1 /* 2 * SuperH On-Chip RTC Support 3 * 4 * Copyright (C) 2006, 2007, 2008 Paul Mundt 5 * Copyright (C) 2006 Jamie Lenehan 6 * Copyright (C) 2008 Angelo Castello 7 * 8 * Based on the old arch/sh/kernel/cpu/rtc.c by: 9 * 10 * Copyright (C) 2000 Philipp Rumpf <prumpf@tux.org> 11 * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka 12 * 13 * This file is subject to the terms and conditions of the GNU General Public 14 * License. See the file "COPYING" in the main directory of this archive 15 * for more details. 16 */ 17 #include <linux/module.h> 18 #include <linux/kernel.h> 19 #include <linux/bcd.h> 20 #include <linux/rtc.h> 21 #include <linux/init.h> 22 #include <linux/platform_device.h> 23 #include <linux/seq_file.h> 24 #include <linux/interrupt.h> 25 #include <linux/spinlock.h> 26 #include <linux/io.h> 27 #include <linux/log2.h> 28 #include <asm/rtc.h> 29 30 #define DRV_NAME "sh-rtc" 31 #define DRV_VERSION "0.2.1" 32 33 #define RTC_REG(r) ((r) * rtc_reg_size) 34 35 #define R64CNT RTC_REG(0) 36 37 #define RSECCNT RTC_REG(1) /* RTC sec */ 38 #define RMINCNT RTC_REG(2) /* RTC min */ 39 #define RHRCNT RTC_REG(3) /* RTC hour */ 40 #define RWKCNT RTC_REG(4) /* RTC week */ 41 #define RDAYCNT RTC_REG(5) /* RTC day */ 42 #define RMONCNT RTC_REG(6) /* RTC month */ 43 #define RYRCNT RTC_REG(7) /* RTC year */ 44 #define RSECAR RTC_REG(8) /* ALARM sec */ 45 #define RMINAR RTC_REG(9) /* ALARM min */ 46 #define RHRAR RTC_REG(10) /* ALARM hour */ 47 #define RWKAR RTC_REG(11) /* ALARM week */ 48 #define RDAYAR RTC_REG(12) /* ALARM day */ 49 #define RMONAR RTC_REG(13) /* ALARM month */ 50 #define RCR1 RTC_REG(14) /* Control */ 51 #define RCR2 RTC_REG(15) /* Control */ 52 53 /* 54 * Note on RYRAR and RCR3: Up until this point most of the register 55 * definitions are consistent across all of the available parts. However, 56 * the placement of the optional RYRAR and RCR3 (the RYRAR control 57 * register used to control RYRCNT/RYRAR compare) varies considerably 58 * across various parts, occasionally being mapped in to a completely 59 * unrelated address space. For proper RYRAR support a separate resource 60 * would have to be handed off, but as this is purely optional in 61 * practice, we simply opt not to support it, thereby keeping the code 62 * quite a bit more simplified. 63 */ 64 65 /* ALARM Bits - or with BCD encoded value */ 66 #define AR_ENB 0x80 /* Enable for alarm cmp */ 67 68 /* Period Bits */ 69 #define PF_HP 0x100 /* Enable Half Period to support 8,32,128Hz */ 70 #define PF_COUNT 0x200 /* Half periodic counter */ 71 #define PF_OXS 0x400 /* Periodic One x Second */ 72 #define PF_KOU 0x800 /* Kernel or User periodic request 1=kernel */ 73 #define PF_MASK 0xf00 74 75 /* RCR1 Bits */ 76 #define RCR1_CF 0x80 /* Carry Flag */ 77 #define RCR1_CIE 0x10 /* Carry Interrupt Enable */ 78 #define RCR1_AIE 0x08 /* Alarm Interrupt Enable */ 79 #define RCR1_AF 0x01 /* Alarm Flag */ 80 81 /* RCR2 Bits */ 82 #define RCR2_PEF 0x80 /* PEriodic interrupt Flag */ 83 #define RCR2_PESMASK 0x70 /* Periodic interrupt Set */ 84 #define RCR2_RTCEN 0x08 /* ENable RTC */ 85 #define RCR2_ADJ 0x04 /* ADJustment (30-second) */ 86 #define RCR2_RESET 0x02 /* Reset bit */ 87 #define RCR2_START 0x01 /* Start bit */ 88 89 struct sh_rtc { 90 void __iomem *regbase; 91 unsigned long regsize; 92 struct resource *res; 93 int alarm_irq; 94 int periodic_irq; 95 int carry_irq; 96 struct rtc_device *rtc_dev; 97 spinlock_t lock; 98 unsigned long capabilities; /* See asm-sh/rtc.h for cap bits */ 99 unsigned short periodic_freq; 100 }; 101 102 static int __sh_rtc_interrupt(struct sh_rtc *rtc) 103 { 104 unsigned int tmp, pending; 105 106 tmp = readb(rtc->regbase + RCR1); 107 pending = tmp & RCR1_CF; 108 tmp &= ~RCR1_CF; 109 writeb(tmp, rtc->regbase + RCR1); 110 111 /* Users have requested One x Second IRQ */ 112 if (pending && rtc->periodic_freq & PF_OXS) 113 rtc_update_irq(rtc->rtc_dev, 1, RTC_UF | RTC_IRQF); 114 115 return pending; 116 } 117 118 static int __sh_rtc_alarm(struct sh_rtc *rtc) 119 { 120 unsigned int tmp, pending; 121 122 tmp = readb(rtc->regbase + RCR1); 123 pending = tmp & RCR1_AF; 124 tmp &= ~(RCR1_AF | RCR1_AIE); 125 writeb(tmp, rtc->regbase + RCR1); 126 127 if (pending) 128 rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF); 129 130 return pending; 131 } 132 133 static int __sh_rtc_periodic(struct sh_rtc *rtc) 134 { 135 struct rtc_device *rtc_dev = rtc->rtc_dev; 136 struct rtc_task *irq_task; 137 unsigned int tmp, pending; 138 139 tmp = readb(rtc->regbase + RCR2); 140 pending = tmp & RCR2_PEF; 141 tmp &= ~RCR2_PEF; 142 writeb(tmp, rtc->regbase + RCR2); 143 144 if (!pending) 145 return 0; 146 147 /* Half period enabled than one skipped and the next notified */ 148 if ((rtc->periodic_freq & PF_HP) && (rtc->periodic_freq & PF_COUNT)) 149 rtc->periodic_freq &= ~PF_COUNT; 150 else { 151 if (rtc->periodic_freq & PF_HP) 152 rtc->periodic_freq |= PF_COUNT; 153 if (rtc->periodic_freq & PF_KOU) { 154 spin_lock(&rtc_dev->irq_task_lock); 155 irq_task = rtc_dev->irq_task; 156 if (irq_task) 157 irq_task->func(irq_task->private_data); 158 spin_unlock(&rtc_dev->irq_task_lock); 159 } else 160 rtc_update_irq(rtc->rtc_dev, 1, RTC_PF | RTC_IRQF); 161 } 162 163 return pending; 164 } 165 166 static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id) 167 { 168 struct sh_rtc *rtc = dev_id; 169 int ret; 170 171 spin_lock(&rtc->lock); 172 ret = __sh_rtc_interrupt(rtc); 173 spin_unlock(&rtc->lock); 174 175 return IRQ_RETVAL(ret); 176 } 177 178 static irqreturn_t sh_rtc_alarm(int irq, void *dev_id) 179 { 180 struct sh_rtc *rtc = dev_id; 181 int ret; 182 183 spin_lock(&rtc->lock); 184 ret = __sh_rtc_alarm(rtc); 185 spin_unlock(&rtc->lock); 186 187 return IRQ_RETVAL(ret); 188 } 189 190 static irqreturn_t sh_rtc_periodic(int irq, void *dev_id) 191 { 192 struct sh_rtc *rtc = dev_id; 193 int ret; 194 195 spin_lock(&rtc->lock); 196 ret = __sh_rtc_periodic(rtc); 197 spin_unlock(&rtc->lock); 198 199 return IRQ_RETVAL(ret); 200 } 201 202 static irqreturn_t sh_rtc_shared(int irq, void *dev_id) 203 { 204 struct sh_rtc *rtc = dev_id; 205 int ret; 206 207 spin_lock(&rtc->lock); 208 ret = __sh_rtc_interrupt(rtc); 209 ret |= __sh_rtc_alarm(rtc); 210 ret |= __sh_rtc_periodic(rtc); 211 spin_unlock(&rtc->lock); 212 213 return IRQ_RETVAL(ret); 214 } 215 216 static inline void sh_rtc_setpie(struct device *dev, unsigned int enable) 217 { 218 struct sh_rtc *rtc = dev_get_drvdata(dev); 219 unsigned int tmp; 220 221 spin_lock_irq(&rtc->lock); 222 223 tmp = readb(rtc->regbase + RCR2); 224 225 if (enable) { 226 tmp &= ~RCR2_PEF; /* Clear PES bit */ 227 tmp |= (rtc->periodic_freq & ~PF_HP); /* Set PES2-0 */ 228 } else 229 tmp &= ~(RCR2_PESMASK | RCR2_PEF); 230 231 writeb(tmp, rtc->regbase + RCR2); 232 233 spin_unlock_irq(&rtc->lock); 234 } 235 236 static inline int sh_rtc_setfreq(struct device *dev, unsigned int freq) 237 { 238 struct sh_rtc *rtc = dev_get_drvdata(dev); 239 int tmp, ret = 0; 240 241 spin_lock_irq(&rtc->lock); 242 tmp = rtc->periodic_freq & PF_MASK; 243 244 switch (freq) { 245 case 0: 246 rtc->periodic_freq = 0x00; 247 break; 248 case 1: 249 rtc->periodic_freq = 0x60; 250 break; 251 case 2: 252 rtc->periodic_freq = 0x50; 253 break; 254 case 4: 255 rtc->periodic_freq = 0x40; 256 break; 257 case 8: 258 rtc->periodic_freq = 0x30 | PF_HP; 259 break; 260 case 16: 261 rtc->periodic_freq = 0x30; 262 break; 263 case 32: 264 rtc->periodic_freq = 0x20 | PF_HP; 265 break; 266 case 64: 267 rtc->periodic_freq = 0x20; 268 break; 269 case 128: 270 rtc->periodic_freq = 0x10 | PF_HP; 271 break; 272 case 256: 273 rtc->periodic_freq = 0x10; 274 break; 275 default: 276 ret = -ENOTSUPP; 277 } 278 279 if (ret == 0) { 280 rtc->periodic_freq |= tmp; 281 rtc->rtc_dev->irq_freq = freq; 282 } 283 284 spin_unlock_irq(&rtc->lock); 285 return ret; 286 } 287 288 static inline void sh_rtc_setaie(struct device *dev, unsigned int enable) 289 { 290 struct sh_rtc *rtc = dev_get_drvdata(dev); 291 unsigned int tmp; 292 293 spin_lock_irq(&rtc->lock); 294 295 tmp = readb(rtc->regbase + RCR1); 296 297 if (!enable) 298 tmp &= ~RCR1_AIE; 299 else 300 tmp |= RCR1_AIE; 301 302 writeb(tmp, rtc->regbase + RCR1); 303 304 spin_unlock_irq(&rtc->lock); 305 } 306 307 static int sh_rtc_proc(struct device *dev, struct seq_file *seq) 308 { 309 struct sh_rtc *rtc = dev_get_drvdata(dev); 310 unsigned int tmp; 311 312 tmp = readb(rtc->regbase + RCR1); 313 seq_printf(seq, "carry_IRQ\t: %s\n", (tmp & RCR1_CIE) ? "yes" : "no"); 314 315 tmp = readb(rtc->regbase + RCR2); 316 seq_printf(seq, "periodic_IRQ\t: %s\n", 317 (tmp & RCR2_PESMASK) ? "yes" : "no"); 318 319 return 0; 320 } 321 322 static inline void sh_rtc_setcie(struct device *dev, unsigned int enable) 323 { 324 struct sh_rtc *rtc = dev_get_drvdata(dev); 325 unsigned int tmp; 326 327 spin_lock_irq(&rtc->lock); 328 329 tmp = readb(rtc->regbase + RCR1); 330 331 if (!enable) 332 tmp &= ~RCR1_CIE; 333 else 334 tmp |= RCR1_CIE; 335 336 writeb(tmp, rtc->regbase + RCR1); 337 338 spin_unlock_irq(&rtc->lock); 339 } 340 341 static int sh_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg) 342 { 343 struct sh_rtc *rtc = dev_get_drvdata(dev); 344 unsigned int ret = 0; 345 346 switch (cmd) { 347 case RTC_PIE_OFF: 348 case RTC_PIE_ON: 349 sh_rtc_setpie(dev, cmd == RTC_PIE_ON); 350 break; 351 case RTC_AIE_OFF: 352 case RTC_AIE_ON: 353 sh_rtc_setaie(dev, cmd == RTC_AIE_ON); 354 break; 355 case RTC_UIE_OFF: 356 rtc->periodic_freq &= ~PF_OXS; 357 sh_rtc_setcie(dev, 0); 358 break; 359 case RTC_UIE_ON: 360 rtc->periodic_freq |= PF_OXS; 361 sh_rtc_setcie(dev, 1); 362 break; 363 case RTC_IRQP_READ: 364 ret = put_user(rtc->rtc_dev->irq_freq, 365 (unsigned long __user *)arg); 366 break; 367 case RTC_IRQP_SET: 368 ret = sh_rtc_setfreq(dev, arg); 369 break; 370 default: 371 ret = -ENOIOCTLCMD; 372 } 373 374 return ret; 375 } 376 377 static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm) 378 { 379 struct platform_device *pdev = to_platform_device(dev); 380 struct sh_rtc *rtc = platform_get_drvdata(pdev); 381 unsigned int sec128, sec2, yr, yr100, cf_bit; 382 383 do { 384 unsigned int tmp; 385 386 spin_lock_irq(&rtc->lock); 387 388 tmp = readb(rtc->regbase + RCR1); 389 tmp &= ~RCR1_CF; /* Clear CF-bit */ 390 tmp |= RCR1_CIE; 391 writeb(tmp, rtc->regbase + RCR1); 392 393 sec128 = readb(rtc->regbase + R64CNT); 394 395 tm->tm_sec = bcd2bin(readb(rtc->regbase + RSECCNT)); 396 tm->tm_min = bcd2bin(readb(rtc->regbase + RMINCNT)); 397 tm->tm_hour = bcd2bin(readb(rtc->regbase + RHRCNT)); 398 tm->tm_wday = bcd2bin(readb(rtc->regbase + RWKCNT)); 399 tm->tm_mday = bcd2bin(readb(rtc->regbase + RDAYCNT)); 400 tm->tm_mon = bcd2bin(readb(rtc->regbase + RMONCNT)) - 1; 401 402 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) { 403 yr = readw(rtc->regbase + RYRCNT); 404 yr100 = bcd2bin(yr >> 8); 405 yr &= 0xff; 406 } else { 407 yr = readb(rtc->regbase + RYRCNT); 408 yr100 = bcd2bin((yr == 0x99) ? 0x19 : 0x20); 409 } 410 411 tm->tm_year = (yr100 * 100 + bcd2bin(yr)) - 1900; 412 413 sec2 = readb(rtc->regbase + R64CNT); 414 cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF; 415 416 spin_unlock_irq(&rtc->lock); 417 } while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0); 418 419 #if RTC_BIT_INVERTED != 0 420 if ((sec128 & RTC_BIT_INVERTED)) 421 tm->tm_sec--; 422 #endif 423 424 /* only keep the carry interrupt enabled if UIE is on */ 425 if (!