xref: /openbmc/linux/drivers/rtc/rtc-snvs.c (revision 12eb4683)
1 /*
2  * Copyright (C) 2011-2012 Freescale Semiconductor, Inc.
3  *
4  * The code contained herein is licensed under the GNU General Public
5  * License. You may obtain a copy of the GNU General Public License
6  * Version 2 or later at the following locations:
7  *
8  * http://www.opensource.org/licenses/gpl-license.html
9  * http://www.gnu.org/copyleft/gpl.html
10  */
11 
12 #include <linux/init.h>
13 #include <linux/io.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/of.h>
17 #include <linux/of_device.h>
18 #include <linux/platform_device.h>
19 #include <linux/rtc.h>
20 
21 /* These register offsets are relative to LP (Low Power) range */
22 #define SNVS_LPCR		0x04
23 #define SNVS_LPSR		0x18
24 #define SNVS_LPSRTCMR		0x1c
25 #define SNVS_LPSRTCLR		0x20
26 #define SNVS_LPTAR		0x24
27 #define SNVS_LPPGDR		0x30
28 
29 #define SNVS_LPCR_SRTC_ENV	(1 << 0)
30 #define SNVS_LPCR_LPTA_EN	(1 << 1)
31 #define SNVS_LPCR_LPWUI_EN	(1 << 3)
32 #define SNVS_LPSR_LPTA		(1 << 0)
33 
34 #define SNVS_LPPGDR_INIT	0x41736166
35 #define CNTR_TO_SECS_SH		15
36 
37 struct snvs_rtc_data {
38 	struct rtc_device *rtc;
39 	void __iomem *ioaddr;
40 	int irq;
41 	spinlock_t lock;
42 };
43 
44 static u32 rtc_read_lp_counter(void __iomem *ioaddr)
45 {
46 	u64 read1, read2;
47 
48 	do {
49 		read1 = readl(ioaddr + SNVS_LPSRTCMR);
50 		read1 <<= 32;
51 		read1 |= readl(ioaddr + SNVS_LPSRTCLR);
52 
53 		read2 = readl(ioaddr + SNVS_LPSRTCMR);
54 		read2 <<= 32;
55 		read2 |= readl(ioaddr + SNVS_LPSRTCLR);
56 	} while (read1 != read2);
57 
58 	/* Convert 47-bit counter to 32-bit raw second count */
59 	return (u32) (read1 >> CNTR_TO_SECS_SH);
60 }
61 
62 static void rtc_write_sync_lp(void __iomem *ioaddr)
63 {
64 	u32 count1, count2, count3;
65 	int i;
66 
67 	/* Wait for 3 CKIL cycles */
68 	for (i = 0; i < 3; i++) {
69 		do {
70 			count1 = readl(ioaddr + SNVS_LPSRTCLR);
71 			count2 = readl(ioaddr + SNVS_LPSRTCLR);
72 		} while (count1 != count2);
73 
74 		/* Now wait until counter value changes */
75 		do {
76 			do {
77 				count2 = readl(ioaddr + SNVS_LPSRTCLR);
78 				count3 = readl(ioaddr + SNVS_LPSRTCLR);
79 			} while (count2 != count3);
80 		} while (count3 == count1);
81 	}
82 }
83 
84 static int snvs_rtc_enable(struct snvs_rtc_data *data, bool enable)
85 {
86 	unsigned long flags;
87 	int timeout = 1000;
88 	u32 lpcr;
89 
90 	spin_lock_irqsave(&data->lock, flags);
91 
92 	lpcr = readl(data->ioaddr + SNVS_LPCR);
93 	if (enable)
94 		lpcr |= SNVS_LPCR_SRTC_ENV;
95 	else
96 		lpcr &= ~SNVS_LPCR_SRTC_ENV;
97 	writel(lpcr, data->ioaddr + SNVS_LPCR);
98 
99 	spin_unlock_irqrestore(&data->lock, flags);
100 
101 	while (--timeout) {
102 		lpcr = readl(data->ioaddr + SNVS_LPCR);
103 
104 		if (enable) {
105 			if (lpcr & SNVS_LPCR_SRTC_ENV)
106 				break;
107 		} else {
108 			if (!(lpcr & SNVS_LPCR_SRTC_ENV))
109 				break;
110 		}
111 	}
112 
113 	if (!timeout)
114 		return -ETIMEDOUT;
115 
116 	return 0;
117 }
118 
119 static int snvs_rtc_read_time(struct device *dev, struct rtc_time *tm)
