xref: /openbmc/linux/drivers/rtc/rtc-stmp3xxx.c (revision 029f7f3b8701cc7aca8bdb31f0c7edd6a479e357)
1 /*
2  * Freescale STMP37XX/STMP378X Real Time Clock driver
3  *
4  * Copyright (c) 2007 Sigmatel, Inc.
5  * Peter Hartley, <peter.hartley@sigmatel.com>
6  *
7  * Copyright 2008 Freescale Semiconductor, Inc. All Rights Reserved.
8  * Copyright 2008 Embedded Alley Solutions, Inc All Rights Reserved.
9  * Copyright 2011 Wolfram Sang, Pengutronix e.K.
10  */
11 
12 /*
13  * The code contained herein is licensed under the GNU General Public
14  * License. You may obtain a copy of the GNU General Public License
15  * Version 2 or later at the following locations:
16  *
17  * http://www.opensource.org/licenses/gpl-license.html
18  * http://www.gnu.org/copyleft/gpl.html
19  */
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/io.h>
23 #include <linux/init.h>
24 #include <linux/platform_device.h>
25 #include <linux/interrupt.h>
26 #include <linux/delay.h>
27 #include <linux/rtc.h>
28 #include <linux/slab.h>
29 #include <linux/of_device.h>
30 #include <linux/of.h>
31 #include <linux/stmp_device.h>
32 #include <linux/stmp3xxx_rtc_wdt.h>
33 
34 #define STMP3XXX_RTC_CTRL			0x0
35 #define STMP3XXX_RTC_CTRL_ALARM_IRQ_EN		0x00000001
36 #define STMP3XXX_RTC_CTRL_ONEMSEC_IRQ_EN	0x00000002
37 #define STMP3XXX_RTC_CTRL_ALARM_IRQ		0x00000004
38 #define STMP3XXX_RTC_CTRL_WATCHDOGEN		0x00000010
39 
40 #define STMP3XXX_RTC_STAT			0x10
41 #define STMP3XXX_RTC_STAT_STALE_SHIFT		16
42 #define STMP3XXX_RTC_STAT_RTC_PRESENT		0x80000000
43 #define STMP3XXX_RTC_STAT_XTAL32000_PRESENT	0x10000000
44 #define STMP3XXX_RTC_STAT_XTAL32768_PRESENT	0x08000000
45 
46 #define STMP3XXX_RTC_SECONDS			0x30
47 
48 #define STMP3XXX_RTC_ALARM			0x40
49 
50 #define STMP3XXX_RTC_WATCHDOG			0x50
51 
52 #define STMP3XXX_RTC_PERSISTENT0		0x60
53 #define STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE		(1 << 0)
54 #define STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN		(1 << 1)
55 #define STMP3XXX_RTC_PERSISTENT0_ALARM_EN		(1 << 2)
56 #define STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP	(1 << 4)
57 #define STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP	(1 << 5)
58 #define STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ		(1 << 6)
59 #define STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE		(1 << 7)
60 
61 #define STMP3XXX_RTC_PERSISTENT1		0x70
62 /* missing bitmask in headers */
63 #define STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER	0x80000000
64 
65 struct stmp3xxx_rtc_data {
66 	struct rtc_device *rtc;
67 	void __iomem *io;
68 	int irq_alarm;
69 };
70 
71 #if IS_ENABLED(CONFIG_STMP3XXX_RTC_WATCHDOG)
72 /**
73  * stmp3xxx_wdt_set_timeout - configure the watchdog inside the STMP3xxx RTC
74  * @dev: the parent device of the watchdog (= the RTC)
75  * @timeout: the desired value for the timeout register of the watchdog.
76  *           0 disables the watchdog
77  *
78  * The watchdog needs one register and two bits which are in the RTC domain.
79  * To handle the resource conflict, the RTC driver will create another
80  * platform_device for the watchdog driver as a child of the RTC device.
81  * The watchdog driver is passed the below accessor function via platform_data
82  * to configure the watchdog. Locking is not needed because accessing SET/CLR
83  * registers is atomic.
