xref: /openbmc/linux/drivers/rtc/rtc-stm32.c (revision 74ce1896)
1 /*
2  * Copyright (C) Amelie Delaunay 2016
3  * Author:  Amelie Delaunay <amelie.delaunay@st.com>
4  * License terms:  GNU General Public License (GPL), version 2
5  */
6 
7 #include <linux/bcd.h>
8 #include <linux/clk.h>
9 #include <linux/iopoll.h>
10 #include <linux/ioport.h>
11 #include <linux/mfd/syscon.h>
12 #include <linux/module.h>
13 #include <linux/of_device.h>
14 #include <linux/regmap.h>
15 #include <linux/rtc.h>
16 
17 #define DRIVER_NAME "stm32_rtc"
18 
19 /* STM32 RTC registers */
20 #define STM32_RTC_TR		0x00
21 #define STM32_RTC_DR		0x04
22 #define STM32_RTC_CR		0x08
23 #define STM32_RTC_ISR		0x0C
24 #define STM32_RTC_PRER		0x10
25 #define STM32_RTC_ALRMAR	0x1C
26 #define STM32_RTC_WPR		0x24
27 
28 /* STM32_RTC_TR bit fields  */
29 #define STM32_RTC_TR_SEC_SHIFT		0
30 #define STM32_RTC_TR_SEC		GENMASK(6, 0)
31 #define STM32_RTC_TR_MIN_SHIFT		8
32 #define STM32_RTC_TR_MIN		GENMASK(14, 8)
33 #define STM32_RTC_TR_HOUR_SHIFT		16
34 #define STM32_RTC_TR_HOUR		GENMASK(21, 16)
35 
36 /* STM32_RTC_DR bit fields */
37 #define STM32_RTC_DR_DATE_SHIFT		0
38 #define STM32_RTC_DR_DATE		GENMASK(5, 0)
39 #define STM32_RTC_DR_MONTH_SHIFT	8
40 #define STM32_RTC_DR_MONTH		GENMASK(12, 8)
41 #define STM32_RTC_DR_WDAY_SHIFT		13
42 #define STM32_RTC_DR_WDAY		GENMASK(15, 13)
43 #define STM32_RTC_DR_YEAR_SHIFT		16
44 #define STM32_RTC_DR_YEAR		GENMASK(23, 16)
45 
46 /* STM32_RTC_CR bit fields */
47 #define STM32_RTC_CR_FMT		BIT(6)
48 #define STM32_RTC_CR_ALRAE		BIT(8)
49 #define STM32_RTC_CR_ALRAIE		BIT(12)
50 
51 /* STM32_RTC_ISR bit fields */
52 #define STM32_RTC_ISR_ALRAWF		BIT(0)
53 #define STM32_RTC_ISR_INITS		BIT(4)
54 #define STM32_RTC_ISR_RSF		BIT(5)
55 #define STM32_RTC_ISR_INITF		BIT(6)
56 #define STM32_RTC_ISR_INIT		BIT(7)
57 #define STM32_RTC_ISR_ALRAF		BIT(8)
58 
59 /* STM32_RTC_PRER bit fields */
60 #define STM32_RTC_PRER_PRED_S_SHIFT	0
61 #define STM32_RTC_PRER_PRED_S		GENMASK(14, 0)
62 #define STM32_RTC_PRER_PRED_A_SHIFT	16
63 #define STM32_RTC_PRER_PRED_A		GENMASK(22, 16)
64 
65 /* STM32_RTC_ALRMAR and STM32_RTC_ALRMBR bit fields */
66 #define STM32_RTC_ALRMXR_SEC_SHIFT	0
67 #define STM32_RTC_ALRMXR_SEC		GENMASK(6, 0)
68 #define STM32_RTC_ALRMXR_SEC_MASK	BIT(7)
69 #define STM32_RTC_ALRMXR_MIN_SHIFT	8
70 #define STM32_RTC_ALRMXR_MIN		GENMASK(14, 8)
71 #define STM32_RTC_ALRMXR_MIN_MASK	BIT(15)
72 #define STM32_RTC_ALRMXR_HOUR_SHIFT	16
73 #define STM32_RTC_ALRMXR_HOUR		GENMASK(21, 16)
74 #define STM32_RTC_ALRMXR_PM		BIT(22)
75 #define STM32_RTC_ALRMXR_HOUR_MASK	BIT(23)
76 #define STM32_RTC_ALRMXR_DATE_SHIFT	24
77 #define STM32_RTC_ALRMXR_DATE		GENMASK(29, 24)
78 #define STM32_RTC_ALRMXR_WDSEL		BIT(30)
79 #define STM32_RTC_ALRMXR_WDAY_SHIFT	24
80 #define STM32_RTC_ALRMXR_WDAY		GENMASK(27, 24)
81 #define STM32_RTC_ALRMXR_DATE_MASK	BIT(31)
82 
83 /* STM32_RTC_WPR key constants */
84 #define RTC_WPR_1ST_KEY			0xCA
85 #define RTC_WPR_2ND_KEY			0x53
86 #define RTC_WPR_WRONG_KEY		0xFF
87 
88 /*
89  * RTC registers are protected against parasitic write access.