120 {
121 	struct snvs_rtc_data *data = dev_get_drvdata(dev);
122 	unsigned long time = rtc_read_lp_counter(data->ioaddr);
123 
124 	rtc_time_to_tm(time, tm);
125 
126 	return 0;
127 }
128 
129 static int snvs_rtc_set_time(struct device *dev, struct rtc_time *tm)
130 {
131 	struct snvs_rtc_data *data = dev_get_drvdata(dev);
132 	unsigned long time;
133 
134 	rtc_tm_to_time(tm, &time);
135 
136 	/* Disable RTC first */
137 	snvs_rtc_enable(data, false);
138 
139 	/* Write 32-bit time to 47-bit timer, leaving 15 LSBs blank */
140 	writel(time << CNTR_TO_SECS_SH, data->ioaddr + SNVS_LPSRTCLR);
141 	writel(time >> (32 - CNTR_TO_SECS_SH), data->ioaddr + SNVS_LPSRTCMR);
142 
143 	/* Enable RTC again */
144 	snvs_rtc_enable(data, true);
145 
146 	return 0;
147 }
148 
149 static int snvs_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
150 {
151 	struct snvs_rtc_data *data = dev_get_drvdata(dev);
152 	u32 lptar, lpsr;
153 
154 	lptar = readl(data->ioaddr + SNVS_LPTAR);
155 	rtc_time_to_tm(lptar, &alrm->time);
156 
157 	lpsr = readl(data->ioaddr + SNVS_LPSR);
158 	alrm->pending = (lpsr & SNVS_LPSR_LPTA) ? 1 : 0;
159 
160 	return 0;
161 }
162 
163 static int snvs_rtc_alarm_irq_enable(struct device *dev, unsigned int enable)
164 {
165 	struct snvs_rtc_data *data = dev_get_drvdata(dev);
166 	u32 lpcr;
167 	unsigned long flags;
168 
169 	spin_lock_irqsave(&data->lock, flags);
170 
171 	lpcr = readl(data->ioaddr + SNVS_LPCR);
172 	if (enable)
173 		lpcr |= (SNVS_LPCR_LPTA_EN | SNVS_LPCR_LPWUI_EN);
174 	else
175 		lpcr &= ~(SNVS_LPCR_LPTA_EN | SNVS_LPCR_LPWUI_EN);
176 	writel(lpcr, data->ioaddr + SNVS_LPCR);
177 
178 	spin_unlock_irqrestore(&data->lock, flags);
179 
180 	rtc_write_sync_lp(data->ioaddr);
181 
182 	return 0;
183 }
184 
185 static int snvs_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
186 {
187 	struct snvs_rtc_data *data = dev_get_drvdata(dev);
188 	struct rtc_time *alrm_tm = &alrm->time;
189 	unsigned long time;
190 	unsigned long flags;
191 	u32 lpcr;
192 
193 	rtc_tm_to_time(alrm_tm, &time);
194 
195 	spin_lock_irqsave(&data->lock, flags);
196 
197 	/* Have to clear LPTA_EN before programming new alarm time in LPTAR */
198 	lpcr = readl(data->ioaddr + SNVS_LPCR);
199 	lpcr &= ~SNVS_LPCR_LPTA_EN;
200 	writel(lpcr, data->ioaddr + SNVS_LPCR);
201 
202 	spin_unlock_irqrestore(&data->lock, flags);
203 
204 	writel(time, data->ioaddr + SNVS_LPTAR);
205 
206 	/* Clear alarm interrupt status bit */
207 	writel(SNVS_LPSR_LPTA, data->ioaddr + SNVS_LPSR);
208 
209 	return snvs_rtc_alarm_irq_enable(dev, alrm->enabled);
210 }
211 
212 static const struct rtc_class_ops snvs_rtc_ops = {
213 	.read_time = snvs_rtc_read_time,
214 	.set_time = snvs_rtc_set_time,
215 	.read_alarm = snvs_rtc_read_alarm,
216 	.set_alarm = snvs_rtc_set_alarm,
217 	.alarm_irq_enable = snvs_rtc_alarm_irq_enable,
218 };
219 
220 static irqreturn_t snvs_rtc_irq_handler(int irq, void *dev_id)
221 {
222 	struct device *dev = dev_id;
223 	struct snvs_rtc_data *data = dev_get_drvdata(dev);
224 	u32 lpsr;
