xref: /openbmc/linux/drivers/s390/cio/cmf.c (revision 0edbfea5)
1 /*
2  * Linux on zSeries Channel Measurement Facility support
3  *
4  * Copyright IBM Corp. 2000, 2006
5  *
6  * Authors: Arnd Bergmann <arndb@de.ibm.com>
7  *	    Cornelia Huck <cornelia.huck@de.ibm.com>
8  *
9  * original idea from Natarajan Krishnaswami <nkrishna@us.ibm.com>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24  */
25 
26 #define KMSG_COMPONENT "cio"
27 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
28 
29 #include <linux/bootmem.h>
30 #include <linux/device.h>
31 #include <linux/init.h>
32 #include <linux/list.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/slab.h>
36 #include <linux/timex.h>	/* get_tod_clock() */
37 
38 #include <asm/ccwdev.h>
39 #include <asm/cio.h>
40 #include <asm/cmb.h>
41 #include <asm/div64.h>
42 
43 #include "cio.h"
44 #include "css.h"
45 #include "device.h"
46 #include "ioasm.h"
47 #include "chsc.h"
48 
49 /*
50  * parameter to enable cmf during boot, possible uses are:
51  *  "s390cmf" -- enable cmf and allocate 2 MB of ram so measuring can be
52  *               used on any subchannel
53  *  "s390cmf=<num>" -- enable cmf and allocate enough memory to measure
54  *                     <num> subchannel, where <num> is an integer
55  *                     between 1 and 65535, default is 1024
56  */
57 #define ARGSTRING "s390cmf"
58 
59 /* indices for READCMB */
60 enum cmb_index {
61  /* basic and exended format: */
62 	cmb_ssch_rsch_count,
63 	cmb_sample_count,
64 	cmb_device_connect_time,
65 	cmb_function_pending_time,
66 	cmb_device_disconnect_time,
67 	cmb_control_unit_queuing_time,
68 	cmb_device_active_only_time,
69  /* extended format only: */
70 	cmb_device_busy_time,
71 	cmb_initial_command_response_time,
72 };
73 
74 /**
75  * enum cmb_format - types of supported measurement block formats
76  *
77  * @CMF_BASIC:      traditional channel measurement blocks supported
78  *		    by all machines that we run on
79  * @CMF_EXTENDED:   improved format that was introduced with the z990
80  *		    machine
81  * @CMF_AUTODETECT: default: use extended format when running on a machine
82  *		    supporting extended format, otherwise fall back to
83  *		    basic format
84  */
85 enum cmb_format {
86 	CMF_BASIC,
87 	CMF_EXTENDED,
88 	CMF_AUTODETECT = -1,
89 };
90 
91 /*
92  * format - actual format for all measurement blocks
93  *
94  * The format module parameter can be set to a value of 0 (zero)
95  * or 1, indicating basic or extended format as described for
96  * enum cmb_format.
97  */
98 static int format = CMF_AUTODETECT;
99 module_param(format, bint, 0444);
100 
101 /**
102  * struct cmb_operations - functions to use depending on cmb_format
103  *
104  * Most of these functions operate on a struct ccw_device. There is only
105  * one instance of struct cmb_operations because the format of the measurement
106  * data is guaranteed to be the same for every ccw_device.
107  *
108  * @alloc:	allocate memory for a channel measurement block,
109  *		either with the help of a special pool or with kmalloc
110  * @free:	free memory allocated with @alloc
111  * @set:	enable or disable measurement
112  * @read:	read a measurement entry at an index
113  * @readall:	read a measurement block in a common format
114  * @reset:	clear the data in the associated measurement block and
115  *		reset its time stamp
116  */
117 struct cmb_operations {
118 	int  (*alloc)  (struct ccw_device *);
119 	void (*free)   (struct ccw_device *);
120 	int  (*set)    (struct ccw_device *, u32);
121 	u64  (*read)   (struct ccw_device *, int);
122 	int  (*readall)(struct ccw_device *, struct cmbdata *);
123 	void (*reset)  (struct ccw_device *);
124 /* private: */
125 	struct attribute_group *attr_group;
126 };
127 static struct cmb_operations *cmbops;
128 
129 struct cmb_data {
130 	void *hw_block;   /* Pointer to block updated by hardware */
131 	void *last_block; /* Last changed block copied from hardware block */
132 	int size;	  /* Size of hw_block and last_block */
133 	unsigned long long last_update;  /* when last_block was updated */
134 };
135 
136 /*
137  * Our user interface is designed in terms of nanoseconds,
138  * while the hardware measures total times in its own
139  * unit.
140  */
141 static inline u64 time_to_nsec(u32 value)
142 {
143 	return ((u64)value) * 128000ull;
144 }
145 
146 /*
147  * Users are usually interested in average times,
148  * not accumulated time.
149  * This also helps us with atomicity problems
150  * when reading sinlge values.
151  */
152 static inline u64 time_to_avg_nsec(u32 value, u32 count)
153 {
154 	u64 ret;
155 
156 	/* no samples yet, avoid division by 0 */
157 	if (count == 0)
158 		return 0;
159 
160 	/* value comes in units of 128 µsec */
161 	ret = time_to_nsec(value);
162 	do_div(ret, count);
163 
164 	return ret;
165 }
166 
167 /*
168  * Activate or deactivate the channel monitor. When area is NULL,
169  * the monitor is deactivated. The channel monitor needs to
170  * be active in order to measure subchannels, which also need
171  * to be enabled.
172  */
173 static inline void cmf_activate(void *area, unsigned int onoff)
174 {
175 	register void * __gpr2 asm("2");
176 	register long __gpr1 asm("1");
177 
178 	__gpr2 = area;
179 	__gpr1 = onoff ? 2 : 0;
180 	/* activate channel measurement */
181 	asm("schm" : : "d" (__gpr2), "d" (__gpr1) );
182 }
183 
184 static int set_schib(struct ccw_device *cdev, u32 mme, int mbfc,
185 		     unsigned long address)
186 {
187 	struct subchannel *sch = to_subchannel(cdev->dev.parent);
188 	int ret;
189 
190 	sch->config.mme = mme;
191 	sch->config.mbfc = mbfc;
192 	/* address can be either a block address or a block index */
193 	if (mbfc)
194 		sch->config.mba = address;
195 	else
196 		sch->config.mbi = address;
197 
198 	ret = cio_commit_config(sch);
199 	if (!mme && ret == -ENODEV) {
200 		/*
201 		 * The task was to disable measurement block updates but
202 		 * the subchannel is already gone. Report success.
