xref: /openbmc/linux/drivers/s390/block/dasd.c (revision 5a27e60d)
1 /*
2  * File...........: linux/drivers/s390/block/dasd.c
3  * Author(s)......: Holger Smolinski <Holger.Smolinski@de.ibm.com>
4  *		    Horst Hummel <Horst.Hummel@de.ibm.com>
5  *		    Carsten Otte <Cotte@de.ibm.com>
6  *		    Martin Schwidefsky <schwidefsky@de.ibm.com>
7  * Bugreports.to..: <Linux390@de.ibm.com>
8  * Copyright IBM Corp. 1999, 2009
9  */
10 
11 #define KMSG_COMPONENT "dasd"
12 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
13 
14 #include <linux/kernel_stat.h>
15 #include <linux/kmod.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/ctype.h>
19 #include <linux/major.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/hdreg.h>
23 #include <linux/async.h>
24 #include <linux/mutex.h>
25 
26 #include <asm/ccwdev.h>
27 #include <asm/ebcdic.h>
28 #include <asm/idals.h>
29 #include <asm/itcw.h>
30 #include <asm/diag.h>
31 
32 /* This is ugly... */
33 #define PRINTK_HEADER "dasd:"
34 
35 #include "dasd_int.h"
36 /*
37  * SECTION: Constant definitions to be used within this file
38  */
39 #define DASD_CHANQ_MAX_SIZE 4
40 
41 #define DASD_SLEEPON_START_TAG	(void *) 1
42 #define DASD_SLEEPON_END_TAG	(void *) 2
43 
44 /*
45  * SECTION: exported variables of dasd.c
46  */
47 debug_info_t *dasd_debug_area;
48 struct dasd_discipline *dasd_diag_discipline_pointer;
49 void dasd_int_handler(struct ccw_device *, unsigned long, struct irb *);
50 
51 MODULE_AUTHOR("Holger Smolinski <Holger.Smolinski@de.ibm.com>");
52 MODULE_DESCRIPTION("Linux on S/390 DASD device driver,"
53 		   " Copyright 2000 IBM Corporation");
54 MODULE_SUPPORTED_DEVICE("dasd");
55 MODULE_LICENSE("GPL");
56 
57 /*
58  * SECTION: prototypes for static functions of dasd.c
59  */
60 static int  dasd_alloc_queue(struct dasd_block *);
61 static void dasd_setup_queue(struct dasd_block *);
62 static void dasd_free_queue(struct dasd_block *);
63 static void dasd_flush_request_queue(struct dasd_block *);
64 static int dasd_flush_block_queue(struct dasd_block *);
65 static void dasd_device_tasklet(struct dasd_device *);
66 static void dasd_block_tasklet(struct dasd_block *);
67 static void do_kick_device(struct work_struct *);
68 static void do_restore_device(struct work_struct *);
69 static void do_reload_device(struct work_struct *);
70 static void dasd_return_cqr_cb(struct dasd_ccw_req *, void *);
71 static void dasd_device_timeout(unsigned long);
72 static void dasd_block_timeout(unsigned long);
73 static void __dasd_process_erp(struct dasd_device *, struct dasd_ccw_req *);
74 
75 /*
76  * SECTION: Operations on the device structure.
77  */
78 static wait_queue_head_t dasd_init_waitq;
79 static wait_queue_head_t dasd_flush_wq;
80 static wait_queue_head_t generic_waitq;
81 
82 /*
83  * Allocate memory for a new device structure.
84  */
85 struct dasd_device *dasd_alloc_device(void)
86 {
87 	struct dasd_device *device;
88 
89 	device = kzalloc(sizeof(struct dasd_device), GFP_ATOMIC);
90 	if (!device)
91 		return ERR_PTR(-ENOMEM);
92 
93 	/* Get two pages for normal block device operations. */
94 	device->ccw_mem = (void *) __get_free_pages(GFP_ATOMIC | GFP_DMA, 1);
95 	if (!device->ccw_mem) {
96 		kfree(device);
97 		return ERR_PTR(-ENOMEM);
98 	}
99 	/* Get one page for error recovery. */
100 	device->erp_mem = (void *) get_zeroed_page(GFP_ATOMIC | GFP_DMA);
101 	if (!device->erp_mem) {
102 		free_pages((unsigned long) device->ccw_mem, 1);
103 		kfree(device);
104 		return ERR_PTR(-ENOMEM);
105 	}
106 
107 	dasd_init_chunklist(&device->ccw_chunks, device->ccw_mem, PAGE_SIZE*2);
108 	dasd_init_chunklist(&device->erp_chunks, device->erp_mem, PAGE_SIZE);
109 	spin_lock_init(&device->mem_lock);
110 	atomic_set(&device->tasklet_scheduled, 0);
111 	tasklet_init(&device->tasklet,
112 		     (void (*)(unsigned long)) dasd_device_tasklet,
113 		     (unsigned long) device);
114 	INIT_LIST_HEAD(&device->ccw_queue);
115 	init_timer(&device->timer);
116 	device->timer.function = dasd_device_timeout;
117 	device->timer.data = (unsigned long) device;
118 	INIT_WORK(&device->kick_work, do_kick_device);
119 	INIT_WORK(&device->restore_device, do_restore_device);
120 	INIT_WORK(&device->reload_device, do_reload_device);
121 	device->state = DASD_STATE_NEW;
122 	device->target = DASD_STATE_NEW;
123 	mutex_init(&device->state_mutex);
124 
125 	return device;
126 }
127 
128 /*
129  * Free memory of a device structure.
130  */
131 void dasd_free_device(struct dasd_device *device)
132 {
133 	kfree(device->private);
134 	free_page((unsigned long) device->erp_mem);
135 	free_pages((unsigned long) device->ccw_mem, 1);
136 	kfree(device);
137 }
138 
139 /*
140  * Allocate memory for a new device structure.
141  */
142 struct dasd_block *dasd_alloc_block(void)
143 {
144 	struct dasd_block *block;
145 
146 	block = kzalloc(sizeof(*block), GFP_ATOMIC);
147 	if (!block)
148 		return ERR_PTR(-ENOMEM);
149 	/* open_count = 0 means device online but not in use */
150 	atomic_set(&block->open_count, -1);
151 
152 	spin_lock_init(&block->request_queue_lock);
153 	atomic_set(&block->tasklet_scheduled, 0);
154 	tasklet_init(&block->tasklet,
155 		     (void (*)(unsigned long)) dasd_block_tasklet,
156 		     (unsigned long) block);
157 	INIT_LIST_HEAD(&block->ccw_queue);
158 	spin_lock_init(&block->queue_lock);
159 	init_timer(&block->timer);
160 	block->timer.function = dasd_block_timeout;
161 	block->timer.data = (unsigned long) block;
162 
163 	return block;
164 }
165 
166 /*
167  * Free memory of a device structure.
168  */
169 void dasd_free_block(struct dasd_block *block)
170 {
171 	kfree(block);
172 }
173 
174 /*
175  * Make a new device known to the system.
176  */
177 static int dasd_state_new_to_known(struct dasd_device *device)
178 {
179 	int rc;
180 
181 	/*
182 	 * As long as the device is not in state DASD_STATE_NEW we want to
183 	 * keep the reference count > 0.
184 	 */
185 	dasd_get_device(device);
186 
187 	if (device->block) {
188 		rc = dasd_alloc_queue(device->block);
189 		if (rc) {
190 			dasd_put_device(device);
191 			return rc;
192 		}
193 	}
194 	device->state = DASD_STATE_KNOWN;
195 	return 0;
196 }
197 
198 /*
199  * Let the system forget about a device.
200  */
201 static int dasd_state_known_to_new(struct dasd_device *device)
202 {
203 	/* Disable extended error reporting for this device. */
204 	dasd_eer_disable(device);
205 	/* Forget the discipline information. */
206 	if (device->discipline) {
207 		if (device->discipline->uncheck_device)
208 			device->discipline->uncheck_device(device);
209 		module_put(device->discipline->owner);
210 	}
211 	device->discipline = NULL;
212 	if (device->base_discipline)
213 		module_put(device->base_discipline->owner);
214 	device->base_discipline = NULL;
215 	device->state = DASD_STATE_NEW;
216 
217 	if (device->block)
218 		dasd_free_queue(device->block);
219 
220 	/* Give up reference we took in dasd_state_new_to_known. */
221 	dasd_put_device(device);
222 	return 0;
223 }
224 
225 /*
226  * Request the irq line for the device.
227  */
228 static int dasd_state_known_to_basic(struct dasd_device *device)
229 {
230 	int rc;
231 
232 	/* Allocate and register gendisk structure. */
233 	if (device->block) {
234 		rc = dasd_gendisk_alloc(device->block);
235 		if (rc)
236 			return rc;
237 	}
238 	/* register 'device' debug area, used for all DBF_DEV_XXX calls */
239 	device->debug_area = debug_register(dev_name(&device->cdev->dev), 4, 1,
240 					    8 * sizeof(long));
241 	debug_register_view(device->debug_area, &debug_sprintf_view);
242 	debug_set_level(device->debug_area, DBF_WARNING);
243 	DBF_DEV_EVENT(DBF_EMERG, device, "%s", "debug area created");
244 
245 	device->state = DASD_STATE_BASIC;
246 	return 0;
247 }
248 
249 /*
250  * Release the irq line for the device. Terminate any running i/o.
251  */
252 static int dasd_state_basic_to_known(struct dasd_device *device)
253 {
254 	int rc;
255 	if (device->block) {
256 		dasd_gendisk_free(device->block);
257 		dasd_block_clear_timer(device->block);
258 	}
259 	rc = dasd_flush_device_queue(device);
260 	if (rc)
261 		return rc;
262 	dasd_device_clear_timer(device);
263 
264 	DBF_DEV_EVENT(DBF_EMERG, device, "%p debug area deleted", device);
265 	if (device->debug_area != NULL) {
266 		debug_unregister(device->debug_area);
267 		device->debug_area = NULL;
268 	}
269 	device->state = DASD_STATE_KNOWN;
270 	return 0;
271 }
272 
273 /*
274  * Do the initial analysis. The do_analysis function may return
275  * -EAGAIN in which case the device keeps the state DASD_STATE_BASIC
276  * until the discipline decides to continue the startup sequence
277  * by calling the function dasd_change_state. The eckd disciplines
278  * uses this to start a ccw that detects the format. The completion
279  * interrupt for this detection ccw uses the kernel event daemon to
280  * trigger the call to dasd_change_state. All this is done in the
281  * discipline code, see dasd_eckd.c.
282  * After the analysis ccw is done (do_analysis returned 0) the block
283  * device is setup.
284  * In case the analysis returns an error, the device setup is stopped
285  * (a fake disk was already added to allow formatting).
286  */
287 static int dasd_state_basic_to_ready(struct dasd_device *device)
288 {
289 	int rc;
290 	struct dasd_block *block;
291 
292 	rc = 0;
293 	block = device->block;
294 	/* make disk known with correct capacity */
295 	if (block) {
296 		if (block->base->discipline->do_analysis != NULL)
297 			rc = block->base->discipline->do_analysis(block);
298 		if (rc) {
299 			if (rc != -EAGAIN)
300 				device->state = DASD_STATE_UNFMT;
301 			return rc;
302 		}
303 		dasd_setup_queue(block);
304 		set_capacity(block->gdp,
305 			     block->blocks << block->s2b_shift);
306 		device->state = DASD_STATE_READY;
307 		rc = dasd_scan_partitions(block);
308 		if (rc)
309 			device->state = DASD_STATE_BASIC;
310 	} else {
311 		device->state = DASD_STATE_READY;
312 	}
313 	return rc;
314 }
315 
316 /*
317  * Remove device from block device layer. Destroy dirty buffers.
318  * Forget format information. Check if the target level is basic
319  * and if it is create fake disk for formatting.
320  */
321 static int dasd_state_ready_to_basic(struct dasd_device *device)
322 {
323 	int rc;
324 
325 	device->state = DASD_STATE_BASIC;
326 	if (device->block) {
327 		struct dasd_block *block = device->block;
328 		rc = dasd_flush_block_queue(block);
329 		if (rc) {
330 			device->state = DASD_STATE_READY;
331 			return rc;
332 		}
333 		dasd_flush_request_queue(block);
334 		dasd_destroy_partitions(block);
335 		block->blocks = 0;
336 		block->bp_block = 0;
337 		block->s2b_shift = 0;
338 	}
339 	return 0;
340 }
341 
342 /*
343  * Back to basic.
344  */
345 static int dasd_state_unfmt_to_basic(struct dasd_device *device)
346 {
347 	device->state = DASD_STATE_BASIC;
348 	return 0;
349 }
350 
351 /*
352  * Make the device online and schedule the bottom half to start
353  * the requeueing of requests from the linux request queue to the
354  * ccw queue.
355  */
356 static int
357 dasd_state_ready_to_online(struct dasd_device * device)
358 {
359 	int rc;
360 	struct gendisk *disk;
361 	struct disk_part_iter piter;
362 	struct hd_struct *part;
363 
364 	if (device->discipline->ready_to_online) {
365 		rc = device->discipline->ready_to_online(device);
366 		if (rc)
367 			return rc;
368 	}
369 	device->state = DASD_STATE_ONLINE;
370 	if (device->block) {
371 		dasd_schedule_block_bh(device->block);
372 		disk = device->block->bdev->bd_disk;
373 		disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0);
374 		while ((part = disk_part_iter_next(&piter)))
375 			kobject_uevent(&part_to_dev(part)->kobj, KOBJ_CHANGE);
376 		disk_part_iter_exit(&piter);
377 	}
378 	return 0;
379 }
380 
381 /*
382  * Stop the requeueing of requests again.
383  */
384 static int dasd_state_online_to_ready(struct dasd_device *device)
385 {
386 	int rc;
387 	struct gendisk *disk;
388 	struct disk_part_iter piter;
389 	struct hd_struct *part;
390 
391 	if (device->discipline->online_to_ready) {
392 		rc = device->discipline->online_to_ready(device);
393 		if (rc)
394 			return rc;
395 	}
396 	device->state = DASD_STATE_READY;
397 	if (device->block) {
398 		disk = device->block->bdev->bd_disk;
399 		disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0);
400 		while ((part = disk_part_iter_next(&piter)))
401 			kobject_uevent(&part_to_dev(part)->kobj, KOBJ_CHANGE);
402 		disk_part_iter_exit(&piter);
403 	}
404 	return 0;
405 }
406 
407 /*
408  * Device startup state changes.
