xref: /openbmc/linux/drivers/s390/block/dasd.c (revision a4d26c6a)
1 /*
2  * File...........: linux/drivers/s390/block/dasd.c
3  * Author(s)......: Holger Smolinski <Holger.Smolinski@de.ibm.com>
4  *		    Horst Hummel <Horst.Hummel@de.ibm.com>
5  *		    Carsten Otte <Cotte@de.ibm.com>
6  *		    Martin Schwidefsky <schwidefsky@de.ibm.com>
7  * Bugreports.to..: <Linux390@de.ibm.com>
8  * Copyright IBM Corp. 1999, 2009
9  */
10 
11 #define KMSG_COMPONENT "dasd"
12 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
13 
14 #include <linux/kernel_stat.h>
15 #include <linux/kmod.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/ctype.h>
19 #include <linux/major.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/hdreg.h>
23 #include <linux/async.h>
24 #include <linux/mutex.h>
25 
26 #include <asm/ccwdev.h>
27 #include <asm/ebcdic.h>
28 #include <asm/idals.h>
29 #include <asm/itcw.h>
30 #include <asm/diag.h>
31 
32 /* This is ugly... */
33 #define PRINTK_HEADER "dasd:"
34 
35 #include "dasd_int.h"
36 /*
37  * SECTION: Constant definitions to be used within this file
38  */
39 #define DASD_CHANQ_MAX_SIZE 4
40 
41 #define DASD_SLEEPON_START_TAG	(void *) 1
42 #define DASD_SLEEPON_END_TAG	(void *) 2
43 
44 /*
45  * SECTION: exported variables of dasd.c
46  */
47 debug_info_t *dasd_debug_area;
48 struct dasd_discipline *dasd_diag_discipline_pointer;
49 void dasd_int_handler(struct ccw_device *, unsigned long, struct irb *);
50 
51 MODULE_AUTHOR("Holger Smolinski <Holger.Smolinski@de.ibm.com>");
52 MODULE_DESCRIPTION("Linux on S/390 DASD device driver,"
53 		   " Copyright 2000 IBM Corporation");
54 MODULE_SUPPORTED_DEVICE("dasd");
55 MODULE_LICENSE("GPL");
56 
57 /*
58  * SECTION: prototypes for static functions of dasd.c
59  */
60 static int  dasd_alloc_queue(struct dasd_block *);
61 static void dasd_setup_queue(struct dasd_block *);
62 static void dasd_free_queue(struct dasd_block *);
63 static void dasd_flush_request_queue(struct dasd_block *);
64 static int dasd_flush_block_queue(struct dasd_block *);
65 static void dasd_device_tasklet(struct dasd_device *);
66 static void dasd_block_tasklet(struct dasd_block *);
67 static void do_kick_device(struct work_struct *);
68 static void do_restore_device(struct work_struct *);
69 static void do_reload_device(struct work_struct *);
70 static void dasd_return_cqr_cb(struct dasd_ccw_req *, void *);
71 static void dasd_device_timeout(unsigned long);
72 static void dasd_block_timeout(unsigned long);
73 static void __dasd_process_erp(struct dasd_device *, struct dasd_ccw_req *);
74 
75 /*
76  * SECTION: Operations on the device structure.
77  */
78 static wait_queue_head_t dasd_init_waitq;
79 static wait_queue_head_t dasd_flush_wq;
80 static wait_queue_head_t generic_waitq;
81 
82 /*
83  * Allocate memory for a new device structure.
84  */
85 struct dasd_device *dasd_alloc_device(void)
86 {
87 	struct dasd_device *device;
88 
89 	device = kzalloc(sizeof(struct dasd_device), GFP_ATOMIC);
90 	if (!device)
91 		return ERR_PTR(-ENOMEM);
92 
93 	/* Get two pages for normal block device operations. */
94 	device->ccw_mem = (void *) __get_free_pages(GFP_ATOMIC | GFP_DMA, 1);
95 	if (!device->ccw_mem) {
96 		kfree(device);
97 		return ERR_PTR(-ENOMEM);
98 	}
99 	/* Get one page for error recovery. */
100 	device->erp_mem = (void *) get_zeroed_page(GFP_ATOMIC | GFP_DMA);
101 	if (!device->erp_mem) {
102 		free_pages((unsigned long) device->ccw_mem, 1);
103 		kfree(device);
104 		return ERR_PTR(-ENOMEM);
105 	}
106 
107 	dasd_init_chunklist(&device->ccw_chunks, device->ccw_mem, PAGE_SIZE*2);
108 	dasd_init_chunklist(&device->erp_chunks, device->erp_mem, PAGE_SIZE);
109 	spin_lock_init(&device->mem_lock);
110 	atomic_set(&device->tasklet_scheduled, 0);
111 	tasklet_init(&device->tasklet,
112 		     (void (*)(unsigned long)) dasd_device_tasklet,
113 		     (unsigned long) device);
114 	INIT_LIST_HEAD(&device->ccw_queue);
115 	init_timer(&device->timer);
116 	device->timer.function = dasd_device_timeout;
117 	device->timer.data = (unsigned long) device;
118 	INIT_WORK(&device->kick_work, do_kick_device);
119 	INIT_WORK(&device->restore_device, do_restore_device);
120 	INIT_WORK(&device->reload_device, do_reload_device);
121 	device->state = DASD_STATE_NEW;
122 	device->target = DASD_STATE_NEW;
123 	mutex_init(&device->state_mutex);
124 
125 	return device;
126 }
127 
128 /*
129  * Free memory of a device structure.
130  */
131 void dasd_free_device(struct dasd_device *device)
132 {
133 	kfree(device->private);
134 	free_page((unsigned long) device->erp_mem);
135 	free_pages((unsigned long) device->ccw_mem, 1);
136 	kfree(device);
137 }
138 
139 /*
140  * Allocate memory for a new device structure.
141  */
142 struct dasd_block *dasd_alloc_block(void)
143 {
144 	struct dasd_block *block;
145 
146 	block = kzalloc(sizeof(*block), GFP_ATOMIC);
147 	if (!block)
148 		return ERR_PTR(-ENOMEM);
149 	/* open_count = 0 means device online but not in use */
150 	atomic_set(&block->open_count, -1);
151 
152 	spin_lock_init(&block->request_queue_lock);
153 	atomic_set(&block->tasklet_scheduled, 0);
154 	tasklet_init(&block->tasklet,
155 		     (void (*)(unsigned long)) dasd_block_tasklet,
156 		     (unsigned long) block);
157 	INIT_LIST_HEAD(&block->ccw_queue);
158 	spin_lock_init(&block->queue_lock);
159 	init_timer(&block->timer);
160 	block->timer.function = dasd_block_timeout;
161 	block->timer.data = (unsigned long) block;
162 
163 	return block;
164 }
165 
166 /*
167  * Free memory of a device structure.
168  */
169 void dasd_free_block(struct dasd_block *block)
170 {
171 	kfree(block);
172 }
173 
174 /*
175  * Make a new device known to the system.
176  */
177 static int dasd_state_new_to_known(struct dasd_device *device)
178 {
179 	int rc;
180 
181 	/*
182 	 * As long as the device is not in state DASD_STATE_NEW we want to
183 	 * keep the reference count > 0.
184 	 */
185 	dasd_get_device(device);
186 
187 	if (device->block) {
188 		rc = dasd_alloc_queue(device->block);
189 		if (rc) {
190 			dasd_put_device(device);
191 			return rc;
192 		}
193 	}
194 	device->state = DASD_STATE_KNOWN;
195 	return 0;
196 }
197 
198 /*
199  * Let the system forget about a device.
200  */
201 static int dasd_state_known_to_new(struct dasd_device *device)
202 {
203 	/* Disable extended error reporting for this device. */
204 	dasd_eer_disable(device);
205 	/* Forget the discipline information. */
206 	if (device->discipline) {
207 		if (device->discipline->uncheck_device)
208 			device->discipline->uncheck_device(device);
209 		module_put(device->discipline->owner);
210 	}
211 	device->discipline = NULL;
212 	if (device->base_discipline)
213 		module_put(device->base_discipline->owner);
214 	device->base_discipline = NULL;
215 	device->state = DASD_STATE_NEW;
216 
217 	if (device->block)
218 		dasd_free_queue(device->block);
219 
220 	/* Give up reference we took in dasd_state_new_to_known. */
221 	dasd_put_device(device);
222 	return 0;
223 }
224 
225 /*
226  * Request the irq line for the device.
227  */
228 static int dasd_state_known_to_basic(struct dasd_device *device)
229 {
230 	int rc;
231 
232 	/* Allocate and register gendisk structure. */
233 	if (device->block) {
234 		rc = dasd_gendisk_alloc(device->block);
235 		if (rc)
236 			return rc;
237 	}
238 	/* register 'device' debug area, used for all DBF_DEV_XXX calls */
239 	device->debug_area = debug_register(dev_name(&device->cdev->dev), 4, 1,
240 					    8 * sizeof(long));
241 	debug_register_view(device->debug_area, &debug_sprintf_view);
242 	debug_set_level(device->debug_area, DBF_WARNING);
243 	DBF_DEV_EVENT(DBF_EMERG, device, "%s", "debug area created");
244 
245 	device->state = DASD_STATE_BASIC;
246 	return 0;
247 }
248 
249 /*
250  * Release the irq line for the device. Terminate any running i/o.
251  */
252 static int dasd_state_basic_to_known(struct dasd_device *device)
253 {
254 	int rc;
255 	if (device->block) {
256 		dasd_gendisk_free(device->block);
257 		dasd_block_clear_timer(device->block);
258 	}
259 	rc = dasd_flush_device_queue(device);
260 	if (rc)
261 		return rc;
262 	dasd_device_clear_timer(device);
263 
264 	DBF_DEV_EVENT(DBF_EMERG, device, "%p debug area deleted", device);
265 	if (device->debug_area != NULL) {
266 		debug_unregister(device->debug_area);
267 		device->debug_area = NULL;
268 	}
269 	device->state = DASD_STATE_KNOWN;
270 	return 0;
271 }
272 
273 /*
274  * Do the initial analysis. The do_analysis function may return
275  * -EAGAIN in which case the device keeps the state DASD_STATE_BASIC
276  * until the discipline decides to continue the startup sequence
277  * by calling the function dasd_change_state. The eckd disciplines
278  * uses this to start a ccw that detects the format. The completion
279  * interrupt for this detection ccw uses the kernel event daemon to
280  * trigger the call to dasd_change_state. All this is done in the
281  * discipline code, see dasd_eckd.c.
282  * After the analysis ccw is done (do_analysis returned 0) the block
283  * device is setup.
284  * In case the analysis returns an error, the device setup is stopped
285  * (a fake disk was already added to allow formatting).
286  */
287 static int dasd_state_basic_to_ready(struct dasd_device *device)
288 {
289 	int rc;
290 	struct dasd_block *block;
291 
292 	rc = 0;
293 	block = device->block;
294 	/* make disk known with correct capacity */
295 	if (block) {
296 		if (block->base->discipline->do_analysis != NULL)
297 			rc = block->base->discipline->do_analysis(block);
298 		if (rc) {
299 			if (rc != -EAGAIN)
300 				device->state = DASD_STATE_UNFMT;
301 			return rc;
302 		}
303 		dasd_setup_queue(block);
304 		set_capacity(block->gdp,
305 			     block->blocks << block->s2b_shift);
306 		device->state = DASD_STATE_READY;
307 		rc = dasd_scan_partitions(block);
308 		if (rc)
309 			device->state = DASD_STATE_BASIC;
310 	} else {
311 		device->state = DASD_STATE_READY;
312 	}
313 	return rc;
314 }
315 
316 /*
317  * Remove device from block device layer. Destroy dirty buffers.
318  * Forget format information. Check if the target level is basic
319  * and if it is create fake disk for formatting.
320  */
321 static int dasd_state_ready_to_basic(struct dasd_device *device)
322 {
323 	int rc;
324 
325 	device->state = DASD_STATE_BASIC;
326 	if (device->block) {
327 		struct dasd_block *block = device->block;
328 		rc = dasd_flush_block_queue(block);
329 		if (rc) {
330 			device->state = DASD_STATE_READY;
331 			return rc;
332 		}
333 		dasd_flush_request_queue(block);
334 		dasd_destroy_partitions(block);
335 		block->blocks = 0;
336 		block->bp_block = 0;
337 		block->s2b_shift = 0;
338 	}
339 	return 0;
340 }
341 
342 /*
343  * Back to basic.
344  */
345 static int dasd_state_unfmt_to_basic(struct dasd_device *device)
346 {
347 	device->state = DASD_STATE_BASIC;
348 	return 0;
349 }
350 
351 /*
352  * Make the device online and schedule the bottom half to start
353  * the requeueing of requests from the linux request queue to the
354  * ccw queue.
355  */
356 static int
357 dasd_state_ready_to_online(struct dasd_device * device)
358 {
359 	int rc;
360 	struct gendisk *disk;
361 	struct disk_part_iter piter;
362 	struct hd_struct *part;
363 
364 	if (device->discipline->ready_to_online) {
365 		rc = device->discipline->ready_to_online(device);
366 		if (rc)
367 			return rc;
368 	}
369 	device->state = DASD_STATE_ONLINE;
370 	if (device->block) {
371 		dasd_schedule_block_bh(device->block);
372 		disk = device->block->bdev->bd_disk;
373 		disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0);
374 		while ((part = disk_part_iter_next(&piter)))
375 			kobject_uevent(&part_to_dev(part)->kobj, KOBJ_CHANGE);
376 		disk_part_iter_exit(&piter);
377 	}
378 	return 0;
379 }
380 
381 /*
382  * Stop the requeueing of requests again.
383  */
384 static int dasd_state_online_to_ready(struct dasd_device *device)
385 {
386 	int rc;
387 	struct gendisk *disk;
388 	struct disk_part_iter piter;
389 	struct hd_struct *part;
390 
391 	if (device->discipline->online_to_ready) {
392 		rc = device->discipline->online_to_ready(device);
393 		if (rc)
394 			return rc;
395 	}
396 	device->state = DASD_STATE_READY;
397 	if (device->block) {
398 		disk = device->block->bdev->bd_disk;
399 		disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0);
400 		while ((part = disk_part_iter_next(&piter)))
401 			kobject_uevent(&part_to_dev(part)->kobj, KOBJ_CHANGE);
402 		disk_part_iter_exit(&piter);
403 	}
404 	return 0;
405 }
406 
407 /*
408  * Device startup state changes.
