xref: /openbmc/linux/drivers/rtc/rtc-stm32.c (revision 22cb47c1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) STMicroelectronics 2017
4  * Author:  Amelie Delaunay <amelie.delaunay@st.com>
5  */
6 
7 #include <linux/bcd.h>
8 #include <linux/clk.h>
9 #include <linux/iopoll.h>
10 #include <linux/ioport.h>
11 #include <linux/mfd/syscon.h>
12 #include <linux/module.h>
13 #include <linux/of_device.h>
14 #include <linux/regmap.h>
15 #include <linux/rtc.h>
16 
17 #define DRIVER_NAME "stm32_rtc"
18 
19 /* STM32 RTC registers */
20 #define STM32_RTC_TR		0x00
21 #define STM32_RTC_DR		0x04
22 #define STM32_RTC_CR		0x08
23 #define STM32_RTC_ISR		0x0C
24 #define STM32_RTC_PRER		0x10
25 #define STM32_RTC_ALRMAR	0x1C
26 #define STM32_RTC_WPR		0x24
27 
28 /* STM32_RTC_TR bit fields  */
29 #define STM32_RTC_TR_SEC_SHIFT		0
30 #define STM32_RTC_TR_SEC		GENMASK(6, 0)
31 #define STM32_RTC_TR_MIN_SHIFT		8
32 #define STM32_RTC_TR_MIN		GENMASK(14, 8)
33 #define STM32_RTC_TR_HOUR_SHIFT		16
34 #define STM32_RTC_TR_HOUR		GENMASK(21, 16)
35 
36 /* STM32_RTC_DR bit fields */
37 #define STM32_RTC_DR_DATE_SHIFT		0
38 #define STM32_RTC_DR_DATE		GENMASK(5, 0)
39 #define STM32_RTC_DR_MONTH_SHIFT	8
40 #define STM32_RTC_DR_MONTH		GENMASK(12, 8)
41 #define STM32_RTC_DR_WDAY_SHIFT		13
42 #define STM32_RTC_DR_WDAY		GENMASK(15, 13)
43 #define STM32_RTC_DR_YEAR_SHIFT		16
44 #define STM32_RTC_DR_YEAR		GENMASK(23, 16)
45 
46 /* STM32_RTC_CR bit fields */
47 #define STM32_RTC_CR_FMT		BIT(6)
48 #define STM32_RTC_CR_ALRAE		BIT(8)
49 #define STM32_RTC_CR_ALRAIE		BIT(12)
50 
51 /* STM32_RTC_ISR bit fields */
52 #define STM32_RTC_ISR_ALRAWF		BIT(0)
53 #define STM32_RTC_ISR_INITS		BIT(4)
54 #define STM32_RTC_ISR_RSF		BIT(5)
55 #define STM32_RTC_ISR_INITF		BIT(6)
56 #define STM32_RTC_ISR_INIT		BIT(7)
57 #define STM32_RTC_ISR_ALRAF		BIT(8)
58 
59 /* STM32_RTC_PRER bit fields */
60 #define STM32_RTC_PRER_PRED_S_SHIFT	0
61 #define STM32_RTC_PRER_PRED_S		GENMASK(14, 0)
62 #define STM32_RTC_PRER_PRED_A_SHIFT	16
63 #define STM32_RTC_PRER_PRED_A		GENMASK(22, 16)
64 
65 /* STM32_RTC_ALRMAR and STM32_RTC_ALRMBR bit fields */
66 #define STM32_RTC_ALRMXR_SEC_SHIFT	0
67 #define STM32_RTC_ALRMXR_SEC		GENMASK(6, 0)
68 #define STM32_RTC_ALRMXR_SEC_MASK	BIT(7)
69 #define STM32_RTC_ALRMXR_MIN_SHIFT	8
70 #define STM32_RTC_ALRMXR_MIN		GENMASK(14, 8)
71 #define STM32_RTC_ALRMXR_MIN_MASK	BIT(15)
72 #define STM32_RTC_ALRMXR_HOUR_SHIFT	16
73 #define STM32_RTC_ALRMXR_HOUR		GENMASK(21, 16)
74 #define STM32_RTC_ALRMXR_PM		BIT(22)
75 #define STM32_RTC_ALRMXR_HOUR_MASK	BIT(23)
76 #define STM32_RTC_ALRMXR_DATE_SHIFT	24
77 #define STM32_RTC_ALRMXR_DATE		GENMASK(29, 24)
78 #define STM32_RTC_ALRMXR_WDSEL		BIT(30)
79 #define STM32_RTC_ALRMXR_WDAY_SHIFT	24
80 #define STM32_RTC_ALRMXR_WDAY		GENMASK(27, 24)
