1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * An RTC driver for Allwinner A10/A20 4 * 5 * Copyright (c) 2013, Carlo Caione <carlo.caione@gmail.com> 6 */ 7 8 #include <linux/delay.h> 9 #include <linux/err.h> 10 #include <linux/fs.h> 11 #include <linux/init.h> 12 #include <linux/interrupt.h> 13 #include <linux/io.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/of.h> 17 #include <linux/of_address.h> 18 #include <linux/of_device.h> 19 #include <linux/platform_device.h> 20 #include <linux/rtc.h> 21 #include <linux/types.h> 22 23 #define SUNXI_LOSC_CTRL 0x0000 24 #define SUNXI_LOSC_CTRL_RTC_HMS_ACC BIT(8) 25 #define SUNXI_LOSC_CTRL_RTC_YMD_ACC BIT(7) 26 27 #define SUNXI_RTC_YMD 0x0004 28 29 #define SUNXI_RTC_HMS 0x0008 30 31 #define SUNXI_ALRM_DHMS 0x000c 32 33 #define SUNXI_ALRM_EN 0x0014 34 #define SUNXI_ALRM_EN_CNT_EN BIT(8) 35 36 #define SUNXI_ALRM_IRQ_EN 0x0018 37 #define SUNXI_ALRM_IRQ_EN_CNT_IRQ_EN BIT(0) 38 39 #define SUNXI_ALRM_IRQ_STA 0x001c 40 #define SUNXI_ALRM_IRQ_STA_CNT_IRQ_PEND BIT(0) 41 42 #define SUNXI_MASK_DH 0x0000001f 43 #define SUNXI_MASK_SM 0x0000003f 44 #define SUNXI_MASK_M 0x0000000f 45 #define SUNXI_MASK_LY 0x00000001 46 #define SUNXI_MASK_D 0x00000ffe 47 #define SUNXI_MASK_M 0x0000000f 48 49 #define SUNXI_GET(x, mask, shift) (((x) & ((mask) << (shift))) \ 50 >> (shift)) 51 52 #define SUNXI_SET(x, mask, shift) (((x) & (mask)) << (shift)) 53 54 /* 55 * Get date values 56 */ 57 #define SUNXI_DATE_GET_DAY_VALUE(x) SUNXI_GET(x, SUNXI_MASK_DH, 0) 58 #define SUNXI_DATE_GET_MON_VALUE(x) SUNXI_GET(x, SUNXI_MASK_M, 8) 59 #define SUNXI_DATE_GET_YEAR_VALUE(x, mask) SUNXI_GET(x, mask, 16) 60 61 /* 62 * Get time values 63 */ 64 #define SUNXI_TIME_GET_SEC_VALUE(x) SUNXI_GET(x, SUNXI_MASK_SM, 0) 65 #define SUNXI_TIME_GET_MIN_VALUE(x) SUNXI_GET(x, SUNXI_MASK_SM, 8) 66 #define SUNXI_TIME_GET_HOUR_VALUE(x) SUNXI_GET(x, SUNXI_MASK_DH, 16) 67 68 /* 69 * Get alarm values 70 */ 71 #define SUNXI_ALRM_GET_SEC_VALUE(x) SUNXI_GET(x, SUNXI_MASK_SM, 0) 72 #define SUNXI_ALRM_GET_MIN_VALUE(x) SUNXI_GET(x, SUNXI_MASK_SM, 8) 73 #define SUNXI_ALRM_GET_HOUR_VALUE(x) SUNXI_GET(x, SUNXI_MASK_DH, 16) 74 75 /* 76 * Set date values 77 */ 78 #define SUNXI_DATE_SET_DAY_VALUE(x) SUNXI_DATE_GET_DAY_VALUE(x) 79 #define SUNXI_DATE_SET_MON_VALUE(x) SUNXI_SET(x, SUNXI_MASK_M, 8) 80 #define SUNXI_DATE_SET_YEAR_VALUE(x, mask) SUNXI_SET(x, mask, 16) 81 #define SUNXI_LEAP_SET_VALUE(x, shift) SUNXI_SET(x, SUNXI_MASK_LY, shift) 82 83 /* 84 * Set time values 85 */ 86 #define SUNXI_TIME_SET_SEC_VALUE(x) SUNXI_TIME_GET_SEC_VALUE(x) 87 #define SUNXI_TIME_SET_MIN_VALUE(x) SUNXI_SET(x, SUNXI_MASK_SM, 8) 88 #define SUNXI_TIME_SET_HOUR_VALUE(x) SUNXI_SET(x, SUNXI_MASK_DH, 16) 89 90 /* 91 * Set alarm values 92 */ 93 #define SUNXI_ALRM_SET_SEC_VALUE(x) SUNXI_ALRM_GET_SEC_VALUE(x) 94 #define