203 		 */
204 		ret = 0;
205 	}
206 	return ret;
207 }
208 
209 struct set_schib_struct {
210 	u32 mme;
211 	int mbfc;
212 	unsigned long address;
213 	wait_queue_head_t wait;
214 	int ret;
215 	struct kref kref;
216 };
217 
218 static void cmf_set_schib_release(struct kref *kref)
219 {
220 	struct set_schib_struct *set_data;
221 
222 	set_data = container_of(kref, struct set_schib_struct, kref);
223 	kfree(set_data);
224 }
225 
226 #define CMF_PENDING 1
227 
228 static int set_schib_wait(struct ccw_device *cdev, u32 mme,
229 				int mbfc, unsigned long address)
230 {
231 	struct set_schib_struct *set_data;
232 	int ret;
233 
234 	spin_lock_irq(cdev->ccwlock);
235 	if (!cdev->private->cmb) {
236 		ret = -ENODEV;
237 		goto out;
238 	}
239 	set_data = kzalloc(sizeof(struct set_schib_struct), GFP_ATOMIC);
240 	if (!set_data) {
241 		ret = -ENOMEM;
242 		goto out;
243 	}
244 	init_waitqueue_head(&set_data->wait);
245 	kref_init(&set_data->kref);
246 	set_data->mme = mme;
247 	set_data->mbfc = mbfc;
248 	set_data->address = address;
249 
250 	ret = set_schib(cdev, mme, mbfc, address);
251 	if (ret != -EBUSY)
252 		goto out_put;
253 
254 	if (cdev->private->state != DEV_STATE_ONLINE) {
255 		/* if the device is not online, don't even try again */
256 		ret = -EBUSY;
257 		goto out_put;
258 	}
259 
260 	cdev->private->state = DEV_STATE_CMFCHANGE;
261 	set_data->ret = CMF_PENDING;
262 	cdev->private->cmb_wait = set_data;
263 
264 	spin_unlock_irq(cdev->ccwlock);
265 	if (wait_event_interruptible(set_data->wait,
266 				     set_data->ret != CMF_PENDING)) {
267 		spin_lock_irq(cdev->ccwlock);
268 		if (set_data->ret == CMF_PENDING) {
269 			set_data->ret = -ERESTARTSYS;
270 			if (cdev->private->state == DEV_STATE_CMFCHANGE)
271 				cdev->private->state = DEV_STATE_ONLINE;
272 		}
273 		spin_unlock_irq(cdev->ccwlock);
274 	}
275 	spin_lock_irq(cdev->ccwlock);
276 	cdev->private->cmb_wait = NULL;
277 	ret = set_data->ret;
278 out_put:
279 	kref_put(&set_data->kref, cmf_set_schib_release);
280 out:
281 	spin_unlock_irq(cdev->ccwlock);
282 	return ret;
283 }
284 
285 void retry_set_schib(struct ccw_device *cdev)
286 {
287 	struct set_schib_struct *set_data;
288 
289 	set_data = cdev->private->cmb_wait;
290 	if (!set_data) {
291 		WARN_ON(1);
292 		return;
293 	}
294 	kref_get(&set_data->kref);
295 	set_data->ret = set_schib(cdev, set_data->mme, set_data->mbfc,
296 				  set_data->address);
297 	wake_up(&set_data->wait);
298 	kref_put(&set_data->kref, cmf_set_schib_release);
299 }
300 
301 static int cmf_copy_block(struct ccw_device *cdev)
302 {
303 	struct subchannel *sch;
304 	void *reference_buf;
305 	void *hw_block;
306 	struct cmb_data *cmb_data;
307 
308 	sch = to_subchannel(cdev->dev.parent);
309 
310 	if (cio_update_schib(sch))
311 		return -ENODEV;
312 
313 	if (scsw_fctl(&sch->schib.scsw) & SCSW_FCTL_START_FUNC) {
314 		/* Don't copy if a start function is in progress. */
315 		if ((!(scsw_actl(&sch->schib.scsw) & SCSW_ACTL_SUSPENDED)) &&
316 		    (scsw_actl(&sch->schib.scsw) &
317 		     (SCSW_ACTL_DEVACT | SCSW_ACTL_SCHACT)) &&
318 		    (!(scsw_stctl(&sch->schib.scsw) & SCSW_STCTL_SEC_STATUS)))
319 			return -EBUSY;
320 	}
321 	cmb_data = cdev->private->cmb;
322 	hw_block = cmb_data->hw_block;
323 	if (!memcmp(cmb_data->last_block, hw_block, cmb_data->size))
324 		/* No need to copy. */
325 		return 0;
326 	reference_buf = kzalloc(cmb_data->size, GFP_ATOMIC);
327 	if (!reference_buf)
328 		return -ENOMEM;
329 	/* Ensure consistency of block copied from hardware. */
330 	do {
331 		memcpy(cmb_data->last_block, hw_block, cmb_data->size);
332 		memcpy(reference_buf, hw_block, cmb_data->size);
333 	} while (memcmp(cmb_data->last_block, reference_buf, cmb_data->size));
334 	cmb_data->last_update = get_tod_clock();
335 	kfree(reference_buf);
336 	return 0;
337 }
338 
339 struct copy_block_struct {
340 	wait_queue_head_t wait;
341 	int ret;
342 	struct kref kref;
343 };
344 
345 static void cmf_copy_block_release(struct kref *kref)
346 {
347 	struct copy_block_struct *copy_block;
348 
349 	copy_block = container_of(kref, struct copy_block_struct, kref);
350 	kfree(copy_block);
351 }
352 
353 static int cmf_cmb_copy_wait(struct ccw_device *cdev)
354 {
355 	struct copy_block_struct *copy_block;
356 	int ret;
357 	unsigned long flags;
358 
359 	spin_lock_irqsave(cdev->ccwlock, flags);
360 	if (!cdev->private->cmb) {
361 		ret = -ENODEV;
362 		goto out;
363 	}
364 	copy_block = kzalloc(sizeof(struct copy_block_struct), GFP_ATOMIC);
365 	if (!copy_block) {
366 		ret = -ENOMEM;
367 		goto out;
368 	}
369 	init_waitqueue_head(&copy_block->wait);
370 	kref_init(&copy_block->kref);
371 
372 	ret = cmf_copy_block(cdev);
373 	if (ret != -EBUSY)
374 		goto out_put;
375 