81 #define STM32_RTC_ALRMXR_DATE_MASK	BIT(31)
82 
83 /* STM32_RTC_WPR key constants */
84 #define RTC_WPR_1ST_KEY			0xCA
85 #define RTC_WPR_2ND_KEY			0x53
86 #define RTC_WPR_WRONG_KEY		0xFF
87 
88 struct stm32_rtc_data {
89 	bool has_pclk;
90 	bool need_dbp;
91 };
92 
93 struct stm32_rtc {
94 	struct rtc_device *rtc_dev;
95 	void __iomem *base;
96 	struct regmap *dbp;
97 	unsigned int dbp_reg;
98 	unsigned int dbp_mask;
99 	struct stm32_rtc_data *data;
100 	struct clk *pclk;
101 	struct clk *rtc_ck;
102 	int irq_alarm;
103 };
104 
105 static void stm32_rtc_wpr_unlock(struct stm32_rtc *rtc)
106 {
107 	writel_relaxed(RTC_WPR_1ST_KEY, rtc->base + STM32_RTC_WPR);
108 	writel_relaxed(RTC_WPR_2ND_KEY, rtc->base + STM32_RTC_WPR);
109 }
110 
111 static void stm32_rtc_wpr_lock(struct stm32_rtc *rtc)
112 {
113 	writel_relaxed(RTC_WPR_WRONG_KEY, rtc->base + STM32_RTC_WPR);
114 }
115 
116 static int stm32_rtc_enter_init_mode(struct stm32_rtc *rtc)
117 {
118 	unsigned int isr = readl_relaxed(rtc->base + STM32_RTC_ISR);
119 
120 	if (!(isr & STM32_RTC_ISR_INITF)) {
121 		isr |= STM32_RTC_ISR_INIT;
122 		writel_relaxed(isr, rtc->base + STM32_RTC_ISR);
123 
124 		/*
125 		 * It takes around 2 rtc_ck clock cycles to enter in
126 		 * initialization phase mode (and have INITF flag set). As
127 		 * slowest rtc_ck frequency may be 32kHz and highest should be
128 		 * 1MHz, we poll every 10 us with a timeout of 100ms.
129 		 */
130 		return readl_relaxed_poll_timeout_atomic(
131 					rtc->base + STM32_RTC_ISR,
132 					isr, (isr & STM32_RTC_ISR_INITF),
133 					10, 100000);
134 	}
135 
136 	return 0;
137 }
138 
139 static void stm32_rtc_exit_init_mode(struct stm32_rtc *rtc)
140 {
141 	unsigned int isr = readl_relaxed(rtc->base + STM32_RTC_ISR);
142 
143 	isr &= ~STM32_RTC_ISR_INIT;
144 	writel_relaxed(isr, rtc->base + STM32_RTC_ISR);
145 }
146 
147 static int stm32_rtc_wait_sync(struct stm32_rtc *rtc)
148 {
149 	unsigned int isr = readl_relaxed(rtc->base + STM32_RTC_ISR);
150 
151 	isr &= ~STM32_RTC_ISR_RSF;
152 	writel_relaxed(isr, rtc->base + STM32_RTC_ISR);
153 
154 	/*
155 	 * Wait for RSF to be set to ensure the calendar registers are
156 	 * synchronised, it takes around 2 rtc_ck clock cycles
157 	 */
158 	return readl_relaxed_poll_timeout_atomic(rtc->base + STM32_RTC_ISR,
159 						 isr,
160 						 (isr & STM32_RTC_ISR_RSF),
161 						 10, 100000);
162 }
163 
164 static irqreturn_t stm32_rtc_alarm_irq(int irq, void *dev_id)
165 {
166 	struct stm32_rtc *rtc = (struct stm32_rtc *)dev_id;
167 	unsigned int isr, cr;
168 
169 	mutex_lock(&rtc->rtc_dev->ops_lock);
170 
171 	isr = readl_relaxed(rtc->base + STM32_RTC_ISR);
172 	cr = readl_relaxed(rtc->base + STM32_RTC_CR);
173 
174 	if ((isr & STM32_RTC_ISR_ALRAF) &&
175 	    (cr & STM32_RTC_CR_ALRAIE)) {
