
770 static struct attribute_group cmf_attr_group;
771 
772 static struct cmb_operations cmbops_basic = {
773 	.alloc	= alloc_cmb,
774 	.free	= free_cmb,
775 	.set	= set_cmb,
776 	.read	= read_cmb,
777 	.readall    = readall_cmb,
778 	.reset	    = reset_cmb,
779 	.attr_group = &cmf_attr_group,
780 };
781 
782 /* ******** extended cmb handling ********/
783 
784 /**
785  * struct cmbe - extended channel measurement block
786  * @ssch_rsch_count: number of ssch and rsch
787  * @sample_count: number of samples
788  * @device_connect_time: time of device connect
789  * @function_pending_time: time of function pending
790  * @device_disconnect_time: time of device disconnect
791  * @control_unit_queuing_time: time of control unit queuing
792  * @device_active_only_time: time of device active only
793  * @device_busy_time: time of device busy
794  * @initial_command_response_time: initial command response time
795  * @reserved: unused
796  *
797  * The measurement block as used by the hardware. May be in any 64 bit physical
798  * location.
799  * The fields are described further in z/Architecture Principles of Operation,
800  * third edition, chapter 17.
801  */
802 struct cmbe {
803 	u32 ssch_rsch_count;
804 	u32 sample_count;
805 	u32 device_connect_time;
806 	u32 function_pending_time;
807 	u32 device_disconnect_time;
808 	u32 control_unit_queuing_time;
809 	u32 device_active_only_time;
810 	u32 device_busy_time;
811 	u32 initial_command_response_time;
812 	u32 reserved[7];
813 } __packed __aligned(64);
814 
815 static struct kmem_cache *cmbe_cache;
816 
817 static int alloc_cmbe(struct ccw_device *cdev)
818 {
819 	struct cmb_data *cmb_data;
820 	struct cmbe *cmbe;
821 	int ret = -ENOMEM;
822 
823 	cmbe = kmem_cache_zalloc(cmbe_cache, GFP_KERNEL);
824 	if (!cmbe)
825 		return ret;
826 
827 	cmb_data = kzalloc(sizeof(*cmb_data), GFP_KERNEL);
828 	if (!cmb_data)
829 		goto out_free;
830 
831 	cmb_data->last_block = kzalloc(sizeof(struct cmbe), GFP_KERNEL);
832 	if (!cmb_data->last_block)
833 		goto out_free;
834 
835 	cmb_data->size = sizeof(*cmbe);
836 	cmb_data->hw_block = cmbe;
837 
838 	spin_lock(&cmb_area.lock);
839 	spin_lock_irq(cdev->ccwlock);
840 	if (cdev->private->cmb)
841 		goto out_unlock;
842 
843 	cdev->private->cmb = cmb_data;
844 
845 	/* activate global measurement if this is the first channel */
846 	if (list_empty(&cmb_area.list))
847 		cmf_activate(NULL, CMF_ON);
848 	list_add_tail(&cdev->private->cmb_list, &cmb_area.list);
849 
850 	spin_unlock_irq(cdev->ccwlock);
851 	spin_unlock(&cmb_area.lock);
852 	return 0;
853 
854 out_unlock:
855 	spin_unlock_irq(cdev->ccwlock);
856 	spin_unlock(&cmb_area.lock);
857 	ret = -EBUSY;
858 out_free:
859 	if (cmb_data)
860 		kfree(cmb_data->last_block);
861 	kfree(cmb_data);
862 	kmem_cache_free(cmbe_cache, cmbe);
863 
864 	return ret;
865 }
866 
867 static void free_cmbe(struct ccw_device *cdev)
868 {
869 	struct cmb_data *cmb_data;
870 