376 	if (cdev->private->state != DEV_STATE_ONLINE) {
377 		ret = -EBUSY;
378 		goto out_put;
379 	}
380 
381 	cdev->private->state = DEV_STATE_CMFUPDATE;
382 	copy_block->ret = CMF_PENDING;
383 	cdev->private->cmb_wait = copy_block;
384 
385 	spin_unlock_irqrestore(cdev->ccwlock, flags);
386 	if (wait_event_interruptible(copy_block->wait,
387 				     copy_block->ret != CMF_PENDING)) {
388 		spin_lock_irqsave(cdev->ccwlock, flags);
389 		if (copy_block->ret == CMF_PENDING) {
390 			copy_block->ret = -ERESTARTSYS;
391 			if (cdev->private->state == DEV_STATE_CMFUPDATE)
392 				cdev->private->state = DEV_STATE_ONLINE;
393 		}
394 		spin_unlock_irqrestore(cdev->ccwlock, flags);
395 	}
396 	spin_lock_irqsave(cdev->ccwlock, flags);
397 	cdev->private->cmb_wait = NULL;
398 	ret = copy_block->ret;
399 out_put:
400 	kref_put(&copy_block->kref, cmf_copy_block_release);
401 out:
402 	spin_unlock_irqrestore(cdev->ccwlock, flags);
403 	return ret;
404 }
405 
406 void cmf_retry_copy_block(struct ccw_device *cdev)
407 {
408 	struct copy_block_struct *copy_block;
409 
410 	copy_block = cdev->private->cmb_wait;
411 	if (!copy_block) {
412 		WARN_ON(1);
413 		return;
414 	}
415 	kref_get(&copy_block->kref);
416 	copy_block->ret = cmf_copy_block(cdev);
417 	wake_up(&copy_block->wait);
418 	kref_put(&copy_block->kref, cmf_copy_block_release);
419 }
420 
421 static void cmf_generic_reset(struct ccw_device *cdev)
422 {
423 	struct cmb_data *cmb_data;
424 
425 	spin_lock_irq(cdev->ccwlock);
426 	cmb_data = cdev->private->cmb;
427 	if (cmb_data) {
428 		memset(cmb_data->last_block, 0, cmb_data->size);
429 		/*
430 		 * Need to reset hw block as well to make the hardware start
431 		 * from 0 again.
432 		 */
433 		memset(cmb_data->hw_block, 0, cmb_data->size);
434 		cmb_data->last_update = 0;
435 	}
436 	cdev->private->cmb_start_time = get_tod_clock();
437 	spin_unlock_irq(cdev->ccwlock);
438 }
439 
440 /**
441  * struct cmb_area - container for global cmb data
442  *
443  * @mem:	pointer to CMBs (only in basic measurement mode)
444  * @list:	contains a linked list of all subchannels
445  * @num_channels: number of channels to be measured
446  * @lock:	protect concurrent access to @mem and @list
447  */
448 struct cmb_area {
449 	struct cmb *mem;
450 	struct list_head list;
451 	int num_channels;
452 	spinlock_t lock;
453 };
454 
455 static struct cmb_area cmb_area = {
456 	.lock = __SPIN_LOCK_UNLOCKED(cmb_area.lock),
457 	.list = LIST_HEAD_INIT(cmb_area.list),
458 	.num_channels  = 1024,
459 };
460 
461 /* ****** old style CMB handling ********/
462 
463 /*
464  * Basic channel measurement blocks are allocated in one contiguous
465  * block of memory, which can not be moved as long as any channel
466  * is active. Therefore, a maximum number of subchannels needs to
467  * be defined somewhere. This is a module parameter, defaulting to
468  * a reasonable value of 1024, or 32 kb of memory.
469  * Current kernels don't allow kmalloc with more than 128kb, so the
470  * maximum is 4096.
471  */
472 
473 module_param_named(maxchannels, cmb_area.num_channels, uint, 0444);
474 
475 /**
476  * struct cmb - basic channel measurement block
477  * @ssch_rsch_count: number of ssch and rsch
478  * @sample_count: number of samples
479  * @device_connect_time: time of device connect
480  * @function_pending_time: time of function pending
481  * @device_disconnect_time: time of device disconnect
482  * @control_unit_queuing_time: time of control unit queuing
483  * @device_active_only_time: time of device active only
484  * @reserved: unused in basic measurement mode
485  *
486  * The measurement block as used by the hardware. The fields are described
487  * further in z/Architecture Principles of Operation, chapter 17.
488  *
489  * The cmb area made up from these blocks must be a contiguous array and may
490  * not be reallocated or freed.
491  * Only one cmb area can be present in the system.
492  */
493 struct cmb {
494 	u16 ssch_rsch_count;
495 	u16 sample_count;
496 	u32 device_connect_time;
497 	u32 function_pending_time;
498 	u32 device_disconnect_time;
499 	u32 control_unit_queuing_time;
500 	u32 device_active_only_time;
501 	u32 reserved[2];
502 };
503 
504 /*
505  * Insert a single device into the cmb_area list.
506  * Called with cmb_area.lock held from alloc_cmb.
507  */
508 static int alloc_cmb_single(struct ccw_device *cdev,
509 			    struct cmb_data *cmb_data)
510 {
511 	struct cmb *cmb;
512 	struct ccw_device_private *node;
513 	int ret;
514 
515 	spin_lock_irq(cdev->ccwlock);
516 	if (!list_empty(&cdev->private->cmb_list)) {
517 		ret = -EBUSY;
518 		goto out;
519 	}
520 
521 	/*
522 	 * Find first unused cmb in cmb_area.mem.
523 	 * This is a little tricky: cmb_area.list
524 	 * remains sorted by ->cmb->hw_data pointers.
