xref: /openbmc/linux/drivers/rtc/rtc-zynqmp.c (revision 89aba575)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Xilinx Zynq Ultrascale+ MPSoC Real Time Clock Driver
4  *
5  * Copyright (C) 2015 Xilinx, Inc.
6  *
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/init.h>
12 #include <linux/io.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/platform_device.h>
16 #include <linux/rtc.h>
17 
18 /* RTC Registers */
19 #define RTC_SET_TM_WR		0x00
20 #define RTC_SET_TM_RD		0x04
21 #define RTC_CALIB_WR		0x08
22 #define RTC_CALIB_RD		0x0C
23 #define RTC_CUR_TM		0x10
24 #define RTC_CUR_TICK		0x14
25 #define RTC_ALRM		0x18
26 #define RTC_INT_STS		0x20
27 #define RTC_INT_MASK		0x24
28 #define RTC_INT_EN		0x28
29 #define RTC_INT_DIS		0x2C
30 #define RTC_CTRL		0x40
31 
32 #define RTC_FR_EN		BIT(20)
33 #define RTC_FR_DATSHIFT		16
34 #define RTC_TICK_MASK		0xFFFF
35 #define RTC_INT_SEC		BIT(0)
36 #define RTC_INT_ALRM		BIT(1)
37 #define RTC_OSC_EN		BIT(24)
38 #define RTC_BATT_EN		BIT(31)
39 
40 #define RTC_CALIB_DEF		0x7FFF
41 #define RTC_CALIB_MASK		0x1FFFFF
42 #define RTC_ALRM_MASK          BIT(1)
43 #define RTC_MSEC               1000
44 #define RTC_FR_MASK		0xF0000
45 #define RTC_FR_MAX_TICKS	16
46 #define RTC_PPB			1000000000LL
47 #define RTC_MIN_OFFSET		-32768000
48 #define RTC_MAX_OFFSET		32767000
49 
50 struct xlnx_rtc_dev {
51 	struct rtc_device	*rtc;
52 	void __iomem		*reg_base;
53 	int			alarm_irq;
54 	int			sec_irq;
55 	struct clk		*rtc_clk;
56 	unsigned int		freq;
57 };
58 
59 static int xlnx_rtc_set_time(struct device *dev, struct rtc_time *tm)
60 {
61 	struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev);
62 	unsigned long new_time;
63 
64 	/*
65 	 * The value written will be updated after 1 sec into the
66 	 * seconds read register, so we need to program time +1 sec
67 	 * to get the correct time on read.
68 	 */
69 	new_time = rtc_tm_to_time64(tm) + 1;
70 
71 	writel(new_time, xrtcdev->reg_base + RTC_SET_TM_WR);
72 
73 	/*
74 	 * Clear the rtc interrupt status register after setting the
75 	 * time. During a read_time function, the code should read the
76 	 * RTC_INT_STATUS register and if bit 0 is still 0, it means
77 	 * that one second has not elapsed yet since RTC was set and
78 	 * the current time should be read from SET_TIME_READ register;
79 	 * otherwise, CURRENT_TIME register is read to report the time
80 	 */
81 	writel(RTC_INT_SEC, xrtcdev->reg_base + RTC_INT_STS);
82 
83 	return 0;
84 }
85 
86 static int xlnx_rtc_read_time(struct device *dev, struct rtc_time *tm)
87 {
88 	u32 status;
89 	unsigned long read_time;
90 	struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev);
91 
92 	status = readl(xrtcdev->reg_base + RTC_INT_STS);
93 
94 	if (status & RTC_INT_SEC) {
95 		/*
96 		 * RTC has updated the CURRENT_TIME with the time written into
97 		 * SET_TIME_WRITE register.
98 		 */
99 		read_time = readl(xrtcdev->reg_base + RTC_CUR_TM);
100 	} else {
101 		/*
102 		 * Time written in SET_TIME_WRITE has not yet updated into
103 		 * the seconds read register, so read the time from the
104 		 * SET_TIME_WRITE instead of CURRENT_TIME register.
105 		 * Since we add +1 sec while writing, we need to -1 sec while
106 		 * reading.