409  */
410 static int dasd_increase_state(struct dasd_device *device)
411 {
412 	int rc;
413 
414 	rc = 0;
415 	if (device->state == DASD_STATE_NEW &&
416 	    device->target >= DASD_STATE_KNOWN)
417 		rc = dasd_state_new_to_known(device);
418 
419 	if (!rc &&
420 	    device->state == DASD_STATE_KNOWN &&
421 	    device->target >= DASD_STATE_BASIC)
422 		rc = dasd_state_known_to_basic(device);
423 
424 	if (!rc &&
425 	    device->state == DASD_STATE_BASIC &&
426 	    device->target >= DASD_STATE_READY)
427 		rc = dasd_state_basic_to_ready(device);
428 
429 	if (!rc &&
430 	    device->state == DASD_STATE_UNFMT &&
431 	    device->target > DASD_STATE_UNFMT)
432 		rc = -EPERM;
433 
434 	if (!rc &&
435 	    device->state == DASD_STATE_READY &&
436 	    device->target >= DASD_STATE_ONLINE)
437 		rc = dasd_state_ready_to_online(device);
438 
439 	return rc;
440 }
441 
442 /*
443  * Device shutdown state changes.
444  */
445 static int dasd_decrease_state(struct dasd_device *device)
446 {
447 	int rc;
448 
449 	rc = 0;
450 	if (device->state == DASD_STATE_ONLINE &&
451 	    device->target <= DASD_STATE_READY)
452 		rc = dasd_state_online_to_ready(device);
453 
454 	if (!rc &&
455 	    device->state == DASD_STATE_READY &&
456 	    device->target <= DASD_STATE_BASIC)
457 		rc = dasd_state_ready_to_basic(device);
458 
459 	if (!rc &&
460 	    device->state == DASD_STATE_UNFMT &&
461 	    device->target <= DASD_STATE_BASIC)
462 		rc = dasd_state_unfmt_to_basic(device);
463 
464 	if (!rc &&
465 	    device->state == DASD_STATE_BASIC &&
466 	    device->target <= DASD_STATE_KNOWN)
467 		rc = dasd_state_basic_to_known(device);
468 
469 	if (!rc &&
470 	    device->state == DASD_STATE_KNOWN &&
471 	    device->target <= DASD_STATE_NEW)
472 		rc = dasd_state_known_to_new(device);
473 
474 	return rc;
475 }
476 
477 /*
478  * This is the main startup/shutdown routine.
479  */
480 static void dasd_change_state(struct dasd_device *device)
481 {
482 	int rc;
483 
484 	if (device->state == device->target)
485 		/* Already where we want to go today... */
486 		return;
487 	if (device->state < device->target)
488 		rc = dasd_increase_state(device);
489 	else
490 		rc = dasd_decrease_state(device);
491 	if (rc == -EAGAIN)
492 		return;
493 	if (rc)
494 		device->target = device->state;
495 
496 	if (device->state == device->target)
497 		wake_up(&dasd_init_waitq);
498 
499 	/* let user-space know that the device status changed */
500 	kobject_uevent(&device->cdev->dev.kobj, KOBJ_CHANGE);
501 }
502 
503 /*
504  * Kick starter for devices that did not complete the startup/shutdown
505  * procedure or were sleeping because of a pending state.
506  * dasd_kick_device will schedule a call do do_kick_device to the kernel
507  * event daemon.
508  */
509 static void do_kick_device(struct work_struct *work)
510 {
511 	struct dasd_device *device = container_of(work, struct dasd_device, kick_work);
512 	mutex_lock(&device->state_mutex);
513 	dasd_change_state(device);
514 	mutex_unlock(&device->state_mutex);
515 	dasd_schedule_device_bh(device);
516 	dasd_put_device(device);
517 }
518 
519 void dasd_kick_device(struct dasd_device *device)
520 {
521 	dasd_get_device(device);
522 	/* queue call to dasd_kick_device to the kernel event daemon. */
523 	schedule_work(&device->kick_work);
524 }
525 
526 /*
527  * dasd_reload_device will schedule a call do do_reload_device to the kernel
528  * event daemon.
529  */
530 static void do_reload_device(struct work_struct *work)
531 {
532 	struct dasd_device *device = container_of(work, struct dasd_device,
533 						  reload_device);
534 	device->discipline->reload(device);
535 	dasd_put_device(device);
536 }
537 
538 void dasd_reload_device(struct dasd_device *device)
539 {
540 	dasd_get_device(device);
541 	/* queue call to dasd_reload_device to the kernel event daemon. */
542 	schedule_work(&device->reload_device);
543 }
544 EXPORT_SYMBOL(dasd_reload_device);
545 
546 /*
547  * dasd_restore_device will schedule a call do do_restore_device to the kernel
548  * event daemon.
549  */
550 static void do_restore_device(struct work_struct *work)
551 {
552 	struct dasd_device *device = container_of(work, struct dasd_device,
553 						  restore_device);
554 	device->cdev->drv->restore(device->cdev);
555 	dasd_put_device(device);
556 }
557 
558 void dasd_restore_device(struct dasd_device *device)
559 {
560 	dasd_get_device(device);
561 	/* queue call to dasd_restore_device to the kernel event daemon. */
562 	schedule_work(&device->restore_device);
563 }
564 
565 /*
566  * Set the target state for a device and starts the state change.
567  */
568 void dasd_set_target_state(struct dasd_device *device, int target)
569 {
570 	dasd_get_device(device);
571 	mutex_lock(&device->state_mutex);
572 	/* If we are in probeonly mode stop at DASD_STATE_READY. */
573 	if (dasd_probeonly && target > DASD_STATE_READY)
574 		target = DASD_STATE_READY;
575 	if (device->target != target) {
576 		if (device->state == target)
577 			wake_up(&dasd_init_waitq);
578 		device->target = target;
579 	}
580 	if (device->state != device->target)
581 		dasd_change_state(device);
582 	mutex_unlock(&device->state_mutex);
583 	dasd_put_device(device);
584 }
585 
586 /*
587  * Enable devices with device numbers in [from..to].
588  */
589 static inline int _wait_for_device(struct dasd_device *device)
590 {
591 	return (device->state == device->target);
592 }
593 
594 void dasd_enable_device(struct dasd_device *device)
595 {
596 	dasd_set_target_state(device, DASD_STATE_ONLINE);
597 	if (device->state <= DASD_STATE_KNOWN)
598 		/* No discipline for device found. */
599 		dasd_set_target_state(device, DASD_STATE_NEW);
600 	/* Now wait for the devices to come up. */
601 	wait_event(dasd_init_waitq, _wait_for_device(device));
602 }
603 
604 /*
605  * SECTION: device operation (interrupt handler, start i/o, term i/o ...)
606  */
607 #ifdef CONFIG_DASD_PROFILE
608 
609 struct dasd_profile_info_t dasd_global_profile;
610 unsigned int dasd_profile_level = DASD_PROFILE_OFF;
611 
612 /*
613  * Increments counter in global and local profiling structures.
614  */
615 #define dasd_profile_counter(value, counter, block) \
616 { \
617 	int index; \
618 	for (index = 0; index < 31 && value >> (2+index); index++); \
619 	dasd_global_profile.counter[index]++; \
620 	block->profile.counter[index]++; \
621 }
622 
623 /*
624  * Add profiling information for cqr before execution.
625  */
626 static void dasd_profile_start(struct dasd_block *block,
627 			       struct dasd_ccw_req *cqr,
628 			       struct request *req)
629 {
630 	struct list_head *l;
631 	unsigned int counter;
632 
633 	if (dasd_profile_level != DASD_PROFILE_ON)
634 		return;
635 
636 	/* count the length of the chanq for statistics */
637 	counter = 0;
638 	list_for_each(l, &block->ccw_queue)
639 		if (++counter >= 31)
640 			break;
641 	dasd_global_profile.dasd_io_nr_req[counter]++;
642 	block->profile.dasd_io_nr_req[counter]++;
643 }
644 
645 /*
646  * Add profiling information for cqr after execution.
647  */
648 static void dasd_profile_end(struct dasd_block *block,
649 			     struct dasd_ccw_req *cqr,
650 			     struct request *req)
651 {
652 	long strtime, irqtime, endtime, tottime;	/* in microseconds */
653 	long tottimeps, sectors;
654 
655 	if (dasd_profile_level != DASD_PROFILE_ON)
656 		return;
657 
658 	sectors = blk_rq_sectors(req);
659 	if (!cqr->buildclk || !cqr->startclk ||
660 	    !cqr->stopclk || !cqr->endclk ||
661 	    !sectors)
662 		return;
663 
664 	strtime = ((cqr->startclk - cqr->buildclk) >> 12);
665 	irqtime = ((cqr->stopclk - cqr->startclk) >> 12);
666 	endtime = ((cqr->endclk - cqr->stopclk) >> 12);
667 	tottime = ((cqr->endclk - cqr->buildclk) >> 12);
668 	tottimeps = tottime / sectors;
669 
670 	if (!dasd_global_profile.dasd_io_reqs)
671 		memset(&dasd_global_profile, 0,
672 		       sizeof(struct dasd_profile_info_t));
673 	dasd_global_profile.dasd_io_reqs++;
674 	dasd_global_profile.dasd_io_sects += sectors;
675 
676 	if (!block->profile.dasd_io_reqs)
677 		memset(&block->profile, 0,
678 		       sizeof(struct dasd_profile_info_t));
679 	block->profile.dasd_io_reqs++;
680 	block->profile.dasd_io_sects += sectors;
681 
682 	dasd_profile_counter(sectors, dasd_io_secs, block);
683 	dasd_profile_counter(tottime, dasd_io_times, block);
684 	dasd_profile_counter(tottimeps, dasd_io_timps, block);
685 	dasd_profile_counter(strtime, dasd_io_time1, block);
686 	dasd_profile_counter(irqtime, dasd_io_time2, block);
687 	dasd_profile_counter(irqtime / sectors, dasd_io_time2ps, block);
688 	dasd_profile_counter(endtime, dasd_io_time3, block);
689 }
690 #else
691 #define dasd_profile_start(block, cqr, req) do {} while (0)
692 #define dasd_profile_end(block, cqr, req) do {} while (0)
693 #endif				/* CONFIG_DASD_PROFILE */
694 
695 /*
696  * Allocate memory for a channel program with 'cplength' channel
697  * command words and 'datasize' additional space. There are two
698  * variantes: 1) dasd_kmalloc_request uses kmalloc to get the needed
699  * memory and 2) dasd_smalloc_request uses the static ccw memory
700  * that gets allocated for each device.
701  */
702 struct dasd_ccw_req *dasd_kmalloc_request(int magic, int cplength,
703 					  int datasize,
704 					  struct dasd_device *device)
705 {
706 	struct dasd_ccw_req *cqr;
707 
708 	/* Sanity checks */
709 	BUG_ON(datasize > PAGE_SIZE ||
710 	     (cplength*sizeof(struct ccw1)) > PAGE_SIZE);
711 
712 	cqr = kzalloc(sizeof(struct dasd_ccw_req), GFP_ATOMIC);
713 	if (cqr == NULL)
714 		return ERR_PTR(-ENOMEM);
715 	cqr->cpaddr = NULL;
716 	if (cplength > 0) {
717 		cqr->cpaddr = kcalloc(cplength, sizeof(struct ccw1),
718 				      GFP_ATOMIC | GFP_DMA);
719 		if (cqr->cpaddr == NULL) {
720 			kfree(cqr);
721 			return ERR_PTR(-ENOMEM);
722 		}
723 	}
724 	cqr->data = NULL;
725 	if (datasize > 0) {
726 		cqr->data = kzalloc(datasize, GFP_ATOMIC | GFP_DMA);
727 		if (cqr->data == NULL) {
728 			kfree(cqr->cpaddr);
729 			kfree(cqr);
730 			return ERR_PTR(-ENOMEM);
731 		}
732 	}
733 	cqr->magic =  magic;
734 	set_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags);
735 	dasd_get_device(device);
736 	return cqr;
737 }
738 
739 struct dasd_ccw_req *dasd_smalloc_request(int magic, int cplength,
740 					  int datasize,
741 					  struct dasd_device *device)
742 {
743 	unsigned long flags;
744 	struct dasd_ccw_req *cqr;
745 	char *data;
746 	int size;
747 
748 	size = (sizeof(struct dasd_ccw_req) + 7L) & -8L;
749 	if (cplength > 0)
750 		size += cplength * sizeof(struct ccw1);
751 	if (datasize > 0)
752 		size += datasize;
753 	spin_lock_irqsave(&device->mem_lock, flags);
754 	cqr = (struct dasd_ccw_req *)
755 		dasd_alloc_chunk(&device->ccw_chunks, size);
756 	spin_unlock_irqrestore(&device->mem_lock, flags);
757 	if (cqr == NULL)
758 		return ERR_PTR(-ENOMEM);
759 	memset(cqr, 0, sizeof(struct dasd_ccw_req));
760 	data = (char *) cqr + ((sizeof(struct dasd_ccw_req) + 7L) & -8L);
761 	cqr->cpaddr = NULL;
762 	if (cplength > 0) {
763 		cqr->cpaddr = (struct ccw1 *) data;
764 		data += cplength*sizeof(struct ccw1);
765 		memset(cqr->cpaddr, 0, cplength*sizeof(struct ccw1));
766 	}
767 	cqr->data = NULL;
768 	if (datasize > 0) {
769 		cqr->data = data;
770  		memset(cqr->data, 0, datasize);
771 	}
772 	cqr->magic = magic;
773 	set_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags);
774 	dasd_get_device(device);
775 	return cqr;
776 }
777 
778 /*
779  * Free memory of a channel program. This function needs to free all the
780  * idal lists that might have been created by dasd_set_cda and the
781  * struct dasd_ccw_req itself.
782  */
783 void dasd_kfree_request(struct dasd_ccw_req *cqr, struct dasd_device *device)
784 {
785 #ifdef CONFIG_64BIT
786 	struct ccw1 *ccw;
787 
788 	/* Clear any idals used for the request. */
789 	ccw = cqr->cpaddr;
790 	do {
791 		clear_normalized_cda(ccw);
792 	} while (ccw++->flags & (CCW_FLAG_CC | CCW_FLAG_DC));
793 #endif
794 	kfree(cqr->cpaddr);
795 	kfree(cqr->data);
796 	kfree(cqr);
797 	dasd_put_device(device);
798 }
799 
800 void dasd_sfree_request(struct dasd_ccw_req *cqr, struct dasd_device *device)
801 {
802 	unsigned long flags;
803 
804 	spin_lock_irqsave(&device->mem_lock, flags);
805 	dasd_free_chunk(&device->ccw_chunks, cqr);
806 	spin_unlock_irqrestore(&device->mem_lock, flags);
807 	dasd_put_device(device);
808 }
809 
810 /*
811  * Check discipline magic in cqr.
812  */
813 static inline int dasd_check_cqr(struct dasd_ccw_req *cqr)
814 {
815 	struct dasd_device *device;
816 
817 	if (cqr == NULL)
818 		return -EINVAL;
819 	device = cqr->startdev;
820 	if (strncmp((char *) &cqr->magic, device->discipline->ebcname, 4)) {
821 		DBF_DEV_EVENT(DBF_WARNING, device,
822 			    " dasd_ccw_req 0x%08x magic doesn't match"
823 			    " discipline 0x%08x",
824 			    cqr->magic,
825 			    *(unsigned int *) device->discipline->name);
826 		return -EINVAL;
827 	}
828 	return 0;
829 }
830 
831 /*
832  * Terminate the current i/o and set the request to clear_pending.