871 	spin_lock(&cmb_area.lock);
872 	spin_lock_irq(cdev->ccwlock);
873 	cmb_data = cdev->private->cmb;
874 	cdev->private->cmb = NULL;
875 	if (cmb_data) {
876 		kfree(cmb_data->last_block);
877 		kmem_cache_free(cmbe_cache, cmb_data->hw_block);
878 	}
879 	kfree(cmb_data);
880 
881 	/* deactivate global measurement if this is the last channel */
882 	list_del_init(&cdev->private->cmb_list);
883 	if (list_empty(&cmb_area.list))
884 		cmf_activate(NULL, CMF_OFF);
885 	spin_unlock_irq(cdev->ccwlock);
886 	spin_unlock(&cmb_area.lock);
887 }
888 
889 static int set_cmbe(struct ccw_device *cdev, u32 mme)
890 {
891 	unsigned long mba;
892 	struct cmb_data *cmb_data;
893 	unsigned long flags;
894 
895 	spin_lock_irqsave(cdev->ccwlock, flags);
896 	if (!cdev->private->cmb) {
897 		spin_unlock_irqrestore(cdev->ccwlock, flags);
898 		return -EINVAL;
899 	}
900 	cmb_data = cdev->private->cmb;
901 	mba = mme ? (unsigned long) cmb_data->hw_block : 0;
902 	spin_unlock_irqrestore(cdev->ccwlock, flags);
903 
904 	return set_schib_wait(cdev, mme, 1, mba);
905 }
906 
907 
908 static u64 read_cmbe(struct ccw_device *cdev, int index)
909 {
910 	struct cmbe *cmb;
911 	struct cmb_data *cmb_data;
912 	u32 val;
913 	int ret;
914 	unsigned long flags;
915 
916 	ret = cmf_cmb_copy_wait(cdev);
917 	if (ret < 0)
918 		return 0;
919 
920 	spin_lock_irqsave(cdev->ccwlock, flags);
921 	cmb_data = cdev->private->cmb;
922 	if (!cmb_data) {
923 		ret = 0;
924 		goto out;
925 	}
926 	cmb = cmb_data->last_block;
927 
928 	switch (index) {
929 	case cmb_ssch_rsch_count:
930 		ret = cmb->ssch_rsch_count;
931 		goto out;
932 	case cmb_sample_count:
933 		ret = cmb->sample_count;
934 		goto out;
935 	case cmb_device_connect_time:
936 		val = cmb->device_connect_time;
937 		break;
938 	case cmb_function_pending_time:
939 		val = cmb->function_pending_time;
940 		break;
941 	case cmb_device_disconnect_time:
942 		val = cmb->device_disconnect_time;
943 		break;
944 	case cmb_control_unit_queuing_time:
945 		val = cmb->control_unit_queuing_time;
946 		break;
947 	case cmb_device_active_only_time:
948 		val = cmb->device_active_only_time;
949 		break;
950 	case cmb_device_busy_time:
951 		val = cmb->device_busy_time;
952 		break;
953 	case cmb_initial_command_response_time:
954 		val = cmb->initial_command_response_time;
955 		break;
956 	default:
957 		ret = 0;
958 		goto out;
959 	}
960 	ret = time_to_avg_nsec(val, cmb->sample_count);
961 out:
962 	spin_unlock_irqrestore(cdev->ccwlock, flags);
963 	return ret;
964 }
965 
966 static int readall_cmbe(struct ccw_device *cdev, struct cmbdata *data)
967 {
968 	struct cmbe *cmb;
969 	struct cmb_data *cmb_data;
970 	u64 time;
971 	unsigned long flags;
972 	int ret;
973 
974 	ret = cmf_cmb_copy_wait(cdev);
975 	if (ret < 0)
976 		return ret;
977 	spin_lock_irqsave(cdev->ccwlock, flags);
978 	cmb_data = cdev->private->cmb;
979 	if (!cmb_data) {
980 		ret = -ENODEV;
981 		goto out;
982 	}