409  */
410 static int dasd_increase_state(struct dasd_device *device)
411 {
412 	int rc;
413 
414 	rc = 0;
415 	if (device->state == DASD_STATE_NEW &&
416 	    device->target >= DASD_STATE_KNOWN)
417 		rc = dasd_state_new_to_known(device);
418 
419 	if (!rc &&
420 	    device->state == DASD_STATE_KNOWN &&
421 	    device->target >= DASD_STATE_BASIC)
422 		rc = dasd_state_known_to_basic(device);
423 
424 	if (!rc &&
425 	    device->state == DASD_STATE_BASIC &&
426 	    device->target >= DASD_STATE_READY)
427 		rc = dasd_state_basic_to_ready(device);
428 
429 	if (!rc &&
430 	    device->state == DASD_STATE_UNFMT &&
431 	    device->target > DASD_STATE_UNFMT)
432 		rc = -EPERM;
433 
434 	if (!rc &&
435 	    device->state == DASD_STATE_READY &&
436 	    device->target >= DASD_STATE_ONLINE)
437 		rc = dasd_state_ready_to_online(device);
438 
439 	return rc;
440 }
441 
442 /*
443  * Device shutdown state changes.
444  */
445 static int dasd_decrease_state(struct dasd_device *device)
446 {
447 	int rc;
448 
449 	rc = 0;
450 	if (device->state == DASD_STATE_ONLINE &&
451 	    device->target <= DASD_STATE_READY)
452 		rc = dasd_state_online_to_ready(device);
453 
454 	if (!rc &&
455 	    device->state == DASD_STATE_READY &&
456 	    device->target <= DASD_STATE_BASIC)
457 		rc = dasd_state_ready_to_basic(device);
458 
459 	if (!rc &&
460 	    device->state == DASD_STATE_UNFMT &&
461 	    device->target <= DASD_STATE_BASIC)
462 		rc = dasd_state_unfmt_to_basic(device);
463 
464 	if (!rc &&
465 	    device->state == DASD_STATE_BASIC &&
466 	    device->target <= DASD_STATE_KNOWN)
467 		rc = dasd_state_basic_to_known(device);
468 
469 	if (!rc &&
470 	    device->state == DASD_STATE_KNOWN &&
471 	    device->target <= DASD_STATE_NEW)
472 		rc = dasd_state_known_to_new(device);
473 
474 	return rc;
475 }
476 
477 /*
478  * This is the main startup/shutdown routine.
479  */
480 static void dasd_change_state(struct dasd_device *device)
481 {
482 	int rc;
483 
484 	if (device->state == device->target)
485 		/* Already where we want to go today... */
486 		return;
487 	if (device->state < device->target)
488 		rc = dasd_increase_state(device);
489 	else
490 		rc = dasd_decrease_state(device);
491 	if (rc == -EAGAIN)
492 		return;
493 	if (rc)
494 		device->target = device->state;
495 
496 	if (device->state == device->target)
497 		wake_up(&dasd_init_waitq);
498 
499 	/* let user-space know that the device status changed */
500 	kobject_uevent(&device->cdev->dev.kobj, KOBJ_CHANGE);
501 }
502 
503 /*
504  * Kick starter for devices that did not complete the startup/shutdown
505  * procedure or were sleeping because of a pending state.
506  * dasd_kick_device will schedule a call do do_kick_device to the kernel
507  * event daemon.
508  */
509 static void do_kick_device(struct work_struct *work)
510 {
511 	struct dasd_device *device = container_of(work, struct dasd_device, kick_work);
512 	mutex_lock(&device->state_mutex);
513 	dasd_change_state(device);
514 	mutex_unlock(&device->state_mutex);
515 	dasd_schedule_device_bh(device);
516 	dasd_put_device(device);
517 }
518 
519 void dasd_kick_device(struct dasd_device *device)
520 {
521 	dasd_get_device(device);
522 	/* queue call to dasd_kick_device to the kernel event daemon. */
523 	schedule_work(&device->kick_work);
524 }
525 
526 /*
527  * dasd_reload_device will schedule a call do do_reload_device to the kernel
528  * event daemon.
529  */
530 static void do_reload_device(struct work_struct *work)
531 {
532 	struct dasd_device *device = container_of(work, struct dasd_device,
533 						  reload_device);
534 	device->discipline->reload(device);
535 	dasd_put_device(device);
536 }
537 
538 void dasd_reload_device(struct dasd_device *device)
539 {
540 	dasd_get_device(device);
541 	/* queue call to dasd_reload_device to the kernel event daemon. */
542 	schedule_work(&device->reload_device);
543 }
544 EXPORT_SYMBOL(dasd_reload_device);
545 
546 /*
547  * dasd_restore_device will schedule a call do do_restore_device to the kernel
548  * event daemon.
549  */
550 static void do_restore_device(struct work_struct *work)
551 {
552 	struct dasd_device *device = container_of(work, struct dasd_device,
553 						  restore_device);
554 	device->cdev->drv->restore(device->cdev);
555 	dasd_put_device(device);
556 }
557 
558 void dasd_restore_device(struct dasd_device *device)
559 {
560 	dasd_get_device(device);
561 	/* queue call to dasd_restore_device to the kernel event daemon. */
562 	schedule_work(&device->restore_device);
563 }
564 
565 /*
566  * Set the target state for a device and starts the state change.
567  */
568 void dasd_set_target_state(struct dasd_device *device, int target)
569 {
570 	dasd_get_device(device);
571 	mutex_lock(&device->state_mutex);
572 	/* If we are in probeonly mode stop at DASD_STATE_READY. */
573 	if (dasd_probeonly && target > DASD_STATE_READY)
574 		target = DASD_STATE_READY;
575 	if (device->target != target) {
576 		if (device->state == target)
577 			wake_up(&dasd_init_waitq);
578 		device->target = target;
579 	}
580 	if (device->state != device->target)
581 		dasd_change_state(device);
582 	mutex_unlock(&device->state_mutex);
583 	dasd_put_device(device);
584 }
585 
586 /*
587  * Enable devices with device numbers in [from..to].
588  */
589 static inline int _wait_for_device(struct dasd_device *device)
590 {
591 	return (device->state == device->target);
592 }
593 
594 void dasd_enable_device(struct dasd_device *device)
595 {
596 	dasd_set_target_state(device, DASD_STATE_ONLINE);
597 	if (device->state <= DASD_STATE_KNOWN)
598 		/* No discipline for device found. */
599 		dasd_set_target_state(device, DASD_STATE_NEW);
600 	/* Now wait for the devices to come up. */
601 	wait_event(dasd_init_waitq, _wait_for_device(device));
602 }
603 
604 /*
605  * SECTION: device operation (interrupt handler, start i/o, term i/o ...)
606  */
607 #ifdef CONFIG_DASD_PROFILE
608 
609 struct dasd_profile_info_t dasd_global_profile;
610 unsigned int dasd_profile_level = DASD_PROFILE_OFF;
611 
612 /*
613  * Increments counter in global and local profiling structures.
614  */
615 #define dasd_profile_counter(value, counter, block) \
616 { \
617 	int index; \
618 	for (index = 0; index < 31 && value >> (2+index); index++); \
619 	dasd_global_profile.counter[index]++; \
620 	block->profile.counter[index]++; \
621 }
622 
623 /*
624  * Add profiling information for cqr before execution.
625  */
626 static void dasd_profile_start(struct dasd_block *block,
627 			       struct dasd_ccw_req *cqr,
628 			       struct request *req)
629 {
630 	struct list_head *l;
631 	unsigned int counter;
632 
633 	if (dasd_profile_level != DASD_PROFILE_ON)
634 		return;
635 
636 	/* count the length of the chanq for statistics */
637 	counter = 0;
638 	list_for_each(l, &block->ccw_queue)
639 		if (++counter >= 31)
640 			break;
641 	dasd_global_profile.dasd_io_nr_req[counter]++;
642 	block->profile.dasd_io_nr_req[counter]++;
643 }
644 
645 /*
646  * Add profiling information for cqr after execution.
647  */
648 static void dasd_profile_end(struct dasd_block *block,
649 			     struct dasd_ccw_req *cqr,
650 			     struct request *req)
651 {
652 	long strtime, irqtime, endtime, tottime;	/* in microseconds */
653 	long tottimeps, sectors;
654 
655 	if (dasd_profile_level != DASD_PROFILE_ON)
656 		return;
657 
658 	sectors = blk_rq_sectors(req);
659 	if (!cqr->buildclk || !cqr->startclk ||
660 	    !cqr->stopclk || !cqr->endclk ||
661 	    !sectors)
662 		return;
663 
664 	strtime = ((cqr->startclk - cqr->buildclk) >> 12);
665 	irqtime = ((cqr->stopclk - cqr->startclk) >> 12);
666 	endtime = ((cqr->endclk - cqr->stopclk) >> 12);
667 	tottime = ((cqr->endclk - cqr->buildclk) >> 12);
668 	tottimeps = tottime / sectors;
669 
670 	if (!dasd_global_profile.dasd_io_reqs)
671 		memset(&dasd_global_profile, 0,
672 		       sizeof(struct dasd_profile_info_t));
673 	dasd_global_profile.dasd_io_reqs++;
674 	dasd_global_profile.dasd_io_sects += sectors;
675 
676 	if (!block->profile.dasd_io_reqs)
677 		memset(&block->profile, 0,
678 		       sizeof(struct dasd_profile_info_t));
679 	block->profile.dasd_io_reqs++;
680 	block->profile.dasd_io_sects += sectors;
681 
682 	dasd_profile_counter(sectors, dasd_io_secs, block);
683 	dasd_profile_counter(tottime, dasd_io_times, block);
684 	dasd_profile_counter(tottimeps, dasd_io_timps, block);
685 	dasd_profile_counter(strtime, dasd_io_time1, block);
686 	dasd_profile_counter(irqtime, dasd_io_time2, block);
687 	dasd_profile_counter(irqtime / sectors, dasd_io_time2ps, block);
688 	dasd_profile_counter(endtime, dasd_io_time3, block);
689 }
690 #else
691 #define dasd_profile_start(block, cqr, req) do {} while (0)
692 #define dasd_profile_end(block, cqr, req) do {} while (0)
693 #endif				/* CONFIG_DASD_PROFILE */
694 
695 /*
696  * Allocate memory for a channel program with 'cplength' channel
697  * command words and 'datasize' additional space. There are two
698  * variantes: 1) dasd_kmalloc_request uses kmalloc to get the needed
699  * memory and 2) dasd_smalloc_request uses the static ccw memory
700  * that gets allocated for each device.
701  */
702 struct dasd_ccw_req *dasd_kmalloc_request(int magic, int cplength,
703 					  int datasize,
704 					  struct dasd_device *device)
705 {
706 	struct dasd_ccw_req *cqr;
707 
708 	/* Sanity checks */
709 	BUG_ON(datasize > PAGE_SIZE ||
710 	     (cplength*sizeof(struct ccw1)) > PAGE_SIZE);
711 
712 	cqr = kzalloc(sizeof(struct dasd_ccw_req), GFP_ATOMIC);
713 	if (cqr == NULL)
714 		return ERR_PTR(-ENOMEM);
715 	cqr->cpaddr = NULL;
716 	if (cplength > 0) {
717 		cqr->cpaddr = kcalloc(cplength, sizeof(struct ccw1),
718 				      GFP_ATOMIC | GFP_DMA);
719 		if (cqr->cpaddr == NULL) {
720 			kfree(cqr);
721 			return ERR_PTR(-ENOMEM);
722 		}
723 	}
724 	cqr->data = NULL;
725 	if (datasize > 0) {
726 		cqr->data = kzalloc(datasize, GFP_ATOMIC | GFP_DMA);
727 		if (cqr->data == NULL) {
728 			kfree(cqr->cpaddr);
729 			kfree(cqr);
730 			return ERR_PTR(-ENOMEM);
731 		}
732 	}
733 	cqr->magic =  magic;
734 	set_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags);
735 	dasd_get_device(device);
736 	return cqr;
737 }
738 
739 struct dasd_ccw_req *dasd_smalloc_request(int magic, int cplength,
740 					  int datasize,
741 					  struct dasd_device *device)
742 {
743 	unsigned long flags;
744 	struct dasd_ccw_req *cqr;
745 	char *data;
746 	int size;
747 
748 	size = (sizeof(struct dasd_ccw_req) + 7L) & -8L;
749 	if (cplength > 0)
750 		size += cplength * sizeof(struct ccw1);
751 	if (datasize > 0)
752 		size += datasize;
753 	spin_lock_irqsave(&device->mem_lock, flags);
754 	cqr = (struct dasd_ccw_req *)
755 		dasd_alloc_chunk(&device->ccw_chunks, size);
756 	spin_unlock_irqrestore(&device->mem_lock, flags);
757 	if (cqr == NULL)
758 		return ERR_PTR(-ENOMEM);
759 	memset(cqr, 0, sizeof(struct dasd_ccw_req));
760 	data = (char *) cqr + ((sizeof(struct dasd_ccw_req) + 7L) & -8L);
761 	cqr->cpaddr = NULL;
762 	if (cplength > 0) {
763 		cqr->cpaddr = (struct ccw1 *) data;
764 		data += cplength*sizeof(struct ccw1);
765 		memset(cqr->cpaddr, 0, cplength*sizeof(struct ccw1));
766 	}
767 	cqr->data = NULL;
768 	if (datasize > 0) {
769 		cqr->data = data;
770  		memset(cqr->data, 0, datasize);
771 	}
772 	cqr->magic = magic;
773 	set_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags);
774 	dasd_get_device(device);
775 	return cqr;
776 }
777 
778 /*
779  * Free memory of a channel program. This function needs to free all the
780  * idal lists that might have been created by dasd_set_cda and the
781  * struct dasd_ccw_req itself.
782  */
783 void dasd_kfree_request(struct dasd_ccw_req *cqr, struct dasd_device *device)
784 {
785 #ifdef CONFIG_64BIT
786 	struct ccw1 *ccw;
787 
788 	/* Clear any idals used for the request. */
789 	ccw = cqr->cpaddr;
790 	do {
791 		clear_normalized_cda(ccw);
792 	} while (ccw++->flags & (CCW_FLAG_CC | CCW_FLAG_DC));
793 #endif
794 	kfree(cqr->cpaddr);
795 	kfree(cqr->data);
796 	kfree(cqr);
797 	dasd_put_device(device);
798 }
799 
800 void dasd_sfree_request(struct dasd_ccw_req *cqr, struct dasd_device *device)
801 {
802 	unsigned long flags;
803 
804 	spin_lock_irqsave(&device->mem_lock, flags);
805 	dasd_free_chunk(&device->ccw_chunks, cqr);
806 	spin_unlock_irqrestore(&device->mem_lock, flags);
807 	dasd_put_device(device);
808 }
809 
810 /*
811  * Check discipline magic in cqr.
