1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * An RTC driver for Allwinner A31/A23 4 * 5 * Copyright (c) 2014, Chen-Yu Tsai <wens@csie.org> 6 * 7 * based on rtc-sunxi.c 8 * 9 * An RTC driver for Allwinner A10/A20 10 * 11 * Copyright (c) 2013, Carlo Caione <carlo.caione@gmail.com> 12 */ 13 14 #include <linux/clk.h> 15 #include <linux/clk-provider.h> 16 #include <linux/clk/sunxi-ng.h> 17 #include <linux/delay.h> 18 #include <linux/err.h> 19 #include <linux/fs.h> 20 #include <linux/init.h> 21 #include <linux/interrupt.h> 22 #include <linux/io.h> 23 #include <linux/kernel.h> 24 #include <linux/module.h> 25 #include <linux/of.h> 26 #include <linux/of_address.h> 27 #include <linux/of_device.h> 28 #include <linux/platform_device.h> 29 #include <linux/rtc.h> 30 #include <linux/slab.h> 31 #include <linux/types.h> 32 33 /* Control register */ 34 #define SUN6I_LOSC_CTRL 0x0000 35 #define SUN6I_LOSC_CTRL_KEY (0x16aa << 16) 36 #define SUN6I_LOSC_CTRL_AUTO_SWT_BYPASS BIT(15) 37 #define SUN6I_LOSC_CTRL_ALM_DHMS_ACC BIT(9) 38 #define SUN6I_LOSC_CTRL_RTC_HMS_ACC BIT(8) 39 #define SUN6I_LOSC_CTRL_RTC_YMD_ACC BIT(7) 40 #define SUN6I_LOSC_CTRL_EXT_LOSC_EN BIT(4) 41 #define SUN6I_LOSC_CTRL_EXT_OSC BIT(0) 42 #define SUN6I_LOSC_CTRL_ACC_MASK GENMASK(9, 7) 43 44 #define SUN6I_LOSC_CLK_PRESCAL 0x0008 45 46 /* RTC */ 47 #define SUN6I_RTC_YMD 0x0010 48 #define SUN6I_RTC_HMS 0x0014 49 50 /* Alarm 0 (counter) */ 51 #define SUN6I_ALRM_COUNTER 0x0020 52 /* This holds the remaining alarm seconds on older SoCs (current value) */ 53 #define SUN6I_ALRM_COUNTER_HMS 0x0024 54 #define SUN6I_ALRM_EN 0x0028 55 #define SUN6I_ALRM_EN_CNT_EN BIT(0) 56 #define SUN6I_ALRM_IRQ_EN 0x002c 57 #define SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN BIT(0) 58 #define SUN6I_ALRM_IRQ_STA 0x0030 59 #define SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND BIT(0) 60 61 /* Alarm 1 (wall clock) */ 62 #define SUN6I_ALRM1_EN 0x0044 63 #define SUN6I_ALRM1_IRQ_EN 0x0048 64 #define SUN6I_ALRM1_IRQ_STA 0x004c 65 #define SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND BIT(0) 66 67 /* Alarm config */ 68 #define SUN6I_ALARM_CONFIG 0x0050 69 #define SUN6I_ALARM_CONFIG_WAKEUP BIT(0) 70 71 #define SUN6I_LOSC_OUT_GATING 0x0060 72 #define SUN6I_LOSC_OUT_GATING_EN_OFFSET 0 73 74 /* General-purpose data */ 75 #define SUN6I_GP_DATA 0x0100 76 #define SUN6I_GP_DATA_SIZE 0x20 77 78 /* 79 * Get date values 80 */ 81 #define SUN6I_DATE_GET_DAY_VALUE(x) ((x) & 0x0000001f) 82 #define SUN6I_DATE_GET_MON_VALUE(x) (((x) & 0x00000f00) >> 8) 83 #define SUN6I_DATE_GET_YEAR_VALUE(x) (((x) & 0x003f0000) >> 16) 84 #define SUN6I_LEAP_GET_VALUE(x) (((x) & 0x00400000) >> 22) 85 86 /* 87 * Get time values 88 */ 89 #define SUN6I_TIME_GET_SEC_VALUE(x) ((x) & 0x0000003f) 90 #define SUN6I_TIME_GET_MIN_VALUE(x) (((x) & 0x00003f00) >> 8) 91 #define SUN6I_TIME_GET_HOUR_VALUE(x) (((x) & 0x001f0000) >> 16) 92 93 /* 94 * Set date values 95 */ 96 #define SUN6I_DATE_SET_DAY_VALUE(x) ((x) & 0x0000001f) 97 #define SUN6I_DATE_SET_MON_VALUE(x) ((x) << 8 & 0x00000f00) 98 #define SUN6I_DATE_SET_YEAR_VALUE(x) ((x) << 16 & 0x003f0000) 99 #define SUN6I_LEAP_SET_VALUE(x) ((x) << 22 & 0x00400000) 100 101 /* 102 * Set time values 103 */ 104 #define SUN6I_TIME_SET_SEC_VALUE(x) ((x) & 0x0000003f) 105 #define SUN6I_TIME_SET_MIN_VALUE(x) ((x) << 8 & 0x00003f00) 106 #define SUN6I_TIME_SET_HOUR_VALUE(x) ((x) << 16 & 0x001f0000) 107 108 /* 109 * The year parameter passed to the driver is usually an offset relative to 110 * the year 1900. This macro is used to convert this offset to another one 111 * relative to the minimum year allowed by the hardware. 