833  * Timer keeps device runnig.
834  * ccw_device_clear can fail if the i/o subsystem
835  * is in a bad mood.
836  */
837 int dasd_term_IO(struct dasd_ccw_req *cqr)
838 {
839 	struct dasd_device *device;
840 	int retries, rc;
841 	char errorstring[ERRORLENGTH];
842 
843 	/* Check the cqr */
844 	rc = dasd_check_cqr(cqr);
845 	if (rc)
846 		return rc;
847 	retries = 0;
848 	device = (struct dasd_device *) cqr->startdev;
849 	while ((retries < 5) && (cqr->status == DASD_CQR_IN_IO)) {
850 		rc = ccw_device_clear(device->cdev, (long) cqr);
851 		switch (rc) {
852 		case 0:	/* termination successful */
853 			cqr->retries--;
854 			cqr->status = DASD_CQR_CLEAR_PENDING;
855 			cqr->stopclk = get_clock();
856 			cqr->starttime = 0;
857 			DBF_DEV_EVENT(DBF_DEBUG, device,
858 				      "terminate cqr %p successful",
859 				      cqr);
860 			break;
861 		case -ENODEV:
862 			DBF_DEV_EVENT(DBF_ERR, device, "%s",
863 				      "device gone, retry");
864 			break;
865 		case -EIO:
866 			DBF_DEV_EVENT(DBF_ERR, device, "%s",
867 				      "I/O error, retry");
868 			break;
869 		case -EINVAL:
870 		case -EBUSY:
871 			DBF_DEV_EVENT(DBF_ERR, device, "%s",
872 				      "device busy, retry later");
873 			break;
874 		default:
875 			/* internal error 10 - unknown rc*/
876 			snprintf(errorstring, ERRORLENGTH, "10 %d", rc);
877 			dev_err(&device->cdev->dev, "An error occurred in the "
878 				"DASD device driver, reason=%s\n", errorstring);
879 			BUG();
880 			break;
881 		}
882 		retries++;
883 	}
884 	dasd_schedule_device_bh(device);
885 	return rc;
886 }
887 
888 /*
889  * Start the i/o. This start_IO can fail if the channel is really busy.
890  * In that case set up a timer to start the request later.
891  */
892 int dasd_start_IO(struct dasd_ccw_req *cqr)
893 {
894 	struct dasd_device *device;
895 	int rc;
896 	char errorstring[ERRORLENGTH];
897 
898 	/* Check the cqr */
899 	rc = dasd_check_cqr(cqr);
900 	if (rc) {
901 		cqr->intrc = rc;
902 		return rc;
903 	}
904 	device = (struct dasd_device *) cqr->startdev;
905 	if (((cqr->block &&
906 	      test_bit(DASD_FLAG_LOCK_STOLEN, &cqr->block->base->flags)) ||
907 	     test_bit(DASD_FLAG_LOCK_STOLEN, &device->flags)) &&
908 	    !test_bit(DASD_CQR_ALLOW_SLOCK, &cqr->flags)) {
909 		DBF_DEV_EVENT(DBF_DEBUG, device, "start_IO: return request %p "
910 			      "because of stolen lock", cqr);
911 		cqr->status = DASD_CQR_ERROR;
912 		cqr->intrc = -EPERM;
913 		return -EPERM;
914 	}
915 	if (cqr->retries < 0) {
916 		/* internal error 14 - start_IO run out of retries */
917 		sprintf(errorstring, "14 %p", cqr);
918 		dev_err(&device->cdev->dev, "An error occurred in the DASD "
919 			"device driver, reason=%s\n", errorstring);
920 		cqr->status = DASD_CQR_ERROR;
921 		return -EIO;
922 	}
923 	cqr->startclk = get_clock();
924 	cqr->starttime = jiffies;
925 	cqr->retries--;
926 	if (!test_bit(DASD_CQR_VERIFY_PATH, &cqr->flags)) {
927 		cqr->lpm &= device->path_data.opm;
928 		if (!cqr->lpm)
929 			cqr->lpm = device->path_data.opm;
930 	}
931 	if (cqr->cpmode == 1) {
932 		rc = ccw_device_tm_start(device->cdev, cqr->cpaddr,
933 					 (long) cqr, cqr->lpm);
934 	} else {
935 		rc = ccw_device_start(device->cdev, cqr->cpaddr,
936 				      (long) cqr, cqr->lpm, 0);
937 	}
938 	switch (rc) {
939 	case 0:
940 		cqr->status = DASD_CQR_IN_IO;
941 		break;
942 	case -EBUSY:
943 		DBF_DEV_EVENT(DBF_WARNING, device, "%s",
944 			      "start_IO: device busy, retry later");
945 		break;
946 	case -ETIMEDOUT:
947 		DBF_DEV_EVENT(DBF_WARNING, device, "%s",
948 			      "start_IO: request timeout, retry later");
949 		break;
950 	case -EACCES:
951 		/* -EACCES indicates that the request used only a subset of the
952 		 * available paths and all these paths are gone. If the lpm of
953 		 * this request was only a subset of the opm (e.g. the ppm) then
954 		 * we just do a retry with all available paths.
955 		 * If we already use the full opm, something is amiss, and we
956 		 * need a full path verification.
957 		 */
958 		if (test_bit(DASD_CQR_VERIFY_PATH, &cqr->flags)) {
959 			DBF_DEV_EVENT(DBF_WARNING, device,
960 				      "start_IO: selected paths gone (%x)",
961 				      cqr->lpm);
962 		} else if (cqr->lpm != device->path_data.opm) {
963 			cqr->lpm = device->path_data.opm;
964 			DBF_DEV_EVENT(DBF_DEBUG, device, "%s",
965 				      "start_IO: selected paths gone,"
966 				      " retry on all paths");
967 		} else {
968 			DBF_DEV_EVENT(DBF_WARNING, device, "%s",
969 				      "start_IO: all paths in opm gone,"
970 				      " do path verification");
971 			dasd_generic_last_path_gone(device);
972 			device->path_data.opm = 0;
973 			device->path_data.ppm = 0;
974 			device->path_data.npm = 0;
975 			device->path_data.tbvpm =
976 				ccw_device_get_path_mask(device->cdev);
977 		}
978 		break;
979 	case -ENODEV:
980 		DBF_DEV_EVENT(DBF_WARNING, device, "%s",
981 			      "start_IO: -ENODEV device gone, retry");
982 		break;
983 	case -EIO:
984 		DBF_DEV_EVENT(DBF_WARNING, device, "%s",
985 			      "start_IO: -EIO device gone, retry");
986 		break;
987 	case -EINVAL:
988 		/* most likely caused in power management context */
989 		DBF_DEV_EVENT(DBF_WARNING, device, "%s",
990 			      "start_IO: -EINVAL device currently "
991 			      "not accessible");
992 		break;
993 	default:
994 		/* internal error 11 - unknown rc */
995 		snprintf(errorstring, ERRORLENGTH, "11 %d", rc);
996 		dev_err(&device->cdev->dev,
997 			"An error occurred in the DASD device driver, "
998 			"reason=%s\n", errorstring);
999 		BUG();
1000 		break;
1001 	}
1002 	cqr->intrc = rc;
1003 	return rc;
1004 }
1005 
1006 /*
1007  * Timeout function for dasd devices. This is used for different purposes
1008  *  1) missing interrupt handler for normal operation
1009  *  2) delayed start of request where start_IO failed with -EBUSY
1010  *  3) timeout for missing state change interrupts
1011  * The head of the ccw queue will have status DASD_CQR_IN_IO for 1),
1012  * DASD_CQR_QUEUED for 2) and 3).
1013  */
1014 static void dasd_device_timeout(unsigned long ptr)
1015 {
1016 	unsigned long flags;
1017 	struct dasd_device *device;
1018 
1019 	device = (struct dasd_device *) ptr;
1020 	spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags);
1021 	/* re-activate request queue */
1022 	dasd_device_remove_stop_bits(device, DASD_STOPPED_PENDING);
1023 	spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags);
1024 	dasd_schedule_device_bh(device);
1025 }
1026 
1027 /*
1028  * Setup timeout for a device in jiffies.
1029  */
1030 void dasd_device_set_timer(struct dasd_device *device, int expires)
1031 {
1032 	if (expires == 0)
1033 		del_timer(&device->timer);
1034 	else
1035 		mod_timer(&device->timer, jiffies + expires);
1036 }
1037 
1038 /*
1039  * Clear timeout for a device.
1040  */
1041 void dasd_device_clear_timer(struct dasd_device *device)
1042 {
1043 	del_timer(&device->timer);
1044 }
1045 
1046 static void dasd_handle_killed_request(struct ccw_device *cdev,
1047 				       unsigned long intparm)
1048 {
1049 	struct dasd_ccw_req *cqr;
1050 	struct dasd_device *device;
1051 
1052 	if (!intparm)
1053 		return;
1054 	cqr = (struct dasd_ccw_req *) intparm;
1055 	if (cqr->status != DASD_CQR_IN_IO) {
1056 		DBF_EVENT_DEVID(DBF_DEBUG, cdev,
1057 				"invalid status in handle_killed_request: "
1058 				"%02x", cqr->status);
1059 		return;
1060 	}
1061 
1062 	device = dasd_device_from_cdev_locked(cdev);
1063 	if (IS_ERR(device)) {
1064 		DBF_EVENT_DEVID(DBF_DEBUG, cdev, "%s",
1065 				"unable to get device from cdev");
1066 		return;
1067 	}
1068 
1069 	if (!cqr->startdev ||
1070 	    device != cqr->startdev ||
1071 	    strncmp(cqr->startdev->discipline->ebcname,
1072 		    (char *) &cqr->magic, 4)) {
1073 		DBF_EVENT_DEVID(DBF_DEBUG, cdev, "%s",
1074 				"invalid device in request");
1075 		dasd_put_device(device);
1076 		return;
1077 	}
1078 
1079 	/* Schedule request to be retried. */
1080 	cqr->status = DASD_CQR_QUEUED;
1081 
1082 	dasd_device_clear_timer(device);
1083 	dasd_schedule_device_bh(device);
1084 	dasd_put_device(device);
1085 }
1086 
1087 void dasd_generic_handle_state_change(struct dasd_device *device)
1088 {
1089 	/* First of all start sense subsystem status request. */
1090 	dasd_eer_snss(device);
1091 
1092 	dasd_device_remove_stop_bits(device, DASD_STOPPED_PENDING);
1093 	dasd_schedule_device_bh(device);
1094 	if (device->block)
1095 		dasd_schedule_block_bh(device->block);
1096 }
1097 
1098 /*
1099  * Interrupt handler for "normal" ssch-io based dasd devices.
1100  */
1101 void dasd_int_handler(struct ccw_device *cdev, unsigned long intparm,
1102 		      struct irb *irb)
1103 {
1104 	struct dasd_ccw_req *cqr, *next;
1105 	struct dasd_device *device;
1106 	unsigned long long now;
1107 	int expires;
1108 
1109 	kstat_cpu(smp_processor_id()).irqs[IOINT_DAS]++;
1110 	if (IS_ERR(irb)) {
1111 		switch (PTR_ERR(irb)) {
1112 		case -EIO:
1113 			break;
1114 		case -ETIMEDOUT:
1115 			DBF_EVENT_DEVID(DBF_WARNING, cdev, "%s: "
1116 					"request timed out\n", __func__);
1117 			break;
1118 		default:
1119 			DBF_EVENT_DEVID(DBF_WARNING, cdev, "%s: "
1120 					"unknown error %ld\n", __func__,
1121 					PTR_ERR(irb));
1122 		}
1123 		dasd_handle_killed_request(cdev, intparm);
1124 		return;
1125 	}
1126 
1127 	now = get_clock();
1128 	cqr = (struct dasd_ccw_req *) intparm;
1129 	/* check for conditions that should be handled immediately */
1130 	if (!cqr ||
1131 	    !(scsw_dstat(&irb->scsw) == (DEV_STAT_CHN_END | DEV_STAT_DEV_END) &&
1132 	      scsw_cstat(&irb->scsw) == 0)) {
1133 		if (cqr)
1134 			memcpy(&cqr->irb, irb, sizeof(*irb));
1135 		device = dasd_device_from_cdev_locked(cdev);
1136 		if (IS_ERR(device))
1137 			return;
1138 		/* ignore unsolicited interrupts for DIAG discipline */
1139 		if (device->discipline == dasd_diag_discipline_pointer) {
1140 			dasd_put_device(device);
1141 			return;
1142 		}
1143 		device->discipline->dump_sense_dbf(device, irb, "int");
1144 		if (device->features & DASD_FEATURE_ERPLOG)
1145 			device->discipline->dump_sense(device, cqr, irb);
1146 		device->discipline->check_for_device_change(device, cqr, irb);
1147 		dasd_put_device(device);
1148 	}
1149 	if (!cqr)
1150 		return;
1151 
1152 	device = (struct dasd_device *) cqr->startdev;
1153 	if (!device ||
1154 	    strncmp(device->discipline->ebcname, (char *) &cqr->magic, 4)) {
1155 		DBF_EVENT_DEVID(DBF_DEBUG, cdev, "%s",
1156 				"invalid device in request");
1157 		return;
1158 	}
1159 
1160 	/* Check for clear pending */
1161 	if (cqr->status == DASD_CQR_CLEAR_PENDING &&
1162 	    scsw_fctl(&irb->scsw) & SCSW_FCTL_CLEAR_FUNC) {
1163 		cqr->status = DASD_CQR_CLEARED;
1164 		dasd_device_clear_timer(device);
1165 		wake_up(&dasd_flush_wq);
1166 		dasd_schedule_device_bh(device);
1167 		return;
1168 	}
1169 
1170 	/* check status - the request might have been killed by dyn detach */
1171 	if (cqr->status != DASD_CQR_IN_IO) {
1172 		DBF_DEV_EVENT(DBF_DEBUG, device, "invalid status: bus_id %s, "
1173 			      "status %02x", dev_name(&cdev->dev), cqr->status);
1174 		return;
1175 	}
1176 
1177 	next = NULL;
1178 	expires = 0;
1179 	if (scsw_dstat(&irb->scsw) == (DEV_STAT_CHN_END | DEV_STAT_DEV_END) &&
1180 	    scsw_cstat(&irb->scsw) == 0) {
1181 		/* request was completed successfully */
1182 		cqr->status = DASD_CQR_SUCCESS;
1183 		cqr->stopclk = now;
1184 		/* Start first request on queue if possible -> fast_io. */
1185 		if (cqr->devlist.next != &device->ccw_queue) {
1186 			next = list_entry(cqr->devlist.next,
1187 					  struct dasd_ccw_req, devlist);
1188 		}
1189 	} else {  /* error */
1190 		/*
1191 		 * If we don't want complex ERP for this request, then just
1192 		 * reset this and retry it in the fastpath
1193 		 */
1194 		if (!test_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags) &&
1195 		    cqr->retries > 0) {
1196 			if (cqr->lpm == device->path_data.opm)
1197 				DBF_DEV_EVENT(DBF_DEBUG, device,
1198 					      "default ERP in fastpath "
1199 					      "(%i retries left)",
1200 					      cqr->retries);
1201 			if (!test_bit(DASD_CQR_VERIFY_PATH, &cqr->flags))
1202 				cqr->lpm = device->path_data.opm;
1203 			cqr->status = DASD_CQR_QUEUED;
1204 			next = cqr;
1205 		} else
1206 			cqr->status = DASD_CQR_ERROR;
1207 	}
1208 	if (next && (next->status == DASD_CQR_QUEUED) &&
1209 	    (!device->stopped)) {
1210 		if (device->discipline->start_IO(next) == 0)
1211 			expires = next->expires;
1212 	}
1213 	if (expires != 0)
1214 		dasd_device_set_timer(device, expires);
1215 	else
1216 		dasd_device_clear_timer(device);
1217 	dasd_schedule_device_bh(device);
1218 }
1219 
1220 enum uc_todo dasd_generic_uc_handler(struct ccw_device *cdev, struct irb *irb)
1221 {
1222 	struct dasd_device *device;
1223 
1224 	device = dasd_device_from_cdev_locked(cdev);
1225 
1226 	if (IS_ERR(device))
1227 		goto out;
1228 	if (test_bit(DASD_FLAG_OFFLINE, &device->flags) ||
1229 	   device->state != device->target ||
1230 	   !device->discipline->check_for_device_change){
1231 		dasd_put_device(device);
1232 		goto out;
1233 	}
1234 	if (device->discipline->dump_sense_dbf)
1235 		device->discipline->dump_sense_dbf(device, irb, "uc");
1236 	device->discipline->check_for_device_change(device, NULL, irb);
1237 	dasd_put_device(device);
1238 out:
1239 	return UC_TODO_RETRY;
1240 }
1241 EXPORT_SYMBOL_GPL(dasd_generic_uc_handler);
1242 
1243 /*
1244  * If we have an error on a dasd_block layer request then we cancel
1245  * and return all further requests from the same dasd_block as well.