812  */
813 static inline int dasd_check_cqr(struct dasd_ccw_req *cqr)
814 {
815 	struct dasd_device *device;
816 
817 	if (cqr == NULL)
818 		return -EINVAL;
819 	device = cqr->startdev;
820 	if (strncmp((char *) &cqr->magic, device->discipline->ebcname, 4)) {
821 		DBF_DEV_EVENT(DBF_WARNING, device,
822 			    " dasd_ccw_req 0x%08x magic doesn't match"
823 			    " discipline 0x%08x",
824 			    cqr->magic,
825 			    *(unsigned int *) device->discipline->name);
826 		return -EINVAL;
827 	}
828 	return 0;
829 }
830 
831 /*
832  * Terminate the current i/o and set the request to clear_pending.
833  * Timer keeps device runnig.
834  * ccw_device_clear can fail if the i/o subsystem
835  * is in a bad mood.
836  */
837 int dasd_term_IO(struct dasd_ccw_req *cqr)
838 {
839 	struct dasd_device *device;
840 	int retries, rc;
841 	char errorstring[ERRORLENGTH];
842 
843 	/* Check the cqr */
844 	rc = dasd_check_cqr(cqr);
845 	if (rc)
846 		return rc;
847 	retries = 0;
848 	device = (struct dasd_device *) cqr->startdev;
849 	while ((retries < 5) && (cqr->status == DASD_CQR_IN_IO)) {
850 		rc = ccw_device_clear(device->cdev, (long) cqr);
851 		switch (rc) {
852 		case 0:	/* termination successful */
853 			cqr->retries--;
854 			cqr->status = DASD_CQR_CLEAR_PENDING;
855 			cqr->stopclk = get_clock();
856 			cqr->starttime = 0;
857 			DBF_DEV_EVENT(DBF_DEBUG, device,
858 				      "terminate cqr %p successful",
859 				      cqr);
860 			break;
861 		case -ENODEV:
862 			DBF_DEV_EVENT(DBF_ERR, device, "%s",
863 				      "device gone, retry");
864 			break;
865 		case -EIO:
866 			DBF_DEV_EVENT(DBF_ERR, device, "%s",
867 				      "I/O error, retry");
868 			break;
869 		case -EINVAL:
870 		case -EBUSY:
871 			DBF_DEV_EVENT(DBF_ERR, device, "%s",
872 				      "device busy, retry later");
873 			break;
874 		default:
875 			/* internal error 10 - unknown rc*/
876 			snprintf(errorstring, ERRORLENGTH, "10 %d", rc);
877 			dev_err(&device->cdev->dev, "An error occurred in the "
878 				"DASD device driver, reason=%s\n", errorstring);
879 			BUG();
880 			break;
881 		}
882 		retries++;
883 	}
884 	dasd_schedule_device_bh(device);
885 	return rc;
886 }
887 
888 /*
889  * Start the i/o. This start_IO can fail if the channel is really busy.
890  * In that case set up a timer to start the request later.
891  */
892 int dasd_start_IO(struct dasd_ccw_req *cqr)
893 {
894 	struct dasd_device *device;
895 	int rc;
896 	char errorstring[ERRORLENGTH];
897 
898 	/* Check the cqr */
899 	rc = dasd_check_cqr(cqr);
900 	if (rc) {
901 		cqr->intrc = rc;
902 		return rc;
903 	}
904 	device = (struct dasd_device *) cqr->startdev;
905 	if (cqr->retries < 0) {
906 		/* internal error 14 - start_IO run out of retries */
907 		sprintf(errorstring, "14 %p", cqr);
908 		dev_err(&device->cdev->dev, "An error occurred in the DASD "
909 			"device driver, reason=%s\n", errorstring);
910 		cqr->status = DASD_CQR_ERROR;
911 		return -EIO;
912 	}
913 	cqr->startclk = get_clock();
914 	cqr->starttime = jiffies;
915 	cqr->retries--;
916 	if (!test_bit(DASD_CQR_VERIFY_PATH, &cqr->flags)) {
917 		cqr->lpm &= device->path_data.opm;
918 		if (!cqr->lpm)
919 			cqr->lpm = device->path_data.opm;
920 	}
921 	if (cqr->cpmode == 1) {
922 		rc = ccw_device_tm_start(device->cdev, cqr->cpaddr,
923 					 (long) cqr, cqr->lpm);
924 	} else {
925 		rc = ccw_device_start(device->cdev, cqr->cpaddr,
926 				      (long) cqr, cqr->lpm, 0);
927 	}
928 	switch (rc) {
929 	case 0:
930 		cqr->status = DASD_CQR_IN_IO;
931 		break;
932 	case -EBUSY:
933 		DBF_DEV_EVENT(DBF_WARNING, device, "%s",
934 			      "start_IO: device busy, retry later");
935 		break;
936 	case -ETIMEDOUT:
937 		DBF_DEV_EVENT(DBF_WARNING, device, "%s",
938 			      "start_IO: request timeout, retry later");
939 		break;
940 	case -EACCES:
941 		/* -EACCES indicates that the request used only a subset of the
942 		 * available paths and all these paths are gone. If the lpm of
943 		 * this request was only a subset of the opm (e.g. the ppm) then
944 		 * we just do a retry with all available paths.
945 		 * If we already use the full opm, something is amiss, and we
946 		 * need a full path verification.
947 		 */
948 		if (test_bit(DASD_CQR_VERIFY_PATH, &cqr->flags)) {
949 			DBF_DEV_EVENT(DBF_WARNING, device,
950 				      "start_IO: selected paths gone (%x)",
951 				      cqr->lpm);
952 		} else if (cqr->lpm != device->path_data.opm) {
953 			cqr->lpm = device->path_data.opm;
954 			DBF_DEV_EVENT(DBF_DEBUG, device, "%s",
955 				      "start_IO: selected paths gone,"
956 				      " retry on all paths");
957 		} else {
958 			DBF_DEV_EVENT(DBF_WARNING, device, "%s",
959 				      "start_IO: all paths in opm gone,"
960 				      " do path verification");
961 			dasd_generic_last_path_gone(device);
962 			device->path_data.opm = 0;
963 			device->path_data.ppm = 0;
964 			device->path_data.npm = 0;
965 			device->path_data.tbvpm =
966 				ccw_device_get_path_mask(device->cdev);
967 		}
968 		break;
969 	case -ENODEV:
970 		DBF_DEV_EVENT(DBF_WARNING, device, "%s",
971 			      "start_IO: -ENODEV device gone, retry");
972 		break;
973 	case -EIO:
974 		DBF_DEV_EVENT(DBF_WARNING, device, "%s",
975 			      "start_IO: -EIO device gone, retry");
976 		break;
977 	case -EINVAL:
978 		/* most likely caused in power management context */
979 		DBF_DEV_EVENT(DBF_WARNING, device, "%s",
980 			      "start_IO: -EINVAL device currently "
981 			      "not accessible");
982 		break;
983 	default:
984 		/* internal error 11 - unknown rc */
985 		snprintf(errorstring, ERRORLENGTH, "11 %d", rc);
986 		dev_err(&device->cdev->dev,
987 			"An error occurred in the DASD device driver, "
988 			"reason=%s\n", errorstring);
989 		BUG();
990 		break;
991 	}
992 	cqr->intrc = rc;
993 	return rc;
994 }
995 
996 /*
997  * Timeout function for dasd devices. This is used for different purposes
998  *  1) missing interrupt handler for normal operation
999  *  2) delayed start of request where start_IO failed with -EBUSY
1000  *  3) timeout for missing state change interrupts
1001  * The head of the ccw queue will have status DASD_CQR_IN_IO for 1),
1002  * DASD_CQR_QUEUED for 2) and 3).
1003  */
1004 static void dasd_device_timeout(unsigned long ptr)
1005 {
1006 	unsigned long flags;
1007 	struct dasd_device *device;
1008 
1009 	device = (struct dasd_device *) ptr;
1010 	spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags);
1011 	/* re-activate request queue */
1012 	dasd_device_remove_stop_bits(device, DASD_STOPPED_PENDING);
1013 	spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags);
1014 	dasd_schedule_device_bh(device);
1015 }
1016 
1017 /*
1018  * Setup timeout for a device in jiffies.
1019  */
1020 void dasd_device_set_timer(struct dasd_device *device, int expires)
1021 {
1022 	if (expires == 0)
1023 		del_timer(&device->timer);
1024 	else
1025 		mod_timer(&device->timer, jiffies + expires);
1026 }
1027 
1028 /*
1029  * Clear timeout for a device.
1030  */
1031 void dasd_device_clear_timer(struct dasd_device *device)
1032 {
1033 	del_timer(&device->timer);
1034 }
1035 
1036 static void dasd_handle_killed_request(struct ccw_device *cdev,
1037 				       unsigned long intparm)
1038 {
1039 	struct dasd_ccw_req *cqr;
1040 	struct dasd_device *device;
1041 
1042 	if (!intparm)
1043 		return;
1044 	cqr = (struct dasd_ccw_req *) intparm;
1045 	if (cqr->status != DASD_CQR_IN_IO) {
1046 		DBF_EVENT_DEVID(DBF_DEBUG, cdev,
1047 				"invalid status in handle_killed_request: "
1048 				"%02x", cqr->status);
1049 		return;
1050 	}
1051 
1052 	device = dasd_device_from_cdev_locked(cdev);
1053 	if (IS_ERR(device)) {
1054 		DBF_EVENT_DEVID(DBF_DEBUG, cdev, "%s",
1055 				"unable to get device from cdev");
1056 		return;
1057 	}
1058 
1059 	if (!cqr->startdev ||
1060 	    device != cqr->startdev ||
1061 	    strncmp(cqr->startdev->discipline->ebcname,
1062 		    (char *) &cqr->magic, 4)) {
1063 		DBF_EVENT_DEVID(DBF_DEBUG, cdev, "%s",
1064 				"invalid device in request");
1065 		dasd_put_device(device);
1066 		return;
1067 	}
1068 
1069 	/* Schedule request to be retried. */
1070 	cqr->status = DASD_CQR_QUEUED;
1071 
1072 	dasd_device_clear_timer(device);
1073 	dasd_schedule_device_bh(device);
1074 	dasd_put_device(device);
1075 }
1076 
1077 void dasd_generic_handle_state_change(struct dasd_device *device)
1078 {
1079 	/* First of all start sense subsystem status request. */
1080 	dasd_eer_snss(device);
1081 
1082 	dasd_device_remove_stop_bits(device, DASD_STOPPED_PENDING);
1083 	dasd_schedule_device_bh(device);
1084 	if (device->block)
1085 		dasd_schedule_block_bh(device->block);
1086 }
1087 
1088 /*
1089  * Interrupt handler for "normal" ssch-io based dasd devices.
1090  */
1091 void dasd_int_handler(struct ccw_device *cdev, unsigned long intparm,
1092 		      struct irb *irb)
1093 {
1094 	struct dasd_ccw_req *cqr, *next;
1095 	struct dasd_device *device;
1096 	unsigned long long now;
1097 	int expires;
1098 
1099 	kstat_cpu(smp_processor_id()).irqs[IOINT_DAS]++;
1100 	if (IS_ERR(irb)) {
1101 		switch (PTR_ERR(irb)) {
1102 		case -EIO:
1103 			break;
1104 		case -ETIMEDOUT:
1105 			DBF_EVENT_DEVID(DBF_WARNING, cdev, "%s: "
1106 					"request timed out\n", __func__);
1107 			break;
1108 		default:
1109 			DBF_EVENT_DEVID(DBF_WARNING, cdev, "%s: "
1110 					"unknown error %ld\n", __func__,
1111 					PTR_ERR(irb));
1112 		}
1113 		dasd_handle_killed_request(cdev, intparm);
1114 		return;
1115 	}
1116 
1117 	now = get_clock();
1118 
1119 	/* check for unsolicited interrupts */
1120 	cqr = (struct dasd_ccw_req *) intparm;
1121 	if (!cqr || ((scsw_cc(&irb->scsw) == 1) &&
1122 		     (scsw_fctl(&irb->scsw) & SCSW_FCTL_START_FUNC) &&
1123 		     ((scsw_stctl(&irb->scsw) == SCSW_STCTL_STATUS_PEND) ||
1124 		      (scsw_stctl(&irb->scsw) == (SCSW_STCTL_STATUS_PEND |
1125 						  SCSW_STCTL_ALERT_STATUS))))) {
1126 		if (cqr && cqr->status == DASD_CQR_IN_IO)
1127 			cqr->status = DASD_CQR_QUEUED;
1128 		if (cqr)
1129 			memcpy(&cqr->irb, irb, sizeof(*irb));
1130 		device = dasd_device_from_cdev_locked(cdev);
1131 		if (IS_ERR(device))
1132 			return;
1133 		/* ignore unsolicited interrupts for DIAG discipline */
1134 		if (device->discipline == dasd_diag_discipline_pointer) {
1135 			dasd_put_device(device);
1136 			return;
1137 		}
1138 		device->discipline->dump_sense_dbf(device, irb,
1139 						   "unsolicited");
1140 		if ((device->features & DASD_FEATURE_ERPLOG))
1141 			device->discipline->dump_sense(device, cqr,
1142 						       irb);
1143 		dasd_device_clear_timer(device);
1144 		device->discipline->handle_unsolicited_interrupt(device,
1145 								 irb);
1146 		dasd_put_device(device);
1147 		return;
1148 	}
1149 
1150 	device = (struct dasd_device *) cqr->startdev;
1151 	if (!device ||
1152 	    strncmp(device->discipline->ebcname, (char *) &cqr->magic, 4)) {
1153 		DBF_EVENT_DEVID(DBF_DEBUG, cdev, "%s",
1154 				"invalid device in request");
1155 		return;
1156 	}
1157 
1158 	/* Check for clear pending */
1159 	if (cqr->status == DASD_CQR_CLEAR_PENDING &&
1160 	    scsw_fctl(&irb->scsw) & SCSW_FCTL_CLEAR_FUNC) {
1161 		cqr->status = DASD_CQR_CLEARED;
1162 		dasd_device_clear_timer(device);
1163 		wake_up(&dasd_flush_wq);
1164 		dasd_schedule_device_bh(device);
1165 		return;
1166 	}
1167 
1168 	/* check status - the request might have been killed by dyn detach */
1169 	if (cqr->status != DASD_CQR_IN_IO) {
1170 		DBF_DEV_EVENT(DBF_DEBUG, device, "invalid status: bus_id %s, "
1171 			      "status %02x", dev_name(&cdev->dev), cqr->status);
1172 		return;
1173 	}
1174 
1175 	next = NULL;
1176 	expires = 0;
1177 	if (scsw_dstat(&irb->scsw) == (DEV_STAT_CHN_END | DEV_STAT_DEV_END) &&
1178 	    scsw_cstat(&irb->scsw) == 0) {
1179 		/* request was completed successfully */
1180 		cqr->status = DASD_CQR_SUCCESS;
1181 		cqr->stopclk = now;
1182 		/* Start first request on queue if possible -> fast_io. */
1183 		if (cqr->devlist.next != &device->ccw_queue) {
1184 			next = list_entry(cqr->devlist.next,
1185 					  struct dasd_ccw_req, devlist);
1186 		}
1187 	} else {  /* error */
1188 		memcpy(&cqr->irb, irb, sizeof(struct irb));
1189 		/* log sense for every failed I/O to s390 debugfeature */
1190 		dasd_log_sense_dbf(cqr, irb);
1191 		if (device->features & DASD_FEATURE_ERPLOG) {
1192 			dasd_log_sense(cqr, irb);
1193 		}
1194 
1195 		/*
1196 		 * If we don't want complex ERP for this request, then just
1197 		 * reset this and retry it in the fastpath
1198 		 */
1199 		if (!test_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags) &&
1200 		    cqr->retries > 0) {
1201 			if (cqr->lpm == device->path_data.opm)
1202 				DBF_DEV_EVENT(DBF_DEBUG, device,
1203 					      "default ERP in fastpath "
1204 					      "(%i retries left)",
1205 					      cqr->retries);
1206 			if (!test_bit(DASD_CQR_VERIFY_PATH, &cqr->flags))
1207 				cqr->lpm = device->path_data.opm;
1208 			cqr->status = DASD_CQR_QUEUED;
1209 			next = cqr;
1210 		} else
1211 			cqr->status = DASD_CQR_ERROR;
1212 	}
1213 	if (next && (next->status == DASD_CQR_QUEUED) &&
1214 	    (!device->stopped)) {
1215 		if (device->discipline->start_IO(next) == 0)
1216 			expires = next->expires;
1217 	}
1218 	if (expires != 0)
1219 		dasd_device_set_timer(device, expires);
1220 	else
1221 		dasd_device_clear_timer(device);
1222 	dasd_schedule_device_bh(device);
1223 }
1224 
1225 enum uc_todo dasd_generic_uc_handler(struct ccw_device *cdev, struct irb *irb)
1226 {
1227 	struct dasd_device *device;
1228 
1229 	device = dasd_device_from_cdev_locked(cdev);
1230 
1231 	if (IS_ERR(device))
1232 		goto out;
1233 	if (test_bit(DASD_FLAG_OFFLINE, &device->flags) ||
1234 	   device->state != device->target ||
1235 	   !device->discipline->handle_unsolicited_interrupt){
1236 		dasd_put_device(device);
1237 		goto out;
1238 	}
1239 
1240 	dasd_device_clear_timer(device);
1241 	device->discipline->handle_unsolicited_interrupt(device, irb);
1242 	dasd_put_device(device);
1243 out:
1244 	return UC_TODO_RETRY;
1245 }
1246 EXPORT_SYMBOL_GPL(dasd_generic_uc_handler);
1247 
1248 /*
1249  * If we have an error on a dasd_block layer request then we cancel
1250  * and return all further requests from the same dasd_block as well.