525 	 */
526 	cmb = cmb_area.mem;
527 	list_for_each_entry(node, &cmb_area.list, cmb_list) {
528 		struct cmb_data *data;
529 		data = node->cmb;
530 		if ((struct cmb*)data->hw_block > cmb)
531 			break;
532 		cmb++;
533 	}
534 	if (cmb - cmb_area.mem >= cmb_area.num_channels) {
535 		ret = -ENOMEM;
536 		goto out;
537 	}
538 
539 	/* insert new cmb */
540 	list_add_tail(&cdev->private->cmb_list, &node->cmb_list);
541 	cmb_data->hw_block = cmb;
542 	cdev->private->cmb = cmb_data;
543 	ret = 0;
544 out:
545 	spin_unlock_irq(cdev->ccwlock);
546 	return ret;
547 }
548 
549 static int alloc_cmb(struct ccw_device *cdev)
550 {
551 	int ret;
552 	struct cmb *mem;
553 	ssize_t size;
554 	struct cmb_data *cmb_data;
555 
556 	/* Allocate private cmb_data. */
557 	cmb_data = kzalloc(sizeof(struct cmb_data), GFP_KERNEL);
558 	if (!cmb_data)
559 		return -ENOMEM;
560 
561 	cmb_data->last_block = kzalloc(sizeof(struct cmb), GFP_KERNEL);
562 	if (!cmb_data->last_block) {
563 		kfree(cmb_data);
564 		return -ENOMEM;
565 	}
566 	cmb_data->size = sizeof(struct cmb);
567 	spin_lock(&cmb_area.lock);
568 
569 	if (!cmb_area.mem) {
570 		/* there is no user yet, so we need a new area */
571 		size = sizeof(struct cmb) * cmb_area.num_channels;
572 		WARN_ON(!list_empty(&cmb_area.list));
573 
574 		spin_unlock(&cmb_area.lock);
575 		mem = (void*)__get_free_pages(GFP_KERNEL | GFP_DMA,
576 				 get_order(size));
577 		spin_lock(&cmb_area.lock);
578 
579 		if (cmb_area.mem) {
580 			/* ok, another thread was faster */
581 			free_pages((unsigned long)mem, get_order(size));
582 		} else if (!mem) {
583 			/* no luck */
584 			ret = -ENOMEM;
585 			goto out;
586 		} else {
587 			/* everything ok */
588 			memset(mem, 0, size);
589 			cmb_area.mem = mem;
590 			cmf_activate(cmb_area.mem, 1);
591 		}
592 	}
593 
594 	/* do the actual allocation */
595 	ret = alloc_cmb_single(cdev, cmb_data);
596 out:
597 	spin_unlock(&cmb_area.lock);
598 	if (ret) {
599 		kfree(cmb_data->last_block);
600 		kfree(cmb_data);
601 	}
602 	return ret;
603 }
604 
605 static void free_cmb(struct ccw_device *cdev)
606 {
607 	struct ccw_device_private *priv;
608 	struct cmb_data *cmb_data;
609 
610 	spin_lock(&cmb_area.lock);
611 	spin_lock_irq(cdev->ccwlock);
612 
613 	priv = cdev->private;
614 	cmb_data = priv->cmb;
615 	priv->cmb = NULL;
616 	if (cmb_data)
617 		kfree(cmb_data->last_block);
618 	kfree(cmb_data);
619 	list_del_init(&priv->cmb_list);
620 
621 	if (list_empty(&cmb_area.list)) {
622 		ssize_t size;
623 		size = sizeof(struct cmb) * cmb_area.num_channels;
624 		cmf_activate(NULL, 0);
625 		free_pages((unsigned long)cmb_area.mem, get_order(size));
626 		cmb_area.mem = NULL;
627 	}
628 	spin_unlock_irq(cdev->ccwlock);
629 	spin_unlock(&cmb_area.lock);
630 }
631 
632 static int set_cmb(struct ccw_device *cdev, u32 mme)
633 {
634 	u16 offset;
635 	struct cmb_data *cmb_data;
636 	unsigned long flags;
637 
638 	spin_lock_irqsave(cdev->ccwlock, flags);
639 	if (!cdev->private->cmb) {
640 		spin_unlock_irqrestore(cdev->ccwlock, flags);
641 		return -EINVAL;
642 	}
643 	cmb_data = cdev->private->cmb;
644 	offset = mme ? (struct cmb *)cmb_data->hw_block - cmb_area.mem : 0;
645 	spin_unlock_irqrestore(cdev->ccwlock, flags);
646 
647 	return set_schib_wait(cdev, mme, 0, offset);
648 }
649 
650 static u64 read_cmb(struct ccw_device *cdev, int index)
651 {
652 	struct cmb *cmb;
653 	u32 val;
654 	int ret;
655 	unsigned long flags;
656 
657 	ret = cmf_cmb_copy_wait(cdev);
658 	if (ret < 0)
659 		return 0;
660 
661 	spin_lock_irqsave(cdev->ccwlock, flags);
662 	if (!cdev->private->cmb) {
663 		ret = 0;
664 		goto out;
665 	}
666 	cmb = ((struct cmb_data *)cdev->private->cmb)->last_block;
667 
668 	switch (index) {
669 	case cmb_ssch_rsch_count:
670 		ret = cmb->ssch_rsch_count;
671 		goto out;
672 	case cmb_sample_count:
673 		ret = cmb->sample_count;
674 		goto out;
675 	case cmb_device_connect_time:
676 		val = cmb->device_connect_time;
677 		break;
678 	case cmb_function_pending_time:
679 		val = cmb->function_pending_time;
680 		break;
681 	case cmb_device_disconnect_time:
682 		val = cmb->device_disconnect_time;
683 		break;
684 	case cmb_control_unit_queuing_time:
685 		val = cmb->control_unit_queuing_time;
686 		break;
687 	case cmb_device_active_only_time:
688 		val = cmb->device_active_only_time;
689 		break;
690 	default:
691 		ret = 0;
692 		goto out;
693 	}
694 	ret = time_to_avg_nsec(val, cmb->sample_count);
695 out:
696 	spin_unlock_irqrestore(cdev->ccwlock, flags);
697 	return ret;
698 }
699 
700 static int readall_cmb(struct ccw_device *cdev, struct cmbdata *data)
701 {
702 	struct cmb *cmb;
703 	struct cmb_data *cmb_data;
704 	u64 time;
705 	unsigned long flags;
706 	int ret;
707 
708 	ret = cmf_cmb_copy_wait(cdev);
709 	if (ret < 0)
710 		return ret;
711 	spin_lock_irqsave(cdev->ccwlock, flags);
712 	cmb_data = cdev->private->cmb;