107 		 */
108 		read_time = readl(xrtcdev->reg_base + RTC_SET_TM_RD) - 1;
109 	}
110 	rtc_time64_to_tm(read_time, tm);
111 
112 	return 0;
113 }
114 
115 static int xlnx_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
116 {
117 	struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev);
118 
119 	rtc_time64_to_tm(readl(xrtcdev->reg_base + RTC_ALRM), &alrm->time);
120 	alrm->enabled = readl(xrtcdev->reg_base + RTC_INT_MASK) & RTC_INT_ALRM;
121 
122 	return 0;
123 }
124 
125 static int xlnx_rtc_alarm_irq_enable(struct device *dev, u32 enabled)
126 {
127 	struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev);
128 	unsigned int status;
129 	ulong timeout;
130 
131 	timeout = jiffies + msecs_to_jiffies(RTC_MSEC);
132 
133 	if (enabled) {
134 		while (1) {
135 			status = readl(xrtcdev->reg_base + RTC_INT_STS);
136 			if (!((status & RTC_ALRM_MASK) == RTC_ALRM_MASK))
137 				break;
138 
139 			if (time_after_eq(jiffies, timeout)) {
140 				dev_err(dev, "Time out occur, while clearing alarm status bit\n");
141 				return -ETIMEDOUT;
142 			}
143 			writel(RTC_INT_ALRM, xrtcdev->reg_base + RTC_INT_STS);
144 		}
145 
146 		writel(RTC_INT_ALRM, xrtcdev->reg_base + RTC_INT_EN);
147 	} else {
148 		writel(RTC_INT_ALRM, xrtcdev->reg_base + RTC_INT_DIS);
149 	}
150 
151 	return 0;
152 }
153 
154 static int xlnx_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
155 {
156 	struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev);
157 	unsigned long alarm_time;
158 
159 	alarm_time = rtc_tm_to_time64(&alrm->time);
160 
161 	writel((u32)alarm_time, (xrtcdev->reg_base + RTC_ALRM));
162 
163 	xlnx_rtc_alarm_irq_enable(dev, alrm->enabled);
164 
165 	return 0;
166 }
167 
168 static void xlnx_init_rtc(struct xlnx_rtc_dev *xrtcdev)
169 {
170 	u32 rtc_ctrl;
171 
172 	/* Enable RTC switch to battery when VCC_PSAUX is not available */
173 	rtc_ctrl = readl(xrtcdev->reg_base + RTC_CTRL);
174 	rtc_ctrl |= RTC_BATT_EN;
175 	writel(rtc_ctrl, xrtcdev->reg_base + RTC_CTRL);
176 }
177 
178 static int xlnx_rtc_read_offset(struct device *dev, long *offset)
179 {
180 	struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev);
181 	unsigned long long rtc_ppb = RTC_PPB;
182 	unsigned int tick_mult = do_div(rtc_ppb, xrtcdev->freq);
183 	unsigned int calibval;
184 	long offset_val;
185 
186 	calibval = readl(xrtcdev->reg_base + RTC_CALIB_RD);
187 	/* Offset with seconds ticks */
188 	offset_val = calibval & RTC_TICK_MASK;
189 	offset_val = offset_val - RTC_CALIB_DEF;
190 	offset_val = offset_val * tick_mult;
191 
192 	/* Offset with fractional ticks */
193 	if (calibval & RTC_FR_EN)
194 		offset_val += ((calibval & RTC_FR_MASK) >> RTC_FR_DATSHIFT)
195 			* (tick_mult / RTC_FR_MAX_TICKS);
196 	*offset = offset_val;
197 
198 	return 0;
199 }
200 
201 static int xlnx_rtc_set_offset(struct device *dev, long offset)
202 {
203 	struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev);