1251  */
1252 static void __dasd_device_recovery(struct dasd_device *device,
1253 				   struct dasd_ccw_req *ref_cqr)
1254 {
1255 	struct list_head *l, *n;
1256 	struct dasd_ccw_req *cqr;
1257 
1258 	/*
1259 	 * only requeue request that came from the dasd_block layer
1260 	 */
1261 	if (!ref_cqr->block)
1262 		return;
1263 
1264 	list_for_each_safe(l, n, &device->ccw_queue) {
1265 		cqr = list_entry(l, struct dasd_ccw_req, devlist);
1266 		if (cqr->status == DASD_CQR_QUEUED &&
1267 		    ref_cqr->block == cqr->block) {
1268 			cqr->status = DASD_CQR_CLEARED;
1269 		}
1270 	}
1271 };
1272 
1273 /*
1274  * Remove those ccw requests from the queue that need to be returned
1275  * to the upper layer.
1276  */
1277 static void __dasd_device_process_ccw_queue(struct dasd_device *device,
1278 					    struct list_head *final_queue)
1279 {
1280 	struct list_head *l, *n;
1281 	struct dasd_ccw_req *cqr;
1282 
1283 	/* Process request with final status. */
1284 	list_for_each_safe(l, n, &device->ccw_queue) {
1285 		cqr = list_entry(l, struct dasd_ccw_req, devlist);
1286 
1287 		/* Stop list processing at the first non-final request. */
1288 		if (cqr->status == DASD_CQR_QUEUED ||
1289 		    cqr->status == DASD_CQR_IN_IO ||
1290 		    cqr->status == DASD_CQR_CLEAR_PENDING)
1291 			break;
1292 		if (cqr->status == DASD_CQR_ERROR) {
1293 			__dasd_device_recovery(device, cqr);
1294 		}
1295 		/* Rechain finished requests to final queue */
1296 		list_move_tail(&cqr->devlist, final_queue);
1297 	}
1298 }
1299 
1300 /*
1301  * the cqrs from the final queue are returned to the upper layer
1302  * by setting a dasd_block state and calling the callback function
1303  */
1304 static void __dasd_device_process_final_queue(struct dasd_device *device,
1305 					      struct list_head *final_queue)
1306 {
1307 	struct list_head *l, *n;
1308 	struct dasd_ccw_req *cqr;
1309 	struct dasd_block *block;
1310 	void (*callback)(struct dasd_ccw_req *, void *data);
1311 	void *callback_data;
1312 	char errorstring[ERRORLENGTH];
1313 
1314 	list_for_each_safe(l, n, final_queue) {
1315 		cqr = list_entry(l, struct dasd_ccw_req, devlist);
1316 		list_del_init(&cqr->devlist);
1317 		block = cqr->block;
1318 		callback = cqr->callback;
1319 		callback_data = cqr->callback_data;
1320 		if (block)
1321 			spin_lock_bh(&block->queue_lock);
1322 		switch (cqr->status) {
1323 		case DASD_CQR_SUCCESS:
1324 			cqr->status = DASD_CQR_DONE;
1325 			break;
1326 		case DASD_CQR_ERROR:
1327 			cqr->status = DASD_CQR_NEED_ERP;
1328 			break;
1329 		case DASD_CQR_CLEARED:
1330 			cqr->status = DASD_CQR_TERMINATED;
1331 			break;
1332 		default:
1333 			/* internal error 12 - wrong cqr status*/
1334 			snprintf(errorstring, ERRORLENGTH, "12 %p %x02", cqr, cqr->status);
1335 			dev_err(&device->cdev->dev,
1336 				"An error occurred in the DASD device driver, "
1337 				"reason=%s\n", errorstring);
1338 			BUG();
1339 		}
1340 		if (cqr->callback != NULL)
1341 			(callback)(cqr, callback_data);
1342 		if (block)
1343 			spin_unlock_bh(&block->queue_lock);
1344 	}
1345 }
1346 
1347 /*
1348  * Take a look at the first request on the ccw queue and check
1349  * if it reached its expire time. If so, terminate the IO.
1350  */
1351 static void __dasd_device_check_expire(struct dasd_device *device)
1352 {
1353 	struct dasd_ccw_req *cqr;
1354 
1355 	if (list_empty(&device->ccw_queue))
1356 		return;
1357 	cqr = list_entry(device->ccw_queue.next, struct dasd_ccw_req, devlist);
1358 	if ((cqr->status == DASD_CQR_IN_IO && cqr->expires != 0) &&
1359 	    (time_after_eq(jiffies, cqr->expires + cqr->starttime))) {
1360 		if (device->discipline->term_IO(cqr) != 0) {
1361 			/* Hmpf, try again in 5 sec */
1362 			dev_err(&device->cdev->dev,
1363 				"cqr %p timed out (%lus) but cannot be "
1364 				"ended, retrying in 5 s\n",
1365 				cqr, (cqr->expires/HZ));
1366 			cqr->expires += 5*HZ;
1367 			dasd_device_set_timer(device, 5*HZ);
1368 		} else {
1369 			dev_err(&device->cdev->dev,
1370 				"cqr %p timed out (%lus), %i retries "
1371 				"remaining\n", cqr, (cqr->expires/HZ),
1372 				cqr->retries);
1373 		}
1374 	}
1375 }
1376 
1377 /*
1378  * Take a look at the first request on the ccw queue and check
1379  * if it needs to be started.
1380  */
1381 static void __dasd_device_start_head(struct dasd_device *device)
1382 {
1383 	struct dasd_ccw_req *cqr;
1384 	int rc;
1385 
1386 	if (list_empty(&device->ccw_queue))
1387 		return;
1388 	cqr = list_entry(device->ccw_queue.next, struct dasd_ccw_req, devlist);
1389 	if (cqr->status != DASD_CQR_QUEUED)
1390 		return;
1391 	/* when device is stopped, return request to previous layer
1392 	 * exception: only the disconnect or unresumed bits are set and the
1393 	 * cqr is a path verification request
1394 	 */
1395 	if (device->stopped &&
1396 	    !(!(device->stopped & ~(DASD_STOPPED_DC_WAIT | DASD_UNRESUMED_PM))
1397 	      && test_bit(DASD_CQR_VERIFY_PATH, &cqr->flags))) {
1398 		cqr->intrc = -EAGAIN;
1399 		cqr->status = DASD_CQR_CLEARED;
1400 		dasd_schedule_device_bh(device);
1401 		return;
1402 	}
1403 
1404 	rc = device->discipline->start_IO(cqr);
1405 	if (rc == 0)
1406 		dasd_device_set_timer(device, cqr->expires);
1407 	else if (rc == -EACCES) {
1408 		dasd_schedule_device_bh(device);
1409 	} else
1410 		/* Hmpf, try again in 1/2 sec */
1411 		dasd_device_set_timer(device, 50);
1412 }
1413 
1414 static void __dasd_device_check_path_events(struct dasd_device *device)
1415 {
1416 	int rc;
1417 
1418 	if (device->path_data.tbvpm) {
1419 		if (device->stopped & ~(DASD_STOPPED_DC_WAIT |
1420 					DASD_UNRESUMED_PM))
1421 			return;
1422 		rc = device->discipline->verify_path(
1423 			device, device->path_data.tbvpm);
1424 		if (rc)
1425 			dasd_device_set_timer(device, 50);
1426 		else
1427 			device->path_data.tbvpm = 0;
1428 	}
1429 };
1430 
1431 /*
1432  * Go through all request on the dasd_device request queue,
1433  * terminate them on the cdev if necessary, and return them to the
1434  * submitting layer via callback.
1435  * Note:
1436  * Make sure that all 'submitting layers' still exist when
1437  * this function is called!. In other words, when 'device' is a base
1438  * device then all block layer requests must have been removed before
1439  * via dasd_flush_block_queue.
1440  */
1441 int dasd_flush_device_queue(struct dasd_device *device)
1442 {
1443 	struct dasd_ccw_req *cqr, *n;
1444 	int rc;
1445 	struct list_head flush_queue;
1446 
1447 	INIT_LIST_HEAD(&flush_queue);
1448 	spin_lock_irq(get_ccwdev_lock(device->cdev));
1449 	rc = 0;
1450 	list_for_each_entry_safe(cqr, n, &device->ccw_queue, devlist) {
1451 		/* Check status and move request to flush_queue */
1452 		switch (cqr->status) {
1453 		case DASD_CQR_IN_IO:
1454 			rc = device->discipline->term_IO(cqr);
1455 			if (rc) {
1456 				/* unable to terminate requeust */
1457 				dev_err(&device->cdev->dev,
1458 					"Flushing the DASD request queue "
1459 					"failed for request %p\n", cqr);
1460 				/* stop flush processing */
1461 				goto finished;
1462 			}
1463 			break;
1464 		case DASD_CQR_QUEUED:
1465 			cqr->stopclk = get_clock();
1466 			cqr->status = DASD_CQR_CLEARED;
1467 			break;
1468 		default: /* no need to modify the others */
1469 			break;
1470 		}
1471 		list_move_tail(&cqr->devlist, &flush_queue);
1472 	}
1473 finished:
1474 	spin_unlock_irq(get_ccwdev_lock(device->cdev));
1475 	/*
1476 	 * After this point all requests must be in state CLEAR_PENDING,
1477 	 * CLEARED, SUCCESS or ERROR. Now wait for CLEAR_PENDING to become
1478 	 * one of the others.
1479 	 */
1480 	list_for_each_entry_safe(cqr, n, &flush_queue, devlist)
1481 		wait_event(dasd_flush_wq,
1482 			   (cqr->status != DASD_CQR_CLEAR_PENDING));
1483 	/*
1484 	 * Now set each request back to TERMINATED, DONE or NEED_ERP
1485 	 * and call the callback function of flushed requests
1486 	 */
1487 	__dasd_device_process_final_queue(device, &flush_queue);
1488 	return rc;
1489 }
1490 
1491 /*
1492  * Acquire the device lock and process queues for the device.
1493  */
1494 static void dasd_device_tasklet(struct dasd_device *device)
1495 {
1496 	struct list_head final_queue;
1497 
1498 	atomic_set (&device->tasklet_scheduled, 0);
1499 	INIT_LIST_HEAD(&final_queue);
1500 	spin_lock_irq(get_ccwdev_lock(device->cdev));
1501 	/* Check expire time of first request on the ccw queue. */
1502 	__dasd_device_check_expire(device);
1503 	/* find final requests on ccw queue */
1504 	__dasd_device_process_ccw_queue(device, &final_queue);
1505 	__dasd_device_check_path_events(device);
1506 	spin_unlock_irq(get_ccwdev_lock(device->cdev));
1507 	/* Now call the callback function of requests with final status */
1508 	__dasd_device_process_final_queue(device, &final_queue);
1509 	spin_lock_irq(get_ccwdev_lock(device->cdev));
1510 	/* Now check if the head of the ccw queue needs to be started. */
1511 	__dasd_device_start_head(device);
1512 	spin_unlock_irq(get_ccwdev_lock(device->cdev));
1513 	dasd_put_device(device);
1514 }
1515 
1516 /*
1517  * Schedules a call to dasd_tasklet over the device tasklet.
1518  */
1519 void dasd_schedule_device_bh(struct dasd_device *device)
1520 {
1521 	/* Protect against rescheduling. */
1522 	if (atomic_cmpxchg (&device->tasklet_scheduled, 0, 1) != 0)
1523 		return;
1524 	dasd_get_device(device);
1525 	tasklet_hi_schedule(&device->tasklet);
1526 }
1527 
1528 void dasd_device_set_stop_bits(struct dasd_device *device, int bits)
1529 {
1530 	device->stopped |= bits;
1531 }
1532 EXPORT_SYMBOL_GPL(dasd_device_set_stop_bits);
1533 
1534 void dasd_device_remove_stop_bits(struct dasd_device *device, int bits)
1535 {
1536 	device->stopped &= ~bits;
1537 	if (!device->stopped)
1538 		wake_up(&generic_waitq);
1539 }
1540 EXPORT_SYMBOL_GPL(dasd_device_remove_stop_bits);
1541 
1542 /*
1543  * Queue a request to the head of the device ccw_queue.