90  * PWR_CR_DBP bit must be set to enable write access to RTC registers.
91  */
92 /* STM32_PWR_CR */
93 #define PWR_CR				0x00
94 /* STM32_PWR_CR bit field */
95 #define PWR_CR_DBP			BIT(8)
96 
97 struct stm32_rtc_data {
98 	bool has_pclk;
99 };
100 
101 struct stm32_rtc {
102 	struct rtc_device *rtc_dev;
103 	void __iomem *base;
104 	struct regmap *dbp;
105 	struct stm32_rtc_data *data;
106 	struct clk *pclk;
107 	struct clk *rtc_ck;
108 	int irq_alarm;
109 };
110 
111 static void stm32_rtc_wpr_unlock(struct stm32_rtc *rtc)
112 {
113 	writel_relaxed(RTC_WPR_1ST_KEY, rtc->base + STM32_RTC_WPR);
114 	writel_relaxed(RTC_WPR_2ND_KEY, rtc->base + STM32_RTC_WPR);
115 }
116 
117 static void stm32_rtc_wpr_lock(struct stm32_rtc *rtc)
118 {
119 	writel_relaxed(RTC_WPR_WRONG_KEY, rtc->base + STM32_RTC_WPR);
120 }
121 
122 static int stm32_rtc_enter_init_mode(struct stm32_rtc *rtc)
123 {
124 	unsigned int isr = readl_relaxed(rtc->base + STM32_RTC_ISR);
125 
126 	if (!(isr & STM32_RTC_ISR_INITF)) {
127 		isr |= STM32_RTC_ISR_INIT;
128 		writel_relaxed(isr, rtc->base + STM32_RTC_ISR);
129 
130 		/*
131 		 * It takes around 2 rtc_ck clock cycles to enter in
132 		 * initialization phase mode (and have INITF flag set). As
133 		 * slowest rtc_ck frequency may be 32kHz and highest should be
134 		 * 1MHz, we poll every 10 us with a timeout of 100ms.
135 		 */
136 		return readl_relaxed_poll_timeout_atomic(
137 					rtc->base + STM32_RTC_ISR,
138 					isr, (isr & STM32_RTC_ISR_INITF),
139 					10, 100000);
140 	}
141 
142 	return 0;
143 }
144 
145 static void stm32_rtc_exit_init_mode(struct stm32_rtc *rtc)
146 {
147 	unsigned int isr = readl_relaxed(rtc->base + STM32_RTC_ISR);
148 
149 	isr &= ~STM32_RTC_ISR_INIT;
150 	writel_relaxed(isr, rtc->base + STM32_RTC_ISR);
151 }
152 
153 static int stm32_rtc_wait_sync(struct stm32_rtc *rtc)
154 {
155 	unsigned int isr = readl_relaxed(rtc->base + STM32_RTC_ISR);
156 
157 	isr &= ~STM32_RTC_ISR_RSF;
158 	writel_relaxed(isr, rtc->base + STM32_RTC_ISR);
159 
160 	/*
161 	 * Wait for RSF to be set to ensure the calendar registers are
162 	 * synchronised, it takes around 2 rtc_ck clock cycles
163 	 */
164 	return readl_relaxed_poll_timeout_atomic(rtc->base + STM32_RTC_ISR,
165 						 isr,
166 						 (isr & STM32_RTC_ISR_RSF),
167 						 10, 100000);
168 }
169 
170 static irqreturn_t stm32_rtc_alarm_irq(int irq, void *dev_id)
171 {
172 	struct stm32_rtc *rtc = (struct stm32_rtc *)dev_id;
173 	unsigned int isr, cr;
174 
175 	mutex_lock(&rtc->rtc_dev->ops_lock);
176 
177 	isr = readl_relaxed(rtc->base + STM32_RTC_ISR);
178 	cr = readl_relaxed(rtc->base + STM32_RTC_CR);
179 
180 	if ((isr & STM32_RTC_ISR_ALRAF) &&
181 	    (cr & STM32_RTC_CR_ALRAIE)) {
182 		/* Alarm A flag - Alarm interrupt */