204 	unsigned long long rtc_ppb = RTC_PPB;
205 	unsigned int tick_mult = do_div(rtc_ppb, xrtcdev->freq);
206 	unsigned char fract_tick = 0;
207 	unsigned int calibval;
208 	short int  max_tick;
209 	int fract_offset;
210 
211 	if (offset < RTC_MIN_OFFSET || offset > RTC_MAX_OFFSET)
212 		return -ERANGE;
213 
214 	/* Number ticks for given offset */
215 	max_tick = div_s64_rem(offset, tick_mult, &fract_offset);
216 
217 	/* Number fractional ticks for given offset */
218 	if (fract_offset) {
219 		if (fract_offset < 0) {
220 			fract_offset = fract_offset + tick_mult;
221 			max_tick--;
222 		}
223 		if (fract_offset > (tick_mult / RTC_FR_MAX_TICKS)) {
224 			for (fract_tick = 1; fract_tick < 16; fract_tick++) {
225 				if (fract_offset <=
226 				    (fract_tick *
227 				     (tick_mult / RTC_FR_MAX_TICKS)))
228 					break;
229 			}
230 		}
231 	}
232 
233 	/* Zynqmp RTC uses second and fractional tick
234 	 * counters for compensation
235 	 */
236 	calibval = max_tick + RTC_CALIB_DEF;
237 
238 	if (fract_tick)
239 		calibval |= RTC_FR_EN;
240 
241 	calibval |= (fract_tick << RTC_FR_DATSHIFT);
242 
243 	writel(calibval, (xrtcdev->reg_base + RTC_CALIB_WR));
244 
245 	return 0;
246 }
247 
248 static const struct rtc_class_ops xlnx_rtc_ops = {
249 	.set_time	  = xlnx_rtc_set_time,
250 	.read_time	  = xlnx_rtc_read_time,
251 	.read_alarm	  = xlnx_rtc_read_alarm,
252 	.set_alarm	  = xlnx_rtc_set_alarm,
253 	.alarm_irq_enable = xlnx_rtc_alarm_irq_enable,
254 	.read_offset	  = xlnx_rtc_read_offset,
255 	.set_offset	  = xlnx_rtc_set_offset,
256 };
257 
258 static irqreturn_t xlnx_rtc_interrupt(int irq, void *id)
259 {
260 	struct xlnx_rtc_dev *xrtcdev = (struct xlnx_rtc_dev *)id;
261 	unsigned int status;
262 
263 	status = readl(xrtcdev->reg_base + RTC_INT_STS);
264 	/* Check if interrupt asserted */
265 	if (!(status & (RTC_INT_SEC | RTC_INT_ALRM)))
266 		return IRQ_NONE;
267 
268 	/* Disable RTC_INT_ALRM interrupt only */
269 	writel(RTC_INT_ALRM, xrtcdev->reg_base + RTC_INT_DIS);
270 
271 	if (status & RTC_INT_ALRM)
272 		rtc_update_irq(xrtcdev->rtc, 1, RTC_IRQF | RTC_AF);
273 
274 	return IRQ_HANDLED;
275 }
276 
277 static int xlnx_rtc_probe(struct platform_device *pdev)
278 {
279 	struct xlnx_rtc_dev *xrtcdev;
280 	int ret;
281 
282 	xrtcdev = devm_kzalloc(&pdev->dev, sizeof(*xrtcdev), GFP_KERNEL);
283 	if (!xrtcdev)
284 		return -ENOMEM;
285 
286 	platform_set_drvdata(pdev, xrtcdev);
287 
288 	xrtcdev->rtc = devm_rtc_allocate_device(&pdev->dev);
289 	if (IS_ERR(xrtcdev->rtc))
290 		return PTR_ERR(xrtcdev->rtc);
291 
292 	xrtcdev->rtc->ops = &xlnx_rtc_ops;
293 	xrtcdev->rtc->range_max = U32_MAX;
294 
295 	xrtcdev->reg_base = devm_platform_ioremap_resource(pdev, 0);
296 	if (IS_ERR(xrtcdev->reg_base))
297 		return PTR_ERR(xrtcdev->reg_base);
298 
299 	xrtcdev->alarm_irq = platform_get_irq_byname(pdev, "alarm");
300 	if (xrtcdev->alarm_irq < 0)