1246  */
1247 static void __dasd_device_recovery(struct dasd_device *device,
1248 				   struct dasd_ccw_req *ref_cqr)
1249 {
1250 	struct list_head *l, *n;
1251 	struct dasd_ccw_req *cqr;
1252 
1253 	/*
1254 	 * only requeue request that came from the dasd_block layer
1255 	 */
1256 	if (!ref_cqr->block)
1257 		return;
1258 
1259 	list_for_each_safe(l, n, &device->ccw_queue) {
1260 		cqr = list_entry(l, struct dasd_ccw_req, devlist);
1261 		if (cqr->status == DASD_CQR_QUEUED &&
1262 		    ref_cqr->block == cqr->block) {
1263 			cqr->status = DASD_CQR_CLEARED;
1264 		}
1265 	}
1266 };
1267 
1268 /*
1269  * Remove those ccw requests from the queue that need to be returned
1270  * to the upper layer.
1271  */
1272 static void __dasd_device_process_ccw_queue(struct dasd_device *device,
1273 					    struct list_head *final_queue)
1274 {
1275 	struct list_head *l, *n;
1276 	struct dasd_ccw_req *cqr;
1277 
1278 	/* Process request with final status. */
1279 	list_for_each_safe(l, n, &device->ccw_queue) {
1280 		cqr = list_entry(l, struct dasd_ccw_req, devlist);
1281 
1282 		/* Stop list processing at the first non-final request. */
1283 		if (cqr->status == DASD_CQR_QUEUED ||
1284 		    cqr->status == DASD_CQR_IN_IO ||
1285 		    cqr->status == DASD_CQR_CLEAR_PENDING)
1286 			break;
1287 		if (cqr->status == DASD_CQR_ERROR) {
1288 			__dasd_device_recovery(device, cqr);
1289 		}
1290 		/* Rechain finished requests to final queue */
1291 		list_move_tail(&cqr->devlist, final_queue);
1292 	}
1293 }
1294 
1295 /*
1296  * the cqrs from the final queue are returned to the upper layer
1297  * by setting a dasd_block state and calling the callback function
1298  */
1299 static void __dasd_device_process_final_queue(struct dasd_device *device,
1300 					      struct list_head *final_queue)
1301 {
1302 	struct list_head *l, *n;
1303 	struct dasd_ccw_req *cqr;
1304 	struct dasd_block *block;
1305 	void (*callback)(struct dasd_ccw_req *, void *data);
1306 	void *callback_data;
1307 	char errorstring[ERRORLENGTH];
1308 
1309 	list_for_each_safe(l, n, final_queue) {
1310 		cqr = list_entry(l, struct dasd_ccw_req, devlist);
1311 		list_del_init(&cqr->devlist);
1312 		block = cqr->block;
1313 		callback = cqr->callback;
1314 		callback_data = cqr->callback_data;
1315 		if (block)
1316 			spin_lock_bh(&block->queue_lock);
1317 		switch (cqr->status) {
1318 		case DASD_CQR_SUCCESS:
1319 			cqr->status = DASD_CQR_DONE;
1320 			break;
1321 		case DASD_CQR_ERROR:
1322 			cqr->status = DASD_CQR_NEED_ERP;
1323 			break;
1324 		case DASD_CQR_CLEARED:
1325 			cqr->status = DASD_CQR_TERMINATED;
1326 			break;
1327 		default:
1328 			/* internal error 12 - wrong cqr status*/
1329 			snprintf(errorstring, ERRORLENGTH, "12 %p %x02", cqr, cqr->status);
1330 			dev_err(&device->cdev->dev,
1331 				"An error occurred in the DASD device driver, "
1332 				"reason=%s\n", errorstring);
1333 			BUG();
1334 		}
1335 		if (cqr->callback != NULL)
1336 			(callback)(cqr, callback_data);
1337 		if (block)
1338 			spin_unlock_bh(&block->queue_lock);
1339 	}
1340 }
1341 
1342 /*
1343  * Take a look at the first request on the ccw queue and check
1344  * if it reached its expire time. If so, terminate the IO.
1345  */
1346 static void __dasd_device_check_expire(struct dasd_device *device)
1347 {
1348 	struct dasd_ccw_req *cqr;
1349 
1350 	if (list_empty(&device->ccw_queue))
1351 		return;
1352 	cqr = list_entry(device->ccw_queue.next, struct dasd_ccw_req, devlist);
1353 	if ((cqr->status == DASD_CQR_IN_IO && cqr->expires != 0) &&
1354 	    (time_after_eq(jiffies, cqr->expires + cqr->starttime))) {
1355 		if (device->discipline->term_IO(cqr) != 0) {
1356 			/* Hmpf, try again in 5 sec */
1357 			dev_err(&device->cdev->dev,
1358 				"cqr %p timed out (%lus) but cannot be "
1359 				"ended, retrying in 5 s\n",
1360 				cqr, (cqr->expires/HZ));
1361 			cqr->expires += 5*HZ;
1362 			dasd_device_set_timer(device, 5*HZ);
1363 		} else {
1364 			dev_err(&device->cdev->dev,
1365 				"cqr %p timed out (%lus), %i retries "
1366 				"remaining\n", cqr, (cqr->expires/HZ),
1367 				cqr->retries);
1368 		}
1369 	}
1370 }
1371 
1372 /*
1373  * Take a look at the first request on the ccw queue and check
1374  * if it needs to be started.
1375  */
1376 static void __dasd_device_start_head(struct dasd_device *device)
1377 {
1378 	struct dasd_ccw_req *cqr;
1379 	int rc;
1380 
1381 	if (list_empty(&device->ccw_queue))
1382 		return;
1383 	cqr = list_entry(device->ccw_queue.next, struct dasd_ccw_req, devlist);
1384 	if (cqr->status != DASD_CQR_QUEUED)
1385 		return;
1386 	/* when device is stopped, return request to previous layer
1387 	 * exception: only the disconnect or unresumed bits are set and the
1388 	 * cqr is a path verification request
1389 	 */
1390 	if (device->stopped &&
1391 	    !(!(device->stopped & ~(DASD_STOPPED_DC_WAIT | DASD_UNRESUMED_PM))
1392 	      && test_bit(DASD_CQR_VERIFY_PATH, &cqr->flags))) {
1393 		cqr->intrc = -EAGAIN;
1394 		cqr->status = DASD_CQR_CLEARED;
1395 		dasd_schedule_device_bh(device);
1396 		return;
1397 	}
1398 
1399 	rc = device->discipline->start_IO(cqr);
1400 	if (rc == 0)
1401 		dasd_device_set_timer(device, cqr->expires);
1402 	else if (rc == -EACCES) {
1403 		dasd_schedule_device_bh(device);
1404 	} else
1405 		/* Hmpf, try again in 1/2 sec */
1406 		dasd_device_set_timer(device, 50);
1407 }
1408 
1409 static void __dasd_device_check_path_events(struct dasd_device *device)
1410 {
1411 	int rc;
1412 
1413 	if (device->path_data.tbvpm) {
1414 		if (device->stopped & ~(DASD_STOPPED_DC_WAIT |
1415 					DASD_UNRESUMED_PM))
1416 			return;
1417 		rc = device->discipline->verify_path(
1418 			device, device->path_data.tbvpm);
1419 		if (rc)
1420 			dasd_device_set_timer(device, 50);
1421 		else
1422 			device->path_data.tbvpm = 0;
1423 	}
1424 };
1425 
1426 /*
1427  * Go through all request on the dasd_device request queue,
1428  * terminate them on the cdev if necessary, and return them to the
1429  * submitting layer via callback.
1430  * Note:
1431  * Make sure that all 'submitting layers' still exist when
1432  * this function is called!. In other words, when 'device' is a base
1433  * device then all block layer requests must have been removed before
1434  * via dasd_flush_block_queue.
1435  */
1436 int dasd_flush_device_queue(struct dasd_device *device)
1437 {
1438 	struct dasd_ccw_req *cqr, *n;
1439 	int rc;
1440 	struct list_head flush_queue;
1441 
1442 	INIT_LIST_HEAD(&flush_queue);
1443 	spin_lock_irq(get_ccwdev_lock(device->cdev));
1444 	rc = 0;
1445 	list_for_each_entry_safe(cqr, n, &device->ccw_queue, devlist) {
1446 		/* Check status and move request to flush_queue */
1447 		switch (cqr->status) {
1448 		case DASD_CQR_IN_IO:
1449 			rc = device->discipline->term_IO(cqr);
1450 			if (rc) {
1451 				/* unable to terminate requeust */
1452 				dev_err(&device->cdev->dev,
1453 					"Flushing the DASD request queue "
1454 					"failed for request %p\n", cqr);
1455 				/* stop flush processing */
1456 				goto finished;
1457 			}
1458 			break;
1459 		case DASD_CQR_QUEUED:
1460 			cqr->stopclk = get_clock();
1461 			cqr->status = DASD_CQR_CLEARED;
1462 			break;
1463 		default: /* no need to modify the others */
1464 			break;
1465 		}
1466 		list_move_tail(&cqr->devlist, &flush_queue);
1467 	}
1468 finished:
1469 	spin_unlock_irq(get_ccwdev_lock(device->cdev));
1470 	/*
1471 	 * After this point all requests must be in state CLEAR_PENDING,
1472 	 * CLEARED, SUCCESS or ERROR. Now wait for CLEAR_PENDING to become
1473 	 * one of the others.
1474 	 */
1475 	list_for_each_entry_safe(cqr, n, &flush_queue, devlist)
1476 		wait_event(dasd_flush_wq,
1477 			   (cqr->status != DASD_CQR_CLEAR_PENDING));
1478 	/*
1479 	 * Now set each request back to TERMINATED, DONE or NEED_ERP
1480 	 * and call the callback function of flushed requests
1481 	 */
1482 	__dasd_device_process_final_queue(device, &flush_queue);
1483 	return rc;
1484 }
1485 
1486 /*
1487  * Acquire the device lock and process queues for the device.
1488  */
1489 static void dasd_device_tasklet(struct dasd_device *device)
1490 {
1491 	struct list_head final_queue;
1492 
1493 	atomic_set (&device->tasklet_scheduled, 0);
1494 	INIT_LIST_HEAD(&final_queue);
1495 	spin_lock_irq(get_ccwdev_lock(device->cdev));
1496 	/* Check expire time of first request on the ccw queue. */
1497 	__dasd_device_check_expire(device);
1498 	/* find final requests on ccw queue */
1499 	__dasd_device_process_ccw_queue(device, &final_queue);
1500 	__dasd_device_check_path_events(device);
1501 	spin_unlock_irq(get_ccwdev_lock(device->cdev));
1502 	/* Now call the callback function of requests with final status */
1503 	__dasd_device_process_final_queue(device, &final_queue);
1504 	spin_lock_irq(get_ccwdev_lock(device->cdev));
1505 	/* Now check if the head of the ccw queue needs to be started. */
1506 	__dasd_device_start_head(device);
1507 	spin_unlock_irq(get_ccwdev_lock(device->cdev));
1508 	dasd_put_device(device);
1509 }
1510 
1511 /*
1512  * Schedules a call to dasd_tasklet over the device tasklet.
1513  */
1514 void dasd_schedule_device_bh(struct dasd_device *device)
1515 {
1516 	/* Protect against rescheduling. */
1517 	if (atomic_cmpxchg (&device->tasklet_scheduled, 0, 1) != 0)
1518 		return;
1519 	dasd_get_device(device);
1520 	tasklet_hi_schedule(&device->tasklet);
1521 }
1522 
1523 void dasd_device_set_stop_bits(struct dasd_device *device, int bits)
1524 {
1525 	device->stopped |= bits;
1526 }
1527 EXPORT_SYMBOL_GPL(dasd_device_set_stop_bits);
1528 
1529 void dasd_device_remove_stop_bits(struct dasd_device *device, int bits)
1530 {
1531 	device->stopped &= ~bits;
1532 	if (!device->stopped)
1533 		wake_up(&generic_waitq);
1534 }
1535 EXPORT_SYMBOL_GPL(dasd_device_remove_stop_bits);
1536 
1537 /*
1538  * Queue a request to the head of the device ccw_queue.
1539  * Start the I/O if possible.