SUNXI_ALRM_SET_MIN_VALUE(x) SUNXI_SET(x, SUNXI_MASK_SM, 8) 95 #define SUNXI_ALRM_SET_HOUR_VALUE(x) SUNXI_SET(x, SUNXI_MASK_DH, 16) 96 #define SUNXI_ALRM_SET_DAY_VALUE(x) SUNXI_SET(x, SUNXI_MASK_D, 21) 97 98 /* 99 * Time unit conversions 100 */ 101 #define SEC_IN_MIN 60 102 #define SEC_IN_HOUR (60 * SEC_IN_MIN) 103 #define SEC_IN_DAY (24 * SEC_IN_HOUR) 104 105 /* 106 * The year parameter passed to the driver is usually an offset relative to 107 * the year 1900. This macro is used to convert this offset to another one 108 * relative to the minimum year allowed by the hardware. 109 */ 110 #define SUNXI_YEAR_OFF(x) ((x)->min - 1900) 111 112 /* 113 * min and max year are arbitrary set considering the limited range of the 114 * hardware register field 115 */ 116 struct sunxi_rtc_data_year { 117 unsigned int min; /* min year allowed */ 118 unsigned int max; /* max year allowed */ 119 unsigned int mask; /* mask for the year field */ 120 unsigned char leap_shift; /* bit shift to get the leap year */ 121 }; 122 123 static const struct sunxi_rtc_data_year data_year_param[] = { 124 [0] = { 125 .min = 2010, 126 .max = 2073, 127 .mask = 0x3f, 128 .leap_shift = 22, 129 }, 130 [1] = { 131 .min = 1970, 132 .max = 2225, 133 .mask = 0xff, 134 .leap_shift = 24, 135 }, 136 }; 137 138 struct sunxi_rtc_dev { 139 struct rtc_device *rtc; 140 struct device *dev; 141 const struct sunxi_rtc_data_year *data_year; 142 void __iomem *base; 143 int irq; 144 }; 145 146 static irqreturn_t sunxi_rtc_alarmirq(int irq, void *id) 147 { 148 struct sunxi_rtc_dev *chip = (struct sunxi_rtc_dev *) id; 149 u32 val; 150 151 val = readl(chip->base + SUNXI_ALRM_IRQ_STA); 152 153 if (val & SUNXI_ALRM_IRQ_STA_CNT_IRQ_PEND) { 154 val |= SUNXI_ALRM_IRQ_STA_CNT_IRQ_PEND; 155 writel(val, chip->base + SUNXI_ALRM_IRQ_STA); 156 157 rtc_update_irq(chip->rtc, 1, RTC_AF | RTC_IRQF); 158 159 return IRQ_HANDLED; 160 } 161 162 return IRQ_NONE; 163 } 164 165 static void sunxi_rtc_setaie(unsigned int to, struct sunxi_rtc_dev *chip) 166 { 167 u32 alrm_val = 0; 168 u32 alrm_irq_val = 0; 169 170 if (to) { 171 alrm_val = readl(chip->base + SUNXI_ALRM_EN); 172 alrm_val |= SUNXI_ALRM_EN_CNT_EN; 173 174 alrm_irq_val = readl(chip->base + SUNXI_ALRM_IRQ_EN); 175 alrm_irq_val |= SUNXI_ALRM_IRQ_EN_CNT_IRQ_EN; 176 } else { 177 writel(SUNXI_ALRM_IRQ_STA_CNT_IRQ_PEND, 178 chip->base + SUNXI_ALRM_IRQ_STA); 179 } 180 181 writel(alrm_val, chip->base + SUNXI_ALRM_EN); 182 writel(alrm_irq_val, chip->base + SUNXI_ALRM_IRQ_EN); 183 } 184 185 static int sunxi_rtc_getalarm(struct device *dev, struct rtc_wkalrm *wkalrm) 186 { 187 struct sunxi_rtc_dev *chip = dev_get_drvdata(dev); 188 struct rtc_time *alrm_tm = &wkalrm->time; 189 u32 alrm; 190 u32 alrm_en; 191 u32 date; 192 193 alrm = readl(chip->base + SUNXI_ALRM_DHMS); 194 date = readl(chip->base + SUNXI_RTC_YMD); 195 196 alrm_tm->tm_sec = SUNXI_ALRM_GET_SEC_VALUE(alrm); 197 alrm_tm->tm_min = SUNXI_ALRM_GET_MIN_VALUE(alrm); 198 alrm_tm->tm_hour = SUNXI_ALRM_GET_HOUR_VALUE(alrm); 199 200 alrm_tm->tm_mday = SUNXI_DATE_GET_DAY_VALUE(date); 201 alrm_tm->tm_mon = SUNXI_DATE_GET_MON_VALUE(date); 202 alrm_tm->tm_year = SUNXI_DATE_GET_YEAR_VALUE(date, 203 chip->data_year->mask); 204 205 alrm_tm->tm_mon -= 1; 206 207 /* 208 * switch from (data_year->min)-relative offset to 209 * a (1900)-relative one 210 */ 211 alrm_tm->tm_year += SUNXI_YEAR_OFF(chip->data_year); 212 213 alrm_en = readl(chip->base + SUNXI_ALRM_IRQ_EN); 214 if (alrm_en & SUNXI_ALRM_EN_CNT_EN) 215 wkalrm->enabled = 1; 216 217 return 0; 218 } 219 220 static int sunxi_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm) 221 { 222 struct sunxi_rtc_dev *chip = dev_get_drvdata(dev); 223 u32 date, time; 224 225 /* 226 * read again in case it changes 227 */ 228 do { 229 date = readl(chip->base + SUNXI_RTC_YMD); 230 time = readl(chip->base + SUNXI_RTC_HMS); 231 } while ((date != readl(chip->base + SUNXI_RTC_YMD)) || 232 (time != readl(chip->base + SUNXI_RTC_HMS))); 233 234 rtc_tm->tm_sec = SUNXI_TIME_GET_SEC_VALUE(time); 235 rtc_tm->tm_min = SUNXI_TIME_GET_MIN_VALUE(time); 236 rtc_tm->tm_hour = SUNXI_TIME_GET_HOUR_VALUE(time); 237 238 rtc_tm->tm_mday = SUNXI_DATE_GET_DAY_VALUE(date); 239 rtc_tm->tm_mon = SUNXI_DATE_GET_MON_VALUE(date); 240 rtc_tm->tm_year = SUNXI_DATE_GET_YEAR_VALUE(date, 241 chip->data_year->mask); 242 243 rtc_tm->tm_mon -= 1; 244 245 /* 246 * switch from (data_year->min)-relative offset to 247 * a (1900)-relative one 248 */ 249 rtc_tm->tm_year += SUNXI_YEAR_OFF(chip->data_year); 250 251 return 0; 252 } 253 254 static int sunxi_rtc_setalarm(struct device *dev, struct rtc_wkalrm *wkalrm) 255 { 256 struct sunxi_rtc_dev *chip = dev_get_drvdata(dev); 257 struct rtc_time *alrm_tm = &wkalrm->time; 258 struct rtc_time tm_now; 259 u32 alrm; 260 time64_t diff; 261 unsigned long time_gap; 262 unsigned long time_gap_day; 263 unsigned long time_gap_hour; 264 unsigned long time_gap_min; 265 int ret; 266 267 ret = sunxi_rtc_gettime(dev, &tm_now); 268 if (ret < 0) { 269 dev_err(dev, "Error in getting time\n"); 270 return -EINVAL; 271 } 272 273 diff = rtc_tm_sub(alrm_tm, &tm_now); 274 if (diff <= 0) { 275 dev_err(dev, "Date to set in the past\n"); 276 return -EINVAL; 277 } 278 279 if (diff > 255 * SEC_IN_DAY) { 280 dev_err(dev, "Day must be in the range 0 - 255\n"); 281 return -EINVAL; 282 } 283 284 time_gap = diff; 285 time_gap_day = time_gap / SEC_IN_DAY; 286 time_gap -= time_gap_day * SEC_IN_DAY; 287 time_gap_hour = time_gap / SEC_IN_HOUR; 288 time_gap -= time_gap_hour * SEC_IN_HOUR; 289 time_gap_min = time_gap / SEC_IN_MIN; 290 time_gap -= time_gap_min * SEC_IN_MIN; 291 292 sunxi_rtc_setaie(0, chip); 293 writel(0, chip->base + SUNXI_ALRM_DHMS); 294 