(rtc->periodic_freq & PF_OXS)) 426 sh_rtc_setcie(dev, 0); 427 428 dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, " 429 "mday=%d, mon=%d, year=%d, wday=%d\n", 430 __func__, 431 tm->tm_sec, tm->tm_min, tm->tm_hour, 432 tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday); 433 434 return rtc_valid_tm(tm); 435 } 436 437 static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm) 438 { 439 struct platform_device *pdev = to_platform_device(dev); 440 struct sh_rtc *rtc = platform_get_drvdata(pdev); 441 unsigned int tmp; 442 int year; 443 444 spin_lock_irq(&rtc->lock); 445 446 /* Reset pre-scaler & stop RTC */ 447 tmp = readb(rtc->regbase + RCR2); 448 tmp |= RCR2_RESET; 449 tmp &= ~RCR2_START; 450 writeb(tmp, rtc->regbase + RCR2); 451 452 writeb(bin2bcd(tm->tm_sec), rtc->regbase + RSECCNT); 453 writeb(bin2bcd(tm->tm_min), rtc->regbase + RMINCNT); 454 writeb(bin2bcd(tm->tm_hour), rtc->regbase + RHRCNT); 455 writeb(bin2bcd(tm->tm_wday), rtc->regbase + RWKCNT); 456 writeb(bin2bcd(tm->tm_mday), rtc->regbase + RDAYCNT); 457 writeb(bin2bcd(tm->tm_mon + 1), rtc->regbase + RMONCNT); 458 459 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) { 460 year = (bin2bcd((tm->tm_year + 1900) / 100) << 8) | 461 bin2bcd(tm->tm_year % 100); 462 writew(year, rtc->regbase + RYRCNT); 463 } else { 464 year = tm->tm_year % 100; 465 writeb(bin2bcd(year), rtc->regbase + RYRCNT); 466 } 467 468 /* Start RTC */ 469 tmp = readb(rtc->regbase + RCR2); 470 tmp &= ~RCR2_RESET; 471 tmp |= RCR2_RTCEN | RCR2_START; 472 writeb(tmp, rtc->regbase + RCR2); 473 474 spin_unlock_irq(&rtc->lock); 475 476 return 0; 477 } 478 479 static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off) 480 { 481 unsigned int byte; 482 int value = 0xff; /* return 0xff for ignored values */ 483 484 byte = readb(rtc->regbase + reg_off); 485 if (byte & AR_ENB) { 486 byte &= ~AR_ENB; /* strip the enable bit */ 487 value = bcd2bin(byte); 488 } 489 490 return value; 491 } 492 493 static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm) 494 { 495 struct platform_device *pdev = to_platform_device(dev); 496 struct sh_rtc *rtc = platform_get_drvdata(pdev); 497 struct rtc_time *tm = &wkalrm->time; 498 499 spin_lock_irq(&rtc->lock); 500 501 tm->tm_sec = sh_rtc_read_alarm_value(rtc, RSECAR); 502 tm->tm_min = sh_rtc_read_alarm_value(rtc, RMINAR); 503 tm->tm_hour = sh_rtc_read_alarm_value(rtc, RHRAR); 504 tm->tm_wday = sh_rtc_read_alarm_value(rtc, RWKAR); 505 tm->tm_mday = sh_rtc_read_alarm_value(rtc, RDAYAR); 506 tm->tm_mon = sh_rtc_read_alarm_value(rtc, RMONAR); 507 if (tm->tm_mon > 0) 508 tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */ 509 tm->tm_year = 0xffff; 510 511 wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0; 512 513 spin_unlock_irq(&rtc->lock); 514 515 return 0; 516 } 517 518 static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc, 519 int value, int reg_off) 520 { 521 /* < 0 for a value that is ignored */ 522 if (value < 0) 523 writeb(0, rtc->regbase + reg_off); 524 else 525 writeb(bin2bcd(value) | AR_ENB, rtc->regbase + reg_off); 526 } 527 528 static int sh_rtc_check_alarm(struct rtc_time *tm) 529 { 530 /* 531 * The original rtc says anything > 0xc0 is "don't care" or "match 532 * all" - most users use 0xff but rtc-dev uses -1 for the same thing. 