1540  */
1541 void dasd_add_request_head(struct dasd_ccw_req *cqr)
1542 {
1543 	struct dasd_device *device;
1544 	unsigned long flags;
1545 
1546 	device = cqr->startdev;
1547 	spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags);
1548 	cqr->status = DASD_CQR_QUEUED;
1549 	list_add(&cqr->devlist, &device->ccw_queue);
1550 	/* let the bh start the request to keep them in order */
1551 	dasd_schedule_device_bh(device);
1552 	spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags);
1553 }
1554 
1555 /*
1556  * Queue a request to the tail of the device ccw_queue.
1557  * Start the I/O if possible.
1558  */
1559 void dasd_add_request_tail(struct dasd_ccw_req *cqr)
1560 {
1561 	struct dasd_device *device;
1562 	unsigned long flags;
1563 
1564 	device = cqr->startdev;
1565 	spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags);
1566 	cqr->status = DASD_CQR_QUEUED;
1567 	list_add_tail(&cqr->devlist, &device->ccw_queue);
1568 	/* let the bh start the request to keep them in order */
1569 	dasd_schedule_device_bh(device);
1570 	spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags);
1571 }
1572 
1573 /*
1574  * Wakeup helper for the 'sleep_on' functions.
1575  */
1576 static void dasd_wakeup_cb(struct dasd_ccw_req *cqr, void *data)
1577 {
1578 	spin_lock_irq(get_ccwdev_lock(cqr->startdev->cdev));
1579 	cqr->callback_data = DASD_SLEEPON_END_TAG;
1580 	spin_unlock_irq(get_ccwdev_lock(cqr->startdev->cdev));
1581 	wake_up(&generic_waitq);
1582 }
1583 
1584 static inline int _wait_for_wakeup(struct dasd_ccw_req *cqr)
1585 {
1586 	struct dasd_device *device;
1587 	int rc;
1588 
1589 	device = cqr->startdev;
1590 	spin_lock_irq(get_ccwdev_lock(device->cdev));
1591 	rc = (cqr->callback_data == DASD_SLEEPON_END_TAG);
1592 	spin_unlock_irq(get_ccwdev_lock(device->cdev));
1593 	return rc;
1594 }
1595 
1596 /*
1597  * checks if error recovery is necessary, returns 1 if yes, 0 otherwise.
1598  */
1599 static int __dasd_sleep_on_erp(struct dasd_ccw_req *cqr)
1600 {
1601 	struct dasd_device *device;
1602 	dasd_erp_fn_t erp_fn;
1603 
1604 	if (cqr->status == DASD_CQR_FILLED)
1605 		return 0;
1606 	device = cqr->startdev;
1607 	if (test_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags)) {
1608 		if (cqr->status == DASD_CQR_TERMINATED) {
1609 			device->discipline->handle_terminated_request(cqr);
1610 			return 1;
1611 		}
1612 		if (cqr->status == DASD_CQR_NEED_ERP) {
1613 			erp_fn = device->discipline->erp_action(cqr);
1614 			erp_fn(cqr);
1615 			return 1;
1616 		}
1617 		if (cqr->status == DASD_CQR_FAILED)
1618 			dasd_log_sense(cqr, &cqr->irb);
1619 		if (cqr->refers) {
1620 			__dasd_process_erp(device, cqr);
1621 			return 1;
1622 		}
1623 	}
1624 	return 0;
1625 }
1626 
1627 static int __dasd_sleep_on_loop_condition(struct dasd_ccw_req *cqr)
1628 {
1629 	if (test_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags)) {
1630 		if (cqr->refers) /* erp is not done yet */
1631 			return 1;
1632 		return ((cqr->status != DASD_CQR_DONE) &&
1633 			(cqr->status != DASD_CQR_FAILED));
1634 	} else
1635 		return (cqr->status == DASD_CQR_FILLED);
1636 }
1637 
1638 static int _dasd_sleep_on(struct dasd_ccw_req *maincqr, int interruptible)
1639 {
1640 	struct dasd_device *device;
1641 	int rc;
1642 	struct list_head ccw_queue;
1643 	struct dasd_ccw_req *cqr;
1644 
1645 	INIT_LIST_HEAD(&ccw_queue);
1646 	maincqr->status = DASD_CQR_FILLED;
1647 	device = maincqr->startdev;
1648 	list_add(&maincqr->blocklist, &ccw_queue);
1649 	for (cqr = maincqr;  __dasd_sleep_on_loop_condition(cqr);
1650 	     cqr = list_first_entry(&ccw_queue,
1651 				    struct dasd_ccw_req, blocklist)) {
1652 
1653 		if (__dasd_sleep_on_erp(cqr))
1654 			continue;
1655 		if (cqr->status != DASD_CQR_FILLED) /* could be failed */
1656 			continue;
1657 		if (test_bit(DASD_FLAG_LOCK_STOLEN, &device->flags) &&
1658 		    !test_bit(DASD_CQR_ALLOW_SLOCK, &cqr->flags)) {
1659 			cqr->status = DASD_CQR_FAILED;
1660 			cqr->intrc = -EPERM;
1661 			continue;
1662 		}
1663 		/* Non-temporary stop condition will trigger fail fast */
1664 		if (device->stopped & ~DASD_STOPPED_PENDING &&
1665 		    test_bit(DASD_CQR_FLAGS_FAILFAST, &cqr->flags) &&
1666 		    (!dasd_eer_enabled(device))) {
1667 			cqr->status = DASD_CQR_FAILED;
1668 			continue;
1669 		}
1670 		/* Don't try to start requests if device is stopped */
1671 		if (interruptible) {
1672 			rc = wait_event_interruptible(
1673 				generic_waitq, !(device->stopped));
1674 			if (rc == -ERESTARTSYS) {
1675 				cqr->status = DASD_CQR_FAILED;
1676 				maincqr->intrc = rc;
1677 				continue;
1678 			}
1679 		} else
1680 			wait_event(generic_waitq, !(device->stopped));
1681 
1682 		cqr->callback = dasd_wakeup_cb;
1683 		cqr->callback_data = DASD_SLEEPON_START_TAG;
1684 		dasd_add_request_tail(cqr);
1685 		if (interruptible) {
1686 			rc = wait_event_interruptible(
1687 				generic_waitq, _wait_for_wakeup(cqr));
1688 			if (rc == -ERESTARTSYS) {
1689 				dasd_cancel_req(cqr);
1690 				/* wait (non-interruptible) for final status */
1691 				wait_event(generic_waitq,
1692 					   _wait_for_wakeup(cqr));
1693 				cqr->status = DASD_CQR_FAILED;
1694 				maincqr->intrc = rc;
1695 				continue;
1696 			}
1697 		} else
1698 			wait_event(generic_waitq, _wait_for_wakeup(cqr));
1699 	}
1700 
1701 	maincqr->endclk = get_clock();
1702 	if ((maincqr->status != DASD_CQR_DONE) &&
1703 	    (maincqr->intrc != -ERESTARTSYS))
1704 		dasd_log_sense(maincqr, &maincqr->irb);
1705 	if (maincqr->status == DASD_CQR_DONE)
1706 		rc = 0;
1707 	else if (maincqr->intrc)
1708 		rc = maincqr->intrc;
1709 	else
1710 		rc = -EIO;
1711 	return rc;
1712 }
1713 
1714 /*
1715  * Queue a request to the tail of the device ccw_queue and wait for
1716  * it's completion.
1717  */
1718 int dasd_sleep_on(struct dasd_ccw_req *cqr)
1719 {
1720 	return _dasd_sleep_on(cqr, 0);
1721 }
1722 
1723 /*
1724  * Queue a request to the tail of the device ccw_queue and wait
1725  * interruptible for it's completion.
1726  */
1727 int dasd_sleep_on_interruptible(struct dasd_ccw_req *cqr)
1728 {
1729 	return _dasd_sleep_on(cqr, 1);
1730 }
1731 
1732 /*
1733  * Whoa nelly now it gets really hairy. For some functions (e.g. steal lock
1734  * for eckd devices) the currently running request has to be terminated
1735  * and be put back to status queued, before the special request is added
1736  * to the head of the queue. Then the special request is waited on normally.
1737  */
1738 static inline int _dasd_term_running_cqr(struct dasd_device *device)
1739 {
1740 	struct dasd_ccw_req *cqr;
1741 
1742 	if (list_empty(&device->ccw_queue))
1743 		return 0;
1744 	cqr = list_entry(device->ccw_queue.next, struct dasd_ccw_req, devlist);
1745 	return device->discipline->term_IO(cqr);
1746 }
1747 
1748 int dasd_sleep_on_immediatly(struct dasd_ccw_req *cqr)
1749 {
1750 	struct dasd_device *device;
1751 	int rc;
1752 
1753 	device = cqr->startdev;
1754 	if (test_bit(DASD_FLAG_LOCK_STOLEN, &device->flags) &&
1755 	    !test_bit(DASD_CQR_ALLOW_SLOCK, &cqr->flags)) {
1756 		cqr->status = DASD_CQR_FAILED;
1757 		cqr->intrc = -EPERM;
1758 		return -EIO;
1759 	}
1760 	spin_lock_irq(get_ccwdev_lock(device->cdev));
1761 	rc = _dasd_term_running_cqr(device);
1762 	if (rc) {
1763 		spin_unlock_irq(get_ccwdev_lock(device->cdev));
1764 		return rc;
1765 	}
1766 	cqr->callback = dasd_wakeup_cb;
1767 	cqr->callback_data = DASD_SLEEPON_START_TAG;
1768 	cqr->status = DASD_CQR_QUEUED;
1769 	list_add(&cqr->devlist, &device->ccw_queue);
1770 
1771 	/* let the bh start the request to keep them in order */
1772 	dasd_schedule_device_bh(device);
1773 
1774 	spin_unlock_irq(get_ccwdev_lock(device->cdev));
1775 
1776 	wait_event(generic_waitq, _wait_for_wakeup(cqr));
1777 
1778 	if (cqr->status == DASD_CQR_DONE)
1779 		rc = 0;
1780 	else if (cqr->intrc)
1781 		rc = cqr->intrc;
1782 	else
1783 		rc = -EIO;
1784 	return rc;
1785 }
1786 
1787 /*
1788  * Cancels a request that was started with dasd_sleep_on_req.
1789  * This is useful to timeout requests. The request will be
1790  * terminated if it is currently in i/o.
1791  * Returns 1 if the request has been terminated.
1792  *	   0 if there was no need to terminate the request (not started yet)
1793  *	   negative error code if termination failed
1794  * Cancellation of a request is an asynchronous operation! The calling
1795  * function has to wait until the request is properly returned via callback.
1796  */
1797 int dasd_cancel_req(struct dasd_ccw_req *cqr)
1798 {
1799 	struct dasd_device *device = cqr->startdev;
1800 	unsigned long flags;
1801 	int rc;
1802 
1803 	rc = 0;
1804 	spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags);
1805 	switch (cqr->status) {
1806 	case DASD_CQR_QUEUED:
1807 		/* request was not started - just set to cleared */
1808 		cqr->status = DASD_CQR_CLEARED;
1809 		break;
1810 	case DASD_CQR_IN_IO:
1811 		/* request in IO - terminate IO and release again */
1812 		rc = device->discipline->term_IO(cqr);
1813 		if (rc) {
1814 			dev_err(&device->cdev->dev,
1815 				"Cancelling request %p failed with rc=%d\n",
1816 				cqr, rc);
1817 		} else {
1818 			cqr->stopclk = get_clock();
1819 		}
1820 		break;
1821 	default: /* already finished or clear pending - do nothing */
1822 		break;
1823 	}
1824 	spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags);
1825 	dasd_schedule_device_bh(device);
1826 	return rc;
1827 }
1828 
1829 
1830 /*
1831  * SECTION: Operations of the dasd_block layer.
1832  */
1833 
1834 /*
1835  * Timeout function for dasd_block. This is used when the block layer
1836  * is waiting for something that may not come reliably, (e.g. a state
1837  * change interrupt)
1838  */
1839 static void dasd_block_timeout(unsigned long ptr)
1840 {
1841 	unsigned long flags;
1842 	struct dasd_block *block;
1843 
1844 	block = (struct dasd_block *) ptr;
1845 	spin_lock_irqsave(get_ccwdev_lock(block->base->cdev), flags);
1846 	/* re-activate request queue */
1847 	dasd_device_remove_stop_bits(block->base, DASD_STOPPED_PENDING);
1848 	spin_unlock_irqrestore(get_ccwdev_lock(block->base->cdev), flags);
1849 	dasd_schedule_block_bh(block);
1850 }
1851 
1852 /*
1853  * Setup timeout for a dasd_block in jiffies.
1854  */
1855 void dasd_block_set_timer(struct dasd_block *block, int expires)
1856 {
1857 	if (expires == 0)
1858 		del_timer(&block->timer);
1859 	else
1860 		mod_timer(&block->timer, jiffies + expires);
1861 }
1862 
1863 /*
1864  * Clear timeout for a dasd_block.
1865  */
1866 void dasd_block_clear_timer(struct dasd_block *block)
1867 {
1868 	del_timer(&block->timer);
1869 }
1870 
1871 /*
1872  * Process finished error recovery ccw.
1873  */
1874 static void __dasd_process_erp(struct dasd_device *device,
1875 			       struct dasd_ccw_req *cqr)
1876 {
1877 	dasd_erp_fn_t erp_fn;
1878 
1879 	if (cqr->status == DASD_CQR_DONE)
1880 		DBF_DEV_EVENT(DBF_NOTICE, device, "%s", "ERP successful");
1881 	else
1882 		dev_err(&device->cdev->dev, "ERP failed for the DASD\n");
1883 	erp_fn = device->discipline->erp_postaction(cqr);
1884 	erp_fn(cqr);
1885 }
1886 
1887 /*
1888  * Fetch requests from the block device queue.
1889  */
1890 static void __dasd_process_request_queue(struct dasd_block *block)
1891 {
1892 	struct request_queue *queue;
1893 	struct request *req;
1894 	struct dasd_ccw_req *cqr;
1895 	struct dasd_device *basedev;
1896 	unsigned long flags;
1897 	queue = block->request_queue;
1898 	basedev = block->base;
1899 	/* No queue ? Then there is nothing to do. */
1900 	if (queue == NULL)
1901 		return;
1902 
1903 	/*
1904 	 * We requeue request from the block device queue to the ccw
1905 	 * queue only in two states. In state DASD_STATE_READY the
1906 	 * partition detection is done and we need to requeue requests
1907 	 * for that. State DASD_STATE_ONLINE is normal block device
1908 	 * operation.
