1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SuperH On-Chip RTC Support 4 * 5 * Copyright (C) 2006 - 2009 Paul Mundt 6 * Copyright (C) 2006 Jamie Lenehan 7 * Copyright (C) 2008 Angelo Castello 8 * 9 * Based on the old arch/sh/kernel/cpu/rtc.c by: 10 * 11 * Copyright (C) 2000 Philipp Rumpf <prumpf@tux.org> 12 * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka 13 */ 14 #include <linux/module.h> 15 #include <linux/mod_devicetable.h> 16 #include <linux/kernel.h> 17 #include <linux/bcd.h> 18 #include <linux/rtc.h> 19 #include <linux/init.h> 20 #include <linux/platform_device.h> 21 #include <linux/seq_file.h> 22 #include <linux/interrupt.h> 23 #include <linux/spinlock.h> 24 #include <linux/io.h> 25 #include <linux/log2.h> 26 #include <linux/clk.h> 27 #include <linux/slab.h> 28 #ifdef CONFIG_SUPERH 29 #include <asm/rtc.h> 30 #else 31 /* Default values for RZ/A RTC */ 32 #define rtc_reg_size sizeof(u16) 33 #define RTC_BIT_INVERTED 0 /* no chip bugs */ 34 #define RTC_CAP_4_DIGIT_YEAR (1 << 0) 35 #define RTC_DEF_CAPABILITIES RTC_CAP_4_DIGIT_YEAR 36 #endif 37 38 #define DRV_NAME "sh-rtc" 39 40 #define RTC_REG(r) ((r) * rtc_reg_size) 41 42 #define R64CNT RTC_REG(0) 43 44 #define RSECCNT RTC_REG(1) /* RTC sec */ 45 #define RMINCNT RTC_REG(2) /* RTC min */ 46 #define RHRCNT RTC_REG(3) /* RTC hour */ 47 #define RWKCNT RTC_REG(4) /* RTC week */ 48 #define RDAYCNT RTC_REG(5) /* RTC day */ 49 #define RMONCNT RTC_REG(6) /* RTC month */ 50 #define RYRCNT RTC_REG(7) /* RTC year */ 51 #define RSECAR RTC_REG(8) /* ALARM sec */ 52 #define RMINAR RTC_REG(9) /* ALARM min */ 53 #define RHRAR RTC_REG(10) /* ALARM hour */ 54 #define RWKAR RTC_REG(11) /* ALARM week */ 55 #define RDAYAR RTC_REG(12) /* ALARM day */ 56 #define RMONAR RTC_REG(13) /* ALARM month */ 57 #define RCR1 RTC_REG(14) /* Control */ 58 #define RCR2 RTC_REG(15) /* Control */ 59 60 /* 61 * Note on RYRAR and RCR3: Up until this point most of the register 62 * definitions are consistent across all of the available parts. However, 63 * the placement of the optional RYRAR and RCR3 (the RYRAR control 64 * register used to control RYRCNT/RYRAR compare) varies considerably 65 * across various parts, occasionally being mapped in to a completely 66 * unrelated address space. For proper RYRAR support a separate resource 67 * would have to be handed off, but as this is purely optional in 68 * practice, we simply opt not to support it, thereby keeping the code 69 * quite a bit more simplified. 