533 * The original rtc doesn't support years - some things use -1 and 534 * some 0xffff. We use -1 to make out tests easier. 535 */ 536 if (tm->tm_year == 0xffff) 537 tm->tm_year = -1; 538 if (tm->tm_mon >= 0xff) 539 tm->tm_mon = -1; 540 if (tm->tm_mday >= 0xff) 541 tm->tm_mday = -1; 542 if (tm->tm_wday >= 0xff) 543 tm->tm_wday = -1; 544 if (tm->tm_hour >= 0xff) 545 tm->tm_hour = -1; 546 if (tm->tm_min >= 0xff) 547 tm->tm_min = -1; 548 if (tm->tm_sec >= 0xff) 549 tm->tm_sec = -1; 550 551 if (tm->tm_year > 9999 || 552 tm->tm_mon >= 12 || 553 tm->tm_mday == 0 || tm->tm_mday >= 32 || 554 tm->tm_wday >= 7 || 555 tm->tm_hour >= 24 || 556 tm->tm_min >= 60 || 557 tm->tm_sec >= 60) 558 return -EINVAL; 559 560 return 0; 561 } 562 563 static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm) 564 { 565 struct platform_device *pdev = to_platform_device(dev); 566 struct sh_rtc *rtc = platform_get_drvdata(pdev); 567 unsigned int rcr1; 568 struct rtc_time *tm = &wkalrm->time; 569 int mon, err; 570 571 err = sh_rtc_check_alarm(tm); 572 if (unlikely(err < 0)) 573 return err; 574 575 spin_lock_irq(&rtc->lock); 576 577 /* disable alarm interrupt and clear the alarm flag */ 578 rcr1 = readb(rtc->regbase + RCR1); 579 rcr1 &= ~(RCR1_AF | RCR1_AIE); 580 writeb(rcr1, rtc->regbase + RCR1); 581 582 /* set alarm time */ 583 sh_rtc_write_alarm_value(rtc, tm->tm_sec, RSECAR); 584 sh_rtc_write_alarm_value(rtc, tm->tm_min, RMINAR); 585 sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR); 586 sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR); 587 sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR); 588 mon = tm->tm_mon; 589 if (mon >= 0) 590 mon += 1; 591 sh_rtc_write_alarm_value(rtc, mon, RMONAR); 592 593 if (wkalrm->enabled) { 594 rcr1 |= RCR1_AIE; 595 writeb(rcr1, rtc->regbase + RCR1); 596 } 597 598 spin_unlock_irq(&rtc->lock); 599 600 return 0; 601 } 602 603 static int sh_rtc_irq_set_state(struct device *dev, int enabled) 604 { 605 struct platform_device *pdev = to_platform_device(dev); 606 struct sh_rtc *rtc = platform_get_drvdata(pdev); 607 608 if (enabled) { 609 rtc->periodic_freq |= PF_KOU; 610 return sh_rtc_ioctl(dev, RTC_PIE_ON, 0); 611 } else { 612 rtc->periodic_freq &= ~PF_KOU; 613 return sh_rtc_ioctl(dev, RTC_PIE_OFF, 0); 614 } 615 } 616 617 static int sh_rtc_irq_set_freq(struct device *dev, int freq) 618 { 619 if (!is_power_of_2(freq)) 620 return -EINVAL; 621 return sh_rtc_ioctl(dev, RTC_IRQP_SET, freq); 622 } 623 624 static struct rtc_class_ops sh_rtc_ops = { 625 .ioctl = sh_rtc_ioctl, 626 .read_time = sh_rtc_read_time, 627 .set_time = sh_rtc_set_time, 628 .read_alarm = sh_rtc_read_alarm, 629 .set_alarm = sh_rtc_set_alarm, 630 .irq_set_state = sh_rtc_irq_set_state, 631 .irq_set_freq = sh_rtc_irq_set_freq, 632 .proc = sh_rtc_proc, 633 }; 634 635 static int __devinit