1544  * Start the I/O if possible.
1545  */
1546 void dasd_add_request_head(struct dasd_ccw_req *cqr)
1547 {
1548 	struct dasd_device *device;
1549 	unsigned long flags;
1550 
1551 	device = cqr->startdev;
1552 	spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags);
1553 	cqr->status = DASD_CQR_QUEUED;
1554 	list_add(&cqr->devlist, &device->ccw_queue);
1555 	/* let the bh start the request to keep them in order */
1556 	dasd_schedule_device_bh(device);
1557 	spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags);
1558 }
1559 
1560 /*
1561  * Queue a request to the tail of the device ccw_queue.
1562  * Start the I/O if possible.
1563  */
1564 void dasd_add_request_tail(struct dasd_ccw_req *cqr)
1565 {
1566 	struct dasd_device *device;
1567 	unsigned long flags;
1568 
1569 	device = cqr->startdev;
1570 	spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags);
1571 	cqr->status = DASD_CQR_QUEUED;
1572 	list_add_tail(&cqr->devlist, &device->ccw_queue);
1573 	/* let the bh start the request to keep them in order */
1574 	dasd_schedule_device_bh(device);
1575 	spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags);
1576 }
1577 
1578 /*
1579  * Wakeup helper for the 'sleep_on' functions.
1580  */
1581 static void dasd_wakeup_cb(struct dasd_ccw_req *cqr, void *data)
1582 {
1583 	spin_lock_irq(get_ccwdev_lock(cqr->startdev->cdev));
1584 	cqr->callback_data = DASD_SLEEPON_END_TAG;
1585 	spin_unlock_irq(get_ccwdev_lock(cqr->startdev->cdev));
1586 	wake_up(&generic_waitq);
1587 }
1588 
1589 static inline int _wait_for_wakeup(struct dasd_ccw_req *cqr)
1590 {
1591 	struct dasd_device *device;
1592 	int rc;
1593 
1594 	device = cqr->startdev;
1595 	spin_lock_irq(get_ccwdev_lock(device->cdev));
1596 	rc = (cqr->callback_data == DASD_SLEEPON_END_TAG);
1597 	spin_unlock_irq(get_ccwdev_lock(device->cdev));
1598 	return rc;
1599 }
1600 
1601 /*
1602  * checks if error recovery is necessary, returns 1 if yes, 0 otherwise.
1603  */
1604 static int __dasd_sleep_on_erp(struct dasd_ccw_req *cqr)
1605 {
1606 	struct dasd_device *device;
1607 	dasd_erp_fn_t erp_fn;
1608 
1609 	if (cqr->status == DASD_CQR_FILLED)
1610 		return 0;
1611 	device = cqr->startdev;
1612 	if (test_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags)) {
1613 		if (cqr->status == DASD_CQR_TERMINATED) {
1614 			device->discipline->handle_terminated_request(cqr);
1615 			return 1;
1616 		}
1617 		if (cqr->status == DASD_CQR_NEED_ERP) {
1618 			erp_fn = device->discipline->erp_action(cqr);
1619 			erp_fn(cqr);
1620 			return 1;
1621 		}
1622 		if (cqr->status == DASD_CQR_FAILED)
1623 			dasd_log_sense(cqr, &cqr->irb);
1624 		if (cqr->refers) {
1625 			__dasd_process_erp(device, cqr);
1626 			return 1;
1627 		}
1628 	}
1629 	return 0;
1630 }
1631 
1632 static int __dasd_sleep_on_loop_condition(struct dasd_ccw_req *cqr)
1633 {
1634 	if (test_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags)) {
1635 		if (cqr->refers) /* erp is not done yet */
1636 			return 1;
1637 		return ((cqr->status != DASD_CQR_DONE) &&
1638 			(cqr->status != DASD_CQR_FAILED));
1639 	} else
1640 		return (cqr->status == DASD_CQR_FILLED);
1641 }
1642 
1643 static int _dasd_sleep_on(struct dasd_ccw_req *maincqr, int interruptible)
1644 {
1645 	struct dasd_device *device;
1646 	int rc;
1647 	struct list_head ccw_queue;
1648 	struct dasd_ccw_req *cqr;
1649 
1650 	INIT_LIST_HEAD(&ccw_queue);
1651 	maincqr->status = DASD_CQR_FILLED;
1652 	device = maincqr->startdev;
1653 	list_add(&maincqr->blocklist, &ccw_queue);
1654 	for (cqr = maincqr;  __dasd_sleep_on_loop_condition(cqr);
1655 	     cqr = list_first_entry(&ccw_queue,
1656 				    struct dasd_ccw_req, blocklist)) {
1657 
1658 		if (__dasd_sleep_on_erp(cqr))
1659 			continue;
1660 		if (cqr->status != DASD_CQR_FILLED) /* could be failed */
1661 			continue;
1662 
1663 		/* Non-temporary stop condition will trigger fail fast */
1664 		if (device->stopped & ~DASD_STOPPED_PENDING &&
1665 		    test_bit(DASD_CQR_FLAGS_FAILFAST, &cqr->flags) &&
1666 		    (!dasd_eer_enabled(device))) {
1667 			cqr->status = DASD_CQR_FAILED;
1668 			continue;
1669 		}
1670 
1671 		/* Don't try to start requests if device is stopped */
1672 		if (interruptible) {
1673 			rc = wait_event_interruptible(
1674 				generic_waitq, !(device->stopped));
1675 			if (rc == -ERESTARTSYS) {
1676 				cqr->status = DASD_CQR_FAILED;
1677 				maincqr->intrc = rc;
1678 				continue;
1679 			}
1680 		} else
1681 			wait_event(generic_waitq, !(device->stopped));
1682 
1683 		cqr->callback = dasd_wakeup_cb;
1684 		cqr->callback_data = DASD_SLEEPON_START_TAG;
1685 		dasd_add_request_tail(cqr);
1686 		if (interruptible) {
1687 			rc = wait_event_interruptible(
1688 				generic_waitq, _wait_for_wakeup(cqr));
1689 			if (rc == -ERESTARTSYS) {
1690 				dasd_cancel_req(cqr);
1691 				/* wait (non-interruptible) for final status */
1692 				wait_event(generic_waitq,
1693 					   _wait_for_wakeup(cqr));
1694 				cqr->status = DASD_CQR_FAILED;
1695 				maincqr->intrc = rc;
1696 				continue;
1697 			}
1698 		} else
1699 			wait_event(generic_waitq, _wait_for_wakeup(cqr));
1700 	}
1701 
1702 	maincqr->endclk = get_clock();
1703 	if ((maincqr->status != DASD_CQR_DONE) &&
1704 	    (maincqr->intrc != -ERESTARTSYS))
1705 		dasd_log_sense(maincqr, &maincqr->irb);
1706 	if (maincqr->status == DASD_CQR_DONE)
1707 		rc = 0;
1708 	else if (maincqr->intrc)
1709 		rc = maincqr->intrc;
1710 	else
1711 		rc = -EIO;
1712 	return rc;
1713 }
1714 
1715 /*
1716  * Queue a request to the tail of the device ccw_queue and wait for
1717  * it's completion.
1718  */
1719 int dasd_sleep_on(struct dasd_ccw_req *cqr)
1720 {
1721 	return _dasd_sleep_on(cqr, 0);
1722 }
1723 
1724 /*
1725  * Queue a request to the tail of the device ccw_queue and wait
1726  * interruptible for it's completion.
1727  */
1728 int dasd_sleep_on_interruptible(struct dasd_ccw_req *cqr)
1729 {
1730 	return _dasd_sleep_on(cqr, 1);
1731 }
1732 
1733 /*
1734  * Whoa nelly now it gets really hairy. For some functions (e.g. steal lock
1735  * for eckd devices) the currently running request has to be terminated
1736  * and be put back to status queued, before the special request is added
1737  * to the head of the queue. Then the special request is waited on normally.
1738  */
1739 static inline int _dasd_term_running_cqr(struct dasd_device *device)
1740 {
1741 	struct dasd_ccw_req *cqr;
1742 
1743 	if (list_empty(&device->ccw_queue))
1744 		return 0;
1745 	cqr = list_entry(device->ccw_queue.next, struct dasd_ccw_req, devlist);
1746 	return device->discipline->term_IO(cqr);
1747 }
1748 
1749 int dasd_sleep_on_immediatly(struct dasd_ccw_req *cqr)
1750 {
1751 	struct dasd_device *device;
1752 	int rc;
1753 
1754 	device = cqr->startdev;
1755 	spin_lock_irq(get_ccwdev_lock(device->cdev));
1756 	rc = _dasd_term_running_cqr(device);
1757 	if (rc) {
1758 		spin_unlock_irq(get_ccwdev_lock(device->cdev));
1759 		return rc;
1760 	}
1761 
1762 	cqr->callback = dasd_wakeup_cb;
1763 	cqr->callback_data = DASD_SLEEPON_START_TAG;
1764 	cqr->status = DASD_CQR_QUEUED;
1765 	list_add(&cqr->devlist, &device->ccw_queue);
1766 
1767 	/* let the bh start the request to keep them in order */
1768 	dasd_schedule_device_bh(device);
1769 
1770 	spin_unlock_irq(get_ccwdev_lock(device->cdev));
1771 
1772 	wait_event(generic_waitq, _wait_for_wakeup(cqr));
1773 
1774 	if (cqr->status == DASD_CQR_DONE)
1775 		rc = 0;
1776 	else if (cqr->intrc)
1777 		rc = cqr->intrc;
1778 	else
1779 		rc = -EIO;
1780 	return rc;
1781 }
1782 
1783 /*
1784  * Cancels a request that was started with dasd_sleep_on_req.
1785  * This is useful to timeout requests. The request will be
1786  * terminated if it is currently in i/o.
1787  * Returns 1 if the request has been terminated.
1788  *	   0 if there was no need to terminate the request (not started yet)
1789  *	   negative error code if termination failed
1790  * Cancellation of a request is an asynchronous operation! The calling
1791  * function has to wait until the request is properly returned via callback.
1792  */
1793 int dasd_cancel_req(struct dasd_ccw_req *cqr)
1794 {
1795 	struct dasd_device *device = cqr->startdev;
1796 	unsigned long flags;
1797 	int rc;
1798 
1799 	rc = 0;
1800 	spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags);
1801 	switch (cqr->status) {
1802 	case DASD_CQR_QUEUED:
1803 		/* request was not started - just set to cleared */
1804 		cqr->status = DASD_CQR_CLEARED;
1805 		break;
1806 	case DASD_CQR_IN_IO:
1807 		/* request in IO - terminate IO and release again */
1808 		rc = device->discipline->term_IO(cqr);
1809 		if (rc) {
1810 			dev_err(&device->cdev->dev,
1811 				"Cancelling request %p failed with rc=%d\n",
1812 				cqr, rc);
1813 		} else {
1814 			cqr->stopclk = get_clock();
1815 		}
1816 		break;
1817 	default: /* already finished or clear pending - do nothing */
1818 		break;
1819 	}
1820 	spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags);
1821 	dasd_schedule_device_bh(device);
1822 	return rc;
1823 }
1824 
1825 
1826 /*
1827  * SECTION: Operations of the dasd_block layer.
1828  */
1829 
1830 /*
1831  * Timeout function for dasd_block. This is used when the block layer
1832  * is waiting for something that may not come reliably, (e.g. a state
1833  * change interrupt)
1834  */
1835 static void dasd_block_timeout(unsigned long ptr)
1836 {
1837 	unsigned long flags;
1838 	struct dasd_block *block;
1839 
1840 	block = (struct dasd_block *) ptr;
1841 	spin_lock_irqsave(get_ccwdev_lock(block->base->cdev), flags);
1842 	/* re-activate request queue */
1843 	dasd_device_remove_stop_bits(block->base, DASD_STOPPED_PENDING);
1844 	spin_unlock_irqrestore(get_ccwdev_lock(block->base->cdev), flags);
1845 	dasd_schedule_block_bh(block);
1846 }
1847 
1848 /*
1849  * Setup timeout for a dasd_block in jiffies.
1850  */
1851 void dasd_block_set_timer(struct dasd_block *block, int expires)
1852 {
1853 	if (expires == 0)
1854 		del_timer(&block->timer);
1855 	else
1856 		mod_timer(&block->timer, jiffies + expires);
1857 }
1858 
1859 /*
1860  * Clear timeout for a dasd_block.
1861  */
1862 void dasd_block_clear_timer(struct dasd_block *block)
1863 {
1864 	del_timer(&block->timer);
1865 }
1866 
1867 /*
1868  * Process finished error recovery ccw.
1869  */
1870 static void __dasd_process_erp(struct dasd_device *device,
1871 			       struct dasd_ccw_req *cqr)
1872 {
1873 	dasd_erp_fn_t erp_fn;
1874 
1875 	if (cqr->status == DASD_CQR_DONE)
1876 		DBF_DEV_EVENT(DBF_NOTICE, device, "%s", "ERP successful");
1877 	else
1878 		dev_err(&device->cdev->dev, "ERP failed for the DASD\n");
1879 	erp_fn = device->discipline->erp_postaction(cqr);
1880 	erp_fn(cqr);
1881 }
1882 
1883 /*
1884  * Fetch requests from the block device queue.
1885  */
1886 static void __dasd_process_request_queue(struct dasd_block *block)
1887 {
1888 	struct request_queue *queue;
1889 	struct request *req;
1890 	struct dasd_ccw_req *cqr;
1891 	struct dasd_device *basedev;
1892 	unsigned long flags;
1893 	queue = block->request_queue;
1894 	basedev = block->base;
1895 	/* No queue ? Then there is nothing to do. */
1896 	if (queue == NULL)
1897 		return;
1898 
1899 	/*
1900 	 * We requeue request from the block device queue to the ccw
1901 	 * queue only in two states. In state DASD_STATE_READY the
1902 	 * partition detection is done and we need to requeue requests
1903 	 * for that. State DASD_STATE_ONLINE is normal block device
1904 	 * operation.
