xref: /openbmc/linux/drivers/rtc/rtc-stmp3xxx.c (revision 6db6b729)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Freescale STMP37XX/STMP378X Real Time Clock driver
4  *
5  * Copyright (c) 2007 Sigmatel, Inc.
6  * Peter Hartley, <peter.hartley@sigmatel.com>
7  *
8  * Copyright 2008 Freescale Semiconductor, Inc. All Rights Reserved.
9  * Copyright 2008 Embedded Alley Solutions, Inc All Rights Reserved.
10  * Copyright 2011 Wolfram Sang, Pengutronix e.K.
11  */
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/io.h>
15 #include <linux/init.h>
16 #include <linux/platform_device.h>
17 #include <linux/interrupt.h>
18 #include <linux/delay.h>
19 #include <linux/rtc.h>
20 #include <linux/slab.h>
21 #include <linux/of.h>
22 #include <linux/stmp_device.h>
23 #include <linux/stmp3xxx_rtc_wdt.h>
24 
25 #define STMP3XXX_RTC_CTRL			0x0
26 #define STMP3XXX_RTC_CTRL_ALARM_IRQ_EN		0x00000001
27 #define STMP3XXX_RTC_CTRL_ONEMSEC_IRQ_EN	0x00000002
28 #define STMP3XXX_RTC_CTRL_ALARM_IRQ		0x00000004
29 #define STMP3XXX_RTC_CTRL_WATCHDOGEN		0x00000010
30 
31 #define STMP3XXX_RTC_STAT			0x10
32 #define STMP3XXX_RTC_STAT_STALE_SHIFT		16
33 #define STMP3XXX_RTC_STAT_RTC_PRESENT		0x80000000
34 #define STMP3XXX_RTC_STAT_XTAL32000_PRESENT	0x10000000
35 #define STMP3XXX_RTC_STAT_XTAL32768_PRESENT	0x08000000
36 
37 #define STMP3XXX_RTC_SECONDS			0x30
38 
39 #define STMP3XXX_RTC_ALARM			0x40
40 
41 #define STMP3XXX_RTC_WATCHDOG			0x50
42 
43 #define STMP3XXX_RTC_PERSISTENT0		0x60
44 #define STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE		(1 << 0)
45 #define STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN		(1 << 1)
46 #define STMP3XXX_RTC_PERSISTENT0_ALARM_EN		(1 << 2)
47 #define STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP	(1 << 4)
48 #define STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP	(1 << 5)
49 #define STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ		(1 << 6)
50 #define STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE		(1 << 7)
51 
52 #define STMP3XXX_RTC_PERSISTENT1		0x70
53 /* missing bitmask in headers */
54 #define STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER	0x80000000
55 
56 struct stmp3xxx_rtc_data {
57 	struct rtc_device *rtc;
58 	void __iomem *io;
59 	int irq_alarm;
60 };
61 
62 #if IS_ENABLED(CONFIG_STMP3XXX_RTC_WATCHDOG)
63 /**
64  * stmp3xxx_wdt_set_timeout - configure the watchdog inside the STMP3xxx RTC
65  * @dev: the parent device of the watchdog (= the RTC)
66  * @timeout: the desired value for the timeout register of the watchdog.
67  *           0 disables the watchdog
68  *
69  * The watchdog needs one register and two bits which are in the RTC domain.
70  * To handle the resource conflict, the RTC driver will create another
71  * platform_device for the watchdog driver as a child of the RTC device.
72  * The watchdog driver is passed the below accessor function via platform_data
73  * to configure the watchdog. Locking is not needed because accessing SET/CLR
74  * registers is atomic.