sh_rtc_probe(struct platform_device *pdev) 636 { 637 struct sh_rtc *rtc; 638 struct resource *res; 639 struct rtc_time r; 640 int ret; 641 642 rtc = kzalloc(sizeof(struct sh_rtc), GFP_KERNEL); 643 if (unlikely(!rtc)) 644 return -ENOMEM; 645 646 spin_lock_init(&rtc->lock); 647 648 /* get periodic/carry/alarm irqs */ 649 ret = platform_get_irq(pdev, 0); 650 if (unlikely(ret <= 0)) { 651 ret = -ENOENT; 652 dev_err(&pdev->dev, "No IRQ resource\n"); 653 goto err_badres; 654 } 655 rtc->periodic_irq = ret; 656 rtc->carry_irq = platform_get_irq(pdev, 1); 657 rtc->alarm_irq = platform_get_irq(pdev, 2); 658 659 res = platform_get_resource(pdev, IORESOURCE_IO, 0); 660 if (unlikely(res == NULL)) { 661 ret = -ENOENT; 662 dev_err(&pdev->dev, "No IO resource\n"); 663 goto err_badres; 664 } 665 666 rtc->regsize = res->end - res->start + 1; 667 668 rtc->res = request_mem_region(res->start, rtc->regsize, pdev->name); 669 if (unlikely(!rtc->res)) { 670 ret = -EBUSY; 671 goto err_badres; 672 } 673 674 rtc->regbase = ioremap_nocache(rtc->res->start, rtc->regsize); 675 if (unlikely(!rtc->regbase)) { 676 ret = -EINVAL; 677 goto err_badmap; 678 } 679 680 rtc->rtc_dev = rtc_device_register("sh", &pdev->dev, 681 &sh_rtc_ops, THIS_MODULE); 682 if (IS_ERR(rtc->rtc_dev)) { 683 ret = PTR_ERR(rtc->rtc_dev); 684 goto err_unmap; 685 } 686 687 rtc->capabilities = RTC_DEF_CAPABILITIES; 688 if (pdev->dev.platform_data) { 689 struct sh_rtc_platform_info *pinfo = pdev->dev.platform_data; 690 691 /* 692 * Some CPUs have special capabilities in addition to the 693 * default set. Add those in here. 694 */ 695 rtc->capabilities |= pinfo->capabilities; 696 } 697 698 rtc->rtc_dev->max_user_freq = 256; 699 700 platform_set_drvdata(pdev, rtc); 701 702 if (rtc->carry_irq <= 0) { 703 /* register shared periodic/carry/alarm irq */ 704 ret = request_irq(rtc->periodic_irq, sh_rtc_shared, 705 IRQF_DISABLED, "sh-rtc", rtc); 706 if (unlikely(ret)) { 707 dev_err(&pdev->dev, 708 "request IRQ failed with %d, IRQ %d\n", ret, 709 rtc->periodic_irq); 710 goto err_unmap; 711 } 712 } else { 713 /* register periodic/carry/alarm irqs */ 714 ret = request_irq(rtc->periodic_irq, sh_rtc_periodic, 715 IRQF_DISABLED, "sh-rtc period", rtc); 716 if (unlikely(ret)) { 717 dev_err(&pdev->dev, 718 "request period IRQ failed with %d, IRQ %d\n", 719 ret, rtc->periodic_irq); 720 goto err_unmap; 721 } 722 723 ret = request_irq(rtc->carry_irq, sh_rtc_interrupt, 724 IRQF_DISABLED, "sh-rtc carry", rtc); 725 if (unlikely(ret)) { 726 dev_err(&pdev->dev, 727 "request carry IRQ failed with %d, IRQ %d\n", 728 ret, rtc->carry_irq); 729 free_irq(rtc->periodic_irq, rtc); 730 goto err_unmap; 731 } 732 733 ret = request_irq(rtc->alarm_irq, sh_rtc_alarm, 734 IRQF_DISABLED, "sh-rtc alarm", rtc); 735 if (unlikely(ret)) { 736 dev_err(&pdev->dev, 737 "request alarm IRQ failed with %d, IRQ %d\n", 738 ret, rtc->alarm_irq); 739 free_irq(rtc->carry_irq, rtc); 740 