225 	u32 events = 0;
226 
227 	lpsr = readl(data->ioaddr + SNVS_LPSR);
228 
229 	if (lpsr & SNVS_LPSR_LPTA) {
230 		events |= (RTC_AF | RTC_IRQF);
231 
232 		/* RTC alarm should be one-shot */
233 		snvs_rtc_alarm_irq_enable(dev, 0);
234 
235 		rtc_update_irq(data->rtc, 1, events);
236 	}
237 
238 	/* clear interrupt status */
239 	writel(lpsr, data->ioaddr + SNVS_LPSR);
240 
241 	return events ? IRQ_HANDLED : IRQ_NONE;
242 }
243 
244 static int snvs_rtc_probe(struct platform_device *pdev)
245 {
246 	struct snvs_rtc_data *data;
247 	struct resource *res;
248 	int ret;
249 
250 	data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
251 	if (!data)
252 		return -ENOMEM;
253 
254 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
255 	data->ioaddr = devm_ioremap_resource(&pdev->dev, res);
256 	if (IS_ERR(data->ioaddr))
257 		return PTR_ERR(data->ioaddr);
258 
259 	data->irq = platform_get_irq(pdev, 0);
260 	if (data->irq < 0)
261 		return data->irq;
262 
263 	platform_set_drvdata(pdev, data);
264 
265 	spin_lock_init(&data->lock);
266 
267 	/* Initialize glitch detect */
268 	writel(SNVS_LPPGDR_INIT, data->ioaddr + SNVS_LPPGDR);
269 
270 	/* Clear interrupt status */
271 	writel(0xffffffff, data->ioaddr + SNVS_LPSR);
272 
273 	/* Enable RTC */
274 	snvs_rtc_enable(data, true);
275 
276 	device_init_wakeup(&pdev->dev, true);
277 
278 	ret = devm_request_irq(&pdev->dev, data->irq, snvs_rtc_irq_handler,
279 			       IRQF_SHARED, "rtc alarm", &pdev->dev);
280 	if (ret) {
281 		dev_err(&pdev->dev, "failed to request irq %d: %d\n",
282 			data->irq, ret);
283 		return ret;
284 	}
285 
286 	data->rtc = devm_rtc_device_register(&pdev->dev, pdev->name,
287 					&snvs_rtc_ops, THIS_MODULE);
288 	if (IS_ERR(data->rtc)) {
289 		ret = PTR_ERR(data->rtc);
290 		dev_err(&pdev->dev, "failed to register rtc: %d\n", ret);
291 		return ret;
292 	}
293 
294 	return 0;
295 }
296 
297 #ifdef CONFIG_PM_SLEEP
298 static int snvs_rtc_suspend(struct device *dev)
299 {
300 	struct snvs_rtc_data *data = dev_get_drvdata(dev);
301 
302 	if (device_may_wakeup(dev))
303 		enable_irq_wake(data->irq);
304 
305 	return 0;
306 }
307 
308 static int snvs_rtc_resume(struct device *dev)
309 {
310 	struct snvs_rtc_data *data = dev_get_drvdata(dev);
311 
312 	if (device_may_wakeup(dev))
313 		disable_irq_wake(data->irq);
314 
315 	return 0;
316 }
317 #endif
318 
319 static SIMPLE_DEV_PM_OPS(snvs_rtc_pm_ops, snvs_rtc_suspend, snvs_rtc_resume);
320 
321 static const struct of_device_id snvs_dt_ids[] = {
322 	{ .compatible = "fsl,sec-v4.0-mon-rtc-lp", },
323 	{ /* sentinel */ }
324 };
325 MODULE_DEVICE_TABLE(of, snvs_dt_ids);
326 
327 static struct platform_driver snvs_rtc_driver = {
328 	.driver = {
329 		.name	= "snvs_rtc",
330 		.owner	= THIS_MODULE,
331 		.pm	= &snvs_rtc_pm_ops,
332 		.of_match_table = snvs_dt_ids,
333 	},
334 	.probe		= snvs_rtc_probe,
335 };
336 module_platform_driver(snvs_rtc_driver);
337 
338 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
339 MODULE_DESCRIPTION("Freescale SNVS RTC Driver");
340 MODULE_LICENSE("GPL");
341