75  */
76 
77 static void stmp3xxx_wdt_set_timeout(struct device *dev, u32 timeout)
78 {
79 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
80 
81 	if (timeout) {
82 		writel(timeout, rtc_data->io + STMP3XXX_RTC_WATCHDOG);
83 		writel(STMP3XXX_RTC_CTRL_WATCHDOGEN,
84 		       rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_SET);
85 		writel(STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER,
86 		       rtc_data->io + STMP3XXX_RTC_PERSISTENT1 + STMP_OFFSET_REG_SET);
87 	} else {
88 		writel(STMP3XXX_RTC_CTRL_WATCHDOGEN,
89 		       rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
90 		writel(STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER,
91 		       rtc_data->io + STMP3XXX_RTC_PERSISTENT1 + STMP_OFFSET_REG_CLR);
92 	}
93 }
94 
95 static struct stmp3xxx_wdt_pdata wdt_pdata = {
96 	.wdt_set_timeout = stmp3xxx_wdt_set_timeout,
97 };
98 
99 static void stmp3xxx_wdt_register(struct platform_device *rtc_pdev)
100 {
101 	int rc = -1;
102 	struct platform_device *wdt_pdev =
103 		platform_device_alloc("stmp3xxx_rtc_wdt", rtc_pdev->id);
104 
105 	if (wdt_pdev) {
106 		wdt_pdev->dev.parent = &rtc_pdev->dev;
107 		wdt_pdev->dev.platform_data = &wdt_pdata;
108 		rc = platform_device_add(wdt_pdev);
109 		if (rc)
110 			platform_device_put(wdt_pdev);
111 	}
112 
113 	if (rc)
114 		dev_err(&rtc_pdev->dev,
115 			"failed to register stmp3xxx_rtc_wdt\n");
116 }
117 #else
118 static void stmp3xxx_wdt_register(struct platform_device *rtc_pdev)
119 {
120 }
121 #endif /* CONFIG_STMP3XXX_RTC_WATCHDOG */
122 
123 static int stmp3xxx_wait_time(struct stmp3xxx_rtc_data *rtc_data)
124 {
125 	int timeout = 5000; /* 3ms according to i.MX28 Ref Manual */
126 	/*
127 	 * The i.MX28 Applications Processor Reference Manual, Rev. 1, 2010
128 	 * states:
129 	 * | The order in which registers are updated is
130 	 * | Persistent 0, 1, 2, 3, 4, 5, Alarm, Seconds.
131 	 * | (This list is in bitfield order, from LSB to MSB, as they would
132 	 * | appear in the STALE_REGS and NEW_REGS bitfields of the HW_RTC_STAT
133 	 * | register. For example, the Seconds register corresponds to
134 	 * | STALE_REGS or NEW_REGS containing 0x80.)
135 	 */
136 	do {
137 		if (!(readl(rtc_data->io + STMP3XXX_RTC_STAT) &
138 				(0x80 << STMP3XXX_RTC_STAT_STALE_SHIFT)))
139 			return 0;
140 		udelay(1);
141 	} while (--timeout > 0);
142 	return (readl(rtc_data->io + STMP3XXX_RTC_STAT) &
143 		(0x80 << STMP3XXX_RTC_STAT_STALE_SHIFT)) ? -ETIME : 0;
144 }
145 
146 /* Time read/write */
147 static int stmp3xxx_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm)
148 {
149 	int ret;
150 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
151 
152 	ret = stmp3xxx_wait_time(rtc_data);
153 	if (ret)
154 		return ret;
155 
156 	rtc_time64_to_tm(readl(rtc_data->io + STMP3XXX_RTC_SECONDS), rtc_tm);
157 	return 0;
158 }
159 
160 static int stmp3xxx_rtc_settime(struct device *dev, struct rtc_time *rtc_tm)
161 {
162 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
163 
164 	writel(rtc_tm_to_time64(rtc_tm), rtc_data->io + STMP3XXX_RTC_SECONDS);
165 	return stmp3xxx_wait_time(rtc_data);
166 }
167 
168 /* interrupt(s) handler */
169 static irqreturn_t stmp3xxx_rtc_interrupt(int irq, void *dev_id)
170 {
171 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev_id);
172 	u32 status = readl(rtc_data->io + STMP3XXX_RTC_CTRL);
173 
174 	if (status & STMP3XXX_RTC_CTRL_ALARM_IRQ) {
175 		writel(STMP3XXX_RTC_CTRL_ALARM_IRQ,
176 			rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
177 		rtc_update_irq(rtc_data->rtc, 1, RTC_AF | RTC_IRQF);
178 		return IRQ_HANDLED;
179 	}
180 
181 	return IRQ_NONE;
182 }
183 
184 static int stmp3xxx_alarm_irq_enable(struct device *dev, unsigned int enabled)
185 {
186 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
187 
188 	if (enabled) {
189 		writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