983 	if (cmb_data->last_update == 0) {
984 		ret = -EAGAIN;
985 		goto out;
986 	}
987 	time = cmb_data->last_update - cdev->private->cmb_start_time;
988 
989 	memset (data, 0, sizeof(struct cmbdata));
990 
991 	/* we only know values before device_busy_time */
992 	data->size = offsetof(struct cmbdata, device_busy_time);
993 
994 	/* conver to nanoseconds */
995 	data->elapsed_time = (time * 1000) >> 12;
996 
997 	cmb = cmb_data->last_block;
998 	/* copy data to new structure */
999 	data->ssch_rsch_count = cmb->ssch_rsch_count;
1000 	data->sample_count = cmb->sample_count;
1001 
1002 	/* time fields are converted to nanoseconds while copying */
1003 	data->device_connect_time = time_to_nsec(cmb->device_connect_time);
1004 	data->function_pending_time = time_to_nsec(cmb->function_pending_time);
1005 	data->device_disconnect_time =
1006 		time_to_nsec(cmb->device_disconnect_time);
1007 	data->control_unit_queuing_time
1008 		= time_to_nsec(cmb->control_unit_queuing_time);
1009 	data->device_active_only_time
1010 		= time_to_nsec(cmb->device_active_only_time);
1011 	data->device_busy_time = time_to_nsec(cmb->device_busy_time);
1012 	data->initial_command_response_time
1013 		= time_to_nsec(cmb->initial_command_response_time);
1014 
1015 	ret = 0;
1016 out:
1017 	spin_unlock_irqrestore(cdev->ccwlock, flags);
1018 	return ret;
1019 }
1020 
1021 static void reset_cmbe(struct ccw_device *cdev)
1022 {
1023 	cmf_generic_reset(cdev);
1024 }
1025 
1026 static struct attribute_group cmf_attr_group_ext;
1027 
1028 static struct cmb_operations cmbops_extended = {
1029 	.alloc	    = alloc_cmbe,
1030 	.free	    = free_cmbe,
1031 	.set	    = set_cmbe,
1032 	.read	    = read_cmbe,
1033 	.readall    = readall_cmbe,
1034 	.reset	    = reset_cmbe,
1035 	.attr_group = &cmf_attr_group_ext,
1036 };
1037 
1038 static ssize_t cmb_show_attr(struct device *dev, char *buf, enum cmb_index idx)
1039 {
1040 	return sprintf(buf, "%lld\n",
1041 		(unsigned long long) cmf_read(to_ccwdev(dev), idx));
1042 }
1043 
1044 static ssize_t cmb_show_avg_sample_interval(struct device *dev,
1045 					    struct device_attribute *attr,
1046 					    char *buf)
1047 {
1048 	struct ccw_device *cdev;
1049 	long interval;
1050 	unsigned long count;
1051 	struct cmb_data *cmb_data;
1052 
1053 	cdev = to_ccwdev(dev);
1054 	count = cmf_read(cdev, cmb_sample_count);
1055 	spin_lock_irq(cdev->ccwlock);
1056 	cmb_data = cdev->private->cmb;
1057 	if (count) {
1058 		interval = cmb_data->last_update -
1059 			cdev->private->cmb_start_time;
1060 		interval = (interval * 1000) >> 12;
1061 		interval /= count;
1062 	} else
1063 		interval = -1;
1064 	spin_unlock_irq(cdev->ccwlock);
1065 	return sprintf(buf, "%ld\n", interval);
1066 }
1067 
1068 static ssize_t cmb_show_avg_utilization(struct device *dev,
1069 					struct device_attribute *attr,
1070 					char *buf)
1071 {
1072 	struct cmbdata data;
1073 	u64 utilization;
1074 	unsigned long t, u;