183 		dev_dbg(&rtc->rtc_dev->dev, "Alarm occurred\n");
184 
185 		/* Pass event to the kernel */
186 		rtc_update_irq(rtc->rtc_dev, 1, RTC_IRQF | RTC_AF);
187 
188 		/* Clear event flag, otherwise new events won't be received */
189 		writel_relaxed(isr & ~STM32_RTC_ISR_ALRAF,
190 			       rtc->base + STM32_RTC_ISR);
191 	}
192 
193 	mutex_unlock(&rtc->rtc_dev->ops_lock);
194 
195 	return IRQ_HANDLED;
196 }
197 
198 /* Convert rtc_time structure from bin to bcd format */
199 static void tm2bcd(struct rtc_time *tm)
200 {
201 	tm->tm_sec = bin2bcd(tm->tm_sec);
202 	tm->tm_min = bin2bcd(tm->tm_min);
203 	tm->tm_hour = bin2bcd(tm->tm_hour);
204 
205 	tm->tm_mday = bin2bcd(tm->tm_mday);
206 	tm->tm_mon = bin2bcd(tm->tm_mon + 1);
207 	tm->tm_year = bin2bcd(tm->tm_year - 100);
208 	/*
209 	 * Number of days since Sunday
210 	 * - on kernel side, 0=Sunday...6=Saturday
211 	 * - on rtc side, 0=invalid,1=Monday...7=Sunday
212 	 */
213 	tm->tm_wday = (!tm->tm_wday) ? 7 : tm->tm_wday;
214 }
215 
216 /* Convert rtc_time structure from bcd to bin format */
217 static void bcd2tm(struct rtc_time *tm)
218 {
219 	tm->tm_sec = bcd2bin(tm->tm_sec);
220 	tm->tm_min = bcd2bin(tm->tm_min);
221 	tm->tm_hour = bcd2bin(tm->tm_hour);
222 
223 	tm->tm_mday = bcd2bin(tm->tm_mday);
224 	tm->tm_mon = bcd2bin(tm->tm_mon) - 1;
225 	tm->tm_year = bcd2bin(tm->tm_year) + 100;
226 	/*
227 	 * Number of days since Sunday
228 	 * - on kernel side, 0=Sunday...6=Saturday
229 	 * - on rtc side, 0=invalid,1=Monday...7=Sunday
230 	 */
231 	tm->tm_wday %= 7;
232 }
233 
234 static int stm32_rtc_read_time(struct device *dev, struct rtc_time *tm)
235 {
236 	struct stm32_rtc *rtc = dev_get_drvdata(dev);
237 	unsigned int tr, dr;
238 
239 	/* Time and Date in BCD format */
240 	tr = readl_relaxed(rtc->base + STM32_RTC_TR);
241 	dr = readl_relaxed(rtc->base + STM32_RTC_DR);
242 
243 	tm->tm_sec = (tr & STM32_RTC_TR_SEC) >> STM32_RTC_TR_SEC_SHIFT;
244 	tm->tm_min = (tr & STM32_RTC_TR_MIN) >> STM32_RTC_TR_MIN_SHIFT;
245 	tm->tm_hour = (tr & STM32_RTC_TR_HOUR) >> STM32_RTC_TR_HOUR_SHIFT;
246 
247 	tm->tm_mday = (dr & STM32_RTC_DR_DATE) >> STM32_RTC_DR_DATE_SHIFT;
248 	tm->tm_mon = (dr & STM32_RTC_DR_MONTH) >> STM32_RTC_DR_MONTH_SHIFT;
249 	tm->tm_year = (dr & STM32_RTC_DR_YEAR) >> STM32_RTC_DR_YEAR_SHIFT;
250 	tm->tm_wday = (dr & STM32_RTC_DR_WDAY) >> STM32_RTC_DR_WDAY_SHIFT;
251 
252 	/* We don't report tm_yday and tm_isdst */
253 
254 	bcd2tm(tm);
255 
256 	return 0;
257 }
258 
259 static int stm32_rtc_set_time(struct device *dev, struct rtc_time *tm)
260 {
261 	struct stm32_rtc *rtc = dev_get_drvdata(dev);
262 	unsigned int tr, dr;
263 	int ret = 0;
264 
265 	tm2bcd(tm);
266 
267 	/* Time in BCD format */
268 	tr = ((tm->tm_sec << STM32_RTC_TR_SEC_SHIFT) & STM32_RTC_TR_SEC) |