176 		/* Alarm A flag - Alarm interrupt */
177 		dev_dbg(&rtc->rtc_dev->dev, "Alarm occurred\n");
178 
179 		/* Pass event to the kernel */
180 		rtc_update_irq(rtc->rtc_dev, 1, RTC_IRQF | RTC_AF);
181 
182 		/* Clear event flag, otherwise new events won't be received */
183 		writel_relaxed(isr & ~STM32_RTC_ISR_ALRAF,
184 			       rtc->base + STM32_RTC_ISR);
185 	}
186 
187 	mutex_unlock(&rtc->rtc_dev->ops_lock);
188 
189 	return IRQ_HANDLED;
190 }
191 
192 /* Convert rtc_time structure from bin to bcd format */
193 static void tm2bcd(struct rtc_time *tm)
194 {
195 	tm->tm_sec = bin2bcd(tm->tm_sec);
196 	tm->tm_min = bin2bcd(tm->tm_min);
197 	tm->tm_hour = bin2bcd(tm->tm_hour);
198 
199 	tm->tm_mday = bin2bcd(tm->tm_mday);
200 	tm->tm_mon = bin2bcd(tm->tm_mon + 1);
201 	tm->tm_year = bin2bcd(tm->tm_year - 100);
202 	/*
203 	 * Number of days since Sunday
204 	 * - on kernel side, 0=Sunday...6=Saturday
205 	 * - on rtc side, 0=invalid,1=Monday...7=Sunday
206 	 */
207 	tm->tm_wday = (!tm->tm_wday) ? 7 : tm->tm_wday;
208 }
209 
210 /* Convert rtc_time structure from bcd to bin format */
211 static void bcd2tm(struct rtc_time *tm)
212 {
213 	tm->tm_sec = bcd2bin(tm->tm_sec);
214 	tm->tm_min = bcd2bin(tm->tm_min);
215 	tm->tm_hour = bcd2bin(tm->tm_hour);
216 
217 	tm->tm_mday = bcd2bin(tm->tm_mday);
218 	tm->tm_mon = bcd2bin(tm->tm_mon) - 1;
219 	tm->tm_year = bcd2bin(tm->tm_year) + 100;
220 	/*
221 	 * Number of days since Sunday
222 	 * - on kernel side, 0=Sunday...6=Saturday
223 	 * - on rtc side, 0=invalid,1=Monday...7=Sunday
224 	 */
225 	tm->tm_wday %= 7;
226 }
227 
228 static int stm32_rtc_read_time(struct device *dev, struct rtc_time *tm)
229 {
230 	struct stm32_rtc *rtc = dev_get_drvdata(dev);
231 	unsigned int tr, dr;
232 
233 	/* Time and Date in BCD format */
234 	tr = readl_relaxed(rtc->base + STM32_RTC_TR);
235 	dr = readl_relaxed(rtc->base + STM32_RTC_DR);
236 
237 	tm->tm_sec = (tr & STM32_RTC_TR_SEC) >> STM32_RTC_TR_SEC_SHIFT;
238 	tm->tm_min = (tr & STM32_RTC_TR_MIN) >> STM32_RTC_TR_MIN_SHIFT;
239 	tm->tm_hour = (tr & STM32_RTC_TR_HOUR) >> STM32_RTC_TR_HOUR_SHIFT;
240 
241 	tm->tm_mday = (dr & STM32_RTC_DR_DATE) >> STM32_RTC_DR_DATE_SHIFT;
242 	tm->tm_mon = (dr & STM32_RTC_DR_MONTH) >> STM32_RTC_DR_MONTH_SHIFT;
243 	tm->tm_year = (dr & STM32_RTC_DR_YEAR) >> STM32_RTC_DR_YEAR_SHIFT;
244 	tm->tm_wday = (dr & STM32_RTC_DR_WDAY) >> STM32_RTC_DR_WDAY_SHIFT;
245 
246 	/* We don't report tm_yday and tm_isdst */
247 
248 	bcd2tm(tm);
249 
250 	return 0;
251 }
252 
253 static int stm32_rtc_set_time(struct device *dev, struct rtc_time *tm)
254 {
255 	struct stm32_rtc *rtc = dev_get_drvdata(dev);
256 	unsigned int tr, dr;
257 	int ret = 0;
258 
259 	tm2bcd(tm);
260 
261 	/* Time in BCD format */
262 	tr = ((tm->tm_sec << STM32_RTC_TR_SEC_SHIFT) & STM32_RTC_TR_SEC) |