84  */
85 
86 static void stmp3xxx_wdt_set_timeout(struct device *dev, u32 timeout)
87 {
88 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
89 
90 	if (timeout) {
91 		writel(timeout, rtc_data->io + STMP3XXX_RTC_WATCHDOG);
92 		writel(STMP3XXX_RTC_CTRL_WATCHDOGEN,
93 		       rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_SET);
94 		writel(STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER,
95 		       rtc_data->io + STMP3XXX_RTC_PERSISTENT1 + STMP_OFFSET_REG_SET);
96 	} else {
97 		writel(STMP3XXX_RTC_CTRL_WATCHDOGEN,
98 		       rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
99 		writel(STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER,
100 		       rtc_data->io + STMP3XXX_RTC_PERSISTENT1 + STMP_OFFSET_REG_CLR);
101 	}
102 }
103 
104 static struct stmp3xxx_wdt_pdata wdt_pdata = {
105 	.wdt_set_timeout = stmp3xxx_wdt_set_timeout,
106 };
107 
108 static void stmp3xxx_wdt_register(struct platform_device *rtc_pdev)
109 {
110 	struct platform_device *wdt_pdev =
111 		platform_device_alloc("stmp3xxx_rtc_wdt", rtc_pdev->id);
112 
113 	if (wdt_pdev) {
114 		wdt_pdev->dev.parent = &rtc_pdev->dev;
115 		wdt_pdev->dev.platform_data = &wdt_pdata;
116 		platform_device_add(wdt_pdev);
117 	}
118 }
119 #else
120 static void stmp3xxx_wdt_register(struct platform_device *rtc_pdev)
121 {
122 }
123 #endif /* CONFIG_STMP3XXX_RTC_WATCHDOG */
124 
125 static int stmp3xxx_wait_time(struct stmp3xxx_rtc_data *rtc_data)
126 {
127 	int timeout = 5000; /* 3ms according to i.MX28 Ref Manual */
128 	/*
129 	 * The i.MX28 Applications Processor Reference Manual, Rev. 1, 2010
130 	 * states:
131 	 * | The order in which registers are updated is
132 	 * | Persistent 0, 1, 2, 3, 4, 5, Alarm, Seconds.
133 	 * | (This list is in bitfield order, from LSB to MSB, as they would
134 	 * | appear in the STALE_REGS and NEW_REGS bitfields of the HW_RTC_STAT
135 	 * | register. For example, the Seconds register corresponds to
136 	 * | STALE_REGS or NEW_REGS containing 0x80.)
137 	 */
138 	do {
139 		if (!(readl(rtc_data->io + STMP3XXX_RTC_STAT) &
140 				(0x80 << STMP3XXX_RTC_STAT_STALE_SHIFT)))
141 			return 0;
142 		udelay(1);
143 	} while (--timeout > 0);
144 	return (readl(rtc_data->io + STMP3XXX_RTC_STAT) &
145 		(0x80 << STMP3XXX_RTC_STAT_STALE_SHIFT)) ? -ETIME : 0;
146 }
147 
148 /* Time read/write */
149 static int stmp3xxx_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm)
150 {
151 	int ret;
152 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
153 
154 	ret = stmp3xxx_wait_time(rtc_data);
155 	if (ret)
156 		return ret;
157 
158 	rtc_time_to_tm(readl(rtc_data->io + STMP3XXX_RTC_SECONDS), rtc_tm);
159 	return 0;
160 }
161 
162 static int stmp3xxx_rtc_set_mmss(struct device *dev, unsigned long t)
163 {
164 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
165 
166 	writel(t, rtc_data->io + STMP3XXX_RTC_SECONDS);
167 	return stmp3xxx_wait_time(rtc_data);
168 }
169 
170 /* interrupt(s) handler */
171 static irqreturn_t stmp3xxx_rtc_interrupt(int irq, void *dev_id)
172 {
173 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev_id);
174 	u32 status = readl(rtc_data->io + STMP3XXX_RTC_CTRL);
175 
176 	if (status & STMP3XXX_RTC_CTRL_ALARM_IRQ) {
177 		writel(STMP3XXX_RTC_CTRL_ALARM_IRQ,
178 			rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
179 		rtc_update_irq(rtc_data->rtc, 1, RTC_AF | RTC_IRQF);
180 		return IRQ_HANDLED;
181 	}
182 
183 	return IRQ_NONE;
184 }
185 
186 static int stmp3xxx_alarm_irq_enable(struct device *dev, unsigned int enabled)
187 {
188 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
189 