269 	     ((tm->tm_min << STM32_RTC_TR_MIN_SHIFT) & STM32_RTC_TR_MIN) |
270 	     ((tm->tm_hour << STM32_RTC_TR_HOUR_SHIFT) & STM32_RTC_TR_HOUR);
271 
272 	/* Date in BCD format */
273 	dr = ((tm->tm_mday << STM32_RTC_DR_DATE_SHIFT) & STM32_RTC_DR_DATE) |
274 	     ((tm->tm_mon << STM32_RTC_DR_MONTH_SHIFT) & STM32_RTC_DR_MONTH) |
275 	     ((tm->tm_year << STM32_RTC_DR_YEAR_SHIFT) & STM32_RTC_DR_YEAR) |
276 	     ((tm->tm_wday << STM32_RTC_DR_WDAY_SHIFT) & STM32_RTC_DR_WDAY);
277 
278 	stm32_rtc_wpr_unlock(rtc);
279 
280 	ret = stm32_rtc_enter_init_mode(rtc);
281 	if (ret) {
282 		dev_err(dev, "Can't enter in init mode. Set time aborted.\n");
283 		goto end;
284 	}
285 
286 	writel_relaxed(tr, rtc->base + STM32_RTC_TR);
287 	writel_relaxed(dr, rtc->base + STM32_RTC_DR);
288 
289 	stm32_rtc_exit_init_mode(rtc);
290 
291 	ret = stm32_rtc_wait_sync(rtc);
292 end:
293 	stm32_rtc_wpr_lock(rtc);
294 
295 	return ret;
296 }
297 
298 static int stm32_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
299 {
300 	struct stm32_rtc *rtc = dev_get_drvdata(dev);
301 	struct rtc_time *tm = &alrm->time;
302 	unsigned int alrmar, cr, isr;
303 
304 	alrmar = readl_relaxed(rtc->base + STM32_RTC_ALRMAR);
305 	cr = readl_relaxed(rtc->base + STM32_RTC_CR);
306 	isr = readl_relaxed(rtc->base + STM32_RTC_ISR);
307 
308 	if (alrmar & STM32_RTC_ALRMXR_DATE_MASK) {
309 		/*
310 		 * Date/day doesn't matter in Alarm comparison so alarm
311 		 * triggers every day
312 		 */
313 		tm->tm_mday = -1;
314 		tm->tm_wday = -1;
315 	} else {
316 		if (alrmar & STM32_RTC_ALRMXR_WDSEL) {
317 			/* Alarm is set to a day of week */
318 			tm->tm_mday = -1;
319 			tm->tm_wday = (alrmar & STM32_RTC_ALRMXR_WDAY) >>
320 				      STM32_RTC_ALRMXR_WDAY_SHIFT;
321 			tm->tm_wday %= 7;
322 		} else {
323 			/* Alarm is set to a day of month */
324 			tm->tm_wday = -1;
325 			tm->tm_mday = (alrmar & STM32_RTC_ALRMXR_DATE) >>
326 				       STM32_RTC_ALRMXR_DATE_SHIFT;
327 		}
328 	}
329 
330 	if (alrmar & STM32_RTC_ALRMXR_HOUR_MASK) {
331 		/* Hours don't matter in Alarm comparison */
332 		tm->tm_hour = -1;
333 	} else {
334 		tm->tm_hour = (alrmar & STM32_RTC_ALRMXR_HOUR) >>
335 			       STM32_RTC_ALRMXR_HOUR_SHIFT;
336 		if (alrmar & STM32_RTC_ALRMXR_PM)
337 			tm->tm_hour += 12;
338 	}
339 
340 	if (alrmar & STM32_RTC_ALRMXR_MIN_MASK) {
341 		/* Minutes don't matter in Alarm comparison */
342 		tm->tm_min = -1;
343 	} else {
344 		tm->tm_min = (alrmar & STM32_RTC_ALRMXR_MIN) >>
345 			      STM32_RTC_ALRMXR_MIN_SHIFT;
346 	}
347 
348 	if (alrmar & STM32_RTC_ALRMXR_SEC_MASK) {
349 		/* Seconds don't matter in Alarm comparison */
350 		tm->tm_sec = -1;
351 	} else {
352 		tm->tm_sec = (alrmar & STM32_RTC_ALRMXR_SEC) >>
353 			      STM32_RTC_ALRMXR_SEC_SHIFT;
354 	}
355 
356 	bcd2tm(tm);