1909 	 */
1910 	if (basedev->state < DASD_STATE_READY) {
1911 		while ((req = blk_fetch_request(block->request_queue)))
1912 			__blk_end_request_all(req, -EIO);
1913 		return;
1914 	}
1915 	/* Now we try to fetch requests from the request queue */
1916 	while (!blk_queue_plugged(queue) && (req = blk_peek_request(queue))) {
1917 		if (basedev->features & DASD_FEATURE_READONLY &&
1918 		    rq_data_dir(req) == WRITE) {
1919 			DBF_DEV_EVENT(DBF_ERR, basedev,
1920 				      "Rejecting write request %p",
1921 				      req);
1922 			blk_start_request(req);
1923 			__blk_end_request_all(req, -EIO);
1924 			continue;
1925 		}
1926 		cqr = basedev->discipline->build_cp(basedev, block, req);
1927 		if (IS_ERR(cqr)) {
1928 			if (PTR_ERR(cqr) == -EBUSY)
1929 				break;	/* normal end condition */
1930 			if (PTR_ERR(cqr) == -ENOMEM)
1931 				break;	/* terminate request queue loop */
1932 			if (PTR_ERR(cqr) == -EAGAIN) {
1933 				/*
1934 				 * The current request cannot be build right
1935 				 * now, we have to try later. If this request
1936 				 * is the head-of-queue we stop the device
1937 				 * for 1/2 second.
1938 				 */
1939 				if (!list_empty(&block->ccw_queue))
1940 					break;
1941 				spin_lock_irqsave(
1942 					get_ccwdev_lock(basedev->cdev), flags);
1943 				dasd_device_set_stop_bits(basedev,
1944 							  DASD_STOPPED_PENDING);
1945 				spin_unlock_irqrestore(
1946 					get_ccwdev_lock(basedev->cdev), flags);
1947 				dasd_block_set_timer(block, HZ/2);
1948 				break;
1949 			}
1950 			DBF_DEV_EVENT(DBF_ERR, basedev,
1951 				      "CCW creation failed (rc=%ld) "
1952 				      "on request %p",
1953 				      PTR_ERR(cqr), req);
1954 			blk_start_request(req);
1955 			__blk_end_request_all(req, -EIO);
1956 			continue;
1957 		}
1958 		/*
1959 		 *  Note: callback is set to dasd_return_cqr_cb in
1960 		 * __dasd_block_start_head to cover erp requests as well
1961 		 */
1962 		cqr->callback_data = (void *) req;
1963 		cqr->status = DASD_CQR_FILLED;
1964 		blk_start_request(req);
1965 		list_add_tail(&cqr->blocklist, &block->ccw_queue);
1966 		dasd_profile_start(block, cqr, req);
1967 	}
1968 }
1969 
1970 static void __dasd_cleanup_cqr(struct dasd_ccw_req *cqr)
1971 {
1972 	struct request *req;
1973 	int status;
1974 	int error = 0;
1975 
1976 	req = (struct request *) cqr->callback_data;
1977 	dasd_profile_end(cqr->block, cqr, req);
1978 	status = cqr->block->base->discipline->free_cp(cqr, req);
1979 	if (status <= 0)
1980 		error = status ? status : -EIO;
1981 	__blk_end_request_all(req, error);
1982 }
1983 
1984 /*
1985  * Process ccw request queue.
1986  */
1987 static void __dasd_process_block_ccw_queue(struct dasd_block *block,
1988 					   struct list_head *final_queue)
1989 {
1990 	struct list_head *l, *n;
1991 	struct dasd_ccw_req *cqr;
1992 	dasd_erp_fn_t erp_fn;
1993 	unsigned long flags;
1994 	struct dasd_device *base = block->base;
1995 
1996 restart:
1997 	/* Process request with final status. */
1998 	list_for_each_safe(l, n, &block->ccw_queue) {
1999 		cqr = list_entry(l, struct dasd_ccw_req, blocklist);
2000 		if (cqr->status != DASD_CQR_DONE &&
2001 		    cqr->status != DASD_CQR_FAILED &&
2002 		    cqr->status != DASD_CQR_NEED_ERP &&
2003 		    cqr->status != DASD_CQR_TERMINATED)
2004 			continue;
2005 
2006 		if (cqr->status == DASD_CQR_TERMINATED) {
2007 			base->discipline->handle_terminated_request(cqr);
2008 			goto restart;
2009 		}
2010 
2011 		/*  Process requests that may be recovered */
2012 		if (cqr->status == DASD_CQR_NEED_ERP) {
2013 			erp_fn = base->discipline->erp_action(cqr);
2014 			if (IS_ERR(erp_fn(cqr)))
2015 				continue;
2016 			goto restart;
2017 		}
2018 
2019 		/* log sense for fatal error */
2020 		if (cqr->status == DASD_CQR_FAILED) {
2021 			dasd_log_sense(cqr, &cqr->irb);
2022 		}
2023 
2024 		/* First of all call extended error reporting. */
2025 		if (dasd_eer_enabled(base) &&
2026 		    cqr->status == DASD_CQR_FAILED) {
2027 			dasd_eer_write(base, cqr, DASD_EER_FATALERROR);
2028 
2029 			/* restart request  */
2030 			cqr->status = DASD_CQR_FILLED;
2031 			cqr->retries = 255;
2032 			spin_lock_irqsave(get_ccwdev_lock(base->cdev), flags);
2033 			dasd_device_set_stop_bits(base, DASD_STOPPED_QUIESCE);
2034 			spin_unlock_irqrestore(get_ccwdev_lock(base->cdev),
2035 					       flags);
2036 			goto restart;
2037 		}
2038 
2039 		/* Process finished ERP request. */
2040 		if (cqr->refers) {
2041 			__dasd_process_erp(base, cqr);
2042 			goto restart;
2043 		}
2044 
2045 		/* Rechain finished requests to final queue */
2046 		cqr->endclk = get_clock();
2047 		list_move_tail(&cqr->blocklist, final_queue);
2048 	}
2049 }
2050 
2051 static void dasd_return_cqr_cb(struct dasd_ccw_req *cqr, void *data)
2052 {
2053 	dasd_schedule_block_bh(cqr->block);
2054 }
2055 
2056 static void __dasd_block_start_head(struct dasd_block *block)
2057 {
2058 	struct dasd_ccw_req *cqr;
2059 
2060 	if (list_empty(&block->ccw_queue))
2061 		return;
2062 	/* We allways begin with the first requests on the queue, as some
2063 	 * of previously started requests have to be enqueued on a
2064 	 * dasd_device again for error recovery.
2065 	 */
2066 	list_for_each_entry(cqr, &block->ccw_queue, blocklist) {
2067 		if (cqr->status != DASD_CQR_FILLED)
2068 			continue;
2069 		if (test_bit(DASD_FLAG_LOCK_STOLEN, &block->base->flags) &&
2070 		    !test_bit(DASD_CQR_ALLOW_SLOCK, &cqr->flags)) {
2071 			cqr->status = DASD_CQR_FAILED;
2072 			cqr->intrc = -EPERM;
2073 			dasd_schedule_block_bh(block);
2074 			continue;
2075 		}
2076 		/* Non-temporary stop condition will trigger fail fast */
2077 		if (block->base->stopped & ~DASD_STOPPED_PENDING &&
2078 		    test_bit(DASD_CQR_FLAGS_FAILFAST, &cqr->flags) &&
2079 		    (!dasd_eer_enabled(block->base))) {
2080 			cqr->status = DASD_CQR_FAILED;
2081 			dasd_schedule_block_bh(block);
2082 			continue;
2083 		}
2084 		/* Don't try to start requests if device is stopped */
2085 		if (block->base->stopped)
2086 			return;
2087 
2088 		/* just a fail safe check, should not happen */
2089 		if (!cqr->startdev)
2090 			cqr->startdev = block->base;
2091 
2092 		/* make sure that the requests we submit find their way back */
2093 		cqr->callback = dasd_return_cqr_cb;
2094 
2095 		dasd_add_request_tail(cqr);
2096 	}
2097 }
2098 
2099 /*
2100  * Central dasd_block layer routine. Takes requests from the generic
2101  * block layer request queue, creates ccw requests, enqueues them on
2102  * a dasd_device and processes ccw requests that have been returned.
2103  */
2104 static void dasd_block_tasklet(struct dasd_block *block)
2105 {
2106 	struct list_head final_queue;
2107 	struct list_head *l, *n;
2108 	struct dasd_ccw_req *cqr;
2109 
2110 	atomic_set(&block->tasklet_scheduled, 0);
2111 	INIT_LIST_HEAD(&final_queue);
2112 	spin_lock(&block->queue_lock);
2113 	/* Finish off requests on ccw queue */
2114 	__dasd_process_block_ccw_queue(block, &final_queue);
2115 	spin_unlock(&block->queue_lock);
2116 	/* Now call the callback function of requests with final status */
2117 	spin_lock_irq(&block->request_queue_lock);
2118 	list_for_each_safe(l, n, &final_queue) {
2119 		cqr = list_entry(l, struct dasd_ccw_req, blocklist);
2120 		list_del_init(&cqr->blocklist);
2121 		__dasd_cleanup_cqr(cqr);
2122 	}
2123 	spin_lock(&block->queue_lock);
2124 	/* Get new request from the block device request queue */
2125 	__dasd_process_request_queue(block);
2126 	/* Now check if the head of the ccw queue needs to be started. */
2127 	__dasd_block_start_head(block);
2128 	spin_unlock(&block->queue_lock);
2129 	spin_unlock_irq(&block->request_queue_lock);
2130 	dasd_put_device(block->base);
2131 }
2132 
2133 static void _dasd_wake_block_flush_cb(struct dasd_ccw_req *cqr, void *data)
2134 {
2135 	wake_up(&dasd_flush_wq);
2136 }
2137 
2138 /*
2139  * Go through all request on the dasd_block request queue, cancel them
2140  * on the respective dasd_device, and return them to the generic
2141  * block layer.
2142  */
2143 static int dasd_flush_block_queue(struct dasd_block *block)
2144 {
2145 	struct dasd_ccw_req *cqr, *n;
2146 	int rc, i;
2147 	struct list_head flush_queue;
2148 
2149 	INIT_LIST_HEAD(&flush_queue);
2150 	spin_lock_bh(&block->queue_lock);
2151 	rc = 0;
2152 restart:
2153 	list_for_each_entry_safe(cqr, n, &block->ccw_queue, blocklist) {
2154 		/* if this request currently owned by a dasd_device cancel it */
2155 		if (cqr->status >= DASD_CQR_QUEUED)
2156 			rc = dasd_cancel_req(cqr);
2157 		if (rc < 0)
2158 			break;
2159 		/* Rechain request (including erp chain) so it won't be
2160 		 * touched by the dasd_block_tasklet anymore.
2161 		 * Replace the callback so we notice when the request
2162 		 * is returned from the dasd_device layer.
2163 		 */
2164 		cqr->callback = _dasd_wake_block_flush_cb;
2165 		for (i = 0; cqr != NULL; cqr = cqr->refers, i++)
2166 			list_move_tail(&cqr->blocklist, &flush_queue);
2167 		if (i > 1)
2168 			/* moved more than one request - need to restart */
2169 			goto restart;
2170 	}
2171 	spin_unlock_bh(&block->queue_lock);
2172 	/* Now call the callback function of flushed requests */
2173 restart_cb:
2174 	list_for_each_entry_safe(cqr, n, &flush_queue, blocklist) {
2175 		wait_event(dasd_flush_wq, (cqr->status < DASD_CQR_QUEUED));
2176 		/* Process finished ERP request. */
2177 		if (cqr->refers) {
2178 			spin_lock_bh(&block->queue_lock);
2179 			__dasd_process_erp(block->base, cqr);
2180 			spin_unlock_bh(&block->queue_lock);
2181 			/* restart list_for_xx loop since dasd_process_erp
2182 			 * might remove multiple elements */
2183 			goto restart_cb;
2184 		}
2185 		/* call the callback function */
2186 		spin_lock_irq(&block->request_queue_lock);
2187 		cqr->endclk = get_clock();
2188 		list_del_init(&cqr->blocklist);
2189 		__dasd_cleanup_cqr(cqr);
2190 		spin_unlock_irq(&block->request_queue_lock);
2191 	}
2192 	return rc;
2193 }
2194 
2195 /*
2196  * Schedules a call to dasd_tasklet over the device tasklet.
2197  */
2198 void dasd_schedule_block_bh(struct dasd_block *block)
2199 {
2200 	/* Protect against rescheduling. */
2201 	if (atomic_cmpxchg(&block->tasklet_scheduled, 0, 1) != 0)
2202 		return;
2203 	/* life cycle of block is bound to it's base device */
2204 	dasd_get_device(block->base);
2205 	tasklet_hi_schedule(&block->tasklet);
2206 }
2207 
2208 
2209 /*
2210  * SECTION: external block device operations
2211  * (request queue handling, open, release, etc.)
2212  */
2213 
2214 /*
2215  * Dasd request queue function. Called from ll_rw_blk.c
2216  */
2217 static void do_dasd_request(struct request_queue *queue)
2218 {
2219 	struct dasd_block *block;
2220 
2221 	block = queue->queuedata;
2222 	spin_lock(&block->queue_lock);
2223 	/* Get new request from the block device request queue */
2224 	__dasd_process_request_queue(block);
2225 	/* Now check if the head of the ccw queue needs to be started. */
2226 	__dasd_block_start_head(block);
2227 	spin_unlock(&block->queue_lock);
2228 }
2229 
2230 /*
2231  * Allocate and initialize request queue and default I/O scheduler.
2232  */
2233 static int dasd_alloc_queue(struct dasd_block *block)
2234 {
2235 	int rc;
2236 
2237 	block->request_queue = blk_init_queue(do_dasd_request,
2238 					       &block->request_queue_lock);
2239 	if (block->request_queue == NULL)
2240 		return -ENOMEM;
2241 
2242 	block->request_queue->queuedata = block;
2243 
2244 	elevator_exit(block->request_queue->elevator);
2245 	block->request_queue->elevator = NULL;
2246 	rc = elevator_init(block->request_queue, "deadline");
2247 	if (rc) {
2248 		blk_cleanup_queue(block->request_queue);
2249 		return rc;
2250 	}
2251 	return 0;
2252 }
2253 
2254 /*
2255  * Allocate and initialize request queue.
2256  */
2257 static void dasd_setup_queue(struct dasd_block *block)
2258 {
2259 	int max;
2260 
2261 	blk_queue_logical_block_size(block->request_queue, block->bp_block);
2262 	max = block->base->discipline->max_blocks << block->s2b_shift;
2263 	blk_queue_max_hw_sectors(block->request_queue, max);
2264 	blk_queue_max_segments(block->request_queue, -1L);
2265 	/* with page sized segments we can translate each segement into
2266 	 * one idaw/tidaw
2267 	 */
2268 	blk_queue_max_segment_size(block->request_queue, PAGE_SIZE);
2269 	blk_queue_segment_boundary(block->request_queue, PAGE_SIZE - 1);
2270 }
2271 
2272 /*
2273  * Deactivate and free request queue.
2274  */
2275 static void dasd_free_queue(struct dasd_block *block)
2276 {
2277 	if (block->request_queue) {
2278 		blk_cleanup_queue(block->request_queue);
2279 		block->request_queue = NULL;
2280 	}
2281 }
2282 
2283 /*
2284  * Flush request on the request queue.