190 	if (enabled) {
191 		writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
192 				STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN,
193 			rtc_data->io + STMP3XXX_RTC_PERSISTENT0 +
194 				STMP_OFFSET_REG_SET);
195 		writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
196 			rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_SET);
197 	} else {
198 		writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
199 				STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN,
200 			rtc_data->io + STMP3XXX_RTC_PERSISTENT0 +
201 				STMP_OFFSET_REG_CLR);
202 		writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
203 			rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
204 	}
205 	return 0;
206 }
207 
208 static int stmp3xxx_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
209 {
210 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
211 
212 	rtc_time_to_tm(readl(rtc_data->io + STMP3XXX_RTC_ALARM), &alm->time);
213 	return 0;
214 }
215 
216 static int stmp3xxx_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
217 {
218 	unsigned long t;
219 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
220 
221 	rtc_tm_to_time(&alm->time, &t);
222 	writel(t, rtc_data->io + STMP3XXX_RTC_ALARM);
223 
224 	stmp3xxx_alarm_irq_enable(dev, alm->enabled);
225 
226 	return 0;
227 }
228 
229 static struct rtc_class_ops stmp3xxx_rtc_ops = {
230 	.alarm_irq_enable =
231 			  stmp3xxx_alarm_irq_enable,
232 	.read_time	= stmp3xxx_rtc_gettime,
233 	.set_mmss	= stmp3xxx_rtc_set_mmss,
234 	.read_alarm	= stmp3xxx_rtc_read_alarm,
235 	.set_alarm	= stmp3xxx_rtc_set_alarm,
236 };
237 
238 static int stmp3xxx_rtc_remove(struct platform_device *pdev)
239 {
240 	struct stmp3xxx_rtc_data *rtc_data = platform_get_drvdata(pdev);
241 
242 	if (!rtc_data)
243 		return 0;
244 
245 	writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
246 		rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
247 
248 	return 0;
249 }
250 
251 static int stmp3xxx_rtc_probe(struct platform_device *pdev)
252 {
253 	struct stmp3xxx_rtc_data *rtc_data;
254 	struct resource *r;
255 	u32 rtc_stat;
256 	u32 pers0_set, pers0_clr;
257 	u32 crystalfreq = 0;
258 	int err;
259 
260 	rtc_data = devm_kzalloc(&pdev->dev, sizeof(*rtc_data), GFP_KERNEL);
261 	if (!rtc_data)
262 		return -ENOMEM;
263 
264 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
265 	if (!r) {
266 		dev_err(&pdev->dev, "failed to get resource\n");
267 		return -ENXIO;
268 	}
269 
270 	rtc_data->io = devm_ioremap(&pdev->dev, r->start, resource_size(r));
271 	if (!rtc_data->io) {
272 		dev_err(&pdev->dev, "ioremap failed\n");
273 		return -EIO;
274 	}
275 
276 	rtc_data->irq_alarm = platform_get_irq(pdev, 0);
277 
278 	rtc_stat = readl(rtc_data->io + STMP3XXX_RTC_STAT);
279 	if (!(rtc_stat & STMP3XXX_RTC_STAT_RTC_PRESENT)) {
280 		dev_err(&pdev->dev, "no device onboard\n");
281 		return -ENODEV;
282 	}
283 
284 	platform_set_drvdata(pdev, rtc_data);
285 
286 	err = stmp_reset_block(rtc_data->io);
287 	if (err) {
288 		dev_err(&pdev->dev, "stmp_reset_block failed: %d\n", err);
289 		return err;
290 	}
291 
292 	/*
293 	 * Obviously the rtc needs a clock input to be able to run.
294 	 * This clock can be provided by an external 32k crystal. If that one is
295 	 * missing XTAL must not be disabled in suspend which consumes a
296 	 * lot of power. Normally the presence and exact frequency (supported
297 	 * are 32000 Hz and 32768 Hz) is detectable from fuses, but as reality
298 	 * proves these fuses are not blown correctly on all machines, so the
299 	 * frequency can be overridden in the device tree.