357 
358 	alrm->enabled = (cr & STM32_RTC_CR_ALRAE) ? 1 : 0;
359 	alrm->pending = (isr & STM32_RTC_ISR_ALRAF) ? 1 : 0;
360 
361 	return 0;
362 }
363 
364 static int stm32_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
365 {
366 	struct stm32_rtc *rtc = dev_get_drvdata(dev);
367 	unsigned int isr, cr;
368 
369 	cr = readl_relaxed(rtc->base + STM32_RTC_CR);
370 
371 	stm32_rtc_wpr_unlock(rtc);
372 
373 	/* We expose Alarm A to the kernel */
374 	if (enabled)
375 		cr |= (STM32_RTC_CR_ALRAIE | STM32_RTC_CR_ALRAE);
376 	else
377 		cr &= ~(STM32_RTC_CR_ALRAIE | STM32_RTC_CR_ALRAE);
378 	writel_relaxed(cr, rtc->base + STM32_RTC_CR);
379 
380 	/* Clear event flag, otherwise new events won't be received */
381 	isr = readl_relaxed(rtc->base + STM32_RTC_ISR);
382 	isr &= ~STM32_RTC_ISR_ALRAF;
383 	writel_relaxed(isr, rtc->base + STM32_RTC_ISR);
384 
385 	stm32_rtc_wpr_lock(rtc);
386 
387 	return 0;
388 }
389 
390 static int stm32_rtc_valid_alrm(struct stm32_rtc *rtc, struct rtc_time *tm)
391 {
392 	int cur_day, cur_mon, cur_year, cur_hour, cur_min, cur_sec;
393 	unsigned int dr = readl_relaxed(rtc->base + STM32_RTC_DR);
394 	unsigned int tr = readl_relaxed(rtc->base + STM32_RTC_TR);
395 
396 	cur_day = (dr & STM32_RTC_DR_DATE) >> STM32_RTC_DR_DATE_SHIFT;
397 	cur_mon = (dr & STM32_RTC_DR_MONTH) >> STM32_RTC_DR_MONTH_SHIFT;
398 	cur_year = (dr & STM32_RTC_DR_YEAR) >> STM32_RTC_DR_YEAR_SHIFT;
399 	cur_sec = (tr & STM32_RTC_TR_SEC) >> STM32_RTC_TR_SEC_SHIFT;
400 	cur_min = (tr & STM32_RTC_TR_MIN) >> STM32_RTC_TR_MIN_SHIFT;
401 	cur_hour = (tr & STM32_RTC_TR_HOUR) >> STM32_RTC_TR_HOUR_SHIFT;
402 
403 	/*
404 	 * Assuming current date is M-D-Y H:M:S.
405 	 * RTC alarm can't be set on a specific month and year.
406 	 * So the valid alarm range is:
407 	 *	M-D-Y H:M:S < alarm <= (M+1)-D-Y H:M:S
408 	 * with a specific case for December...
409 	 */
410 	if ((((tm->tm_year > cur_year) &&
411 	      (tm->tm_mon == 0x1) && (cur_mon == 0x12)) ||
412 	     ((tm->tm_year == cur_year) &&
413 	      (tm->tm_mon <= cur_mon + 1))) &&
414 	    ((tm->tm_mday > cur_day) ||
415 	     ((tm->tm_mday == cur_day) &&
416 	     ((tm->tm_hour > cur_hour) ||
417 	      ((tm->tm_hour == cur_hour) && (tm->tm_min > cur_min)) ||
418 	      ((tm->tm_hour == cur_hour) && (tm->tm_min == cur_min) &&
419 	       (tm->tm_sec >= cur_sec))))))
420 		return 0;
421 
422 	return -EINVAL;
423 }
424 
425 static int stm32_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
426 {
427 	struct stm32_rtc *rtc = dev_get_drvdata(dev);
428 	struct rtc_time *tm = &alrm->time;
429 	unsigned int cr, isr, alrmar;
430 	int ret = 0;
431 
432 	tm2bcd(tm);
433 
434 	/*
435 	 * RTC alarm can't be set on a specific date, unless this date is
436 	 * up to the same day of month next month.