713 	if (!cmb_data) {
714 		ret = -ENODEV;
715 		goto out;
716 	}
717 	if (cmb_data->last_update == 0) {
718 		ret = -EAGAIN;
719 		goto out;
720 	}
721 	cmb = cmb_data->last_block;
722 	time = cmb_data->last_update - cdev->private->cmb_start_time;
723 
724 	memset(data, 0, sizeof(struct cmbdata));
725 
726 	/* we only know values before device_busy_time */
727 	data->size = offsetof(struct cmbdata, device_busy_time);
728 
729 	/* convert to nanoseconds */
730 	data->elapsed_time = (time * 1000) >> 12;
731 
732 	/* copy data to new structure */
733 	data->ssch_rsch_count = cmb->ssch_rsch_count;
734 	data->sample_count = cmb->sample_count;
735 
736 	/* time fields are converted to nanoseconds while copying */
737 	data->device_connect_time = time_to_nsec(cmb->device_connect_time);
738 	data->function_pending_time = time_to_nsec(cmb->function_pending_time);
739 	data->device_disconnect_time =
740 		time_to_nsec(cmb->device_disconnect_time);
741 	data->control_unit_queuing_time
742 		= time_to_nsec(cmb->control_unit_queuing_time);
743 	data->device_active_only_time
744 		= time_to_nsec(cmb->device_active_only_time);
745 	ret = 0;
746 out:
747 	spin_unlock_irqrestore(cdev->ccwlock, flags);
748 	return ret;
749 }
750 
751 static void reset_cmb(struct ccw_device *cdev)
752 {
753 	cmf_generic_reset(cdev);
754 }
755 
756 static struct attribute_group cmf_attr_group;
757 
758 static struct cmb_operations cmbops_basic = {
759 	.alloc	= alloc_cmb,
760 	.free	= free_cmb,
761 	.set	= set_cmb,
762 	.read	= read_cmb,
763 	.readall    = readall_cmb,
764 	.reset	    = reset_cmb,
765 	.attr_group = &cmf_attr_group,
766 };
767 
768 /* ******** extended cmb handling ********/
769 
770 /**
771  * struct cmbe - extended channel measurement block
772  * @ssch_rsch_count: number of ssch and rsch
773  * @sample_count: number of samples
774  * @device_connect_time: time of device connect
775  * @function_pending_time: time of function pending
776  * @device_disconnect_time: time of device disconnect
777  * @control_unit_queuing_time: time of control unit queuing
778  * @device_active_only_time: time of device active only
779  * @device_busy_time: time of device busy
780  * @initial_command_response_time: initial command response time
781  * @reserved: unused
782  *
783  * The measurement block as used by the hardware. May be in any 64 bit physical
784  * location.
785  * The fields are described further in z/Architecture Principles of Operation,
786  * third edition, chapter 17.
787  */
788 struct cmbe {
789 	u32 ssch_rsch_count;
790 	u32 sample_count;
791 	u32 device_connect_time;
792 	u32 function_pending_time;
793 	u32 device_disconnect_time;
794 	u32 control_unit_queuing_time;
795 	u32 device_active_only_time;
796 	u32 device_busy_time;
797 	u32 initial_command_response_time;
798 	u32 reserved[7];
799 } __packed __aligned(64);
800 
801 static struct kmem_cache *cmbe_cache;
802 
803 static int alloc_cmbe(struct ccw_device *cdev)
804 {
805 	struct cmb_data *cmb_data;
806 	struct cmbe *cmbe;
807 	int ret = -ENOMEM;
808 
809 	cmbe = kmem_cache_zalloc(cmbe_cache, GFP_KERNEL);
810 	if (!cmbe)
811 		return ret;
812 
813 	cmb_data = kzalloc(sizeof(*cmb_data), GFP_KERNEL);
814 	if (!cmb_data)
815 		goto out_free;
816 
817 	cmb_data->last_block = kzalloc(sizeof(struct cmbe), GFP_KERNEL);
818 	if (!cmb_data->last_block)
819 		goto out_free;
820 
821 	cmb_data->size = sizeof(*cmbe);
822 	cmb_data->hw_block = cmbe;
823 
824 	spin_lock(&cmb_area.lock);
825 	spin_lock_irq(cdev->ccwlock);
826 	if (cdev->private->cmb)
827 		goto out_unlock;
828 
829 	cdev->private->cmb = cmb_data;
830 
831 	/* activate global measurement if this is the first channel */
832 	if (list_empty(&cmb_area.list))
833 		cmf_activate(NULL, 1);
834 	list_add_tail(&cdev->private->cmb_list, &cmb_area.list);
835 
836 	spin_unlock_irq(cdev->ccwlock);
837 	spin_unlock(&cmb_area.lock);
838 	return 0;
839 
840 out_unlock:
841 	spin_unlock_irq(cdev->ccwlock);
842 	spin_unlock(&cmb_area.lock);
843 	ret = -EBUSY;
844 out_free:
845 	if (cmb_data)
846 		kfree(cmb_data->last_block);
847 	kfree(cmb_data);
848 	kmem_cache_free(cmbe_cache, cmbe);
849 
850 	return ret;
851 }
852 
853 static void free_cmbe(struct ccw_device *cdev)
854 {
855 	struct cmb_data *cmb_data;
856 
857 	spin_lock(&cmb_area.lock);
858 	spin_lock_irq(cdev->ccwlock);
859 	cmb_data = cdev->private->cmb;
860 	cdev->private->cmb = NULL;
861 	if (cmb_data) {
862 		kfree(cmb_data->last_block);
863 		kmem_cache_free(cmbe_cache, cmb_data->hw_block);
864 	}
865 	kfree(cmb_data);
866 
867 	/* deactivate global measurement if this is the last channel */
868 	list_del_init(&cdev->private->cmb_list);
869 	if (list_empty(&cmb_area.list))
870 		cmf_activate(NULL, 0);
871 	spin_unlock_irq(cdev->ccwlock);
872 	spin_unlock(&cmb_area.lock);
873 }
874 
875 static int set_cmbe(struct ccw_device *cdev, u32 mme)