1075 	int ret;
1076 
1077 	ret = cmf_readall(to_ccwdev(dev), &data);
1078 	if (ret == -EAGAIN || ret == -ENODEV)
1079 		/* No data (yet/currently) available to use for calculation. */
1080 		return sprintf(buf, "n/a\n");
1081 	else if (ret)
1082 		return ret;
1083 
1084 	utilization = data.device_connect_time +
1085 		      data.function_pending_time +
1086 		      data.device_disconnect_time;
1087 
1088 	/* calculate value in 0.1 percent units */
1089 	t = data.elapsed_time / 1000;
1090 	u = utilization / t;
1091 
1092 	return sprintf(buf, "%02ld.%01ld%%\n", u/ 10, u - (u/ 10) * 10);
1093 }
1094 
1095 #define cmf_attr(name) \
1096 static ssize_t show_##name(struct device *dev, \
1097 			   struct device_attribute *attr, char *buf)	\
1098 { return cmb_show_attr((dev), buf, cmb_##name); } \
1099 static DEVICE_ATTR(name, 0444, show_##name, NULL);
1100 
1101 #define cmf_attr_avg(name) \
1102 static ssize_t show_avg_##name(struct device *dev, \
1103 			       struct device_attribute *attr, char *buf) \
1104 { return cmb_show_attr((dev), buf, cmb_##name); } \
1105 static DEVICE_ATTR(avg_##name, 0444, show_avg_##name, NULL);
1106 
1107 cmf_attr(ssch_rsch_count);
1108 cmf_attr(sample_count);
1109 cmf_attr_avg(device_connect_time);
1110 cmf_attr_avg(function_pending_time);
1111 cmf_attr_avg(device_disconnect_time);
1112 cmf_attr_avg(control_unit_queuing_time);
1113 cmf_attr_avg(device_active_only_time);
1114 cmf_attr_avg(device_busy_time);
1115 cmf_attr_avg(initial_command_response_time);
1116 
1117 static DEVICE_ATTR(avg_sample_interval, 0444, cmb_show_avg_sample_interval,
1118 		   NULL);
1119 static DEVICE_ATTR(avg_utilization, 0444, cmb_show_avg_utilization, NULL);
1120 
1121 static struct attribute *cmf_attributes[] = {
1122 	&dev_attr_avg_sample_interval.attr,
1123 	&dev_attr_avg_utilization.attr,
1124 	&dev_attr_ssch_rsch_count.attr,
1125 	&dev_attr_sample_count.attr,
1126 	&dev_attr_avg_device_connect_time.attr,
1127 	&dev_attr_avg_function_pending_time.attr,
1128 	&dev_attr_avg_device_disconnect_time.attr,
1129 	&dev_attr_avg_control_unit_queuing_time.attr,
1130 	&dev_attr_avg_device_active_only_time.attr,
1131 	NULL,
1132 };
1133 
1134 static struct attribute_group cmf_attr_group = {
1135 	.name  = "cmf",
1136 	.attrs = cmf_attributes,
1137 };
1138 
1139 static struct attribute *cmf_attributes_ext[] = {
1140 	&dev_attr_avg_sample_interval.attr,
1141 	&dev_attr_avg_utilization.attr,
1142 	&dev_attr_ssch_rsch_count.attr,
1143 	&dev_attr_sample_count.attr,
1144 	&dev_attr_avg_device_connect_time.attr,
1145 	&dev_attr_avg_function_pending_time.attr,
1146 	&dev_attr_avg_device_disconnect_time.attr,
1147 	&dev_attr_avg_control_unit_queuing_time.attr,
1148 	&dev_attr_avg_device_active_only_time.attr,
1149 	&dev_attr_avg_device_busy_time.attr,
1150 	&dev_attr_avg_initial_command_response_time.attr,
1151 	NULL,
1152 };
1153 
1154 static struct attribute_group cmf_attr_group_ext = {
1155 	.name  = "cmf",