usleep_range(100, 300); 295 296 alrm = SUNXI_ALRM_SET_SEC_VALUE(time_gap) | 297 SUNXI_ALRM_SET_MIN_VALUE(time_gap_min) | 298 SUNXI_ALRM_SET_HOUR_VALUE(time_gap_hour) | 299 SUNXI_ALRM_SET_DAY_VALUE(time_gap_day); 300 writel(alrm, chip->base + SUNXI_ALRM_DHMS); 301 302 writel(0, chip->base + SUNXI_ALRM_IRQ_EN); 303 writel(SUNXI_ALRM_IRQ_EN_CNT_IRQ_EN, chip->base + SUNXI_ALRM_IRQ_EN); 304 305 sunxi_rtc_setaie(wkalrm->enabled, chip); 306 307 return 0; 308 } 309 310 static int sunxi_rtc_wait(struct sunxi_rtc_dev *chip, int offset, 311 unsigned int mask, unsigned int ms_timeout) 312 { 313 const unsigned long timeout = jiffies + msecs_to_jiffies(ms_timeout); 314 u32 reg; 315 316 do { 317 reg = readl(chip->base + offset); 318 reg &= mask; 319 320 if (reg == mask) 321 return 0; 322 323 } while (time_before(jiffies, timeout)); 324 325 return -ETIMEDOUT; 326 } 327 328 static int sunxi_rtc_settime(struct device *dev, struct rtc_time *rtc_tm) 329 { 330 struct sunxi_rtc_dev *chip = dev_get_drvdata(dev); 331 u32 date = 0; 332 u32 time = 0; 333 unsigned int year; 334 335 /* 336 * the input rtc_tm->tm_year is the offset relative to 1900. We use 337 * the SUNXI_YEAR_OFF macro to rebase it with respect to the min year 338 * allowed by the hardware 339 */ 340 341 year = rtc_tm->tm_year + 1900; 342 if (year < chip->data_year->min || year > chip->data_year->max) { 343 dev_err(dev, "rtc only supports year in range %u - %u\n", 344 chip->data_year->min, chip->data_year->max); 345 return -EINVAL; 346 } 347 348 rtc_tm->tm_year -= SUNXI_YEAR_OFF(chip->data_year); 349 rtc_tm->tm_mon += 1; 350 351 date = SUNXI_DATE_SET_DAY_VALUE(rtc_tm->tm_mday) | 352 SUNXI_DATE_SET_MON_VALUE(rtc_tm->tm_mon) | 353 SUNXI_DATE_SET_YEAR_VALUE(rtc_tm->tm_year, 354 chip->data_year->mask); 355 356 if (is_leap_year(year)) 357 date |= SUNXI_LEAP_SET_VALUE(1, chip->data_year->leap_shift); 358 359 time = SUNXI_TIME_SET_SEC_VALUE(rtc_tm->tm_sec) | 360 SUNXI_TIME_SET_MIN_VALUE(rtc_tm->tm_min) | 361 SUNXI_TIME_SET_HOUR_VALUE(rtc_tm->tm_hour); 362 363 writel(0, chip->base + SUNXI_RTC_HMS); 364 writel(0, chip->base + SUNXI_RTC_YMD); 365 366 writel(time, chip->base + SUNXI_RTC_HMS); 367 368 /* 369 * After writing the RTC HH-MM-SS register, the 370 * SUNXI_LOSC_CTRL_RTC_HMS_ACC bit is set and it will not 371 * be cleared until the real writing operation is finished 372 */ 373 374 if (sunxi_rtc_wait(chip, SUNXI_LOSC_CTRL, 375 SUNXI_LOSC_CTRL_RTC_HMS_ACC, 50)) { 376 dev_err(dev, "Failed to set rtc time.\n"); 377 return -1; 378 } 379 380 writel(date, chip->base + SUNXI_RTC_YMD); 381 382 /* 383 * After writing the RTC YY-MM-DD register, the 384 * SUNXI_LOSC_CTRL_RTC_YMD_ACC bit is set and it will not 385 * be cleared until the real writing operation is finished 386 */ 387 388 if (sunxi_rtc_wait(chip, SUNXI_LOSC_CTRL, 389 SUNXI_LOSC_CTRL_RTC_YMD_ACC, 50)) { 390 dev_err(dev, "Failed to set rtc time.