2285  */
2286 static void dasd_flush_request_queue(struct dasd_block *block)
2287 {
2288 	struct request *req;
2289 
2290 	if (!block->request_queue)
2291 		return;
2292 
2293 	spin_lock_irq(&block->request_queue_lock);
2294 	while ((req = blk_fetch_request(block->request_queue)))
2295 		__blk_end_request_all(req, -EIO);
2296 	spin_unlock_irq(&block->request_queue_lock);
2297 }
2298 
2299 static int dasd_open(struct block_device *bdev, fmode_t mode)
2300 {
2301 	struct dasd_block *block = bdev->bd_disk->private_data;
2302 	struct dasd_device *base;
2303 	int rc;
2304 
2305 	if (!block)
2306 		return -ENODEV;
2307 
2308 	base = block->base;
2309 	atomic_inc(&block->open_count);
2310 	if (test_bit(DASD_FLAG_OFFLINE, &base->flags)) {
2311 		rc = -ENODEV;
2312 		goto unlock;
2313 	}
2314 
2315 	if (!try_module_get(base->discipline->owner)) {
2316 		rc = -EINVAL;
2317 		goto unlock;
2318 	}
2319 
2320 	if (dasd_probeonly) {
2321 		dev_info(&base->cdev->dev,
2322 			 "Accessing the DASD failed because it is in "
2323 			 "probeonly mode\n");
2324 		rc = -EPERM;
2325 		goto out;
2326 	}
2327 
2328 	if (base->state <= DASD_STATE_BASIC) {
2329 		DBF_DEV_EVENT(DBF_ERR, base, " %s",
2330 			      " Cannot open unrecognized device");
2331 		rc = -ENODEV;
2332 		goto out;
2333 	}
2334 
2335 	if ((mode & FMODE_WRITE) &&
2336 	    (test_bit(DASD_FLAG_DEVICE_RO, &base->flags) ||
2337 	     (base->features & DASD_FEATURE_READONLY))) {
2338 		rc = -EROFS;
2339 		goto out;
2340 	}
2341 
2342 	return 0;
2343 
2344 out:
2345 	module_put(base->discipline->owner);
2346 unlock:
2347 	atomic_dec(&block->open_count);
2348 	return rc;
2349 }
2350 
2351 static int dasd_release(struct gendisk *disk, fmode_t mode)
2352 {
2353 	struct dasd_block *block = disk->private_data;
2354 
2355 	atomic_dec(&block->open_count);
2356 	module_put(block->base->discipline->owner);
2357 	return 0;
2358 }
2359 
2360 /*
2361  * Return disk geometry.
2362  */
2363 static int dasd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
2364 {
2365 	struct dasd_block *block;
2366 	struct dasd_device *base;
2367 
2368 	block = bdev->bd_disk->private_data;
2369 	if (!block)
2370 		return -ENODEV;
2371 	base = block->base;
2372 
2373 	if (!base->discipline ||
2374 	    !base->discipline->fill_geometry)
2375 		return -EINVAL;
2376 
2377 	base->discipline->fill_geometry(block, geo);
2378 	geo->start = get_start_sect(bdev) >> block->s2b_shift;
2379 	return 0;
2380 }
2381 
2382 const struct block_device_operations
2383 dasd_device_operations = {
2384 	.owner		= THIS_MODULE,
2385 	.open		= dasd_open,
2386 	.release	= dasd_release,
2387 	.ioctl		= dasd_ioctl,
2388 	.compat_ioctl	= dasd_ioctl,
2389 	.getgeo		= dasd_getgeo,
2390 };
2391 
2392 /*******************************************************************************
2393  * end of block device operations
2394  */
2395 
2396 static void
2397 dasd_exit(void)
2398 {
2399 #ifdef CONFIG_PROC_FS
2400 	dasd_proc_exit();
2401 #endif
2402 	dasd_eer_exit();
2403         if (dasd_page_cache != NULL) {
2404 		kmem_cache_destroy(dasd_page_cache);
2405 		dasd_page_cache = NULL;
2406 	}
2407 	dasd_gendisk_exit();
2408 	dasd_devmap_exit();
2409 	if (dasd_debug_area != NULL) {
2410 		debug_unregister(dasd_debug_area);
2411 		dasd_debug_area = NULL;
2412 	}
2413 }
2414 
2415 /*
2416  * SECTION: common functions for ccw_driver use
2417  */
2418 
2419 /*
2420  * Is the device read-only?
2421  * Note that this function does not report the setting of the
2422  * readonly device attribute, but how it is configured in z/VM.
2423  */
2424 int dasd_device_is_ro(struct dasd_device *device)
2425 {
2426 	struct ccw_dev_id dev_id;
2427 	struct diag210 diag_data;
2428 	int rc;
2429 
2430 	if (!MACHINE_IS_VM)
2431 		return 0;
2432 	ccw_device_get_id(device->cdev, &dev_id);
2433 	memset(&diag_data, 0, sizeof(diag_data));
2434 	diag_data.vrdcdvno = dev_id.devno;
2435 	diag_data.vrdclen = sizeof(diag_data);
2436 	rc = diag210(&diag_data);
2437 	if (rc == 0 || rc == 2) {
2438 		return diag_data.vrdcvfla & 0x80;
2439 	} else {
2440 		DBF_EVENT(DBF_WARNING, "diag210 failed for dev=%04x with rc=%d",
2441 			  dev_id.devno, rc);
2442 		return 0;
2443 	}
2444 }
2445 EXPORT_SYMBOL_GPL(dasd_device_is_ro);
2446 
2447 static void dasd_generic_auto_online(void *data, async_cookie_t cookie)
2448 {
2449 	struct ccw_device *cdev = data;
2450 	int ret;
2451 
2452 	ret = ccw_device_set_online(cdev);
2453 	if (ret)
2454 		pr_warning("%s: Setting the DASD online failed with rc=%d\n",
2455 			   dev_name(&cdev->dev), ret);
2456 }
2457 
2458 /*
2459  * Initial attempt at a probe function. this can be simplified once
2460  * the other detection code is gone.
2461  */
2462 int dasd_generic_probe(struct ccw_device *cdev,
2463 		       struct dasd_discipline *discipline)
2464 {
2465 	int ret;
2466 
2467 	ret = dasd_add_sysfs_files(cdev);
2468 	if (ret) {
2469 		DBF_EVENT_DEVID(DBF_WARNING, cdev, "%s",
2470 				"dasd_generic_probe: could not add "
2471 				"sysfs entries");
2472 		return ret;
2473 	}
2474 	cdev->handler = &dasd_int_handler;
2475 
2476 	/*
2477 	 * Automatically online either all dasd devices (dasd_autodetect)
2478 	 * or all devices specified with dasd= parameters during
2479 	 * initial probe.
2480 	 */
2481 	if ((dasd_get_feature(cdev, DASD_FEATURE_INITIAL_ONLINE) > 0 ) ||
2482 	    (dasd_autodetect && dasd_busid_known(dev_name(&cdev->dev)) != 0))
2483 		async_schedule(dasd_generic_auto_online, cdev);
2484 	return 0;
2485 }
2486 
2487 /*
2488  * This will one day be called from a global not_oper handler.
2489  * It is also used by driver_unregister during module unload.
2490  */
2491 void dasd_generic_remove(struct ccw_device *cdev)
2492 {
2493 	struct dasd_device *device;
2494 	struct dasd_block *block;
2495 
2496 	cdev->handler = NULL;
2497 
2498 	dasd_remove_sysfs_files(cdev);
2499 	device = dasd_device_from_cdev(cdev);
2500 	if (IS_ERR(device))
2501 		return;
2502 	if (test_and_set_bit(DASD_FLAG_OFFLINE, &device->flags)) {
2503 		/* Already doing offline processing */
2504 		dasd_put_device(device);
2505 		return;
2506 	}
2507 	/*
2508 	 * This device is removed unconditionally. Set offline
2509 	 * flag to prevent dasd_open from opening it while it is
2510 	 * no quite down yet.
2511 	 */
2512 	dasd_set_target_state(device, DASD_STATE_NEW);
2513 	/* dasd_delete_device destroys the device reference. */
2514 	block = device->block;
2515 	device->block = NULL;
2516 	dasd_delete_device(device);
2517 	/*
2518 	 * life cycle of block is bound to device, so delete it after
2519 	 * device was safely removed
2520 	 */
2521 	if (block)
2522 		dasd_free_block(block);
2523 }
2524 
2525 /*
2526  * Activate a device. This is called from dasd_{eckd,fba}_probe() when either
2527  * the device is detected for the first time and is supposed to be used
2528  * or the user has started activation through sysfs.
2529  */
2530 int dasd_generic_set_online(struct ccw_device *cdev,
2531 			    struct dasd_discipline *base_discipline)
2532 {
2533 	struct dasd_discipline *discipline;
2534 	struct dasd_device *device;
2535 	int rc;
2536 
2537 	/* first online clears initial online feature flag */
2538 	dasd_set_feature(cdev, DASD_FEATURE_INITIAL_ONLINE, 0);
2539 	device = dasd_create_device(cdev);
2540 	if (IS_ERR(device))
2541 		return PTR_ERR(device);
2542 
2543 	discipline = base_discipline;
2544 	if (device->features & DASD_FEATURE_USEDIAG) {
2545 	  	if (!dasd_diag_discipline_pointer) {
2546 			pr_warning("%s Setting the DASD online failed because "
2547 				   "of missing DIAG discipline\n",
2548 				   dev_name(&cdev->dev));
2549 			dasd_delete_device(device);
2550 			return -ENODEV;
2551 		}
2552 		discipline = dasd_diag_discipline_pointer;
2553 	}
2554 	if (!try_module_get(base_discipline->owner)) {
2555 		dasd_delete_device(device);
2556 		return -EINVAL;
2557 	}
2558 	if (!try_module_get(discipline->owner)) {
2559 		module_put(base_discipline->owner);
2560 		dasd_delete_device(device);
2561 		return -EINVAL;
2562 	}
2563 	device->base_discipline = base_discipline;
2564 	device->discipline = discipline;
2565 
2566 	/* check_device will allocate block device if necessary */
2567 	rc = discipline->check_device(device);
2568 	if (rc) {
2569 		pr_warning("%s Setting the DASD online with discipline %s "
2570 			   "failed with rc=%i\n",
2571 			   dev_name(&cdev->dev), discipline->name, rc);
2572 		module_put(discipline->owner);
2573 		module_put(base_discipline->owner);
2574 		dasd_delete_device(device);
2575 		return rc;
2576 	}
2577 
2578 	dasd_set_target_state(device, DASD_STATE_ONLINE);
2579 	if (device->state <= DASD_STATE_KNOWN) {
2580 		pr_warning("%s Setting the DASD online failed because of a "
2581 			   "missing discipline\n", dev_name(&cdev->dev));
2582 		rc = -ENODEV;
2583 		dasd_set_target_state(device, DASD_STATE_NEW);
2584 		if (device->block)
2585 			dasd_free_block(device->block);
2586 		dasd_delete_device(device);
2587 	} else
2588 		pr_debug("dasd_generic device %s found\n",
2589 				dev_name(&cdev->dev));
2590 
2591 	wait_event(dasd_init_waitq, _wait_for_device(device));
2592 
2593 	dasd_put_device(device);
2594 	return rc;
2595 }
2596 
2597 int dasd_generic_set_offline(struct ccw_device *cdev)
2598 {
2599 	struct dasd_device *device;
2600 	struct dasd_block *block;
2601 	int max_count, open_count;
2602 
2603 	device = dasd_device_from_cdev(cdev);
2604 	if (IS_ERR(device))
2605 		return PTR_ERR(device);
2606 	if (test_and_set_bit(DASD_FLAG_OFFLINE, &device->flags)) {
2607 		/* Already doing offline processing */
2608 		dasd_put_device(device);
2609 		return 0;
2610 	}
2611 	/*
2612 	 * We must make sure that this device is currently not in use.
2613 	 * The open_count is increased for every opener, that includes
2614 	 * the blkdev_get in dasd_scan_partitions. We are only interested
2615 	 * in the other openers.