876 {
877 	unsigned long mba;
878 	struct cmb_data *cmb_data;
879 	unsigned long flags;
880 
881 	spin_lock_irqsave(cdev->ccwlock, flags);
882 	if (!cdev->private->cmb) {
883 		spin_unlock_irqrestore(cdev->ccwlock, flags);
884 		return -EINVAL;
885 	}
886 	cmb_data = cdev->private->cmb;
887 	mba = mme ? (unsigned long) cmb_data->hw_block : 0;
888 	spin_unlock_irqrestore(cdev->ccwlock, flags);
889 
890 	return set_schib_wait(cdev, mme, 1, mba);
891 }
892 
893 
894 static u64 read_cmbe(struct ccw_device *cdev, int index)
895 {
896 	struct cmbe *cmb;
897 	struct cmb_data *cmb_data;
898 	u32 val;
899 	int ret;
900 	unsigned long flags;
901 
902 	ret = cmf_cmb_copy_wait(cdev);
903 	if (ret < 0)
904 		return 0;
905 
906 	spin_lock_irqsave(cdev->ccwlock, flags);
907 	cmb_data = cdev->private->cmb;
908 	if (!cmb_data) {
909 		ret = 0;
910 		goto out;
911 	}
912 	cmb = cmb_data->last_block;
913 
914 	switch (index) {
915 	case cmb_ssch_rsch_count:
916 		ret = cmb->ssch_rsch_count;
917 		goto out;
918 	case cmb_sample_count:
919 		ret = cmb->sample_count;
920 		goto out;
921 	case cmb_device_connect_time:
922 		val = cmb->device_connect_time;
923 		break;
924 	case cmb_function_pending_time:
925 		val = cmb->function_pending_time;
926 		break;
927 	case cmb_device_disconnect_time:
928 		val = cmb->device_disconnect_time;
929 		break;
930 	case cmb_control_unit_queuing_time:
931 		val = cmb->control_unit_queuing_time;
932 		break;
933 	case cmb_device_active_only_time:
934 		val = cmb->device_active_only_time;
935 		break;
936 	case cmb_device_busy_time:
937 		val = cmb->device_busy_time;
938 		break;
939 	case cmb_initial_command_response_time:
940 		val = cmb->initial_command_response_time;
941 		break;
942 	default:
943 		ret = 0;
944 		goto out;
945 	}
946 	ret = time_to_avg_nsec(val, cmb->sample_count);
947 out:
948 	spin_unlock_irqrestore(cdev->ccwlock, flags);
949 	return ret;
950 }
951 
952 static int readall_cmbe(struct ccw_device *cdev, struct cmbdata *data)
953 {
954 	struct cmbe *cmb;
955 	struct cmb_data *cmb_data;
956 	u64 time;
957 	unsigned long flags;
958 	int ret;
959 
960 	ret = cmf_cmb_copy_wait(cdev);
961 	if (ret < 0)
962 		return ret;
963 	spin_lock_irqsave(cdev->ccwlock, flags);
964 	cmb_data = cdev->private->cmb;
965 	if (!cmb_data) {
966 		ret = -ENODEV;
967 		goto out;
968 	}
969 	if (cmb_data->last_update == 0) {
970 		ret = -EAGAIN;
971 		goto out;
972 	}
973 	time = cmb_data->last_update - cdev->private->cmb_start_time;
974 
975 	memset (data, 0, sizeof(struct cmbdata));
976 
977 	/* we only know values before device_busy_time */
978 	data->size = offsetof(struct cmbdata, device_busy_time);
979 
980 	/* conver to nanoseconds */
981 	data->elapsed_time = (time * 1000) >> 12;
982 
983 	cmb = cmb_data->last_block;
984 	/* copy data to new structure */
985 	data->ssch_rsch_count = cmb->ssch_rsch_count;
986 	data->sample_count = cmb->sample_count;
987 
988 	/* time fields are converted to nanoseconds while copying */
989 	data->device_connect_time = time_to_nsec(cmb->device_connect_time);
990 	data->function_pending_time = time_to_nsec(cmb->function_pending_time);
991 	data->device_disconnect_time =
992 		time_to_nsec(cmb->device_disconnect_time);
993 	data->control_unit_queuing_time
994 		= time_to_nsec(cmb->control_unit_queuing_time);
995 	data->device_active_only_time
996 		= time_to_nsec(cmb->device_active_only_time);
997 	data->device_busy_time = time_to_nsec(cmb->device_busy_time);
998 	data->initial_command_response_time
999 		= time_to_nsec(cmb->initial_command_response_time);
1000 
1001 	ret = 0;
1002 out:
1003 	spin_unlock_irqrestore(cdev->ccwlock, flags);
1004 	return ret;
1005 }
1006 
1007 static void reset_cmbe(struct ccw_device *cdev)
1008 {
1009 	cmf_generic_reset(cdev);
1010 }
1011 
1012 static struct attribute_group cmf_attr_group_ext;
1013 
1014 static struct cmb_operations cmbops_extended = {
1015 	.alloc	    = alloc_cmbe,
1016 	.free	    = free_cmbe,
1017 	.set	    = set_cmbe,
1018 	.read	    = read_cmbe,
1019 	.readall    = readall_cmbe,
1020 	.reset	    = reset_cmbe,
1021 	.attr_group = &cmf_attr_group_ext,
1022 };
1023 
1024 static ssize_t cmb_show_attr(struct device *dev, char *buf, enum cmb_index idx)
1025 {
1026 	return sprintf(buf, "%lld\n",
1027 		(unsigned long long) cmf_read(to_ccwdev(dev), idx));
1028 }
1029 
1030 static ssize_t cmb_show_avg_sample_interval(struct device *dev,
1031 					    struct device_attribute *attr,
1032 					    char *buf)
1033 {
1034 	struct ccw_device *cdev;
1035 	long interval;
1036 	unsigned long count;
1037 	struct cmb_data *cmb_data;
1038 
1039 	cdev = to_ccwdev(dev);
1040 	count = cmf_read(cdev, cmb_sample_count);
1041 	spin_lock_irq(cdev->ccwlock);
1042 	cmb_data = cdev->private->cmb;
1043 	if (count) {
1044 		interval = cmb_data->last_update -
1045 			cdev->private->cmb_start_time;
1046 		interval = (interval * 1000) >> 12;