1905 	 */
1906 	if (basedev->state < DASD_STATE_READY) {
1907 		while ((req = blk_fetch_request(block->request_queue)))
1908 			__blk_end_request_all(req, -EIO);
1909 		return;
1910 	}
1911 	/* Now we try to fetch requests from the request queue */
1912 	while (!blk_queue_plugged(queue) && (req = blk_peek_request(queue))) {
1913 		if (basedev->features & DASD_FEATURE_READONLY &&
1914 		    rq_data_dir(req) == WRITE) {
1915 			DBF_DEV_EVENT(DBF_ERR, basedev,
1916 				      "Rejecting write request %p",
1917 				      req);
1918 			blk_start_request(req);
1919 			__blk_end_request_all(req, -EIO);
1920 			continue;
1921 		}
1922 		cqr = basedev->discipline->build_cp(basedev, block, req);
1923 		if (IS_ERR(cqr)) {
1924 			if (PTR_ERR(cqr) == -EBUSY)
1925 				break;	/* normal end condition */
1926 			if (PTR_ERR(cqr) == -ENOMEM)
1927 				break;	/* terminate request queue loop */
1928 			if (PTR_ERR(cqr) == -EAGAIN) {
1929 				/*
1930 				 * The current request cannot be build right
1931 				 * now, we have to try later. If this request
1932 				 * is the head-of-queue we stop the device
1933 				 * for 1/2 second.
1934 				 */
1935 				if (!list_empty(&block->ccw_queue))
1936 					break;
1937 				spin_lock_irqsave(
1938 					get_ccwdev_lock(basedev->cdev), flags);
1939 				dasd_device_set_stop_bits(basedev,
1940 							  DASD_STOPPED_PENDING);
1941 				spin_unlock_irqrestore(
1942 					get_ccwdev_lock(basedev->cdev), flags);
1943 				dasd_block_set_timer(block, HZ/2);
1944 				break;
1945 			}
1946 			DBF_DEV_EVENT(DBF_ERR, basedev,
1947 				      "CCW creation failed (rc=%ld) "
1948 				      "on request %p",
1949 				      PTR_ERR(cqr), req);
1950 			blk_start_request(req);
1951 			__blk_end_request_all(req, -EIO);
1952 			continue;
1953 		}
1954 		/*
1955 		 *  Note: callback is set to dasd_return_cqr_cb in
1956 		 * __dasd_block_start_head to cover erp requests as well
1957 		 */
1958 		cqr->callback_data = (void *) req;
1959 		cqr->status = DASD_CQR_FILLED;
1960 		blk_start_request(req);
1961 		list_add_tail(&cqr->blocklist, &block->ccw_queue);
1962 		dasd_profile_start(block, cqr, req);
1963 	}
1964 }
1965 
1966 static void __dasd_cleanup_cqr(struct dasd_ccw_req *cqr)
1967 {
1968 	struct request *req;
1969 	int status;
1970 	int error = 0;
1971 
1972 	req = (struct request *) cqr->callback_data;
1973 	dasd_profile_end(cqr->block, cqr, req);
1974 	status = cqr->block->base->discipline->free_cp(cqr, req);
1975 	if (status <= 0)
1976 		error = status ? status : -EIO;
1977 	__blk_end_request_all(req, error);
1978 }
1979 
1980 /*
1981  * Process ccw request queue.
1982  */
1983 static void __dasd_process_block_ccw_queue(struct dasd_block *block,
1984 					   struct list_head *final_queue)
1985 {
1986 	struct list_head *l, *n;
1987 	struct dasd_ccw_req *cqr;
1988 	dasd_erp_fn_t erp_fn;
1989 	unsigned long flags;
1990 	struct dasd_device *base = block->base;
1991 
1992 restart:
1993 	/* Process request with final status. */
1994 	list_for_each_safe(l, n, &block->ccw_queue) {
1995 		cqr = list_entry(l, struct dasd_ccw_req, blocklist);
1996 		if (cqr->status != DASD_CQR_DONE &&
1997 		    cqr->status != DASD_CQR_FAILED &&
1998 		    cqr->status != DASD_CQR_NEED_ERP &&
1999 		    cqr->status != DASD_CQR_TERMINATED)
2000 			continue;
2001 
2002 		if (cqr->status == DASD_CQR_TERMINATED) {
2003 			base->discipline->handle_terminated_request(cqr);
2004 			goto restart;
2005 		}
2006 
2007 		/*  Process requests that may be recovered */
2008 		if (cqr->status == DASD_CQR_NEED_ERP) {
2009 			erp_fn = base->discipline->erp_action(cqr);
2010 			if (IS_ERR(erp_fn(cqr)))
2011 				continue;
2012 			goto restart;
2013 		}
2014 
2015 		/* log sense for fatal error */
2016 		if (cqr->status == DASD_CQR_FAILED) {
2017 			dasd_log_sense(cqr, &cqr->irb);
2018 		}
2019 
2020 		/* First of all call extended error reporting. */
2021 		if (dasd_eer_enabled(base) &&
2022 		    cqr->status == DASD_CQR_FAILED) {
2023 			dasd_eer_write(base, cqr, DASD_EER_FATALERROR);
2024 
2025 			/* restart request  */
2026 			cqr->status = DASD_CQR_FILLED;
2027 			cqr->retries = 255;
2028 			spin_lock_irqsave(get_ccwdev_lock(base->cdev), flags);
2029 			dasd_device_set_stop_bits(base, DASD_STOPPED_QUIESCE);
2030 			spin_unlock_irqrestore(get_ccwdev_lock(base->cdev),
2031 					       flags);
2032 			goto restart;
2033 		}
2034 
2035 		/* Process finished ERP request. */
2036 		if (cqr->refers) {
2037 			__dasd_process_erp(base, cqr);
2038 			goto restart;
2039 		}
2040 
2041 		/* Rechain finished requests to final queue */
2042 		cqr->endclk = get_clock();
2043 		list_move_tail(&cqr->blocklist, final_queue);
2044 	}
2045 }
2046 
2047 static void dasd_return_cqr_cb(struct dasd_ccw_req *cqr, void *data)
2048 {
2049 	dasd_schedule_block_bh(cqr->block);
2050 }
2051 
2052 static void __dasd_block_start_head(struct dasd_block *block)
2053 {
2054 	struct dasd_ccw_req *cqr;
2055 
2056 	if (list_empty(&block->ccw_queue))
2057 		return;
2058 	/* We allways begin with the first requests on the queue, as some
2059 	 * of previously started requests have to be enqueued on a
2060 	 * dasd_device again for error recovery.
2061 	 */
2062 	list_for_each_entry(cqr, &block->ccw_queue, blocklist) {
2063 		if (cqr->status != DASD_CQR_FILLED)
2064 			continue;
2065 		/* Non-temporary stop condition will trigger fail fast */
2066 		if (block->base->stopped & ~DASD_STOPPED_PENDING &&
2067 		    test_bit(DASD_CQR_FLAGS_FAILFAST, &cqr->flags) &&
2068 		    (!dasd_eer_enabled(block->base))) {
2069 			cqr->status = DASD_CQR_FAILED;
2070 			dasd_schedule_block_bh(block);
2071 			continue;
2072 		}
2073 		/* Don't try to start requests if device is stopped */
2074 		if (block->base->stopped)
2075 			return;
2076 
2077 		/* just a fail safe check, should not happen */
2078 		if (!cqr->startdev)
2079 			cqr->startdev = block->base;
2080 
2081 		/* make sure that the requests we submit find their way back */
2082 		cqr->callback = dasd_return_cqr_cb;
2083 
2084 		dasd_add_request_tail(cqr);
2085 	}
2086 }
2087 
2088 /*
2089  * Central dasd_block layer routine. Takes requests from the generic
2090  * block layer request queue, creates ccw requests, enqueues them on
2091  * a dasd_device and processes ccw requests that have been returned.
2092  */
2093 static void dasd_block_tasklet(struct dasd_block *block)
2094 {
2095 	struct list_head final_queue;
2096 	struct list_head *l, *n;
2097 	struct dasd_ccw_req *cqr;
2098 
2099 	atomic_set(&block->tasklet_scheduled, 0);
2100 	INIT_LIST_HEAD(&final_queue);
2101 	spin_lock(&block->queue_lock);
2102 	/* Finish off requests on ccw queue */
2103 	__dasd_process_block_ccw_queue(block, &final_queue);
2104 	spin_unlock(&block->queue_lock);
2105 	/* Now call the callback function of requests with final status */
2106 	spin_lock_irq(&block->request_queue_lock);
2107 	list_for_each_safe(l, n, &final_queue) {
2108 		cqr = list_entry(l, struct dasd_ccw_req, blocklist);
2109 		list_del_init(&cqr->blocklist);
2110 		__dasd_cleanup_cqr(cqr);
2111 	}
2112 	spin_lock(&block->queue_lock);
2113 	/* Get new request from the block device request queue */
2114 	__dasd_process_request_queue(block);
2115 	/* Now check if the head of the ccw queue needs to be started. */
2116 	__dasd_block_start_head(block);
2117 	spin_unlock(&block->queue_lock);
2118 	spin_unlock_irq(&block->request_queue_lock);
2119 	dasd_put_device(block->base);
2120 }
2121 
2122 static void _dasd_wake_block_flush_cb(struct dasd_ccw_req *cqr, void *data)
2123 {
2124 	wake_up(&dasd_flush_wq);
2125 }
2126 
2127 /*
2128  * Go through all request on the dasd_block request queue, cancel them
2129  * on the respective dasd_device, and return them to the generic
2130  * block layer.
2131  */
2132 static int dasd_flush_block_queue(struct dasd_block *block)
2133 {
2134 	struct dasd_ccw_req *cqr, *n;
2135 	int rc, i;
2136 	struct list_head flush_queue;
2137 
2138 	INIT_LIST_HEAD(&flush_queue);
2139 	spin_lock_bh(&block->queue_lock);
2140 	rc = 0;
2141 restart:
2142 	list_for_each_entry_safe(cqr, n, &block->ccw_queue, blocklist) {
2143 		/* if this request currently owned by a dasd_device cancel it */
2144 		if (cqr->status >= DASD_CQR_QUEUED)
2145 			rc = dasd_cancel_req(cqr);
2146 		if (rc < 0)
2147 			break;
2148 		/* Rechain request (including erp chain) so it won't be
2149 		 * touched by the dasd_block_tasklet anymore.
2150 		 * Replace the callback so we notice when the request
2151 		 * is returned from the dasd_device layer.
2152 		 */
2153 		cqr->callback = _dasd_wake_block_flush_cb;
2154 		for (i = 0; cqr != NULL; cqr = cqr->refers, i++)
2155 			list_move_tail(&cqr->blocklist, &flush_queue);
2156 		if (i > 1)
2157 			/* moved more than one request - need to restart */
2158 			goto restart;
2159 	}
2160 	spin_unlock_bh(&block->queue_lock);
2161 	/* Now call the callback function of flushed requests */
2162 restart_cb:
2163 	list_for_each_entry_safe(cqr, n, &flush_queue, blocklist) {
2164 		wait_event(dasd_flush_wq, (cqr->status < DASD_CQR_QUEUED));
2165 		/* Process finished ERP request. */
2166 		if (cqr->refers) {
2167 			spin_lock_bh(&block->queue_lock);
2168 			__dasd_process_erp(block->base, cqr);
2169 			spin_unlock_bh(&block->queue_lock);
2170 			/* restart list_for_xx loop since dasd_process_erp
2171 			 * might remove multiple elements */
2172 			goto restart_cb;
2173 		}
2174 		/* call the callback function */
2175 		spin_lock_irq(&block->request_queue_lock);
2176 		cqr->endclk = get_clock();
2177 		list_del_init(&cqr->blocklist);
2178 		__dasd_cleanup_cqr(cqr);
2179 		spin_unlock_irq(&block->request_queue_lock);
2180 	}
2181 	return rc;
2182 }
2183 
2184 /*
2185  * Schedules a call to dasd_tasklet over the device tasklet.
2186  */
2187 void dasd_schedule_block_bh(struct dasd_block *block)
2188 {
2189 	/* Protect against rescheduling. */
2190 	if (atomic_cmpxchg(&block->tasklet_scheduled, 0, 1) != 0)
2191 		return;
2192 	/* life cycle of block is bound to it's base device */
2193 	dasd_get_device(block->base);
2194 	tasklet_hi_schedule(&block->tasklet);
2195 }
2196 
2197 
2198 /*
2199  * SECTION: external block device operations
2200  * (request queue handling, open, release, etc.)
2201  */
2202 
2203 /*
2204  * Dasd request queue function. Called from ll_rw_blk.c
2205  */
2206 static void do_dasd_request(struct request_queue *queue)
2207 {
2208 	struct dasd_block *block;
2209 
2210 	block = queue->queuedata;
2211 	spin_lock(&block->queue_lock);
2212 	/* Get new request from the block device request queue */
2213 	__dasd_process_request_queue(block);
2214 	/* Now check if the head of the ccw queue needs to be started. */
2215 	__dasd_block_start_head(block);
2216 	spin_unlock(&block->queue_lock);
2217 }
2218 
2219 /*
2220  * Allocate and initialize request queue and default I/O scheduler.
2221  */
2222 static int dasd_alloc_queue(struct dasd_block *block)
2223 {
2224 	int rc;
2225 
2226 	block->request_queue = blk_init_queue(do_dasd_request,
2227 					       &block->request_queue_lock);
2228 	if (block->request_queue == NULL)
2229 		return -ENOMEM;
2230 
2231 	block->request_queue->queuedata = block;
2232 
2233 	elevator_exit(block->request_queue->elevator);
2234 	block->request_queue->elevator = NULL;
2235 	rc = elevator_init(block->request_queue, "deadline");
2236 	if (rc) {
2237 		blk_cleanup_queue(block->request_queue);
2238 		return rc;
2239 	}
2240 	return 0;
2241 }
2242 
2243 /*
2244  * Allocate and initialize request queue.
2245  */
2246 static void dasd_setup_queue(struct dasd_block *block)
2247 {
2248 	int max;
2249 
2250 	blk_queue_logical_block_size(block->request_queue, block->bp_block);
2251 	max = block->base->discipline->max_blocks << block->s2b_shift;
2252 	blk_queue_max_hw_sectors(block->request_queue, max);
2253 	blk_queue_max_segments(block->request_queue, -1L);
2254 	/* with page sized segments we can translate each segement into
2255 	 * one idaw/tidaw
2256 	 */
2257 	blk_queue_max_segment_size(block->request_queue, PAGE_SIZE);
2258 	blk_queue_segment_boundary(block->request_queue, PAGE_SIZE - 1);
2259 }
2260 
2261 /*
2262  * Deactivate and free request queue.
2263  */
2264 static void dasd_free_queue(struct dasd_block *block)
2265 {
2266 	if (block->request_queue) {
2267 		blk_cleanup_queue(block->request_queue);
2268 		block->request_queue = NULL;
2269 	}
2270 }
2271 
2272 /*
2273  * Flush request on the request queue.