190 				STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN,
191 			rtc_data->io + STMP3XXX_RTC_PERSISTENT0 +
192 				STMP_OFFSET_REG_SET);
193 		writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
194 			rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_SET);
195 	} else {
196 		writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
197 				STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN,
198 			rtc_data->io + STMP3XXX_RTC_PERSISTENT0 +
199 				STMP_OFFSET_REG_CLR);
200 		writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
201 			rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
202 	}
203 	return 0;
204 }
205 
206 static int stmp3xxx_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
207 {
208 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
209 
210 	rtc_time64_to_tm(readl(rtc_data->io + STMP3XXX_RTC_ALARM), &alm->time);
211 	return 0;
212 }
213 
214 static int stmp3xxx_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
215 {
216 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
217 
218 	writel(rtc_tm_to_time64(&alm->time), rtc_data->io + STMP3XXX_RTC_ALARM);
219 
220 	stmp3xxx_alarm_irq_enable(dev, alm->enabled);
221 
222 	return 0;
223 }
224 
225 static const struct rtc_class_ops stmp3xxx_rtc_ops = {
226 	.alarm_irq_enable =
227 			  stmp3xxx_alarm_irq_enable,
228 	.read_time	= stmp3xxx_rtc_gettime,
229 	.set_time	= stmp3xxx_rtc_settime,
230 	.read_alarm	= stmp3xxx_rtc_read_alarm,
231 	.set_alarm	= stmp3xxx_rtc_set_alarm,
232 };
233 
234 static void stmp3xxx_rtc_remove(struct platform_device *pdev)
235 {
236 	struct stmp3xxx_rtc_data *rtc_data = platform_get_drvdata(pdev);
237 
238 	if (!rtc_data)
239 		return;
240 
241 	writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
242 		rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
243 }
244 
245 static int stmp3xxx_rtc_probe(struct platform_device *pdev)
246 {
247 	struct stmp3xxx_rtc_data *rtc_data;
248 	struct resource *r;
249 	u32 rtc_stat;
250 	u32 pers0_set, pers0_clr;
251 	u32 crystalfreq = 0;
252 	int err;
253 
254 	rtc_data = devm_kzalloc(&pdev->dev, sizeof(*rtc_data), GFP_KERNEL);
255 	if (!rtc_data)
256 		return -ENOMEM;
257 
258 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
259 	if (!r) {
260 		dev_err(&pdev->dev, "failed to get resource\n");
261 		return -ENXIO;
262 	}
263 
264 	rtc_data->io = devm_ioremap(&pdev->dev, r->start, resource_size(r));
265 	if (!rtc_data->io) {
266 		dev_err(&pdev->dev, "ioremap failed\n");
267 		return -EIO;
268 	}
269 
270 	rtc_data->irq_alarm = platform_get_irq(pdev, 0);
271 
272 	rtc_stat = readl(rtc_data->io + STMP3XXX_RTC_STAT);
273 	if (!(rtc_stat & STMP3XXX_RTC_STAT_RTC_PRESENT)) {
274 		dev_err(&pdev->dev, "no device onboard\n");
275 		return -ENODEV;
276 	}
277 
278 	platform_set_drvdata(pdev, rtc_data);
279 
280 	/*
281 	 * Resetting the rtc stops the watchdog timer that is potentially
282 	 * running. So (assuming it is running on purpose) don't reset if the
283 	 * watchdog is enabled.
284 	 */
285 	if (readl(rtc_data->io + STMP3XXX_RTC_CTRL) &
286 	    STMP3XXX_RTC_CTRL_WATCHDOGEN) {
287 		dev_info(&pdev->dev,
288 			 "Watchdog is running, skip resetting rtc\n");
289 	} else {
290 		err = stmp_reset_block(rtc_data->io);
291 		if (err) {
292 			dev_err(&pdev->dev, "stmp_reset_block failed: %d\n",
293 				err);
294 			return err;
295 		}
296 	}
297 
298 	/*
299 	 * Obviously the rtc needs a clock input to be able to run.
300 	 * This clock can be provided by an external 32k crystal. If that one is
301 	 * missing XTAL must not be disabled in suspend which consumes a
302 	 * lot of power. Normally the presence and exact frequency (supported
303 	 * are 32000 Hz and 32768 Hz) is detectable from fuses, but as reality
304 	 * proves these fuses are not blown correctly on all machines, so the
305 	 * frequency can be overridden in the device tree.