263 	     ((tm->tm_min << STM32_RTC_TR_MIN_SHIFT) & STM32_RTC_TR_MIN) |
264 	     ((tm->tm_hour << STM32_RTC_TR_HOUR_SHIFT) & STM32_RTC_TR_HOUR);
265 
266 	/* Date in BCD format */
267 	dr = ((tm->tm_mday << STM32_RTC_DR_DATE_SHIFT) & STM32_RTC_DR_DATE) |
268 	     ((tm->tm_mon << STM32_RTC_DR_MONTH_SHIFT) & STM32_RTC_DR_MONTH) |
269 	     ((tm->tm_year << STM32_RTC_DR_YEAR_SHIFT) & STM32_RTC_DR_YEAR) |
270 	     ((tm->tm_wday << STM32_RTC_DR_WDAY_SHIFT) & STM32_RTC_DR_WDAY);
271 
272 	stm32_rtc_wpr_unlock(rtc);
273 
274 	ret = stm32_rtc_enter_init_mode(rtc);
275 	if (ret) {
276 		dev_err(dev, "Can't enter in init mode. Set time aborted.\n");
277 		goto end;
278 	}
279 
280 	writel_relaxed(tr, rtc->base + STM32_RTC_TR);
281 	writel_relaxed(dr, rtc->base + STM32_RTC_DR);
282 
283 	stm32_rtc_exit_init_mode(rtc);
284 
285 	ret = stm32_rtc_wait_sync(rtc);
286 end:
287 	stm32_rtc_wpr_lock(rtc);
288 
289 	return ret;
290 }
291 
292 static int stm32_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
293 {
294 	struct stm32_rtc *rtc = dev_get_drvdata(dev);
295 	struct rtc_time *tm = &alrm->time;
296 	unsigned int alrmar, cr, isr;
297 
298 	alrmar = readl_relaxed(rtc->base + STM32_RTC_ALRMAR);
299 	cr = readl_relaxed(rtc->base + STM32_RTC_CR);
300 	isr = readl_relaxed(rtc->base + STM32_RTC_ISR);
301 
302 	if (alrmar & STM32_RTC_ALRMXR_DATE_MASK) {
303 		/*
304 		 * Date/day doesn't matter in Alarm comparison so alarm
305 		 * triggers every day
306 		 */
307 		tm->tm_mday = -1;
308 		tm->tm_wday = -1;
309 	} else {
310 		if (alrmar & STM32_RTC_ALRMXR_WDSEL) {
311 			/* Alarm is set to a day of week */
312 			tm->tm_mday = -1;
313 			tm->tm_wday = (alrmar & STM32_RTC_ALRMXR_WDAY) >>
314 				      STM32_RTC_ALRMXR_WDAY_SHIFT;
315 			tm->tm_wday %= 7;
316 		} else {
317 			/* Alarm is set to a day of month */
318 			tm->tm_wday = -1;
319 			tm->tm_mday = (alrmar & STM32_RTC_ALRMXR_DATE) >>
320 				       STM32_RTC_ALRMXR_DATE_SHIFT;
321 		}
322 	}
323 
324 	if (alrmar & STM32_RTC_ALRMXR_HOUR_MASK) {
325 		/* Hours don't matter in Alarm comparison */
326 		tm->tm_hour = -1;
327 	} else {
328 		tm->tm_hour = (alrmar & STM32_RTC_ALRMXR_HOUR) >>
329 			       STM32_RTC_ALRMXR_HOUR_SHIFT;
330 		if (alrmar & STM32_RTC_ALRMXR_PM)
331 			tm->tm_hour += 12;
332 	}
333 
334 	if (alrmar & STM32_RTC_ALRMXR_MIN_MASK) {
335 		/* Minutes don't matter in Alarm comparison */
336 		tm->tm_min = -1;
337 	} else {
338 		tm->tm_min = (alrmar & STM32_RTC_ALRMXR_MIN) >>
339 			      STM32_RTC_ALRMXR_MIN_SHIFT;
340 	}
341 
342 	if (alrmar & STM32_RTC_ALRMXR_SEC_MASK) {
343 		/* Seconds don't matter in Alarm comparison */
344 		tm->tm_sec = -1;
345 	} else {
346 		tm->tm_sec = (alrmar & STM32_RTC_ALRMXR_SEC) >>
347 			      STM32_RTC_ALRMXR_SEC_SHIFT;
348 	}
349 