2274  */
2275 static void dasd_flush_request_queue(struct dasd_block *block)
2276 {
2277 	struct request *req;
2278 
2279 	if (!block->request_queue)
2280 		return;
2281 
2282 	spin_lock_irq(&block->request_queue_lock);
2283 	while ((req = blk_fetch_request(block->request_queue)))
2284 		__blk_end_request_all(req, -EIO);
2285 	spin_unlock_irq(&block->request_queue_lock);
2286 }
2287 
2288 static int dasd_open(struct block_device *bdev, fmode_t mode)
2289 {
2290 	struct dasd_block *block = bdev->bd_disk->private_data;
2291 	struct dasd_device *base;
2292 	int rc;
2293 
2294 	if (!block)
2295 		return -ENODEV;
2296 
2297 	base = block->base;
2298 	atomic_inc(&block->open_count);
2299 	if (test_bit(DASD_FLAG_OFFLINE, &base->flags)) {
2300 		rc = -ENODEV;
2301 		goto unlock;
2302 	}
2303 
2304 	if (!try_module_get(base->discipline->owner)) {
2305 		rc = -EINVAL;
2306 		goto unlock;
2307 	}
2308 
2309 	if (dasd_probeonly) {
2310 		dev_info(&base->cdev->dev,
2311 			 "Accessing the DASD failed because it is in "
2312 			 "probeonly mode\n");
2313 		rc = -EPERM;
2314 		goto out;
2315 	}
2316 
2317 	if (base->state <= DASD_STATE_BASIC) {
2318 		DBF_DEV_EVENT(DBF_ERR, base, " %s",
2319 			      " Cannot open unrecognized device");
2320 		rc = -ENODEV;
2321 		goto out;
2322 	}
2323 
2324 	if ((mode & FMODE_WRITE) &&
2325 	    (test_bit(DASD_FLAG_DEVICE_RO, &base->flags) ||
2326 	     (base->features & DASD_FEATURE_READONLY))) {
2327 		rc = -EROFS;
2328 		goto out;
2329 	}
2330 
2331 	return 0;
2332 
2333 out:
2334 	module_put(base->discipline->owner);
2335 unlock:
2336 	atomic_dec(&block->open_count);
2337 	return rc;
2338 }
2339 
2340 static int dasd_release(struct gendisk *disk, fmode_t mode)
2341 {
2342 	struct dasd_block *block = disk->private_data;
2343 
2344 	atomic_dec(&block->open_count);
2345 	module_put(block->base->discipline->owner);
2346 	return 0;
2347 }
2348 
2349 /*
2350  * Return disk geometry.
2351  */
2352 static int dasd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
2353 {
2354 	struct dasd_block *block;
2355 	struct dasd_device *base;
2356 
2357 	block = bdev->bd_disk->private_data;
2358 	if (!block)
2359 		return -ENODEV;
2360 	base = block->base;
2361 
2362 	if (!base->discipline ||
2363 	    !base->discipline->fill_geometry)
2364 		return -EINVAL;
2365 
2366 	base->discipline->fill_geometry(block, geo);
2367 	geo->start = get_start_sect(bdev) >> block->s2b_shift;
2368 	return 0;
2369 }
2370 
2371 const struct block_device_operations
2372 dasd_device_operations = {
2373 	.owner		= THIS_MODULE,
2374 	.open		= dasd_open,
2375 	.release	= dasd_release,
2376 	.ioctl		= dasd_ioctl,
2377 	.compat_ioctl	= dasd_ioctl,
2378 	.getgeo		= dasd_getgeo,
2379 };
2380 
2381 /*******************************************************************************
2382  * end of block device operations
2383  */
2384 
2385 static void
2386 dasd_exit(void)
2387 {
2388 #ifdef CONFIG_PROC_FS
2389 	dasd_proc_exit();
2390 #endif
2391 	dasd_eer_exit();
2392         if (dasd_page_cache != NULL) {
2393 		kmem_cache_destroy(dasd_page_cache);
2394 		dasd_page_cache = NULL;
2395 	}
2396 	dasd_gendisk_exit();
2397 	dasd_devmap_exit();
2398 	if (dasd_debug_area != NULL) {
2399 		debug_unregister(dasd_debug_area);
2400 		dasd_debug_area = NULL;
2401 	}
2402 }
2403 
2404 /*
2405  * SECTION: common functions for ccw_driver use
2406  */
2407 
2408 /*
2409  * Is the device read-only?
2410  * Note that this function does not report the setting of the
2411  * readonly device attribute, but how it is configured in z/VM.
2412  */
2413 int dasd_device_is_ro(struct dasd_device *device)
2414 {
2415 	struct ccw_dev_id dev_id;
2416 	struct diag210 diag_data;
2417 	int rc;
2418 
2419 	if (!MACHINE_IS_VM)
2420 		return 0;
2421 	ccw_device_get_id(device->cdev, &dev_id);
2422 	memset(&diag_data, 0, sizeof(diag_data));
2423 	diag_data.vrdcdvno = dev_id.devno;
2424 	diag_data.vrdclen = sizeof(diag_data);
2425 	rc = diag210(&diag_data);
2426 	if (rc == 0 || rc == 2) {
2427 		return diag_data.vrdcvfla & 0x80;
2428 	} else {
2429 		DBF_EVENT(DBF_WARNING, "diag210 failed for dev=%04x with rc=%d",
2430 			  dev_id.devno, rc);
2431 		return 0;
2432 	}
2433 }
2434 EXPORT_SYMBOL_GPL(dasd_device_is_ro);
2435 
2436 static void dasd_generic_auto_online(void *data, async_cookie_t cookie)
2437 {
2438 	struct ccw_device *cdev = data;
2439 	int ret;
2440 
2441 	ret = ccw_device_set_online(cdev);
2442 	if (ret)
2443 		pr_warning("%s: Setting the DASD online failed with rc=%d\n",
2444 			   dev_name(&cdev->dev), ret);
2445 }
2446 
2447 /*
2448  * Initial attempt at a probe function. this can be simplified once
2449  * the other detection code is gone.
2450  */
2451 int dasd_generic_probe(struct ccw_device *cdev,
2452 		       struct dasd_discipline *discipline)
2453 {
2454 	int ret;
2455 
2456 	ret = dasd_add_sysfs_files(cdev);
2457 	if (ret) {
2458 		DBF_EVENT_DEVID(DBF_WARNING, cdev, "%s",
2459 				"dasd_generic_probe: could not add "
2460 				"sysfs entries");
2461 		return ret;
2462 	}
2463 	cdev->handler = &dasd_int_handler;
2464 
2465 	/*
2466 	 * Automatically online either all dasd devices (dasd_autodetect)
2467 	 * or all devices specified with dasd= parameters during
2468 	 * initial probe.
2469 	 */
2470 	if ((dasd_get_feature(cdev, DASD_FEATURE_INITIAL_ONLINE) > 0 ) ||
2471 	    (dasd_autodetect && dasd_busid_known(dev_name(&cdev->dev)) != 0))
2472 		async_schedule(dasd_generic_auto_online, cdev);
2473 	return 0;
2474 }
2475 
2476 /*
2477  * This will one day be called from a global not_oper handler.
2478  * It is also used by driver_unregister during module unload.
2479  */
2480 void dasd_generic_remove(struct ccw_device *cdev)
2481 {
2482 	struct dasd_device *device;
2483 	struct dasd_block *block;
2484 
2485 	cdev->handler = NULL;
2486 
2487 	dasd_remove_sysfs_files(cdev);
2488 	device = dasd_device_from_cdev(cdev);
2489 	if (IS_ERR(device))
2490 		return;
2491 	if (test_and_set_bit(DASD_FLAG_OFFLINE, &device->flags)) {
2492 		/* Already doing offline processing */
2493 		dasd_put_device(device);
2494 		return;
2495 	}
2496 	/*
2497 	 * This device is removed unconditionally. Set offline
2498 	 * flag to prevent dasd_open from opening it while it is
2499 	 * no quite down yet.
2500 	 */
2501 	dasd_set_target_state(device, DASD_STATE_NEW);
2502 	/* dasd_delete_device destroys the device reference. */
2503 	block = device->block;
2504 	device->block = NULL;
2505 	dasd_delete_device(device);
2506 	/*
2507 	 * life cycle of block is bound to device, so delete it after
2508 	 * device was safely removed
2509 	 */
2510 	if (block)
2511 		dasd_free_block(block);
2512 }
2513 
2514 /*
2515  * Activate a device. This is called from dasd_{eckd,fba}_probe() when either
2516  * the device is detected for the first time and is supposed to be used
2517  * or the user has started activation through sysfs.
2518  */
2519 int dasd_generic_set_online(struct ccw_device *cdev,
2520 			    struct dasd_discipline *base_discipline)
2521 {
2522 	struct dasd_discipline *discipline;
2523 	struct dasd_device *device;
2524 	int rc;
2525 
2526 	/* first online clears initial online feature flag */
2527 	dasd_set_feature(cdev, DASD_FEATURE_INITIAL_ONLINE, 0);
2528 	device = dasd_create_device(cdev);
2529 	if (IS_ERR(device))
2530 		return PTR_ERR(device);
2531 
2532 	discipline = base_discipline;
2533 	if (device->features & DASD_FEATURE_USEDIAG) {
2534 	  	if (!dasd_diag_discipline_pointer) {
2535 			pr_warning("%s Setting the DASD online failed because "
2536 				   "of missing DIAG discipline\n",
2537 				   dev_name(&cdev->dev));
2538 			dasd_delete_device(device);
2539 			return -ENODEV;
2540 		}
2541 		discipline = dasd_diag_discipline_pointer;
2542 	}
2543 	if (!try_module_get(base_discipline->owner)) {
2544 		dasd_delete_device(device);
2545 		return -EINVAL;
2546 	}
2547 	if (!try_module_get(discipline->owner)) {
2548 		module_put(base_discipline->owner);
2549 		dasd_delete_device(device);
2550 		return -EINVAL;
2551 	}
2552 	device->base_discipline = base_discipline;
2553 	device->discipline = discipline;
2554 
2555 	/* check_device will allocate block device if necessary */
2556 	rc = discipline->check_device(device);
2557 	if (rc) {
2558 		pr_warning("%s Setting the DASD online with discipline %s "
2559 			   "failed with rc=%i\n",
2560 			   dev_name(&cdev->dev), discipline->name, rc);
2561 		module_put(discipline->owner);
2562 		module_put(base_discipline->owner);
2563 		dasd_delete_device(device);
2564 		return rc;
2565 	}
2566 
2567 	dasd_set_target_state(device, DASD_STATE_ONLINE);
2568 	if (device->state <= DASD_STATE_KNOWN) {
2569 		pr_warning("%s Setting the DASD online failed because of a "
2570 			   "missing discipline\n", dev_name(&cdev->dev));
2571 		rc = -ENODEV;
2572 		dasd_set_target_state(device, DASD_STATE_NEW);
2573 		if (device->block)
2574 			dasd_free_block(device->block);
2575 		dasd_delete_device(device);
2576 	} else
2577 		pr_debug("dasd_generic device %s found\n",
2578 				dev_name(&cdev->dev));
2579 
2580 	wait_event(dasd_init_waitq, _wait_for_device(device));
2581 
2582 	dasd_put_device(device);
2583 	return rc;
2584 }
2585 
2586 int dasd_generic_set_offline(struct ccw_device *cdev)
2587 {
2588 	struct dasd_device *device;
2589 	struct dasd_block *block;
2590 	int max_count, open_count;
2591 
2592 	device = dasd_device_from_cdev(cdev);
2593 	if (IS_ERR(device))
2594 		return PTR_ERR(device);
2595 	if (test_and_set_bit(DASD_FLAG_OFFLINE, &device->flags)) {
2596 		/* Already doing offline processing */
2597 		dasd_put_device(device);
2598 		return 0;
2599 	}
2600 	/*
2601 	 * We must make sure that this device is currently not in use.
2602 	 * The open_count is increased for every opener, that includes
2603 	 * the blkdev_get in dasd_scan_partitions. We are only interested
2604 	 * in the other openers.