301 		return xrtcdev->alarm_irq;
302 	ret = devm_request_irq(&pdev->dev, xrtcdev->alarm_irq,
303 			       xlnx_rtc_interrupt, 0,
304 			       dev_name(&pdev->dev), xrtcdev);
305 	if (ret) {
306 		dev_err(&pdev->dev, "request irq failed\n");
307 		return ret;
308 	}
309 
310 	xrtcdev->sec_irq = platform_get_irq_byname(pdev, "sec");
311 	if (xrtcdev->sec_irq < 0)
312 		return xrtcdev->sec_irq;
313 	ret = devm_request_irq(&pdev->dev, xrtcdev->sec_irq,
314 			       xlnx_rtc_interrupt, 0,
315 			       dev_name(&pdev->dev), xrtcdev);
316 	if (ret) {
317 		dev_err(&pdev->dev, "request irq failed\n");
318 		return ret;
319 	}
320 
321 	/* Getting the rtc_clk info */
322 	xrtcdev->rtc_clk = devm_clk_get_optional(&pdev->dev, "rtc_clk");
323 	if (IS_ERR(xrtcdev->rtc_clk)) {
324 		if (PTR_ERR(xrtcdev->rtc_clk) != -EPROBE_DEFER)
325 			dev_warn(&pdev->dev, "Device clock not found.\n");
326 	}
327 	xrtcdev->freq = clk_get_rate(xrtcdev->rtc_clk);
328 	if (!xrtcdev->freq) {
329 		ret = of_property_read_u32(pdev->dev.of_node, "calibration",
330 					   &xrtcdev->freq);
331 		if (ret)
332 			xrtcdev->freq = RTC_CALIB_DEF;
333 	}
334 	ret = readl(xrtcdev->reg_base + RTC_CALIB_RD);
335 	if (!ret)
336 		writel(xrtcdev->freq, (xrtcdev->reg_base + RTC_CALIB_WR));
337 
338 	xlnx_init_rtc(xrtcdev);
339 
340 	device_init_wakeup(&pdev->dev, 1);
341 
342 	return devm_rtc_register_device(xrtcdev->rtc);
343 }
344 
345 static int xlnx_rtc_remove(struct platform_device *pdev)
346 {
347 	xlnx_rtc_alarm_irq_enable(&pdev->dev, 0);
348 	device_init_wakeup(&pdev->dev, 0);
349 
350 	return 0;
351 }
352 
353 static int __maybe_unused xlnx_rtc_suspend(struct device *dev)
354 {
355 	struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev);
356 
357 	if (device_may_wakeup(dev))
358 		enable_irq_wake(xrtcdev->alarm_irq);
359 	else
360 		xlnx_rtc_alarm_irq_enable(dev, 0);
361 
362 	return 0;
363 }
364 
365 static int __maybe_unused xlnx_rtc_resume(struct device *dev)
366 {
367 	struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev);
368 
369 	if (device_may_wakeup(dev))
370 		disable_irq_wake(xrtcdev->alarm_irq);
371 	else
372 		xlnx_rtc_alarm_irq_enable(dev, 1);
373 
374 	return 0;
375 }
376 
377 static SIMPLE_DEV_PM_OPS(xlnx_rtc_pm_ops, xlnx_rtc_suspend, xlnx_rtc_resume);
378 
379 static const struct of_device_id xlnx_rtc_of_match[] = {
380 	{.compatible = "xlnx,zynqmp-rtc" },
381 	{ }
382 };
383 MODULE_DEVICE_TABLE(of, xlnx_rtc_of_match);
384 
385 static struct platform_driver xlnx_rtc_driver = {
386 	.probe		= xlnx_rtc_probe,
387 	.remove		= xlnx_rtc_remove,
388 	.driver		= {
389 		.name	= KBUILD_MODNAME,
390 		.pm	= &xlnx_rtc_pm_ops,
391 		.of_match_table	= xlnx_rtc_of_match,
392 	},
393 };
394 
395 module_platform_driver(xlnx_rtc_driver);
396 
397 MODULE_DESCRIPTION("Xilinx Zynq MPSoC RTC driver");
398 MODULE_AUTHOR("Xilinx Inc.");
399 MODULE_LICENSE("GPL v2");
400