437 	 */
438 	if (stm32_rtc_valid_alrm(rtc, tm) < 0) {
439 		dev_err(dev, "Alarm can be set only on upcoming month.\n");
440 		return -EINVAL;
441 	}
442 
443 	alrmar = 0;
444 	/* tm_year and tm_mon are not used because not supported by RTC */
445 	alrmar |= (tm->tm_mday << STM32_RTC_ALRMXR_DATE_SHIFT) &
446 		  STM32_RTC_ALRMXR_DATE;
447 	/* 24-hour format */
448 	alrmar &= ~STM32_RTC_ALRMXR_PM;
449 	alrmar |= (tm->tm_hour << STM32_RTC_ALRMXR_HOUR_SHIFT) &
450 		  STM32_RTC_ALRMXR_HOUR;
451 	alrmar |= (tm->tm_min << STM32_RTC_ALRMXR_MIN_SHIFT) &
452 		  STM32_RTC_ALRMXR_MIN;
453 	alrmar |= (tm->tm_sec << STM32_RTC_ALRMXR_SEC_SHIFT) &
454 		  STM32_RTC_ALRMXR_SEC;
455 
456 	stm32_rtc_wpr_unlock(rtc);
457 
458 	/* Disable Alarm */
459 	cr = readl_relaxed(rtc->base + STM32_RTC_CR);
460 	cr &= ~STM32_RTC_CR_ALRAE;
461 	writel_relaxed(cr, rtc->base + STM32_RTC_CR);
462 
463 	/*
464 	 * Poll Alarm write flag to be sure that Alarm update is allowed: it
465 	 * takes around 2 rtc_ck clock cycles
466 	 */
467 	ret = readl_relaxed_poll_timeout_atomic(rtc->base + STM32_RTC_ISR,
468 						isr,
469 						(isr & STM32_RTC_ISR_ALRAWF),
470 						10, 100000);
471 
472 	if (ret) {
473 		dev_err(dev, "Alarm update not allowed\n");
474 		goto end;
475 	}
476 
477 	/* Write to Alarm register */
478 	writel_relaxed(alrmar, rtc->base + STM32_RTC_ALRMAR);
479 
480 	if (alrm->enabled)
481 		stm32_rtc_alarm_irq_enable(dev, 1);
482 	else
483 		stm32_rtc_alarm_irq_enable(dev, 0);
484 
485 end:
486 	stm32_rtc_wpr_lock(rtc);
487 
488 	return ret;
489 }
490 
491 static const struct rtc_class_ops stm32_rtc_ops = {
492 	.read_time	= stm32_rtc_read_time,
493 	.set_time	= stm32_rtc_set_time,
494 	.read_alarm	= stm32_rtc_read_alarm,
495 	.set_alarm	= stm32_rtc_set_alarm,
496 	.alarm_irq_enable = stm32_rtc_alarm_irq_enable,
497 };
498 
499 static const struct stm32_rtc_data stm32_rtc_data = {
500 	.has_pclk = false,
501 };
502 
503 static const struct stm32_rtc_data stm32h7_rtc_data = {
504 	.has_pclk = true,
505 };
506 
507 static const struct of_device_id stm32_rtc_of_match[] = {
508 	{ .compatible = "st,stm32-rtc", .data = &stm32_rtc_data },
509 	{ .compatible = "st,stm32h7-rtc", .data = &stm32h7_rtc_data },
510 	{}
511 };
512 MODULE_DEVICE_TABLE(of, stm32_rtc_of_match);
513 
514 static int stm32_rtc_init(struct platform_device *pdev,
515 			  struct stm32_rtc *rtc)
516 {
517 	unsigned int prer, pred_a, pred_s, pred_a_max, pred_s_max, cr;
518 	unsigned int rate;
519 	int ret = 0;
520 
521 	rate = clk_get_rate(rtc->rtc_ck);
522 
523 	/* Find prediv_a and prediv_s to obtain the 1Hz calendar clock */
524 	pred_a_max = STM32_RTC_PRER_PRED_A >> STM32_RTC_PRER_PRED_A_SHIFT;
525 	pred_s_max = STM32_RTC_PRER_PRED_S >> STM32_RTC_PRER_PRED_S_SHIFT;
526 
527 	for (pred_a = pred_a_max; pred_a + 1 > 0; pred_a--) {
528 		pred_s = (rate / (pred_a + 1)) - 1;
529 
530 		if (((pred_s + 1) * (pred_a + 1)) == rate)
531 			break;
532 	}
533 
534 	/*
535 	 * Can't find a 1Hz, so give priority to RTC power consumption
536 	 * by choosing the higher possible value for prediv_a
537 	 */
538 	if ((pred_s > pred_s_max) || (pred_a > pred_a_max)) {
539 		pred_a = pred_a_max;
540 		pred_s = (rate / (pred_a + 1)) - 1;
541 
542 		dev_warn(&pdev->dev, "rtc_ck is %s\n",
543 			 (rate < ((pred_a + 1) * (pred_s + 1))) ?