350 	bcd2tm(tm);
351 
352 	alrm->enabled = (cr & STM32_RTC_CR_ALRAE) ? 1 : 0;
353 	alrm->pending = (isr & STM32_RTC_ISR_ALRAF) ? 1 : 0;
354 
355 	return 0;
356 }
357 
358 static int stm32_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
359 {
360 	struct stm32_rtc *rtc = dev_get_drvdata(dev);
361 	unsigned int isr, cr;
362 
363 	cr = readl_relaxed(rtc->base + STM32_RTC_CR);
364 
365 	stm32_rtc_wpr_unlock(rtc);
366 
367 	/* We expose Alarm A to the kernel */
368 	if (enabled)
369 		cr |= (STM32_RTC_CR_ALRAIE | STM32_RTC_CR_ALRAE);
370 	else
371 		cr &= ~(STM32_RTC_CR_ALRAIE | STM32_RTC_CR_ALRAE);
372 	writel_relaxed(cr, rtc->base + STM32_RTC_CR);
373 
374 	/* Clear event flag, otherwise new events won't be received */
375 	isr = readl_relaxed(rtc->base + STM32_RTC_ISR);
376 	isr &= ~STM32_RTC_ISR_ALRAF;
377 	writel_relaxed(isr, rtc->base + STM32_RTC_ISR);
378 
379 	stm32_rtc_wpr_lock(rtc);
380 
381 	return 0;
382 }
383 
384 static int stm32_rtc_valid_alrm(struct stm32_rtc *rtc, struct rtc_time *tm)
385 {
386 	int cur_day, cur_mon, cur_year, cur_hour, cur_min, cur_sec;
387 	unsigned int dr = readl_relaxed(rtc->base + STM32_RTC_DR);
388 	unsigned int tr = readl_relaxed(rtc->base + STM32_RTC_TR);
389 
390 	cur_day = (dr & STM32_RTC_DR_DATE) >> STM32_RTC_DR_DATE_SHIFT;
391 	cur_mon = (dr & STM32_RTC_DR_MONTH) >> STM32_RTC_DR_MONTH_SHIFT;
392 	cur_year = (dr & STM32_RTC_DR_YEAR) >> STM32_RTC_DR_YEAR_SHIFT;
393 	cur_sec = (tr & STM32_RTC_TR_SEC) >> STM32_RTC_TR_SEC_SHIFT;
394 	cur_min = (tr & STM32_RTC_TR_MIN) >> STM32_RTC_TR_MIN_SHIFT;
395 	cur_hour = (tr & STM32_RTC_TR_HOUR) >> STM32_RTC_TR_HOUR_SHIFT;
396 
397 	/*
398 	 * Assuming current date is M-D-Y H:M:S.
399 	 * RTC alarm can't be set on a specific month and year.
400 	 * So the valid alarm range is:
401 	 *	M-D-Y H:M:S < alarm <= (M+1)-D-Y H:M:S
402 	 * with a specific case for December...
403 	 */
404 	if ((((tm->tm_year > cur_year) &&
405 	      (tm->tm_mon == 0x1) && (cur_mon == 0x12)) ||
406 	     ((tm->tm_year == cur_year) &&
407 	      (tm->tm_mon <= cur_mon + 1))) &&
408 	    ((tm->tm_mday > cur_day) ||
409 	     ((tm->tm_mday == cur_day) &&
410 	     ((tm->tm_hour > cur_hour) ||
411 	      ((tm->tm_hour == cur_hour) && (tm->tm_min > cur_min)) ||
412 	      ((tm->tm_hour == cur_hour) && (tm->tm_min == cur_min) &&
413 	       (tm->tm_sec >= cur_sec))))))
414 		return 0;
415 
416 	return -EINVAL;
417 }
418 
419 static int stm32_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
420 {
421 	struct stm32_rtc *rtc = dev_get_drvdata(dev);
422 	struct rtc_time *tm = &alrm->time;
423 	unsigned int cr, isr, alrmar;
424 	int ret = 0;
425 
426 	tm2bcd(tm);
427 
428 	/*
429 	 * RTC alarm can't be set on a specific date, unless this date is
430 	 * up to the same day of month next month.