\n"); 391 return -1; 392 } 393 394 return 0; 395 } 396 397 static int sunxi_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled) 398 { 399 struct sunxi_rtc_dev *chip = dev_get_drvdata(dev); 400 401 if (!enabled) 402 sunxi_rtc_setaie(enabled, chip); 403 404 return 0; 405 } 406 407 static const struct rtc_class_ops sunxi_rtc_ops = { 408 .read_time = sunxi_rtc_gettime, 409 .set_time = sunxi_rtc_settime, 410 .read_alarm = sunxi_rtc_getalarm, 411 .set_alarm = sunxi_rtc_setalarm, 412 .alarm_irq_enable = sunxi_rtc_alarm_irq_enable 413 }; 414 415 static const struct of_device_id sunxi_rtc_dt_ids[] = { 416 { .compatible = "allwinner,sun4i-a10-rtc", .data = &data_year_param[0] }, 417 { .compatible = "allwinner,sun7i-a20-rtc", .data = &data_year_param[1] }, 418 { /* sentinel */ }, 419 }; 420 MODULE_DEVICE_TABLE(of, sunxi_rtc_dt_ids); 421 422 static int sunxi_rtc_probe(struct platform_device *pdev) 423 { 424 struct sunxi_rtc_dev *chip; 425 struct resource *res; 426 int ret; 427 428 chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL); 429 if (!chip) 430 return -ENOMEM; 431 432 platform_set_drvdata(pdev, chip); 433 chip->dev = &pdev->dev; 434 435 chip->rtc = devm_rtc_allocate_device(&pdev->dev); 436 if (IS_ERR(chip->rtc)) 437 return PTR_ERR(chip->rtc); 438 439 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 440 chip->base = devm_ioremap_resource(&pdev->dev, res); 441 if (IS_ERR(chip->base)) 442 return PTR_ERR(chip->base); 443 444 chip->irq = platform_get_irq(pdev, 0); 445 if (chip->irq < 0) 446 return chip->irq; 447 ret = devm_request_irq(&pdev->dev, chip->irq, sunxi_rtc_alarmirq, 448 0, dev_name(&pdev->dev), chip); 449 if (ret) { 450 dev_err(&pdev->dev, "Could not request IRQ\n"); 451 return ret; 452 } 453 454 chip->data_year = of_device_get_match_data(&pdev->dev); 455 if (!chip->data_year) { 456 dev_err(&pdev->dev, "Unable to setup RTC data\n"); 457 return -ENODEV; 458 } 459 460 /* clear the alarm count value */ 461 writel(0, chip->base + SUNXI_ALRM_DHMS); 462 463 /* disable alarm, not generate irq pending */ 464 writel(0, chip->base + SUNXI_ALRM_EN); 465 466 /* disable alarm week/cnt irq, unset to cpu */ 467 writel(0, chip->base + SUNXI_ALRM_IRQ_EN); 468 469 /* clear alarm week/cnt irq pending */ 470 writel(SUNXI_ALRM_IRQ_STA_CNT_IRQ_PEND, chip->base + 471 SUNXI_ALRM_IRQ_STA); 472 473 chip->rtc->ops = &sunxi_rtc_ops; 474 475 return rtc_register_device(chip->rtc); 476 } 477 478 static struct platform_driver sunxi_rtc_driver = { 479 .probe = sunxi_rtc_probe, 480 .driver = { 481 .name = "sunxi-rtc", 482 .of_match_table = sunxi_rtc_dt_ids, 483 }, 484 }; 485 486 module_platform_driver(sunxi_rtc_driver); 487 488 MODULE_DESCRIPTION("sunxi RTC driver"); 489 MODULE_AUTHOR("Carlo Caione <carlo.caione@gmail.com>"); 490 MODULE_LICENSE("GPL"); 491