544 			 "fast" : "slow");
545 	}
546 
547 	stm32_rtc_wpr_unlock(rtc);
548 
549 	ret = stm32_rtc_enter_init_mode(rtc);
550 	if (ret) {
551 		dev_err(&pdev->dev,
552 			"Can't enter in init mode. Prescaler config failed.\n");
553 		goto end;
554 	}
555 
556 	prer = (pred_s << STM32_RTC_PRER_PRED_S_SHIFT) & STM32_RTC_PRER_PRED_S;
557 	writel_relaxed(prer, rtc->base + STM32_RTC_PRER);
558 	prer |= (pred_a << STM32_RTC_PRER_PRED_A_SHIFT) & STM32_RTC_PRER_PRED_A;
559 	writel_relaxed(prer, rtc->base + STM32_RTC_PRER);
560 
561 	/* Force 24h time format */
562 	cr = readl_relaxed(rtc->base + STM32_RTC_CR);
563 	cr &= ~STM32_RTC_CR_FMT;
564 	writel_relaxed(cr, rtc->base + STM32_RTC_CR);
565 
566 	stm32_rtc_exit_init_mode(rtc);
567 
568 	ret = stm32_rtc_wait_sync(rtc);
569 end:
570 	stm32_rtc_wpr_lock(rtc);
571 
572 	return ret;
573 }
574 
575 static int stm32_rtc_probe(struct platform_device *pdev)
576 {
577 	struct stm32_rtc *rtc;
578 	struct resource *res;
579 	const struct of_device_id *match;
580 	int ret;
581 
582 	rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
583 	if (!rtc)
584 		return -ENOMEM;
585 
586 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
587 	rtc->base = devm_ioremap_resource(&pdev->dev, res);
588 	if (IS_ERR(rtc->base))
589 		return PTR_ERR(rtc->base);
590 
591 	rtc->dbp = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
592 						   "st,syscfg");
593 	if (IS_ERR(rtc->dbp)) {
594 		dev_err(&pdev->dev, "no st,syscfg\n");
595 		return PTR_ERR(rtc->dbp);
596 	}
597 
598 	match = of_match_device(stm32_rtc_of_match, &pdev->dev);
599 	rtc->data = (struct stm32_rtc_data *)match->data;
600 
601 	if (!rtc->data->has_pclk) {
602 		rtc->pclk = NULL;
603 		rtc->rtc_ck = devm_clk_get(&pdev->dev, NULL);
604 	} else {
605 		rtc->pclk = devm_clk_get(&pdev->dev, "pclk");
606 		if (IS_ERR(rtc->pclk)) {
607 			dev_err(&pdev->dev, "no pclk clock");
608 			return PTR_ERR(rtc->pclk);
609 		}
610 		rtc->rtc_ck = devm_clk_get(&pdev->dev, "rtc_ck");
611 	}
612 	if (IS_ERR(rtc->rtc_ck)) {
613 		dev_err(&pdev->dev, "no rtc_ck clock");
614 		return PTR_ERR(rtc->rtc_ck);
615 	}
616 
617 	if (rtc->data->has_pclk) {
618 		ret = clk_prepare_enable(rtc->pclk);
619 		if (ret)
620 			return ret;
621 	}
622 
623 	ret = clk_prepare_enable(rtc->rtc_ck);
624 	if (ret)
625 		goto err;
626 
627 	regmap_update_bits(rtc->dbp, PWR_CR, PWR_CR_DBP, PWR_CR_DBP);
628 
629 	/*
630 	 * After a system reset, RTC_ISR.INITS flag can be read to check if
631 	 * the calendar has been initalized or not. INITS flag is reset by a
632 	 * power-on reset (no vbat, no power-supply). It is not reset if
633 	 * rtc_ck parent clock has changed (so RTC prescalers need to be
634 	 * changed). That's why we cannot rely on this flag to know if RTC
635 	 * init has to be done.