1156 	.attrs = cmf_attributes_ext,
1157 };
1158 
1159 static ssize_t cmb_enable_show(struct device *dev,
1160 			       struct device_attribute *attr,
1161 			       char *buf)
1162 {
1163 	struct ccw_device *cdev = to_ccwdev(dev);
1164 
1165 	return sprintf(buf, "%d\n", cmf_enabled(cdev));
1166 }
1167 
1168 static ssize_t cmb_enable_store(struct device *dev,
1169 				struct device_attribute *attr, const char *buf,
1170 				size_t c)
1171 {
1172 	struct ccw_device *cdev = to_ccwdev(dev);
1173 	unsigned long val;
1174 	int ret;
1175 
1176 	ret = kstrtoul(buf, 16, &val);
1177 	if (ret)
1178 		return ret;
1179 
1180 	switch (val) {
1181 	case 0:
1182 		ret = disable_cmf(cdev);
1183 		break;
1184 	case 1:
1185 		ret = enable_cmf(cdev);
1186 		break;
1187 	default:
1188 		ret = -EINVAL;
1189 	}
1190 
1191 	return ret ? ret : c;
1192 }
1193 DEVICE_ATTR_RW(cmb_enable);
1194 
1195 int ccw_set_cmf(struct ccw_device *cdev, int enable)
1196 {
1197 	return cmbops->set(cdev, enable ? 2 : 0);
1198 }
1199 
1200 /**
1201  * enable_cmf() - switch on the channel measurement for a specific device
1202  *  @cdev:	The ccw device to be enabled
1203  *
1204  *  Returns %0 for success or a negative error value.
1205  *  Note: If this is called on a device for which channel measurement is already
1206  *	  enabled a reset of the measurement data is triggered.
1207  *  Context:
1208  *    non-atomic
1209  */
1210 int enable_cmf(struct ccw_device *cdev)
1211 {
1212 	int ret = 0;
1213 
1214 	device_lock(&cdev->dev);
1215 	if (cmf_enabled(cdev)) {
1216 		cmbops->reset(cdev);
1217 		goto out_unlock;
1218 	}
1219 	get_device(&cdev->dev);
1220 	ret = cmbops->alloc(cdev);
1221 	if (ret)
1222 		goto out;
1223 	cmbops->reset(cdev);
1224 	ret = sysfs_create_group(&cdev->dev.kobj, cmbops->attr_group);
1225 	if (ret) {
1226 		cmbops->free(cdev);
1227 		goto out;
1228 	}
1229 	ret = cmbops->set(cdev, 2);
1230 	if (ret) {
1231 		sysfs_remove_group(&cdev->dev.kobj, cmbops->attr_group);
1232 		cmbops->free(cdev);
1233 	}
1234 out:
1235 	if (ret)
1236 		put_device(&cdev->dev);
1237 out_unlock:
1238 	device_unlock(&cdev->dev);
1239 	return ret;
1240 }
1241 
1242 /**
1243  * __disable_cmf() - switch off the channel measurement for a specific device
1244  *  @cdev:	The ccw device to be disabled
1245  *
1246  *  Returns %0 for success or a negative error value.
1247  *
1248  *  Context:
1249  *    non-atomic, device_lock() held.
1250  */
1251 int __disable_cmf(struct ccw_device *cdev)
1252 {
1253 	int ret;
1254 
1255 	ret = cmbops->set(cdev, 0);
1256 	if (ret)
1257 		return ret;
1258 
1259 	sysfs_remove_group(&cdev->dev.kobj, cmbops->attr_group);
1260 	cmbops->free(cdev);
1261 	put_device(&cdev->dev);
1262 
1263 	return ret;
1264 }
1265 
1266 /**
1267  * disable_cmf() - switch off the channel measurement for a specific device
1268  *  @cdev:	The ccw device to be disabled
1269  *
1270  *  Returns %0 for success or a negative error value.