1047 		interval /= count;
1048 	} else
1049 		interval = -1;
1050 	spin_unlock_irq(cdev->ccwlock);
1051 	return sprintf(buf, "%ld\n", interval);
1052 }
1053 
1054 static ssize_t cmb_show_avg_utilization(struct device *dev,
1055 					struct device_attribute *attr,
1056 					char *buf)
1057 {
1058 	struct cmbdata data;
1059 	u64 utilization;
1060 	unsigned long t, u;
1061 	int ret;
1062 
1063 	ret = cmf_readall(to_ccwdev(dev), &data);
1064 	if (ret == -EAGAIN || ret == -ENODEV)
1065 		/* No data (yet/currently) available to use for calculation. */
1066 		return sprintf(buf, "n/a\n");
1067 	else if (ret)
1068 		return ret;
1069 
1070 	utilization = data.device_connect_time +
1071 		      data.function_pending_time +
1072 		      data.device_disconnect_time;
1073 
1074 	/* shift to avoid long long division */
1075 	while (-1ul < (data.elapsed_time | utilization)) {
1076 		utilization >>= 8;
1077 		data.elapsed_time >>= 8;
1078 	}
1079 
1080 	/* calculate value in 0.1 percent units */
1081 	t = (unsigned long) data.elapsed_time / 1000;
1082 	u = (unsigned long) utilization / t;
1083 
1084 	return sprintf(buf, "%02ld.%01ld%%\n", u/ 10, u - (u/ 10) * 10);
1085 }
1086 
1087 #define cmf_attr(name) \
1088 static ssize_t show_##name(struct device *dev, \
1089 			   struct device_attribute *attr, char *buf)	\
1090 { return cmb_show_attr((dev), buf, cmb_##name); } \
1091 static DEVICE_ATTR(name, 0444, show_##name, NULL);
1092 
1093 #define cmf_attr_avg(name) \
1094 static ssize_t show_avg_##name(struct device *dev, \
1095 			       struct device_attribute *attr, char *buf) \
1096 { return cmb_show_attr((dev), buf, cmb_##name); } \
1097 static DEVICE_ATTR(avg_##name, 0444, show_avg_##name, NULL);
1098 
1099 cmf_attr(ssch_rsch_count);
1100 cmf_attr(sample_count);
1101 cmf_attr_avg(device_connect_time);
1102 cmf_attr_avg(function_pending_time);
1103 cmf_attr_avg(device_disconnect_time);
1104 cmf_attr_avg(control_unit_queuing_time);
1105 cmf_attr_avg(device_active_only_time);
1106 cmf_attr_avg(device_busy_time);
1107 cmf_attr_avg(initial_command_response_time);
1108 
1109 static DEVICE_ATTR(avg_sample_interval, 0444, cmb_show_avg_sample_interval,
1110 		   NULL);
1111 static DEVICE_ATTR(avg_utilization, 0444, cmb_show_avg_utilization, NULL);
1112 
1113 static struct attribute *cmf_attributes[] = {
1114 	&dev_attr_avg_sample_interval.attr,
1115 	&dev_attr_avg_utilization.attr,
1116 	&dev_attr_ssch_rsch_count.attr,
1117 	&dev_attr_sample_count.attr,
1118 	&dev_attr_avg_device_connect_time.attr,
1119 	&dev_attr_avg_function_pending_time.attr,
1120 	&dev_attr_avg_device_disconnect_time.attr,
1121 	&dev_attr_avg_control_unit_queuing_time.attr,
1122 	&dev_attr_avg_device_active_only_time.attr,
1123 	NULL,
1124 };
1125 
1126 static struct attribute_group cmf_attr_group = {
1127 	.name  = "cmf",
1128 	.attrs = cmf_attributes,
1129 };
1130 
1131 static struct attribute *cmf_attributes_ext[] = {
1132 	&dev_attr_avg_sample_interval.attr,
1133 	&dev_attr_avg_utilization.attr,
1134 	&dev_attr_ssch_rsch_count.attr,
1135 	&dev_attr_sample_count.attr,
1136 	&dev_attr_avg_device_connect_time.attr,
1137 	&dev_attr_avg_function_pending_time.attr,
1138 	&dev_attr_avg_device_disconnect_time.attr,
1139 	&dev_attr_avg_control_unit_queuing_time.attr,
1140 	&dev_attr_avg_device_active_only_time.attr,
1141 	&dev_attr_avg_device_busy_time.attr,
1142 	&dev_attr_avg_initial_command_response_time.attr,
1143 	NULL,
1144 };
1145 
1146 static struct attribute_group cmf_attr_group_ext = {
1147 	.name  = "cmf",
1148 	.attrs = cmf_attributes_ext,
1149 };
1150 
1151 static ssize_t cmb_enable_show(struct device *dev,
1152 			       struct device_attribute *attr,
1153 			       char *buf)
1154 {
1155 	struct ccw_device *cdev = to_ccwdev(dev);
1156 	int enabled;
1157 
1158 	spin_lock_irq(cdev->ccwlock);
1159 	enabled = !!cdev->private->cmb;
1160 	spin_unlock_irq(cdev->ccwlock);
1161 
1162 	return sprintf(buf, "%d\n", enabled);
1163 }
1164 
1165 static ssize_t cmb_enable_store(struct device *dev,
1166 				struct device_attribute *attr, const char *buf,
1167 				size_t c)
1168 {
1169 	struct ccw_device *cdev = to_ccwdev(dev);
1170 	unsigned long val;
1171 	int ret;
1172 
1173 	ret = kstrtoul(buf, 16, &val);
1174 	if (ret)
1175 		return ret;
1176 
1177 	switch (val) {
1178 	case 0:
1179 		ret = disable_cmf(cdev);
1180 		break;
1181 	case 1:
1182 		ret = enable_cmf(cdev);
1183 		break;
1184 	default:
1185 		ret = -EINVAL;
1186 	}
1187 
1188 	return ret ? ret : c;
1189 }
1190 DEVICE_ATTR_RW(cmb_enable);
1191 
1192 int ccw_set_cmf(struct ccw_device *cdev, int enable)
1193 {
1194 	return cmbops->set(cdev, enable ? 2 : 0);
1195 }
1196 
1197 /**
1198  * enable_cmf() - switch on the channel measurement for a specific device
1199  *  @cdev:	The ccw device to be enabled
1200  *
1201  *  Returns %0 for success or a negative error value.