431 	 */
432 	if (stm32_rtc_valid_alrm(rtc, tm) < 0) {
433 		dev_err(dev, "Alarm can be set only on upcoming month.\n");
434 		return -EINVAL;
435 	}
436 
437 	alrmar = 0;
438 	/* tm_year and tm_mon are not used because not supported by RTC */
439 	alrmar |= (tm->tm_mday << STM32_RTC_ALRMXR_DATE_SHIFT) &
440 		  STM32_RTC_ALRMXR_DATE;
441 	/* 24-hour format */
442 	alrmar &= ~STM32_RTC_ALRMXR_PM;
443 	alrmar |= (tm->tm_hour << STM32_RTC_ALRMXR_HOUR_SHIFT) &
444 		  STM32_RTC_ALRMXR_HOUR;
445 	alrmar |= (tm->tm_min << STM32_RTC_ALRMXR_MIN_SHIFT) &
446 		  STM32_RTC_ALRMXR_MIN;
447 	alrmar |= (tm->tm_sec << STM32_RTC_ALRMXR_SEC_SHIFT) &
448 		  STM32_RTC_ALRMXR_SEC;
449 
450 	stm32_rtc_wpr_unlock(rtc);
451 
452 	/* Disable Alarm */
453 	cr = readl_relaxed(rtc->base + STM32_RTC_CR);
454 	cr &= ~STM32_RTC_CR_ALRAE;
455 	writel_relaxed(cr, rtc->base + STM32_RTC_CR);
456 
457 	/*
458 	 * Poll Alarm write flag to be sure that Alarm update is allowed: it
459 	 * takes around 2 rtc_ck clock cycles
460 	 */
461 	ret = readl_relaxed_poll_timeout_atomic(rtc->base + STM32_RTC_ISR,
462 						isr,
463 						(isr & STM32_RTC_ISR_ALRAWF),
464 						10, 100000);
465 
466 	if (ret) {
467 		dev_err(dev, "Alarm update not allowed\n");
468 		goto end;
469 	}
470 
471 	/* Write to Alarm register */
472 	writel_relaxed(alrmar, rtc->base + STM32_RTC_ALRMAR);
473 
474 	if (alrm->enabled)
475 		stm32_rtc_alarm_irq_enable(dev, 1);
476 	else
477 		stm32_rtc_alarm_irq_enable(dev, 0);
478 
479 end:
480 	stm32_rtc_wpr_lock(rtc);
481 
482 	return ret;
483 }
484 
485 static const struct rtc_class_ops stm32_rtc_ops = {
486 	.read_time	= stm32_rtc_read_time,
487 	.set_time	= stm32_rtc_set_time,
488 	.read_alarm	= stm32_rtc_read_alarm,
489 	.set_alarm	= stm32_rtc_set_alarm,
490 	.alarm_irq_enable = stm32_rtc_alarm_irq_enable,
491 };
492 
493 static const struct stm32_rtc_data stm32_rtc_data = {
494 	.has_pclk = false,
495 	.need_dbp = true,
496 };
497 
498 static const struct stm32_rtc_data stm32h7_rtc_data = {
499 	.has_pclk = true,
500 	.need_dbp = true,
501 };
502 
503 static const struct of_device_id stm32_rtc_of_match[] = {
504 	{ .compatible = "st,stm32-rtc", .data = &stm32_rtc_data },
505 	{ .compatible = "st,stm32h7-rtc", .data = &stm32h7_rtc_data },
506 	{}
507 };
508 MODULE_DEVICE_TABLE(of, stm32_rtc_of_match);
509 
510 static int stm32_rtc_init(struct platform_device *pdev,
511 			  struct stm32_rtc *rtc)
512 {
513 	unsigned int prer, pred_a, pred_s, pred_a_max, pred_s_max, cr;
514 	unsigned int rate;
515 	int ret = 0;
516 
517 	rate = clk_get_rate(rtc->rtc_ck);
518 
519 	/* Find prediv_a and prediv_s to obtain the 1Hz calendar clock */
520 	pred_a_max = STM32_RTC_PRER_PRED_A >> STM32_RTC_PRER_PRED_A_SHIFT;
521 	pred_s_max = STM32_RTC_PRER_PRED_S >> STM32_RTC_PRER_PRED_S_SHIFT;
522 
523 	for (pred_a = pred_a_max; pred_a + 1 > 0; pred_a--) {
524 		pred_s = (rate / (pred_a + 1)) - 1;
525 
526 		if (((pred_s + 1) * (pred_a + 1)) == rate)
527 			break;
528 	}
529 
530 	/*
531 	 * Can't find a 1Hz, so give priority to RTC power consumption
532 	 * by choosing the higher possible value for prediv_a
533 	 */
534 	if ((pred_s > pred_s_max) || (pred_a > pred_a_max)) {
535 		pred_a = pred_a_max;
536 		pred_s = (rate / (pred_a + 1)) - 1;
537 
538 		dev_warn(&pdev->dev, "rtc_ck is %s\n",
539 			 (rate < ((pred_a + 1) * (pred_s + 1))) ?