306 	 */
307 	if (rtc_stat & STMP3XXX_RTC_STAT_XTAL32000_PRESENT)
308 		crystalfreq = 32000;
309 	else if (rtc_stat & STMP3XXX_RTC_STAT_XTAL32768_PRESENT)
310 		crystalfreq = 32768;
311 
312 	of_property_read_u32(pdev->dev.of_node, "stmp,crystal-freq",
313 			     &crystalfreq);
314 
315 	switch (crystalfreq) {
316 	case 32000:
317 		/* keep 32kHz crystal running in low-power mode */
318 		pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ |
319 			STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP |
320 			STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE;
321 		pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP;
322 		break;
323 	case 32768:
324 		/* keep 32.768kHz crystal running in low-power mode */
325 		pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP |
326 			STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE;
327 		pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP |
328 			STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ;
329 		break;
330 	default:
331 		dev_warn(&pdev->dev,
332 			 "invalid crystal-freq specified in device-tree. Assuming no crystal\n");
333 		fallthrough;
334 	case 0:
335 		/* keep XTAL on in low-power mode */
336 		pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP;
337 		pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP |
338 			STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE;
339 	}
340 
341 	writel(pers0_set, rtc_data->io + STMP3XXX_RTC_PERSISTENT0 +
342 			STMP_OFFSET_REG_SET);
343 
344 	writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
345 			STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN |
346 			STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE | pers0_clr,
347 		rtc_data->io + STMP3XXX_RTC_PERSISTENT0 + STMP_OFFSET_REG_CLR);
348 
349 	writel(STMP3XXX_RTC_CTRL_ONEMSEC_IRQ_EN |
350 			STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
351 		rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
352 
353 	rtc_data->rtc = devm_rtc_allocate_device(&pdev->dev);
354 	if (IS_ERR(rtc_data->rtc))
355 		return PTR_ERR(rtc_data->rtc);
356 
357 	err = devm_request_irq(&pdev->dev, rtc_data->irq_alarm,
358 			stmp3xxx_rtc_interrupt, 0, "RTC alarm", &pdev->dev);
359 	if (err) {
360 		dev_err(&pdev->dev, "Cannot claim IRQ%d\n",
361 			rtc_data->irq_alarm);
362 		return err;
363 	}
364 
365 	rtc_data->rtc->ops = &stmp3xxx_rtc_ops;
366 	rtc_data->rtc->range_max = U32_MAX;
367 
368 	err = devm_rtc_register_device(rtc_data->rtc);
369 	if (err)
370 		return err;
371 
372 	stmp3xxx_wdt_register(pdev);
373 	return 0;
374 }
375 
376 #ifdef CONFIG_PM_SLEEP
377 static int stmp3xxx_rtc_suspend(struct device *dev)
378 {
379 	return 0;
380 }
381 
382 static int stmp3xxx_rtc_resume(struct device *dev)
383 {
384 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
385 
386 	stmp_reset_block(rtc_data->io);
387 	writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
388 			STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN |
389 			STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE,
390 		rtc_data->io + STMP3XXX_RTC_PERSISTENT0 + STMP_OFFSET_REG_CLR);
391 	return 0;
392 }
393 #endif
394 
395 static SIMPLE_DEV_PM_OPS(stmp3xxx_rtc_pm_ops, stmp3xxx_rtc_suspend,
396 			stmp3xxx_rtc_resume);
397 
398 static const struct of_device_id rtc_dt_ids[] = {
399 	{ .compatible = "fsl,stmp3xxx-rtc", },
400 	{ /* sentinel */ }
401 };
402 MODULE_DEVICE_TABLE(of, rtc_dt_ids);
403 
404 static struct platform_driver stmp3xxx_rtcdrv = {
405 	.probe		= stmp3xxx_rtc_probe,
406 	.remove_new	= stmp3xxx_rtc_remove,
407 	.driver		= {
408 		.name	= "stmp3xxx-rtc",
409 		.pm	= &stmp3xxx_rtc_pm_ops,
410 		.of_match_table = rtc_dt_ids,
411 	},
412 };
413 
414 module_platform_driver(stmp3xxx_rtcdrv);
415 
416 MODULE_DESCRIPTION("STMP3xxx RTC Driver");
417 MODULE_AUTHOR("dmitry pervushin <dpervushin@embeddedalley.com> and "
418 		"Wolfram Sang <kernel@pengutronix.de>");
419 MODULE_LICENSE("GPL");
420