2605 	 */
2606 	if (device->block) {
2607 		max_count = device->block->bdev ? 0 : -1;
2608 		open_count = atomic_read(&device->block->open_count);
2609 		if (open_count > max_count) {
2610 			if (open_count > 0)
2611 				pr_warning("%s: The DASD cannot be set offline "
2612 					   "with open count %i\n",
2613 					   dev_name(&cdev->dev), open_count);
2614 			else
2615 				pr_warning("%s: The DASD cannot be set offline "
2616 					   "while it is in use\n",
2617 					   dev_name(&cdev->dev));
2618 			clear_bit(DASD_FLAG_OFFLINE, &device->flags);
2619 			dasd_put_device(device);
2620 			return -EBUSY;
2621 		}
2622 	}
2623 	dasd_set_target_state(device, DASD_STATE_NEW);
2624 	/* dasd_delete_device destroys the device reference. */
2625 	block = device->block;
2626 	device->block = NULL;
2627 	dasd_delete_device(device);
2628 	/*
2629 	 * life cycle of block is bound to device, so delete it after
2630 	 * device was safely removed
2631 	 */
2632 	if (block)
2633 		dasd_free_block(block);
2634 	return 0;
2635 }
2636 
2637 int dasd_generic_last_path_gone(struct dasd_device *device)
2638 {
2639 	struct dasd_ccw_req *cqr;
2640 
2641 	dev_warn(&device->cdev->dev, "No operational channel path is left "
2642 		 "for the device\n");
2643 	DBF_DEV_EVENT(DBF_WARNING, device, "%s", "last path gone");
2644 	/* First of all call extended error reporting. */
2645 	dasd_eer_write(device, NULL, DASD_EER_NOPATH);
2646 
2647 	if (device->state < DASD_STATE_BASIC)
2648 		return 0;
2649 	/* Device is active. We want to keep it. */
2650 	list_for_each_entry(cqr, &device->ccw_queue, devlist)
2651 		if ((cqr->status == DASD_CQR_IN_IO) ||
2652 		    (cqr->status == DASD_CQR_CLEAR_PENDING)) {
2653 			cqr->status = DASD_CQR_QUEUED;
2654 			cqr->retries++;
2655 		}
2656 	dasd_device_set_stop_bits(device, DASD_STOPPED_DC_WAIT);
2657 	dasd_device_clear_timer(device);
2658 	dasd_schedule_device_bh(device);
2659 	return 1;
2660 }
2661 EXPORT_SYMBOL_GPL(dasd_generic_last_path_gone);
2662 
2663 int dasd_generic_path_operational(struct dasd_device *device)
2664 {
2665 	dev_info(&device->cdev->dev, "A channel path to the device has become "
2666 		 "operational\n");
2667 	DBF_DEV_EVENT(DBF_WARNING, device, "%s", "path operational");
2668 	dasd_device_remove_stop_bits(device, DASD_STOPPED_DC_WAIT);
2669 	if (device->stopped & DASD_UNRESUMED_PM) {
2670 		dasd_device_remove_stop_bits(device, DASD_UNRESUMED_PM);
2671 		dasd_restore_device(device);
2672 		return 1;
2673 	}
2674 	dasd_schedule_device_bh(device);
2675 	if (device->block)
2676 		dasd_schedule_block_bh(device->block);
2677 	return 1;
2678 }
2679 EXPORT_SYMBOL_GPL(dasd_generic_path_operational);
2680 
2681 int dasd_generic_notify(struct ccw_device *cdev, int event)
2682 {
2683 	struct dasd_device *device;
2684 	int ret;
2685 
2686 	device = dasd_device_from_cdev_locked(cdev);
2687 	if (IS_ERR(device))
2688 		return 0;
2689 	ret = 0;
2690 	switch (event) {
2691 	case CIO_GONE:
2692 	case CIO_BOXED:
2693 	case CIO_NO_PATH:
2694 		device->path_data.opm = 0;
2695 		device->path_data.ppm = 0;
2696 		device->path_data.npm = 0;
2697 		ret = dasd_generic_last_path_gone(device);
2698 		break;
2699 	case CIO_OPER:
2700 		ret = 1;
2701 		if (device->path_data.opm)
2702 			ret = dasd_generic_path_operational(device);
2703 		break;
2704 	}
2705 	dasd_put_device(device);
2706 	return ret;
2707 }
2708 
2709 void dasd_generic_path_event(struct ccw_device *cdev, int *path_event)
2710 {
2711 	int chp;
2712 	__u8 oldopm, eventlpm;
2713 	struct dasd_device *device;
2714 
2715 	device = dasd_device_from_cdev_locked(cdev);
2716 	if (IS_ERR(device))
2717 		return;
2718 	for (chp = 0; chp < 8; chp++) {
2719 		eventlpm = 0x80 >> chp;
2720 		if (path_event[chp] & PE_PATH_GONE) {
2721 			oldopm = device->path_data.opm;
2722 			device->path_data.opm &= ~eventlpm;
2723 			device->path_data.ppm &= ~eventlpm;
2724 			device->path_data.npm &= ~eventlpm;
2725 			if (oldopm && !device->path_data.opm)
2726 				dasd_generic_last_path_gone(device);
2727 		}
2728 		if (path_event[chp] & PE_PATH_AVAILABLE) {
2729 			device->path_data.opm &= ~eventlpm;
2730 			device->path_data.ppm &= ~eventlpm;
2731 			device->path_data.npm &= ~eventlpm;
2732 			device->path_data.tbvpm |= eventlpm;
2733 			dasd_schedule_device_bh(device);
2734 		}
2735 	}
2736 	dasd_put_device(device);
2737 }
2738 EXPORT_SYMBOL_GPL(dasd_generic_path_event);
2739 
2740 int dasd_generic_verify_path(struct dasd_device *device, __u8 lpm)
2741 {
2742 	if (!device->path_data.opm && lpm) {
2743 		device->path_data.opm = lpm;
2744 		dasd_generic_path_operational(device);
2745 	} else
2746 		device->path_data.opm |= lpm;
2747 	return 0;
2748 }
2749 EXPORT_SYMBOL_GPL(dasd_generic_verify_path);
2750 
2751 
2752 int dasd_generic_pm_freeze(struct ccw_device *cdev)
2753 {
2754 	struct dasd_ccw_req *cqr, *n;
2755 	int rc;
2756 	struct list_head freeze_queue;
2757 	struct dasd_device *device = dasd_device_from_cdev(cdev);
2758 
2759 	if (IS_ERR(device))
2760 		return PTR_ERR(device);
2761 	/* disallow new I/O  */
2762 	dasd_device_set_stop_bits(device, DASD_STOPPED_PM);
2763 	/* clear active requests */
2764 	INIT_LIST_HEAD(&freeze_queue);
2765 	spin_lock_irq(get_ccwdev_lock(cdev));
2766 	rc = 0;
2767 	list_for_each_entry_safe(cqr, n, &device->ccw_queue, devlist) {
2768 		/* Check status and move request to flush_queue */
2769 		if (cqr->status == DASD_CQR_IN_IO) {
2770 			rc = device->discipline->term_IO(cqr);
2771 			if (rc) {
2772 				/* unable to terminate requeust */
2773 				dev_err(&device->cdev->dev,
2774 					"Unable to terminate request %p "
2775 					"on suspend\n", cqr);
2776 				spin_unlock_irq(get_ccwdev_lock(cdev));
2777 				dasd_put_device(device);
2778 				return rc;
2779 			}
2780 		}
2781 		list_move_tail(&cqr->devlist, &freeze_queue);
2782 	}
2783 
2784 	spin_unlock_irq(get_ccwdev_lock(cdev));
2785 
2786 	list_for_each_entry_safe(cqr, n, &freeze_queue, devlist) {
2787 		wait_event(dasd_flush_wq,
2788 			   (cqr->status != DASD_CQR_CLEAR_PENDING));
2789 		if (cqr->status == DASD_CQR_CLEARED)
2790 			cqr->status = DASD_CQR_QUEUED;
2791 	}
2792 	/* move freeze_queue to start of the ccw_queue */
2793 	spin_lock_irq(get_ccwdev_lock(cdev));
2794 	list_splice_tail(&freeze_queue, &device->ccw_queue);
2795 	spin_unlock_irq(get_ccwdev_lock(cdev));
2796 
2797 	if (device->discipline->freeze)
2798 		rc = device->discipline->freeze(device);
2799 
2800 	dasd_put_device(device);
2801 	return rc;
2802 }
2803 EXPORT_SYMBOL_GPL(dasd_generic_pm_freeze);
2804 
2805 int dasd_generic_restore_device(struct ccw_device *cdev)
2806 {
2807 	struct dasd_device *device = dasd_device_from_cdev(cdev);
2808 	int rc = 0;
2809 
2810 	if (IS_ERR(device))
2811 		return PTR_ERR(device);
2812 
2813 	/* allow new IO again */
2814 	dasd_device_remove_stop_bits(device,
2815 				     (DASD_STOPPED_PM | DASD_UNRESUMED_PM));
2816 
2817 	dasd_schedule_device_bh(device);
2818 
2819 	/*
2820 	 * call discipline restore function
2821 	 * if device is stopped do nothing e.g. for disconnected devices
2822 	 */
2823 	if (device->discipline->restore && !(device->stopped))
2824 		rc = device->discipline->restore(device);
2825 	if (rc || device->stopped)
2826 		/*
2827 		 * if the resume failed for the DASD we put it in
2828 		 * an UNRESUMED stop state
2829 		 */
2830 		device->stopped |= DASD_UNRESUMED_PM;
2831 
2832 	if (device->block)
2833 		dasd_schedule_block_bh(device->block);
2834 
2835 	dasd_put_device(device);
2836 	return 0;
2837 }
2838 EXPORT_SYMBOL_GPL(dasd_generic_restore_device);
2839 
2840 static struct dasd_ccw_req *dasd_generic_build_rdc(struct dasd_device *device,
2841 						   void *rdc_buffer,
2842 						   int rdc_buffer_size,
2843 						   int magic)
2844 {
2845 	struct dasd_ccw_req *cqr;
2846 	struct ccw1 *ccw;
2847 	unsigned long *idaw;
2848 
2849 	cqr = dasd_smalloc_request(magic, 1 /* RDC */, rdc_buffer_size, device);
2850 
2851 	if (IS_ERR(cqr)) {
2852 		/* internal error 13 - Allocating the RDC request failed*/
2853 		dev_err(&device->cdev->dev,
2854 			 "An error occurred in the DASD device driver, "
2855 			 "reason=%s\n", "13");
2856 		return cqr;
2857 	}
2858 
2859 	ccw = cqr->cpaddr;
2860 	ccw->cmd_code = CCW_CMD_RDC;
2861 	if (idal_is_needed(rdc_buffer, rdc_buffer_size)) {
2862 		idaw = (unsigned long *) (cqr->data);
2863 		ccw->cda = (__u32)(addr_t) idaw;
2864 		ccw->flags = CCW_FLAG_IDA;
2865 		idaw = idal_create_words(idaw, rdc_buffer, rdc_buffer_size);
2866 	} else {
2867 		ccw->cda = (__u32)(addr_t) rdc_buffer;
2868 		ccw->flags = 0;
2869 	}
2870 
2871 	ccw->count = rdc_buffer_size;
2872 	cqr->startdev = device;
2873 	cqr->memdev = device;
2874 	cqr->expires = 10*HZ;
2875 	cqr->retries = 256;
2876 	cqr->buildclk = get_clock();
2877 	cqr->status = DASD_CQR_FILLED;
2878 	return cqr;
2879 }
2880 
2881 
2882 int dasd_generic_read_dev_chars(struct dasd_device *device, int magic,
2883 				void *rdc_buffer, int rdc_buffer_size)
2884 {
2885 	int ret;
2886 	struct dasd_ccw_req *cqr;
2887 
2888 	cqr = dasd_generic_build_rdc(device, rdc_buffer, rdc_buffer_size,
2889 				     magic);
2890 	if (IS_ERR(cqr))
2891 		return PTR_ERR(cqr);
2892 
2893 	ret = dasd_sleep_on(cqr);
2894 	dasd_sfree_request(cqr, cqr->memdev);
2895 	return ret;
2896 }
2897 EXPORT_SYMBOL_GPL(dasd_generic_read_dev_chars);
2898 
2899 /*
2900  *   In command mode and transport mode we need to look for sense
2901  *   data in different places. The sense data itself is allways
2902  *   an array of 32 bytes, so we can unify the sense data access
2903  *   for both modes.
2904  */
2905 char *dasd_get_sense(struct irb *irb)
2906 {
2907 	struct tsb *tsb = NULL;
2908 	char *sense = NULL;
2909 
2910 	if (scsw_is_tm(&irb->scsw) && (irb->scsw.tm.fcxs == 0x01)) {
2911 		if (irb->scsw.tm.tcw)
2912 			tsb = tcw_get_tsb((struct tcw *)(unsigned long)
2913 					  irb->scsw.tm.tcw);
2914 		if (tsb && tsb->length == 64 && tsb->flags)
2915 			switch (tsb->flags & 0x07) {
2916 			case 1:	/* tsa_iostat */
2917 				sense = tsb->tsa.iostat.sense;
2918 				break;
2919 			case 2: /* tsa_ddpc */
2920 				sense = tsb->tsa.ddpc.sense;
2921 				break;
2922 			default:
2923 				/* currently we don't use interrogate data */
2924 				break;
2925 			}
2926 	} else if (irb->esw.esw0.erw.cons) {
2927 		sense = irb->ecw;
2928 	}
2929 	return sense;
2930 }
2931 EXPORT_SYMBOL_GPL(dasd_get_sense);
2932 
2933 static int __init dasd_init(void)
2934 {
2935 	int rc;
2936 
2937 	init_waitqueue_head(&dasd_init_waitq);
2938 	init_waitqueue_head(&dasd_flush_wq);
2939 	init_waitqueue_head(&generic_waitq);
2940 
2941 	/* register 'common' DASD debug area, used for all DBF_XXX calls */
2942 	dasd_debug_area = debug_register("dasd", 1, 1, 8 * sizeof(long));
2943 	if (dasd_debug_area == NULL) {
2944 		rc = -ENOMEM;
2945 		goto failed;
2946 	}
2947 	debug_register_view(dasd_debug_area, &debug_sprintf_view);
2948 	debug_set_level(dasd_debug_area, DBF_WARNING);
2949 
2950 	DBF_EVENT(DBF_EMERG, "%s", "debug area created");
2951 
2952 	dasd_diag_discipline_pointer = NULL;
2953 
2954 	rc = dasd_devmap_init();
2955 	if (rc)
2956 		goto failed;
2957 	rc = dasd_gendisk_init();
2958 	if (rc)
2959 		goto failed;
2960 	rc = dasd_parse();
2961 	if (rc)
2962 		goto failed;
2963 	rc = dasd_eer_init();
2964 	if (rc)
2965 		goto failed;
2966 #ifdef CONFIG_PROC_FS
2967 	rc = dasd_proc_init();
2968 	if (rc)
2969 		goto failed;
2970 #endif
2971 
2972 	return 0;
2973 failed:
2974 	pr_info("The DASD device driver could not be initialized\n");
2975 	dasd_exit();
2976 	return rc;
2977 }
2978 
2979 module_init(dasd_init);
2980 module_exit(dasd_exit);
2981 
2982 EXPORT_SYMBOL(dasd_debug_area);
2983 EXPORT_SYMBOL(dasd_diag_discipline_pointer);
2984 
2985 EXPORT_SYMBOL(dasd_add_request_head);
2986 EXPORT_SYMBOL(dasd_add_request_tail);
2987 EXPORT_SYMBOL(dasd_cancel_req);
2988 EXPORT_SYMBOL(dasd_device_clear_timer);
2989 EXPORT_SYMBOL(dasd_block_clear_timer);
2990 EXPORT_SYMBOL(dasd_enable_device);
2991 EXPORT_SYMBOL(dasd_int_handler);
2992 EXPORT_SYMBOL(dasd_kfree_request);
2993 EXPORT_SYMBOL(dasd_kick_device);
2994 EXPORT_SYMBOL(dasd_kmalloc_request);
2995 EXPORT_SYMBOL(dasd_schedule_device_bh);
2996 EXPORT_SYMBOL(dasd_schedule_block_bh);
2997 EXPORT_SYMBOL(dasd_set_target_state);
2998 EXPORT_SYMBOL(dasd_device_set_timer);
2999 EXPORT_SYMBOL(dasd_block_set_timer);
3000 EXPORT_SYMBOL(dasd_sfree_request);
3001 EXPORT_SYMBOL(dasd_sleep_on);
3002 EXPORT_SYMBOL(dasd_sleep_on_immediatly);
3003 EXPORT_SYMBOL(dasd_sleep_on_interruptible);
3004 EXPORT_SYMBOL(dasd_smalloc_request);
3005 EXPORT_SYMBOL(dasd_start_IO);
3006 EXPORT_SYMBOL(dasd_term_IO);
3007 
3008 EXPORT_SYMBOL_GPL(dasd_generic_probe);
3009 EXPORT_SYMBOL_GPL(dasd_generic_remove);
3010 EXPORT_SYMBOL_GPL(dasd_generic_notify);
3011 EXPORT_SYMBOL_GPL(dasd_generic_set_online);
3012 EXPORT_SYMBOL_GPL(dasd_generic_set_offline);
3013 EXPORT_SYMBOL_GPL(dasd_generic_handle_state_change);
3014 EXPORT_SYMBOL_GPL(dasd_flush_device_queue);
3015 EXPORT_SYMBOL_GPL(dasd_alloc_block);
3016 EXPORT_SYMBOL_GPL(dasd_free_block);
3017