1271  *
1272  *  Context:
1273  *    non-atomic
1274  */
1275 int disable_cmf(struct ccw_device *cdev)
1276 {
1277 	int ret;
1278 
1279 	device_lock(&cdev->dev);
1280 	ret = __disable_cmf(cdev);
1281 	device_unlock(&cdev->dev);
1282 
1283 	return ret;
1284 }
1285 
1286 /**
1287  * cmf_read() - read one value from the current channel measurement block
1288  * @cdev:	the channel to be read
1289  * @index:	the index of the value to be read
1290  *
1291  * Returns the value read or %0 if the value cannot be read.
1292  *
1293  *  Context:
1294  *    any
1295  */
1296 u64 cmf_read(struct ccw_device *cdev, int index)
1297 {
1298 	return cmbops->read(cdev, index);
1299 }
1300 
1301 /**
1302  * cmf_readall() - read the current channel measurement block
1303  * @cdev:	the channel to be read
1304  * @data:	a pointer to a data block that will be filled
1305  *
1306  * Returns %0 on success, a negative error value otherwise.
1307  *
1308  *  Context:
1309  *    any
1310  */
1311 int cmf_readall(struct ccw_device *cdev, struct cmbdata *data)
1312 {
1313 	return cmbops->readall(cdev, data);
1314 }
1315 
1316 /* Reenable cmf when a disconnected device becomes available again. */
1317 int cmf_reenable(struct ccw_device *cdev)
1318 {
1319 	cmbops->reset(cdev);
1320 	return cmbops->set(cdev, 2);
1321 }
1322 
1323 /**
1324  * cmf_reactivate() - reactivate measurement block updates
1325  *
1326  * Use this during resume from hibernate.
1327  */
1328 void cmf_reactivate(void)
1329 {
1330 	spin_lock(&cmb_area.lock);
1331 	if (!list_empty(&cmb_area.list))
1332 		cmf_activate(cmb_area.mem, CMF_ON);
1333 	spin_unlock(&cmb_area.lock);
1334 }
1335 
1336 static int __init init_cmbe(void)
1337 {
1338 	cmbe_cache = kmem_cache_create("cmbe_cache", sizeof(struct cmbe),
1339 				       __alignof__(struct cmbe), 0, NULL);
1340 
1341 	return cmbe_cache ? 0 : -ENOMEM;
1342 }
1343 
1344 static int __init init_cmf(void)
1345 {
1346 	char *format_string;
1347 	char *detect_string;
1348 	int ret;
1349 
1350 	/*
1351 	 * If the user did not give a parameter, see if we are running on a
1352 	 * machine supporting extended measurement blocks, otherwise fall back
1353 	 * to basic mode.
1354 	 */
1355 	if (format == CMF_AUTODETECT) {
1356 		if (!css_general_characteristics.ext_mb) {
1357 			format = CMF_BASIC;
1358 		} else {
1359 			format = CMF_EXTENDED;
1360 		}
1361 		detect_string = "autodetected";
1362 	} else {
1363 		detect_string = "parameter";
1364 	}
1365 
1366 	switch (format) {
1367 	case CMF_BASIC:
1368 		format_string = "basic";
1369 		cmbops = &cmbops_basic;
1370 		break;
1371 	case CMF_EXTENDED:
1372 		format_string = "extended";
1373 		cmbops = &cmbops_extended;
1374 
1375 		ret = init_cmbe();
1376 		if (ret)
1377 			return ret;
1378 		break;
1379 	default:
1380 		return -EINVAL;
1381 	}
1382 	pr_info("Channel measurement facility initialized using format "
1383 		"%s (mode %s)\n", format_string, detect_string);
1384 	return 0;
1385 }
1386 device_initcall(init_cmf);
1387 
1388 EXPORT_SYMBOL_GPL(enable_cmf);
1389 EXPORT_SYMBOL_GPL(disable_cmf);
1390 EXPORT_SYMBOL_GPL(cmf_read);
1391 EXPORT_SYMBOL_GPL(cmf_readall);
1392