112 * 113 * The year range is 1970 - 2033. This range is selected to match Allwinner's 114 * driver, even though it is somewhat limited. 115 */ 116 #define SUN6I_YEAR_MIN 1970 117 #define SUN6I_YEAR_OFF (SUN6I_YEAR_MIN - 1900) 118 119 #define SECS_PER_DAY (24 * 3600ULL) 120 121 /* 122 * There are other differences between models, including: 123 * 124 * - number of GPIO pins that can be configured to hold a certain level 125 * - crypto-key related registers (H5, H6) 126 * - boot process related (super standby, secondary processor entry address) 127 * registers (R40, H6) 128 * - SYS power domain controls (R40) 129 * - DCXO controls (H6) 130 * - RC oscillator calibration (H6) 131 * 132 * These functions are not covered by this driver. 133 */ 134 struct sun6i_rtc_clk_data { 135 unsigned long rc_osc_rate; 136 unsigned int fixed_prescaler : 16; 137 unsigned int has_prescaler : 1; 138 unsigned int has_out_clk : 1; 139 unsigned int has_losc_en : 1; 140 unsigned int has_auto_swt : 1; 141 }; 142 143 #define RTC_LINEAR_DAY BIT(0) 144 145 struct sun6i_rtc_dev { 146 struct rtc_device *rtc; 147 const struct sun6i_rtc_clk_data *data; 148 void __iomem *base; 149 int irq; 150 time64_t alarm; 151 unsigned long flags; 152 153 struct clk_hw hw; 154 struct clk_hw *int_osc; 155 struct clk *losc; 156 struct clk *ext_losc; 157 158 spinlock_t lock; 159 }; 160 161 static struct sun6i_rtc_dev *sun6i_rtc; 162 163 static unsigned long sun6i_rtc_osc_recalc_rate(struct clk_hw *hw, 164 unsigned long parent_rate) 165 { 166 struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw); 167 u32 val = 0; 168 169 val = readl(rtc->base + SUN6I_LOSC_CTRL); 170 if (val & SUN6I_LOSC_CTRL_EXT_OSC) 171 return parent_rate; 172 173 if (rtc->data->fixed_prescaler) 174 parent_rate /= rtc->data->fixed_prescaler; 175 176 if (rtc->data->has_prescaler) { 177 val = readl(rtc->base + SUN6I_LOSC_CLK_PRESCAL); 178 val &= GENMASK(4, 0); 179 } 180 181 return parent_rate / (val + 1); 182 } 183 184 static u8 sun6i_rtc_osc_get_parent(struct clk_hw *hw) 185 { 186 struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw); 187 188 return readl(rtc->base + SUN6I_LOSC_CTRL) & SUN6I_LOSC_CTRL_EXT_OSC; 189 } 190 191 static int sun6i_rtc_osc_set_parent(struct clk_hw *hw, u8 index) 192 { 193 struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw); 194 unsigned long flags; 195 u32 val; 196 197 if (index > 1) 198 return -EINVAL; 199 200 spin_lock_irqsave(&rtc->lock, flags); 201 val = readl(rtc->base + SUN6I_LOSC_CTRL); 202 val &= ~SUN6I_LOSC_CTRL_EXT_OSC; 203 val |= SUN6I_LOSC_CTRL_KEY; 204 val |= index ? SUN6I_LOSC_CTRL_EXT_OSC : 0; 205 if (rtc->data->has_losc_en) { 206 val &= ~SUN6I_LOSC_CTRL_EXT_LOSC_EN; 207 val |= index ? SUN6I_LOSC_CTRL_EXT_LOSC_EN : 0; 208 } 209 writel(val, rtc->base + SUN6I_LOSC_CTRL); 210 spin_unlock_irqrestore(&rtc->lock, flags); 211 212 return 0; 213 } 214 215 static const struct clk_ops sun6i_rtc_osc_ops = { 216 .recalc_rate = sun6i_rtc_osc_recalc_rate, 217 218 .get_parent = sun6i_rtc_osc_get_parent, 219 .set_parent = sun6i_rtc_osc_set_parent, 220 }; 221 222 static void __init sun6i_rtc_clk_init(struct device_node *node, 223 const struct sun6i_rtc_clk_data *data) 224 { 225 struct clk_hw_onecell_data *clk_data; 226 struct sun6i_rtc_dev *rtc; 227 struct clk_init_data init = { 228 .ops = &sun6i_rtc_osc_ops, 229 .name = "losc", 230 }; 231 const char *iosc_name = "rtc-int-osc"; 232 const char *clkout_name = "osc32k-out"; 233 const char *parents[2]; 234 u32 reg; 235 236 rtc = kzalloc(sizeof(*rtc), GFP_KERNEL); 237 if (!rtc) 238 return; 239 240 rtc->data = data; 241 clk_data = kzalloc(struct_size(clk_data, hws, 3), GFP_KERNEL); 242 if (!clk_data) { 243 kfree(rtc); 244 return; 245 } 246 247 spin_lock_init(&rtc->lock); 248 249 rtc->base = of_io_request_and_map(node, 0, of_node_full_name(node)); 250 if (IS_ERR(rtc->base)) { 251 pr_crit("Can't map RTC registers"); 252 goto err; 253 } 254 255 reg = SUN6I_LOSC_CTRL_KEY; 256 if (rtc->data->has_auto_swt) { 257 /* Bypass auto-switch to int osc, on ext losc failure */ 258 reg |= SUN6I_LOSC_CTRL_AUTO_SWT_BYPASS; 259 writel(reg, rtc->base + SUN6I_LOSC_CTRL); 260 } 261 262 /* Switch to the external, more precise, oscillator, if present */ 263 if (of_property_present(node, "clocks")) { 264 reg |= SUN6I_LOSC_CTRL_EXT_OSC; 265 if (rtc->data->has_losc_en) 266 reg |= SUN6I_LOSC_CTRL_EXT_LOSC_EN; 267 } 268 writel(reg, rtc->base + SUN6I_LOSC_CTRL); 269 270 /* Yes, I know, this is ugly. */ 271 sun6i_rtc = rtc; 272 273 of_property_read_string_index(node, "clock-output-names", 2, 274 &iosc_name); 275 276 rtc->int_osc = clk_hw_register_fixed_rate_with_accuracy(NULL, 277 iosc_name, 278 NULL, 0, 279 rtc->data->rc_osc_rate, 280 300000000); 281 if (IS_ERR(rtc->int_osc)) { 282 pr_crit("Couldn't register the internal oscillator\n"); 283 goto err; 284 } 285 286 parents[0] = clk_hw_get_name(rtc->int_osc); 287 /* If there is no external oscillator, this will be NULL and ... */ 288 parents[1] = of_clk_get_parent_name(node, 0); 289 290 rtc->hw.init = &init; 291 292 init.parent_names = parents; 293 /* ... number of clock parents will be 1. */ 294 init.num_parents = of_clk_get_parent_count(node) + 1; 295 of_property_read_string_index(node, "clock-output-names", 0, 296 &init.name); 297 298 rtc->losc = clk_register(NULL, &rtc->hw); 299 if (IS_ERR(rtc->losc)) { 300 pr_crit("Couldn't register the LOSC clock\n"); 301 goto err_register; 302 } 303 304 of_property_read_string_index(node, "clock-output-names", 1, 305 &clkout_name); 306 rtc->ext_losc = clk_register_gate(NULL, clkout_name, init.name, 307 0, rtc->base + SUN6I_LOSC_OUT_GATING, 308 SUN6I_LOSC_OUT_GATING_EN_OFFSET, 0, 309 &rtc->lock); 310 if (IS_ERR(rtc->ext_losc)) { 311 pr_crit("Couldn't register the LOSC external gate\n"); 312 goto err_register; 313 } 314 315 clk_data->num = 3; 316 clk_data->hws[0] = &rtc->hw; 317 clk_data->hws[1] = __clk_get_hw(rtc->ext_losc); 318 clk_data->hws[2] = rtc->int_osc; 319 of_clk_add_hw_provider(node, of_clk_hw_onecell_get, clk_data); 320 return; 321 322 err_register: 323 clk_hw_unregister_fixed_rate(rtc->int_osc); 324 err: 325 kfree(clk_data); 326 } 327 328 static const struct sun6i_rtc_clk_data sun6i_a31_rtc_data = { 329 .rc_osc_rate = 667000, /* datasheet says 600 ~ 700 KHz */ 330 .has_prescaler = 1, 331 }; 332 333 static void __init sun6i_a31_rtc_clk_init(struct device_node *node) 334 { 335 sun6i_rtc_clk_init(node, &sun6i_a31_rtc_data); 336 } 337 CLK_OF_DECLARE_DRIVER(sun6i_a31_rtc_clk, "allwinner,sun6i-a31-rtc", 338 sun6i_a31_rtc_clk_init); 339 340 static const struct sun6i_rtc_clk_data sun8i_a23_rtc_data = { 341 .rc_osc_rate = 667000, /* datasheet says 600 ~ 700 KHz */ 342 .has_prescaler = 1, 343 .has_out_clk = 1, 344 }; 345 346 static void __init sun8i_a23_rtc_clk_init(struct device_node *node) 347 { 348 sun6i_rtc_clk_init(node, &sun8i_a23_rtc_data); 349 } 350 CLK_OF_DECLARE_DRIVER(sun8i_a23_rtc_clk, "allwinner,sun8i-a23-rtc", 351 sun8i_a23_rtc_clk_init); 352 353 static const struct sun6i_rtc_clk_data sun8i_h3_rtc_data = { 354 .rc_osc_rate = 16000000, 355 .fixed_prescaler = 32, 356 .has_prescaler = 1, 357 .has_out_clk = 1, 358 }; 359 360 static void __init sun8i_h3_rtc_clk_init(struct device_node *node) 361 { 362 sun6i_rtc_clk_init(node, &sun8i_h3_rtc_data); 363 } 364 CLK_OF_DECLARE_DRIVER(sun8i_h3_rtc_clk, "allwinner,sun8i-h3-rtc", 365 sun8i_h3_rtc_clk_init); 366 /* As far as we are concerned, clocks for H5 are the same as H3 */ 367 CLK_OF_DECLARE_DRIVER(sun50i_h5_rtc_clk, "allwinner,sun50i-h5-rtc", 368 sun8i_h3_rtc_clk_init); 369 370 static const struct sun6i_rtc_clk_data sun50i_h6_rtc_data = { 371 .rc_osc_rate = 16000000, 372 .fixed_prescaler = 32, 373 .has_prescaler = 1, 374 .has_out_clk = 1, 375 .has_losc_en = 1, 376 .has_auto_swt = 1, 377 }; 378 379 static void __init sun50i_h6_rtc_clk_init(struct device_node *node) 380 { 381 sun6i_rtc_clk_init(node, &sun50i_h6_rtc_data); 382 } 383 CLK_OF_DECLARE_DRIVER(sun50i_h6_rtc_clk, "allwinner,sun50i-h6-rtc", 384 sun50i_h6_rtc_clk_init); 385 386 /* 387 * The R40 user manual is self-conflicting on whether the prescaler is 388 * fixed or configurable. The clock diagram shows it as fixed, but there 389 * is also a configurable divider in the RTC block. 390 */ 391 static const struct sun6i_rtc_clk_data sun8i_r40_rtc_data = { 392 .rc_osc_rate = 16000000, 393 .fixed_prescaler = 512, 394 }; 395 static void __init sun8i_r40_rtc_clk_init(struct device_node *node) 396 { 397 sun6i_rtc_clk_init(node, &sun8i_r40_rtc_data); 398 } 399 CLK_OF_DECLARE_DRIVER(sun8i_r40_rtc_clk, "allwinner,sun8i-r40-rtc", 400 sun8i_r40_rtc_clk_init); 401 402 static const struct sun6i_rtc_clk_data sun8i_v3_rtc_data = { 403 .rc_osc_rate = 32000, 404 .has_out_clk = 1, 405 }; 406 407 static void __init sun8i_v3_rtc_clk_init(struct device_node *node) 408 { 409 sun6i_rtc_clk_init(node, &sun8i_v3_rtc_data); 410 } 411 CLK_OF_DECLARE_DRIVER(sun8i_v3_rtc_clk, "allwinner,sun8i-v3-rtc", 412 sun8i_v3_rtc_clk_init); 413 414 static irqreturn_t sun6i_rtc_alarmirq(int irq, void *id) 415 { 416 struct sun6i_rtc_dev *chip = (struct sun6i_rtc_dev *) id; 417 irqreturn_t ret = IRQ_NONE; 418 u32 val; 419 420 spin_lock(&chip->lock); 421 val = readl(chip->base + SUN6I_ALRM_IRQ_STA); 422 423 if (val & SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND) { 424 val |= SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND; 425 writel(val, chip->base + SUN6I_ALRM_IRQ_STA); 426 427 rtc_update_irq(chip->rtc, 1, RTC_AF | RTC_IRQF); 428 429 ret = IRQ_HANDLED; 430 } 431 spin_unlock(&chip->lock); 432 433 return ret; 434 } 435 436 static void sun6i_rtc_setaie(int to, struct sun6i_rtc_dev *chip) 437 { 438 u32 alrm_val = 0; 439 u32 alrm_irq_val = 0; 440 u32 alrm_wake_val = 0; 441 unsigned long flags; 442 443 if (to) { 444 alrm_val = SUN6I_ALRM_EN_CNT_EN; 445 alrm_irq_val = SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN; 446 alrm_wake_val = SUN6I_ALARM_CONFIG_WAKEUP; 447 } else { 448 writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND, 449 chip->base + SUN6I_ALRM_IRQ_STA); 450 } 451 452 spin_lock_irqsave(&chip->lock, flags); 453 writel(alrm_val, chip->base + SUN6I_ALRM_EN); 454 writel(alrm_irq_val, chip->base + SUN6I_ALRM_IRQ_EN); 455 writel(alrm_wake_val, chip->base + SUN6I_ALARM_CONFIG); 456 spin_unlock_irqrestore(&chip->lock, flags); 457 } 458 459 static int sun6i_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm) 460 { 461 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev); 462 u32 date, time; 463 464 /* 465 * read again in case it changes 466 */ 467 do { 468 date = readl(chip->base + SUN6I_RTC_YMD); 469 time = readl(chip->base + SUN6I_RTC_HMS); 470 } while ((date != readl(chip->base + SUN6I_RTC_YMD)) || 471 (time != readl(chip->base + SUN6I_RTC_HMS))); 472 473 if (chip->flags & RTC_LINEAR_DAY) { 474 /* 475 * Newer chips store a linear day number, the manual 476 * does not mandate any epoch base. The BSP driver uses 477 * the UNIX epoch, let's just copy that, as it's the 478 * easiest anyway. 479 */ 480 rtc_time64_to_tm((date & 0xffff) * SECS_PER_DAY, rtc_tm); 481 } else { 482 rtc_tm->tm_mday = SUN6I_DATE_GET_DAY_VALUE(date); 483 rtc_tm->tm_mon = SUN6I_DATE_GET_MON_VALUE(date) - 1; 484 rtc_tm->tm_year = SUN6I_DATE_GET_YEAR_VALUE(date); 485 486 /* 487 * switch from (data_year->min)-relative offset to 488 * a (1900)-relative one 489 */ 490 rtc_tm->tm_year += SUN6I_YEAR_OFF; 491 } 492 493 rtc_tm->tm_sec = SUN6I_TIME_GET_SEC_VALUE(time); 494 rtc_tm->tm_min = SUN6I_TIME_GET_MIN_VALUE(time); 495 rtc_tm->tm_hour = SUN6I_TIME_GET_HOUR_VALUE(time); 496 497 return 0; 498 } 499 500 static int sun6i_rtc_getalarm(struct device *dev, struct rtc_wkalrm *wkalrm) 501 { 502 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev); 503 unsigned long flags; 504 u32 alrm_st; 505 u32 alrm_en; 506 507 spin_lock_irqsave(&chip->lock, flags); 508 alrm_en = readl(chip->base + SUN6I_ALRM_IRQ_EN); 509 alrm_st = readl(chip->base + SUN6I_ALRM_IRQ_STA); 510 spin_unlock_irqrestore(&chip->lock, flags); 511 512 wkalrm->enabled = !!(alrm_en & SUN6I_ALRM_EN_CNT_EN); 513 wkalrm->pending = !!(alrm_st & SUN6I_ALRM_EN_CNT_EN); 514 rtc_time64_to_tm(chip->alarm, &wkalrm->time); 515 516 return 0; 517 } 518 519 static int sun6i_rtc_setalarm(struct device *dev, struct rtc_wkalrm *wkalrm) 520 { 521 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev); 522 struct rtc_time *alrm_tm = &wkalrm->time; 523 struct rtc_time tm_now; 524 time64_t time_set; 525 u32 counter_val, counter_val_hms; 526 int ret; 527 528 time_set = rtc_tm_to_time64(alrm_tm); 529 530 if (chip->flags & RTC_LINEAR_DAY) { 531 /* 532 * The alarm registers hold the actual alarm time, encoded 533 * in the same way (linear day + HMS) as the current time. 534 */ 535 counter_val_hms = SUN6I_TIME_SET_SEC_VALUE(alrm_tm->tm_sec) | 