540 			 "fast" : "slow");
541 	}
542 
543 	stm32_rtc_wpr_unlock(rtc);
544 
545 	ret = stm32_rtc_enter_init_mode(rtc);
546 	if (ret) {
547 		dev_err(&pdev->dev,
548 			"Can't enter in init mode. Prescaler config failed.\n");
549 		goto end;
550 	}
551 
552 	prer = (pred_s << STM32_RTC_PRER_PRED_S_SHIFT) & STM32_RTC_PRER_PRED_S;
553 	writel_relaxed(prer, rtc->base + STM32_RTC_PRER);
554 	prer |= (pred_a << STM32_RTC_PRER_PRED_A_SHIFT) & STM32_RTC_PRER_PRED_A;
555 	writel_relaxed(prer, rtc->base + STM32_RTC_PRER);
556 
557 	/* Force 24h time format */
558 	cr = readl_relaxed(rtc->base + STM32_RTC_CR);
559 	cr &= ~STM32_RTC_CR_FMT;
560 	writel_relaxed(cr, rtc->base + STM32_RTC_CR);
561 
562 	stm32_rtc_exit_init_mode(rtc);
563 
564 	ret = stm32_rtc_wait_sync(rtc);
565 end:
566 	stm32_rtc_wpr_lock(rtc);
567 
568 	return ret;
569 }
570 
571 static int stm32_rtc_probe(struct platform_device *pdev)
572 {
573 	struct stm32_rtc *rtc;
574 	struct resource *res;
575 	int ret;
576 
577 	rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
578 	if (!rtc)
579 		return -ENOMEM;
580 
581 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
582 	rtc->base = devm_ioremap_resource(&pdev->dev, res);
583 	if (IS_ERR(rtc->base))
584 		return PTR_ERR(rtc->base);
585 
586 	rtc->data = (struct stm32_rtc_data *)
587 		    of_device_get_match_data(&pdev->dev);
588 
589 	if (rtc->data->need_dbp) {
590 		rtc->dbp = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
591 							   "st,syscfg");
592 		if (IS_ERR(rtc->dbp)) {
593 			dev_err(&pdev->dev, "no st,syscfg\n");
594 			return PTR_ERR(rtc->dbp);
595 		}
596 
597 		ret = of_property_read_u32_index(pdev->dev.of_node, "st,syscfg",
598 						 1, &rtc->dbp_reg);
599 		if (ret) {
600 			dev_err(&pdev->dev, "can't read DBP register offset\n");
601 			return ret;
602 		}
603 
604 		ret = of_property_read_u32_index(pdev->dev.of_node, "st,syscfg",
605 						 2, &rtc->dbp_mask);
606 		if (ret) {
607 			dev_err(&pdev->dev, "can't read DBP register mask\n");
608 			return ret;
609 		}
610 	}
611 
612 	if (!rtc->data->has_pclk) {
613 		rtc->pclk = NULL;
614 		rtc->rtc_ck = devm_clk_get(&pdev->dev, NULL);
615 	} else {
616 		rtc->pclk = devm_clk_get(&pdev->dev, "pclk");
617 		if (IS_ERR(rtc->pclk)) {
618 			dev_err(&pdev->dev, "no pclk clock");
619 			return PTR_ERR(rtc->pclk);
620 		}
621 		rtc->rtc_ck = devm_clk_get(&pdev->dev, "rtc_ck");
622 	}
623 	if (IS_ERR(rtc->rtc_ck)) {
624 		dev_err(&pdev->dev, "no rtc_ck clock");
625 		return PTR_ERR(rtc->rtc_ck);
626 	}
627 
628 	if (rtc->data->has_pclk) {
629 		ret = clk_prepare_enable(rtc->pclk);
630 		if (ret)
631 			return ret;
632 	}
633 
634 	ret = clk_prepare_enable(rtc->rtc_ck);
635 	if (ret)
636 		goto err;
637 
638 	if (rtc->data->need_dbp)
639 		regmap_update_bits(rtc->dbp, rtc->dbp_reg,
640 				   rtc->dbp_mask, rtc->dbp_mask);
641 
642 	/*
643 	 * After a system reset, RTC_ISR.INITS flag can be read to check if
644 	 * the calendar has been initalized or not. INITS flag is reset by a
645 	 * power-on reset (no vbat, no power-supply). It is not reset if
646 	 * rtc_ck parent clock has changed (so RTC prescalers need to be
647 	 * changed). That's why we cannot rely on this flag to know if RTC
648 	 * init has to be done.