2616 	 */
2617 	if (device->block) {
2618 		max_count = device->block->bdev ? 0 : -1;
2619 		open_count = atomic_read(&device->block->open_count);
2620 		if (open_count > max_count) {
2621 			if (open_count > 0)
2622 				pr_warning("%s: The DASD cannot be set offline "
2623 					   "with open count %i\n",
2624 					   dev_name(&cdev->dev), open_count);
2625 			else
2626 				pr_warning("%s: The DASD cannot be set offline "
2627 					   "while it is in use\n",
2628 					   dev_name(&cdev->dev));
2629 			clear_bit(DASD_FLAG_OFFLINE, &device->flags);
2630 			dasd_put_device(device);
2631 			return -EBUSY;
2632 		}
2633 	}
2634 	dasd_set_target_state(device, DASD_STATE_NEW);
2635 	/* dasd_delete_device destroys the device reference. */
2636 	block = device->block;
2637 	device->block = NULL;
2638 	dasd_delete_device(device);
2639 	/*
2640 	 * life cycle of block is bound to device, so delete it after
2641 	 * device was safely removed
2642 	 */
2643 	if (block)
2644 		dasd_free_block(block);
2645 	return 0;
2646 }
2647 
2648 int dasd_generic_last_path_gone(struct dasd_device *device)
2649 {
2650 	struct dasd_ccw_req *cqr;
2651 
2652 	dev_warn(&device->cdev->dev, "No operational channel path is left "
2653 		 "for the device\n");
2654 	DBF_DEV_EVENT(DBF_WARNING, device, "%s", "last path gone");
2655 	/* First of all call extended error reporting. */
2656 	dasd_eer_write(device, NULL, DASD_EER_NOPATH);
2657 
2658 	if (device->state < DASD_STATE_BASIC)
2659 		return 0;
2660 	/* Device is active. We want to keep it. */
2661 	list_for_each_entry(cqr, &device->ccw_queue, devlist)
2662 		if ((cqr->status == DASD_CQR_IN_IO) ||
2663 		    (cqr->status == DASD_CQR_CLEAR_PENDING)) {
2664 			cqr->status = DASD_CQR_QUEUED;
2665 			cqr->retries++;
2666 		}
2667 	dasd_device_set_stop_bits(device, DASD_STOPPED_DC_WAIT);
2668 	dasd_device_clear_timer(device);
2669 	dasd_schedule_device_bh(device);
2670 	return 1;
2671 }
2672 EXPORT_SYMBOL_GPL(dasd_generic_last_path_gone);
2673 
2674 int dasd_generic_path_operational(struct dasd_device *device)
2675 {
2676 	dev_info(&device->cdev->dev, "A channel path to the device has become "
2677 		 "operational\n");
2678 	DBF_DEV_EVENT(DBF_WARNING, device, "%s", "path operational");
2679 	dasd_device_remove_stop_bits(device, DASD_STOPPED_DC_WAIT);
2680 	if (device->stopped & DASD_UNRESUMED_PM) {
2681 		dasd_device_remove_stop_bits(device, DASD_UNRESUMED_PM);
2682 		dasd_restore_device(device);
2683 		return 1;
2684 	}
2685 	dasd_schedule_device_bh(device);
2686 	if (device->block)
2687 		dasd_schedule_block_bh(device->block);
2688 	return 1;
2689 }
2690 EXPORT_SYMBOL_GPL(dasd_generic_path_operational);
2691 
2692 int dasd_generic_notify(struct ccw_device *cdev, int event)
2693 {
2694 	struct dasd_device *device;
2695 	int ret;
2696 
2697 	device = dasd_device_from_cdev_locked(cdev);
2698 	if (IS_ERR(device))
2699 		return 0;
2700 	ret = 0;
2701 	switch (event) {
2702 	case CIO_GONE:
2703 	case CIO_BOXED:
2704 	case CIO_NO_PATH:
2705 		device->path_data.opm = 0;
2706 		device->path_data.ppm = 0;
2707 		device->path_data.npm = 0;
2708 		ret = dasd_generic_last_path_gone(device);
2709 		break;
2710 	case CIO_OPER:
2711 		ret = 1;
2712 		if (device->path_data.opm)
2713 			ret = dasd_generic_path_operational(device);
2714 		break;
2715 	}
2716 	dasd_put_device(device);
2717 	return ret;
2718 }
2719 
2720 void dasd_generic_path_event(struct ccw_device *cdev, int *path_event)
2721 {
2722 	int chp;
2723 	__u8 oldopm, eventlpm;
2724 	struct dasd_device *device;
2725 
2726 	device = dasd_device_from_cdev_locked(cdev);
2727 	if (IS_ERR(device))
2728 		return;
2729 	for (chp = 0; chp < 8; chp++) {
2730 		eventlpm = 0x80 >> chp;
2731 		if (path_event[chp] & PE_PATH_GONE) {
2732 			oldopm = device->path_data.opm;
2733 			device->path_data.opm &= ~eventlpm;
2734 			device->path_data.ppm &= ~eventlpm;
2735 			device->path_data.npm &= ~eventlpm;
2736 			if (oldopm && !device->path_data.opm)
2737 				dasd_generic_last_path_gone(device);
2738 		}
2739 		if (path_event[chp] & PE_PATH_AVAILABLE) {
2740 			device->path_data.opm &= ~eventlpm;
2741 			device->path_data.ppm &= ~eventlpm;
2742 			device->path_data.npm &= ~eventlpm;
2743 			device->path_data.tbvpm |= eventlpm;
2744 			dasd_schedule_device_bh(device);
2745 		}
2746 	}
2747 	dasd_put_device(device);
2748 }
2749 EXPORT_SYMBOL_GPL(dasd_generic_path_event);
2750 
2751 int dasd_generic_verify_path(struct dasd_device *device, __u8 lpm)
2752 {
2753 	if (!device->path_data.opm && lpm) {
2754 		device->path_data.opm = lpm;
2755 		dasd_generic_path_operational(device);
2756 	} else
2757 		device->path_data.opm |= lpm;
2758 	return 0;
2759 }
2760 EXPORT_SYMBOL_GPL(dasd_generic_verify_path);
2761 
2762 
2763 int dasd_generic_pm_freeze(struct ccw_device *cdev)
2764 {
2765 	struct dasd_ccw_req *cqr, *n;
2766 	int rc;
2767 	struct list_head freeze_queue;
2768 	struct dasd_device *device = dasd_device_from_cdev(cdev);
2769 
2770 	if (IS_ERR(device))
2771 		return PTR_ERR(device);
2772 	/* disallow new I/O  */
2773 	dasd_device_set_stop_bits(device, DASD_STOPPED_PM);
2774 	/* clear active requests */
2775 	INIT_LIST_HEAD(&freeze_queue);
2776 	spin_lock_irq(get_ccwdev_lock(cdev));
2777 	rc = 0;
2778 	list_for_each_entry_safe(cqr, n, &device->ccw_queue, devlist) {
2779 		/* Check status and move request to flush_queue */
2780 		if (cqr->status == DASD_CQR_IN_IO) {
2781 			rc = device->discipline->term_IO(cqr);
2782 			if (rc) {
2783 				/* unable to terminate requeust */
2784 				dev_err(&device->cdev->dev,
2785 					"Unable to terminate request %p "
2786 					"on suspend\n", cqr);
2787 				spin_unlock_irq(get_ccwdev_lock(cdev));
2788 				dasd_put_device(device);
2789 				return rc;
2790 			}
2791 		}
2792 		list_move_tail(&cqr->devlist, &freeze_queue);
2793 	}
2794 
2795 	spin_unlock_irq(get_ccwdev_lock(cdev));
2796 
2797 	list_for_each_entry_safe(cqr, n, &freeze_queue, devlist) {
2798 		wait_event(dasd_flush_wq,
2799 			   (cqr->status != DASD_CQR_CLEAR_PENDING));
2800 		if (cqr->status == DASD_CQR_CLEARED)
2801 			cqr->status = DASD_CQR_QUEUED;
2802 	}
2803 	/* move freeze_queue to start of the ccw_queue */
2804 	spin_lock_irq(get_ccwdev_lock(cdev));
2805 	list_splice_tail(&freeze_queue, &device->ccw_queue);
2806 	spin_unlock_irq(get_ccwdev_lock(cdev));
2807 
2808 	if (device->discipline->freeze)
2809 		rc = device->discipline->freeze(device);
2810 
2811 	dasd_put_device(device);
2812 	return rc;
2813 }
2814 EXPORT_SYMBOL_GPL(dasd_generic_pm_freeze);
2815 
2816 int dasd_generic_restore_device(struct ccw_device *cdev)
2817 {
2818 	struct dasd_device *device = dasd_device_from_cdev(cdev);
2819 	int rc = 0;
2820 
2821 	if (IS_ERR(device))
2822 		return PTR_ERR(device);
2823 
2824 	/* allow new IO again */
2825 	dasd_device_remove_stop_bits(device,
2826 				     (DASD_STOPPED_PM | DASD_UNRESUMED_PM));
2827 
2828 	dasd_schedule_device_bh(device);
2829 
2830 	/*
2831 	 * call discipline restore function
2832 	 * if device is stopped do nothing e.g. for disconnected devices
2833 	 */
2834 	if (device->discipline->restore && !(device->stopped))
2835 		rc = device->discipline->restore(device);
2836 	if (rc || device->stopped)
2837 		/*
2838 		 * if the resume failed for the DASD we put it in
2839 		 * an UNRESUMED stop state
2840 		 */
2841 		device->stopped |= DASD_UNRESUMED_PM;
2842 
2843 	if (device->block)
2844 		dasd_schedule_block_bh(device->block);
2845 
2846 	dasd_put_device(device);
2847 	return 0;
2848 }
2849 EXPORT_SYMBOL_GPL(dasd_generic_restore_device);
2850 
2851 static struct dasd_ccw_req *dasd_generic_build_rdc(struct dasd_device *device,
2852 						   void *rdc_buffer,
2853 						   int rdc_buffer_size,
2854 						   int magic)
2855 {
2856 	struct dasd_ccw_req *cqr;
2857 	struct ccw1 *ccw;
2858 	unsigned long *idaw;
2859 
2860 	cqr = dasd_smalloc_request(magic, 1 /* RDC */, rdc_buffer_size, device);
2861 
2862 	if (IS_ERR(cqr)) {
2863 		/* internal error 13 - Allocating the RDC request failed*/
2864 		dev_err(&device->cdev->dev,
2865 			 "An error occurred in the DASD device driver, "
2866 			 "reason=%s\n", "13");
2867 		return cqr;
2868 	}
2869 
2870 	ccw = cqr->cpaddr;
2871 	ccw->cmd_code = CCW_CMD_RDC;
2872 	if (idal_is_needed(rdc_buffer, rdc_buffer_size)) {
2873 		idaw = (unsigned long *) (cqr->data);
2874 		ccw->cda = (__u32)(addr_t) idaw;
2875 		ccw->flags = CCW_FLAG_IDA;
2876 		idaw = idal_create_words(idaw, rdc_buffer, rdc_buffer_size);
2877 	} else {
2878 		ccw->cda = (__u32)(addr_t) rdc_buffer;
2879 		ccw->flags = 0;
2880 	}
2881 
2882 	ccw->count = rdc_buffer_size;
2883 	cqr->startdev = device;
2884 	cqr->memdev = device;
2885 	cqr->expires = 10*HZ;
2886 	cqr->retries = 256;
2887 	cqr->buildclk = get_clock();
2888 	cqr->status = DASD_CQR_FILLED;
2889 	return cqr;
2890 }
2891 
2892 
2893 int dasd_generic_read_dev_chars(struct dasd_device *device, int magic,
2894 				void *rdc_buffer, int rdc_buffer_size)
2895 {
2896 	int ret;
2897 	struct dasd_ccw_req *cqr;
2898 
2899 	cqr = dasd_generic_build_rdc(device, rdc_buffer, rdc_buffer_size,
2900 				     magic);
2901 	if (IS_ERR(cqr))
2902 		return PTR_ERR(cqr);
2903 
2904 	ret = dasd_sleep_on(cqr);
2905 	dasd_sfree_request(cqr, cqr->memdev);
2906 	return ret;
2907 }
2908 EXPORT_SYMBOL_GPL(dasd_generic_read_dev_chars);
2909 
2910 /*
2911  *   In command mode and transport mode we need to look for sense
2912  *   data in different places. The sense data itself is allways
2913  *   an array of 32 bytes, so we can unify the sense data access
2914  *   for both modes.
2915  */
2916 char *dasd_get_sense(struct irb *irb)
2917 {
2918 	struct tsb *tsb = NULL;
2919 	char *sense = NULL;
2920 
2921 	if (scsw_is_tm(&irb->scsw) && (irb->scsw.tm.fcxs == 0x01)) {
2922 		if (irb->scsw.tm.tcw)
2923 			tsb = tcw_get_tsb((struct tcw *)(unsigned long)
2924 					  irb->scsw.tm.tcw);
2925 		if (tsb && tsb->length == 64 && tsb->flags)
2926 			switch (tsb->flags & 0x07) {
2927 			case 1:	/* tsa_iostat */
2928 				sense = tsb->tsa.iostat.sense;
2929 				break;
2930 			case 2: /* tsa_ddpc */
2931 				sense = tsb->tsa.ddpc.sense;
2932 				break;
2933 			default:
2934 				/* currently we don't use interrogate data */
2935 				break;
2936 			}
2937 	} else if (irb->esw.esw0.erw.cons) {
2938 		sense = irb->ecw;
2939 	}
2940 	return sense;
2941 }
2942 EXPORT_SYMBOL_GPL(dasd_get_sense);
2943 
2944 static int __init dasd_init(void)
2945 {
2946 	int rc;
2947 
2948 	init_waitqueue_head(&dasd_init_waitq);
2949 	init_waitqueue_head(&dasd_flush_wq);
2950 	init_waitqueue_head(&generic_waitq);
2951 
2952 	/* register 'common' DASD debug area, used for all DBF_XXX calls */
2953 	dasd_debug_area = debug_register("dasd", 1, 1, 8 * sizeof(long));
2954 	if (dasd_debug_area == NULL) {
2955 		rc = -ENOMEM;
2956 		goto failed;
2957 	}
2958 	debug_register_view(dasd_debug_area, &debug_sprintf_view);
2959 	debug_set_level(dasd_debug_area, DBF_WARNING);
2960 
2961 	DBF_EVENT(DBF_EMERG, "%s", "debug area created");
2962 
2963 	dasd_diag_discipline_pointer = NULL;
2964 
2965 	rc = dasd_devmap_init();
2966 	if (rc)
2967 		goto failed;
2968 	rc = dasd_gendisk_init();
2969 	if (rc)
2970 		goto failed;
2971 	rc = dasd_parse();
2972 	if (rc)
2973 		goto failed;
2974 	rc = dasd_eer_init();
2975 	if (rc)
2976 		goto failed;
2977 #ifdef CONFIG_PROC_FS
2978 	rc = dasd_proc_init();
2979 	if (rc)
2980 		goto failed;
2981 #endif
2982 
2983 	return 0;
2984 failed:
2985 	pr_info("The DASD device driver could not be initialized\n");
2986 	dasd_exit();
2987 	return rc;
2988 }
2989 
2990 module_init(dasd_init);
2991 module_exit(dasd_exit);
2992 
2993 EXPORT_SYMBOL(dasd_debug_area);
2994 EXPORT_SYMBOL(dasd_diag_discipline_pointer);
2995 
2996 EXPORT_SYMBOL(dasd_add_request_head);
2997 EXPORT_SYMBOL(dasd_add_request_tail);
2998 EXPORT_SYMBOL(dasd_cancel_req);
2999 EXPORT_SYMBOL(dasd_device_clear_timer);
3000 EXPORT_SYMBOL(dasd_block_clear_timer);
3001 EXPORT_SYMBOL(dasd_enable_device);
3002 EXPORT_SYMBOL(dasd_int_handler);
3003 EXPORT_SYMBOL(dasd_kfree_request);
3004 EXPORT_SYMBOL(dasd_kick_device);
3005 EXPORT_SYMBOL(dasd_kmalloc_request);
3006 EXPORT_SYMBOL(dasd_schedule_device_bh);
3007 EXPORT_SYMBOL(dasd_schedule_block_bh);
3008 EXPORT_SYMBOL(dasd_set_target_state);
3009 EXPORT_SYMBOL(dasd_device_set_timer);
3010 EXPORT_SYMBOL(dasd_block_set_timer);
3011 EXPORT_SYMBOL(dasd_sfree_request);
3012 EXPORT_SYMBOL(dasd_sleep_on);
3013 EXPORT_SYMBOL(dasd_sleep_on_immediatly);
3014 EXPORT_SYMBOL(dasd_sleep_on_interruptible);
3015 EXPORT_SYMBOL(dasd_smalloc_request);
3016 EXPORT_SYMBOL(dasd_start_IO);
3017 EXPORT_SYMBOL(dasd_term_IO);
3018 
3019 EXPORT_SYMBOL_GPL(dasd_generic_probe);
3020 EXPORT_SYMBOL_GPL(dasd_generic_remove);
3021 EXPORT_SYMBOL_GPL(dasd_generic_notify);
3022 EXPORT_SYMBOL_GPL(dasd_generic_set_online);
3023 EXPORT_SYMBOL_GPL(dasd_generic_set_offline);
3024 EXPORT_SYMBOL_GPL(dasd_generic_handle_state_change);
3025 EXPORT_SYMBOL_GPL(dasd_flush_device_queue);
3026 EXPORT_SYMBOL_GPL(dasd_alloc_block);
3027 EXPORT_SYMBOL_GPL(dasd_free_block);
3028