536 SUN6I_TIME_SET_MIN_VALUE(alrm_tm->tm_min) | 537 SUN6I_TIME_SET_HOUR_VALUE(alrm_tm->tm_hour); 538 /* The division will cut off the H:M:S part of alrm_tm. */ 539 counter_val = div_u64(rtc_tm_to_time64(alrm_tm), SECS_PER_DAY); 540 } else { 541 /* The alarm register holds the number of seconds left. */ 542 time64_t time_now; 543 544 ret = sun6i_rtc_gettime(dev, &tm_now); 545 if (ret < 0) { 546 dev_err(dev, "Error in getting time\n"); 547 return -EINVAL; 548 } 549 550 time_now = rtc_tm_to_time64(&tm_now); 551 if (time_set <= time_now) { 552 dev_err(dev, "Date to set in the past\n"); 553 return -EINVAL; 554 } 555 if ((time_set - time_now) > U32_MAX) { 556 dev_err(dev, "Date too far in the future\n"); 557 return -EINVAL; 558 } 559 560 counter_val = time_set - time_now; 561 } 562 563 sun6i_rtc_setaie(0, chip); 564 writel(0, chip->base + SUN6I_ALRM_COUNTER); 565 if (chip->flags & RTC_LINEAR_DAY) 566 writel(0, chip->base + SUN6I_ALRM_COUNTER_HMS); 567 usleep_range(100, 300); 568 569 writel(counter_val, chip->base + SUN6I_ALRM_COUNTER); 570 if (chip->flags & RTC_LINEAR_DAY) 571 writel(counter_val_hms, chip->base + SUN6I_ALRM_COUNTER_HMS); 572 chip->alarm = time_set; 573 574 sun6i_rtc_setaie(wkalrm->enabled, chip); 575 576 return 0; 577 } 578 579 static int sun6i_rtc_wait(struct sun6i_rtc_dev *chip, int offset, 580 unsigned int mask, unsigned int ms_timeout) 581 { 582 const unsigned long timeout = jiffies + msecs_to_jiffies(ms_timeout); 583 u32 reg; 584 585 do { 586 reg = readl(chip->base + offset); 587 reg &= mask; 588 589 if (!reg) 590 return 0; 591 592 } while (time_before(jiffies, timeout)); 593 594 return -ETIMEDOUT; 595 } 596 597 static int sun6i_rtc_settime(struct device *dev, struct rtc_time *rtc_tm) 598 { 599 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev); 600 u32 date = 0; 601 u32 time = 0; 602 603 time = SUN6I_TIME_SET_SEC_VALUE(rtc_tm->tm_sec) | 604 SUN6I_TIME_SET_MIN_VALUE(rtc_tm->tm_min) | 605 SUN6I_TIME_SET_HOUR_VALUE(rtc_tm->tm_hour); 606 607 if (chip->flags & RTC_LINEAR_DAY) { 608 /* The division will cut off the H:M:S part of rtc_tm. */ 609 date = div_u64(rtc_tm_to_time64(rtc_tm), SECS_PER_DAY); 610 } else { 611 rtc_tm->tm_year -= SUN6I_YEAR_OFF; 612 rtc_tm->tm_mon += 1; 613 614 date = SUN6I_DATE_SET_DAY_VALUE(rtc_tm->tm_mday) | 615 SUN6I_DATE_SET_MON_VALUE(rtc_tm->tm_mon) | 616 SUN6I_DATE_SET_YEAR_VALUE(rtc_tm->tm_year); 617 618 if (is_leap_year(rtc_tm->tm_year + SUN6I_YEAR_MIN)) 619 date |= SUN6I_LEAP_SET_VALUE(1); 620 } 621 622 /* Check whether registers are writable */ 623 if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL, 624 SUN6I_LOSC_CTRL_ACC_MASK, 50)) { 625 dev_err(dev, "rtc is still busy.\n"); 626 return -EBUSY; 627 } 628 629 writel(time, chip->base + SUN6I_RTC_HMS); 630 631 /* 632 * After writing the RTC HH-MM-SS register, the 633 * SUN6I_LOSC_CTRL_RTC_HMS_ACC bit is set and it will not 634 * be cleared until the real writing operation is finished 635 */ 636 637 if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL, 638 SUN6I_LOSC_CTRL_RTC_HMS_ACC, 50)) { 639 dev_err(dev, "Failed to set rtc time.