649 	 */
650 	ret = stm32_rtc_init(pdev, rtc);
651 	if (ret)
652 		goto err;
653 
654 	rtc->irq_alarm = platform_get_irq(pdev, 0);
655 	if (rtc->irq_alarm <= 0) {
656 		dev_err(&pdev->dev, "no alarm irq\n");
657 		ret = rtc->irq_alarm;
658 		goto err;
659 	}
660 
661 	platform_set_drvdata(pdev, rtc);
662 
663 	ret = device_init_wakeup(&pdev->dev, true);
664 	if (ret)
665 		dev_warn(&pdev->dev,
666 			 "alarm won't be able to wake up the system");
667 
668 	rtc->rtc_dev = devm_rtc_device_register(&pdev->dev, pdev->name,
669 			&stm32_rtc_ops, THIS_MODULE);
670 	if (IS_ERR(rtc->rtc_dev)) {
671 		ret = PTR_ERR(rtc->rtc_dev);
672 		dev_err(&pdev->dev, "rtc device registration failed, err=%d\n",
673 			ret);
674 		goto err;
675 	}
676 
677 	/* Handle RTC alarm interrupts */
678 	ret = devm_request_threaded_irq(&pdev->dev, rtc->irq_alarm, NULL,
679 					stm32_rtc_alarm_irq, IRQF_ONESHOT,
680 					pdev->name, rtc);
681 	if (ret) {
682 		dev_err(&pdev->dev, "IRQ%d (alarm interrupt) already claimed\n",
683 			rtc->irq_alarm);
684 		goto err;
685 	}
686 
687 	/*
688 	 * If INITS flag is reset (calendar year field set to 0x00), calendar
689 	 * must be initialized
690 	 */
691 	if (!(readl_relaxed(rtc->base + STM32_RTC_ISR) & STM32_RTC_ISR_INITS))
692 		dev_warn(&pdev->dev, "Date/Time must be initialized\n");
693 
694 	return 0;
695 err:
696 	if (rtc->data->has_pclk)
697 		clk_disable_unprepare(rtc->pclk);
698 	clk_disable_unprepare(rtc->rtc_ck);
699 
700 	if (rtc->data->need_dbp)
701 		regmap_update_bits(rtc->dbp, rtc->dbp_reg, rtc->dbp_mask, 0);
702 
703 	device_init_wakeup(&pdev->dev, false);
704 
705 	return ret;
706 }
707 
708 static int stm32_rtc_remove(struct platform_device *pdev)
709 {
710 	struct stm32_rtc *rtc = platform_get_drvdata(pdev);
711 	unsigned int cr;
712 
713 	/* Disable interrupts */
714 	stm32_rtc_wpr_unlock(rtc);
715 	cr = readl_relaxed(rtc->base + STM32_RTC_CR);
716 	cr &= ~STM32_RTC_CR_ALRAIE;
717 	writel_relaxed(cr, rtc->base + STM32_RTC_CR);
718 	stm32_rtc_wpr_lock(rtc);
719 
720 	clk_disable_unprepare(rtc->rtc_ck);
721 	if (rtc->data->has_pclk)
722 		clk_disable_unprepare(rtc->pclk);
723 
724 	/* Enable backup domain write protection if needed */
725 	if (rtc->data->need_dbp)
726 		regmap_update_bits(rtc->dbp, rtc->dbp_reg, rtc->dbp_mask, 0);
727 
728 	device_init_wakeup(&pdev->dev, false);
729 
730 	return 0;
731 }
732 
733 #ifdef CONFIG_PM_SLEEP
734 static int stm32_rtc_suspend(struct device *dev)
735 {
736 	struct stm32_rtc *rtc = dev_get_drvdata(dev);
737 
738 	if (rtc->data->has_pclk)
739 		clk_disable_unprepare(rtc->pclk);
740 
741 	if (device_may_wakeup(dev))
742 		return enable_irq_wake(rtc->irq_alarm);
743 
744 	return 0;
745 }
746 
747 static int stm32_rtc_resume(struct device *dev)
748 {
749 	struct stm32_rtc *rtc = dev_get_drvdata(dev);
750 	int ret = 0;
751 
752 	if (rtc->data->has_pclk) {
753 		ret = clk_prepare_enable(rtc->pclk);
754 		if (ret)
755 			return ret;
756 	}
757 
758 	ret = stm32_rtc_wait_sync(rtc);
759 	if (ret < 0)
760 		return ret;
761 
762 	if (device_may_wakeup(dev))
763 		return disable_irq_wake(rtc->irq_alarm);
764 
765 	return ret;
766 }
767 #endif
768 
769 static SIMPLE_DEV_PM_OPS(stm32_rtc_pm_ops,
770 			 stm32_rtc_suspend, stm32_rtc_resume);
771 
772 static struct platform_driver stm32_rtc_driver = {
773 	.probe		= stm32_rtc_probe,
774 	.remove		= stm32_rtc_remove,
775 	.driver		= {
776 		.name	= DRIVER_NAME,
777 		.pm	= &stm32_rtc_pm_ops,
778 		.of_match_table = stm32_rtc_of_match,
779 	},
780 };
781 
782 module_platform_driver(stm32_rtc_driver);
783 
784 MODULE_ALIAS("platform:" DRIVER_NAME);
785 MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
786 MODULE_DESCRIPTION("STMicroelectronics STM32 Real Time Clock driver");
787 MODULE_LICENSE("GPL v2");
788