free_irq(rtc->periodic_irq, rtc); 741 goto err_unmap; 742 } 743 } 744 745 /* everything disabled by default */ 746 rtc->periodic_freq = 0; 747 rtc->rtc_dev->irq_freq = 0; 748 sh_rtc_setpie(&pdev->dev, 0); 749 sh_rtc_setaie(&pdev->dev, 0); 750 sh_rtc_setcie(&pdev->dev, 0); 751 752 /* reset rtc to epoch 0 if time is invalid */ 753 if (rtc_read_time(rtc->rtc_dev, &r) < 0) { 754 rtc_time_to_tm(0, &r); 755 rtc_set_time(rtc->rtc_dev, &r); 756 } 757 758 device_init_wakeup(&pdev->dev, 1); 759 return 0; 760 761 err_unmap: 762 iounmap(rtc->regbase); 763 err_badmap: 764 release_resource(rtc->res); 765 err_badres: 766 kfree(rtc); 767 768 return ret; 769 } 770 771 static int __devexit sh_rtc_remove(struct platform_device *pdev) 772 { 773 struct sh_rtc *rtc = platform_get_drvdata(pdev); 774 775 if (likely(rtc->rtc_dev)) 776 rtc_device_unregister(rtc->rtc_dev); 777 778 sh_rtc_setpie(&pdev->dev, 0); 779 sh_rtc_setaie(&pdev->dev, 0); 780 sh_rtc_setcie(&pdev->dev, 0); 781 782 free_irq(rtc->periodic_irq, rtc); 783 if (rtc->carry_irq > 0) { 784 free_irq(rtc->carry_irq, rtc); 785 free_irq(rtc->alarm_irq, rtc); 786 } 787 788 release_resource(rtc->res); 789 790 iounmap(rtc->regbase); 791 792 platform_set_drvdata(pdev, NULL); 793 794 kfree(rtc); 795 796 return 0; 797 } 798 799 static void sh_rtc_set_irq_wake(struct device *dev, int enabled) 800 { 801 struct platform_device *pdev = to_platform_device(dev); 802 struct sh_rtc *rtc = platform_get_drvdata(pdev); 803 804 set_irq_wake(rtc->periodic_irq, enabled); 805 if (rtc->carry_irq > 0) { 806 set_irq_wake(rtc->carry_irq, enabled); 807 set_irq_wake(rtc->alarm_irq, enabled); 808 } 809 810 } 811 812 static int sh_rtc_suspend(struct device *dev) 813 { 814 if (device_may_wakeup(dev)) 815 sh_rtc_set_irq_wake(dev, 1); 816 817 return 0; 818 } 819 820 static int sh_rtc_resume(struct device *dev) 821 { 822 if (device_may_wakeup(dev)) 823 sh_rtc_set_irq_wake(dev, 0); 824 825 return 0; 826 } 827 828 static struct dev_pm_ops sh_rtc_dev_pm_ops = { 829 .suspend = sh_rtc_suspend, 830 .resume = sh_rtc_resume, 831 }; 832 833 static struct platform_driver sh_rtc_platform_driver = { 834 .driver = { 835 .name = DRV_NAME, 836 .owner = THIS_MODULE, 837 .pm = &sh_rtc_dev_pm_ops, 838 }, 839 .probe = sh_rtc_probe, 840 .remove = __devexit_p(sh_rtc_remove), 841 }; 842 843 static int __init sh_rtc_init(void) 844 { 845 return platform_driver_register(&sh_rtc_platform_driver); 846 } 847 848 static void __exit sh_rtc_exit(void) 849 { 850 platform_driver_unregister(&sh_rtc_platform_driver); 851 } 852 853 module_init(sh_rtc_init); 854 module_exit(sh_rtc_exit); 855 856 MODULE_DESCRIPTION("SuperH on-chip RTC driver"); 857 MODULE_VERSION(DRV_VERSION); 858 MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, " 859 "Jamie Lenehan <lenehan@twibble.org>, " 860 "Angelo Castello <angelo.castello@st.com>"); 861 MODULE_LICENSE("GPL"); 862 MODULE_ALIAS("platform:" DRV_NAME); 863