\n"); 640 return -ETIMEDOUT; 641 } 642 643 writel(date, chip->base + SUN6I_RTC_YMD); 644 645 /* 646 * After writing the RTC YY-MM-DD register, the 647 * SUN6I_LOSC_CTRL_RTC_YMD_ACC bit is set and it will not 648 * be cleared until the real writing operation is finished 649 */ 650 651 if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL, 652 SUN6I_LOSC_CTRL_RTC_YMD_ACC, 50)) { 653 dev_err(dev, "Failed to set rtc time.\n"); 654 return -ETIMEDOUT; 655 } 656 657 return 0; 658 } 659 660 static int sun6i_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled) 661 { 662 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev); 663 664 if (!enabled) 665 sun6i_rtc_setaie(enabled, chip); 666 667 return 0; 668 } 669 670 static const struct rtc_class_ops sun6i_rtc_ops = { 671 .read_time = sun6i_rtc_gettime, 672 .set_time = sun6i_rtc_settime, 673 .read_alarm = sun6i_rtc_getalarm, 674 .set_alarm = sun6i_rtc_setalarm, 675 .alarm_irq_enable = sun6i_rtc_alarm_irq_enable 676 }; 677 678 static int sun6i_rtc_nvmem_read(void *priv, unsigned int offset, void *_val, size_t bytes) 679 { 680 struct sun6i_rtc_dev *chip = priv; 681 u32 *val = _val; 682 int i; 683 684 for (i = 0; i < bytes / 4; ++i) 685 val[i] = readl(chip->base + SUN6I_GP_DATA + offset + 4 * i); 686 687 return 0; 688 } 689 690 static int sun6i_rtc_nvmem_write(void *priv, unsigned int offset, void *_val, size_t bytes) 691 { 692 struct sun6i_rtc_dev *chip = priv; 693 u32 *val = _val; 694 int i; 695 696 for (i = 0; i < bytes / 4; ++i) 697 writel(val[i], chip->base + SUN6I_GP_DATA + offset + 4 * i); 698 699 return 0; 700 } 701 702 static struct nvmem_config sun6i_rtc_nvmem_cfg = { 703 .type = NVMEM_TYPE_BATTERY_BACKED, 704 .reg_read = sun6i_rtc_nvmem_read, 705 .reg_write = sun6i_rtc_nvmem_write, 706 .size = SUN6I_GP_DATA_SIZE, 707 .word_size = 4, 708 .stride = 4, 709 }; 710 711 #ifdef CONFIG_PM_SLEEP 712 /* Enable IRQ wake on suspend, to wake up from RTC. */ 713 static int sun6i_rtc_suspend(struct device *dev) 714 { 715 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev); 716 717 if (device_may_wakeup(dev)) 718 enable_irq_wake(chip->irq); 719 720 return 0; 721 } 722 723 /* Disable IRQ wake on resume. */ 724 static int sun6i_rtc_resume(struct device *dev) 725 { 726 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev); 727 728 if (device_may_wakeup(dev)) 729 disable_irq_wake(chip->irq); 730 731 return 0; 732 } 733 #endif 734 735 static SIMPLE_DEV_PM_OPS(sun6i_rtc_pm_ops, 736 sun6i_rtc_suspend, sun6i_rtc_resume); 737 738 static void sun6i_rtc_bus_clk_cleanup(void *data) 739 { 740 struct clk *bus_clk = data; 741 742 clk_disable_unprepare(bus_clk); 743 } 744 745 static int sun6i_rtc_probe(struct platform_device *pdev) 746 { 747 struct sun6i_rtc_dev *chip = sun6i_rtc; 748 struct device *dev = &pdev->dev; 749 struct clk *bus_clk; 750 int ret; 751 752 bus_clk = devm_clk_get_optional(dev, "bus"); 753 if (IS_ERR(bus_clk)) 754 return PTR_ERR(bus_clk); 755 756 if (bus_clk) { 757 ret = clk_prepare_enable(bus_clk); 758 if (ret) 759 return ret; 760 761 ret = devm_add_action_or_reset(dev, sun6i_rtc_bus_clk_cleanup, 762 bus_clk); 763 if (ret) 764 return ret; 765 } 766 767 if (!chip) { 768 chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL); 769 if (!chip) 770 return -ENOMEM; 771 772 spin_lock_init(&chip->lock); 773 774 chip->base = devm_platform_ioremap_resource(pdev, 0); 775 if (IS_ERR(chip->base)) 776 return PTR_ERR(chip->base); 777 778 if (IS_REACHABLE(CONFIG_SUN6I_RTC_CCU)) { 779 ret = sun6i_rtc_ccu_probe(dev, chip->base); 780 if (ret) 781 return ret; 782 } 783 } 784 785 platform_set_drvdata(pdev, chip); 786 787 chip->flags = (unsigned long)of_device_get_match_data(&pdev->dev); 788 789 chip->irq = platform_get_irq(pdev, 0); 790 if (chip->irq < 0) 791 return chip->irq; 792 793 ret = devm_request_irq(&pdev->dev, chip->irq, sun6i_rtc_alarmirq, 794 0, dev_name(&pdev->dev), chip); 795 if (ret) { 796 dev_err(&pdev->dev, "Could not request IRQ\n"); 797 return ret; 798 } 799 800 /* clear the alarm counter value */ 801 writel(0, chip->base + SUN6I_ALRM_COUNTER); 802 803 /* disable counter alarm */ 804 writel(0, chip->base + SUN6I_ALRM_EN); 805 806 /* disable counter alarm interrupt */ 807 writel(0, chip->base + SUN6I_ALRM_IRQ_EN); 808 809 /* disable week alarm */ 810 writel(0, chip->base + SUN6I_ALRM1_EN); 811 812 /* disable week alarm interrupt */ 813 writel(0, chip->base + SUN6I_ALRM1_IRQ_EN); 814 815 /* clear counter alarm pending interrupts */ 816 writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND, 817 chip->base + SUN6I_ALRM_IRQ_STA); 818 819 /* clear week alarm pending interrupts */ 820 writel(SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND, 821 chip->base + SUN6I_ALRM1_IRQ_STA); 822 823 /* disable alarm wakeup */ 824 writel(0, chip->base + SUN6I_ALARM_CONFIG); 825 826 clk_prepare_enable(chip->losc); 827 828 device_init_wakeup(&pdev->dev, 1); 829 830 chip->rtc = devm_rtc_allocate_device(&pdev->dev); 831 if (IS_ERR(chip->rtc)) 832 return PTR_ERR(chip->rtc); 833 834 chip->rtc->ops = &sun6i_rtc_ops; 835 if (chip->flags & RTC_LINEAR_DAY) 836 chip->rtc->range_max = (65536 * SECS_PER_DAY) - 1; 837 else 838 chip->rtc->range_max = 2019686399LL; /* 2033-12-31 23:59:59 */ 839 840 ret = devm_rtc_register_device(chip->rtc); 841 if (ret) 842 return ret; 843 844 sun6i_rtc_nvmem_cfg.priv = chip; 845 ret = devm_rtc_nvmem_register(chip->rtc, &sun6i_rtc_nvmem_cfg); 846 if (ret) 847 return ret; 848 849 dev_info(&pdev->dev, "RTC enabled\n"); 850 851 return 0; 852 } 853 854 /* 855 * As far as RTC functionality goes, all models are the same. The 856 * datasheets claim that different models have different number of 857 * registers available for non-volatile storage, but experiments show 858 * that all SoCs have 16 registers available for this purpose. 859 */ 860 static const struct of_device_id sun6i_rtc_dt_ids[] = { 861 { .compatible = "allwinner,sun6i-a31-rtc" }, 862 { .compatible = "allwinner,sun8i-a23-rtc" }, 863 { .compatible = "allwinner,sun8i-h3-rtc" }, 864 { .compatible = "allwinner,sun8i-r40-rtc" }, 865 { .compatible = "allwinner,sun8i-v3-rtc" }, 866 { .compatible = "allwinner,sun50i-h5-rtc" }, 867 { .compatible = "allwinner,sun50i-h6-rtc" }, 868 { .compatible = "allwinner,sun50i-h616-rtc", 869 .data = (void *)RTC_LINEAR_DAY }, 870 { .compatible = "allwinner,sun50i-r329-rtc", 871 .data = (void *)RTC_LINEAR_DAY }, 872 { /* sentinel */ }, 873 }; 874 MODULE_DEVICE_TABLE(of, sun6i_rtc_dt_ids); 875 876 static struct platform_driver sun6i_rtc_driver = { 877 .probe = sun6i_rtc_probe, 878 .driver = { 879 .name = "sun6i-rtc", 880 .of_match_table = sun6i_rtc_dt_ids, 881 .pm = &sun6i_rtc_pm_ops, 882 }, 883 }; 884 builtin_platform_driver(sun6i_rtc_driver); 885