636 	 */
637 	ret = stm32_rtc_init(pdev, rtc);
638 	if (ret)
639 		goto err;
640 
641 	rtc->irq_alarm = platform_get_irq(pdev, 0);
642 	if (rtc->irq_alarm <= 0) {
643 		dev_err(&pdev->dev, "no alarm irq\n");
644 		ret = rtc->irq_alarm;
645 		goto err;
646 	}
647 
648 	platform_set_drvdata(pdev, rtc);
649 
650 	ret = device_init_wakeup(&pdev->dev, true);
651 	if (ret)
652 		dev_warn(&pdev->dev,
653 			 "alarm won't be able to wake up the system");
654 
655 	rtc->rtc_dev = devm_rtc_device_register(&pdev->dev, pdev->name,
656 			&stm32_rtc_ops, THIS_MODULE);
657 	if (IS_ERR(rtc->rtc_dev)) {
658 		ret = PTR_ERR(rtc->rtc_dev);
659 		dev_err(&pdev->dev, "rtc device registration failed, err=%d\n",
660 			ret);
661 		goto err;
662 	}
663 
664 	/* Handle RTC alarm interrupts */
665 	ret = devm_request_threaded_irq(&pdev->dev, rtc->irq_alarm, NULL,
666 					stm32_rtc_alarm_irq,
667 					IRQF_TRIGGER_RISING | IRQF_ONESHOT,
668 					pdev->name, rtc);
669 	if (ret) {
670 		dev_err(&pdev->dev, "IRQ%d (alarm interrupt) already claimed\n",
671 			rtc->irq_alarm);
672 		goto err;
673 	}
674 
675 	/*
676 	 * If INITS flag is reset (calendar year field set to 0x00), calendar
677 	 * must be initialized
678 	 */
679 	if (!(readl_relaxed(rtc->base + STM32_RTC_ISR) & STM32_RTC_ISR_INITS))
680 		dev_warn(&pdev->dev, "Date/Time must be initialized\n");
681 
682 	return 0;
683 err:
684 	if (rtc->data->has_pclk)
685 		clk_disable_unprepare(rtc->pclk);
686 	clk_disable_unprepare(rtc->rtc_ck);
687 
688 	regmap_update_bits(rtc->dbp, PWR_CR, PWR_CR_DBP, 0);
689 
690 	device_init_wakeup(&pdev->dev, false);
691 
692 	return ret;
693 }
694 
695 static int stm32_rtc_remove(struct platform_device *pdev)
696 {
697 	struct stm32_rtc *rtc = platform_get_drvdata(pdev);
698 	unsigned int cr;
699 
700 	/* Disable interrupts */
701 	stm32_rtc_wpr_unlock(rtc);
702 	cr = readl_relaxed(rtc->base + STM32_RTC_CR);
703 	cr &= ~STM32_RTC_CR_ALRAIE;
704 	writel_relaxed(cr, rtc->base + STM32_RTC_CR);
705 	stm32_rtc_wpr_lock(rtc);
706 
707 	clk_disable_unprepare(rtc->rtc_ck);
708 	if (rtc->data->has_pclk)
709 		clk_disable_unprepare(rtc->pclk);
710 
711 	/* Enable backup domain write protection */
712 	regmap_update_bits(rtc->dbp, PWR_CR, PWR_CR_DBP, 0);
713 
714 	device_init_wakeup(&pdev->dev, false);
715 
716 	return 0;
717 }
718 
719 #ifdef CONFIG_PM_SLEEP
720 static int stm32_rtc_suspend(struct device *dev)
721 {
722 	struct stm32_rtc *rtc = dev_get_drvdata(dev);
723 
724 	if (rtc->data->has_pclk)
725 		clk_disable_unprepare(rtc->pclk);
726 
727 	if (device_may_wakeup(dev))
728 		return enable_irq_wake(rtc->irq_alarm);
729 
730 	return 0;
731 }
732 
733 static int stm32_rtc_resume(struct device *dev)
734 {
735 	struct stm32_rtc *rtc = dev_get_drvdata(dev);
736 	int ret = 0;
737 
738 	if (rtc->data->has_pclk) {
739 		ret = clk_prepare_enable(rtc->pclk);
740 		if (ret)
741 			return ret;
742 	}
743 
744 	ret = stm32_rtc_wait_sync(rtc);
745 	if (ret < 0)
746 		return ret;
747 
748 	if (device_may_wakeup(dev))
749 		return disable_irq_wake(rtc->irq_alarm);
750 
751 	return ret;
752 }
753 #endif
754 
755 static SIMPLE_DEV_PM_OPS(stm32_rtc_pm_ops,
756 			 stm32_rtc_suspend, stm32_rtc_resume);
757 
758 static struct platform_driver stm32_rtc_driver = {
759 	.probe		= stm32_rtc_probe,
760 	.remove		= stm32_rtc_remove,
761 	.driver		= {
762 		.name	= DRIVER_NAME,
763 		.pm	= &stm32_rtc_pm_ops,
764 		.of_match_table = stm32_rtc_of_match,
765 	},
766 };
767 
768 module_platform_driver(stm32_rtc_driver);
769 
770 MODULE_ALIAS("platform:" DRIVER_NAME);
771 MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
772 MODULE_DESCRIPTION("STMicroelectronics STM32 Real Time Clock driver");
773 MODULE_LICENSE("GPL v2");
774