300 	 */
301 	if (rtc_stat & STMP3XXX_RTC_STAT_XTAL32000_PRESENT)
302 		crystalfreq = 32000;
303 	else if (rtc_stat & STMP3XXX_RTC_STAT_XTAL32768_PRESENT)
304 		crystalfreq = 32768;
305 
306 	of_property_read_u32(pdev->dev.of_node, "stmp,crystal-freq",
307 			     &crystalfreq);
308 
309 	switch (crystalfreq) {
310 	case 32000:
311 		/* keep 32kHz crystal running in low-power mode */
312 		pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ |
313 			STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP |
314 			STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE;
315 		pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP;
316 		break;
317 	case 32768:
318 		/* keep 32.768kHz crystal running in low-power mode */
319 		pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP |
320 			STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE;
321 		pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP |
322 			STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ;
323 		break;
324 	default:
325 		dev_warn(&pdev->dev,
326 			 "invalid crystal-freq specified in device-tree. Assuming no crystal\n");
327 		/* fall-through */
328 	case 0:
329 		/* keep XTAL on in low-power mode */
330 		pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP;
331 		pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP |
332 			STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE;
333 	}
334 
335 	writel(pers0_set, rtc_data->io + STMP3XXX_RTC_PERSISTENT0 +
336 			STMP_OFFSET_REG_SET);
337 
338 	writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
339 			STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN |
340 			STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE | pers0_clr,
341 		rtc_data->io + STMP3XXX_RTC_PERSISTENT0 + STMP_OFFSET_REG_CLR);
342 
343 	writel(STMP3XXX_RTC_CTRL_ONEMSEC_IRQ_EN |
344 			STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
345 		rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
346 
347 	rtc_data->rtc = devm_rtc_device_register(&pdev->dev, pdev->name,
348 				&stmp3xxx_rtc_ops, THIS_MODULE);
349 	if (IS_ERR(rtc_data->rtc))
350 		return PTR_ERR(rtc_data->rtc);
351 
352 	err = devm_request_irq(&pdev->dev, rtc_data->irq_alarm,
353 			stmp3xxx_rtc_interrupt, 0, "RTC alarm", &pdev->dev);
354 	if (err) {
355 		dev_err(&pdev->dev, "Cannot claim IRQ%d\n",
356 			rtc_data->irq_alarm);
357 		return err;
358 	}
359 
360 	stmp3xxx_wdt_register(pdev);
361 	return 0;
362 }
363 
364 #ifdef CONFIG_PM_SLEEP
365 static int stmp3xxx_rtc_suspend(struct device *dev)
366 {
367 	return 0;
368 }
369 
370 static int stmp3xxx_rtc_resume(struct device *dev)
371 {
372 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
373 
374 	stmp_reset_block(rtc_data->io);
375 	writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
376 			STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN |
377 			STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE,
378 		rtc_data->io + STMP3XXX_RTC_PERSISTENT0 + STMP_OFFSET_REG_CLR);
379 	return 0;
380 }
381 #endif
382 
383 static SIMPLE_DEV_PM_OPS(stmp3xxx_rtc_pm_ops, stmp3xxx_rtc_suspend,
384 			stmp3xxx_rtc_resume);
385 
386 static const struct of_device_id rtc_dt_ids[] = {
387 	{ .compatible = "fsl,stmp3xxx-rtc", },
388 	{ /* sentinel */ }
389 };
390 MODULE_DEVICE_TABLE(of, rtc_dt_ids);
391 
392 static struct platform_driver stmp3xxx_rtcdrv = {
393 	.probe		= stmp3xxx_rtc_probe,
394 	.remove		= stmp3xxx_rtc_remove,
395 	.driver		= {
396 		.name	= "stmp3xxx-rtc",
397 		.pm	= &stmp3xxx_rtc_pm_ops,
398 		.of_match_table = rtc_dt_ids,
399 	},
400 };
401 
402 module_platform_driver(stmp3xxx_rtcdrv);
403 
404 MODULE_DESCRIPTION("STMP3xxx RTC Driver");
405 MODULE_AUTHOR("dmitry pervushin <dpervushin@embeddedalley.com> and "
406 		"Wolfram Sang <w.sang@pengutronix.de>");
407 MODULE_LICENSE("GPL");
408