1202  *
1203  *  Context:
1204  *    non-atomic
1205  */
1206 int enable_cmf(struct ccw_device *cdev)
1207 {
1208 	int ret;
1209 
1210 	device_lock(&cdev->dev);
1211 	get_device(&cdev->dev);
1212 	ret = cmbops->alloc(cdev);
1213 	if (ret)
1214 		goto out;
1215 	cmbops->reset(cdev);
1216 	ret = sysfs_create_group(&cdev->dev.kobj, cmbops->attr_group);
1217 	if (ret) {
1218 		cmbops->free(cdev);
1219 		goto out;
1220 	}
1221 	ret = cmbops->set(cdev, 2);
1222 	if (ret) {
1223 		sysfs_remove_group(&cdev->dev.kobj, cmbops->attr_group);
1224 		cmbops->free(cdev);
1225 	}
1226 out:
1227 	if (ret)
1228 		put_device(&cdev->dev);
1229 
1230 	device_unlock(&cdev->dev);
1231 	return ret;
1232 }
1233 
1234 /**
1235  * __disable_cmf() - switch off the channel measurement for a specific device
1236  *  @cdev:	The ccw device to be disabled
1237  *
1238  *  Returns %0 for success or a negative error value.
1239  *
1240  *  Context:
1241  *    non-atomic, device_lock() held.
1242  */
1243 int __disable_cmf(struct ccw_device *cdev)
1244 {
1245 	int ret;
1246 
1247 	ret = cmbops->set(cdev, 0);
1248 	if (ret)
1249 		return ret;
1250 
1251 	sysfs_remove_group(&cdev->dev.kobj, cmbops->attr_group);
1252 	cmbops->free(cdev);
1253 	put_device(&cdev->dev);
1254 
1255 	return ret;
1256 }
1257 
1258 /**
1259  * disable_cmf() - switch off the channel measurement for a specific device
1260  *  @cdev:	The ccw device to be disabled
1261  *
1262  *  Returns %0 for success or a negative error value.
1263  *
1264  *  Context:
1265  *    non-atomic
1266  */
1267 int disable_cmf(struct ccw_device *cdev)
1268 {
1269 	int ret;
1270 
1271 	device_lock(&cdev->dev);
1272 	ret = __disable_cmf(cdev);
1273 	device_unlock(&cdev->dev);
1274 
1275 	return ret;
1276 }
1277 
1278 /**
1279  * cmf_read() - read one value from the current channel measurement block
1280  * @cdev:	the channel to be read
1281  * @index:	the index of the value to be read
1282  *
1283  * Returns the value read or %0 if the value cannot be read.
1284  *
1285  *  Context:
1286  *    any
1287  */
1288 u64 cmf_read(struct ccw_device *cdev, int index)
1289 {
1290 	return cmbops->read(cdev, index);
1291 }
1292 
1293 /**
1294  * cmf_readall() - read the current channel measurement block
1295  * @cdev:	the channel to be read
1296  * @data:	a pointer to a data block that will be filled
1297  *
1298  * Returns %0 on success, a negative error value otherwise.
1299  *
1300  *  Context:
1301  *    any
1302  */
1303 int cmf_readall(struct ccw_device *cdev, struct cmbdata *data)
1304 {
1305 	return cmbops->readall(cdev, data);
1306 }
1307 
1308 /* Reenable cmf when a disconnected device becomes available again. */
1309 int cmf_reenable(struct ccw_device *cdev)
1310 {
1311 	cmbops->reset(cdev);
1312 	return cmbops->set(cdev, 2);
1313 }
1314 
1315 /**
1316  * cmf_reactivate() - reactivate measurement block updates
1317  *
1318  * Use this during resume from hibernate.
1319  */
1320 void cmf_reactivate(void)
1321 {
1322 	spin_lock(&cmb_area.lock);
1323 	if (!list_empty(&cmb_area.list))
1324 		cmf_activate(cmb_area.mem, 1);
1325 	spin_unlock(&cmb_area.lock);
1326 }
1327 
1328 static int __init init_cmbe(void)
1329 {
1330 	cmbe_cache = kmem_cache_create("cmbe_cache", sizeof(struct cmbe),
1331 				       __alignof__(struct cmbe), 0, NULL);
1332 
1333 	return cmbe_cache ? 0 : -ENOMEM;
1334 }
1335 
1336 static int __init init_cmf(void)
1337 {
1338 	char *format_string;
1339 	char *detect_string;
1340 	int ret;
1341 
1342 	/*
1343 	 * If the user did not give a parameter, see if we are running on a
1344 	 * machine supporting extended measurement blocks, otherwise fall back
1345 	 * to basic mode.
1346 	 */
1347 	if (format == CMF_AUTODETECT) {
1348 		if (!css_general_characteristics.ext_mb) {
1349 			format = CMF_BASIC;
1350 		} else {
1351 			format = CMF_EXTENDED;
1352 		}
1353 		detect_string = "autodetected";
1354 	} else {
1355 		detect_string = "parameter";
1356 	}
1357 
1358 	switch (format) {
1359 	case CMF_BASIC:
1360 		format_string = "basic";
1361 		cmbops = &cmbops_basic;
1362 		break;
1363 	case CMF_EXTENDED:
1364 		format_string = "extended";
1365 		cmbops = &cmbops_extended;
1366 
1367 		ret = init_cmbe();
1368 		if (ret)
1369 			return ret;
1370 		break;
1371 	default:
1372 		return -EINVAL;
1373 	}
1374 	pr_info("Channel measurement facility initialized using format "
1375 		"%s (mode %s)\n", format_string, detect_string);
1376 	return 0;
1377 }
1378 module_init(init_cmf);
1379 
1380 
1381 MODULE_AUTHOR("Arnd Bergmann <arndb@de.ibm.com>");
1382 MODULE_LICENSE("GPL");
1383 MODULE_DESCRIPTION("channel measurement facility base driver\n"
1384 		   "Copyright IBM Corp. 2003\n");
1385 
1386 EXPORT_SYMBOL_GPL(enable_cmf);
1387 EXPORT_SYMBOL_GPL(disable_cmf);
1388 EXPORT_SYMBOL_GPL(cmf_read);
1389 EXPORT_SYMBOL_GPL(cmf_readall);
1390