70 */ 71 72 /* ALARM Bits - or with BCD encoded value */ 73 #define AR_ENB 0x80 /* Enable for alarm cmp */ 74 75 /* Period Bits */ 76 #define PF_HP 0x100 /* Enable Half Period to support 8,32,128Hz */ 77 #define PF_COUNT 0x200 /* Half periodic counter */ 78 #define PF_OXS 0x400 /* Periodic One x Second */ 79 #define PF_KOU 0x800 /* Kernel or User periodic request 1=kernel */ 80 #define PF_MASK 0xf00 81 82 /* RCR1 Bits */ 83 #define RCR1_CF 0x80 /* Carry Flag */ 84 #define RCR1_CIE 0x10 /* Carry Interrupt Enable */ 85 #define RCR1_AIE 0x08 /* Alarm Interrupt Enable */ 86 #define RCR1_AF 0x01 /* Alarm Flag */ 87 88 /* RCR2 Bits */ 89 #define RCR2_PEF 0x80 /* PEriodic interrupt Flag */ 90 #define RCR2_PESMASK 0x70 /* Periodic interrupt Set */ 91 #define RCR2_RTCEN 0x08 /* ENable RTC */ 92 #define RCR2_ADJ 0x04 /* ADJustment (30-second) */ 93 #define RCR2_RESET 0x02 /* Reset bit */ 94 #define RCR2_START 0x01 /* Start bit */ 95 96 struct sh_rtc { 97 void __iomem *regbase; 98 unsigned long regsize; 99 struct resource *res; 100 int alarm_irq; 101 int periodic_irq; 102 int carry_irq; 103 struct clk *clk; 104 struct rtc_device *rtc_dev; 105 spinlock_t lock; 106 unsigned long capabilities; /* See asm/rtc.h for cap bits */ 107 unsigned short periodic_freq; 108 }; 109 110 static int __sh_rtc_interrupt(struct sh_rtc *rtc) 111 { 112 unsigned int tmp, pending; 113 114 tmp = readb(rtc->regbase + RCR1); 115 pending = tmp & RCR1_CF; 116 tmp &= ~RCR1_CF; 117 writeb(tmp, rtc->regbase + RCR1); 118 119 /* Users have requested One x Second IRQ */ 120 if (pending && rtc->periodic_freq & PF_OXS) 121 rtc_update_irq(rtc->rtc_dev, 1, RTC_UF | RTC_IRQF); 122 123 return pending; 124 } 125 126 static int __sh_rtc_alarm(struct sh_rtc *rtc) 127 { 128 unsigned int tmp, pending; 129 130 tmp = readb(rtc->regbase + RCR1); 131 pending = tmp & RCR1_AF; 132 tmp &= ~(RCR1_AF | RCR1_AIE); 133 writeb(tmp, rtc->regbase + RCR1); 134 135 if (pending) 136 rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF); 137 138 return pending; 139 } 140 141 static int __sh_rtc_periodic(struct sh_rtc *rtc) 142 { 143 unsigned int tmp, pending; 144 145 tmp = readb(rtc->regbase + RCR2); 146 pending = tmp & RCR2_PEF; 147 tmp &= ~RCR2_PEF; 148 writeb(tmp, rtc->regbase + RCR2); 149 150 if (!pending) 151 return 0; 152 153 /* Half period enabled than one skipped and the next notified */ 154 if ((rtc->periodic_freq & PF_HP) && (rtc->periodic_freq & PF_COUNT)) 155 rtc->periodic_freq &= ~PF_COUNT; 156 else { 157 if (rtc->periodic_freq & PF_HP) 158 rtc->periodic_freq |= PF_COUNT; 159 rtc_update_irq(rtc->rtc_dev, 1, RTC_PF | RTC_IRQF); 160 } 161 162 return pending; 163 } 164 165 static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id) 166 { 167 struct sh_rtc *rtc = dev_id; 168 int ret; 169 170 spin_lock(&rtc->lock); 171 ret = __sh_rtc_interrupt(rtc); 172 spin_unlock(&rtc->lock); 173 174 return IRQ_RETVAL(ret); 175 } 176 177 static irqreturn_t sh_rtc_alarm(int irq, void *dev_id) 178 { 179 struct sh_rtc *rtc = dev_id; 180 int ret; 181 182 spin_lock(&rtc->lock); 183 ret = __sh_rtc_alarm(rtc); 184 spin_unlock(&rtc->lock); 185 186 return IRQ_RETVAL(ret); 187 } 188 189 static irqreturn_t sh_rtc_periodic(int irq, void *dev_id) 190 { 191 struct sh_rtc *rtc = dev_id; 192 int ret; 193 194 spin_lock(&rtc->lock); 195 ret = __sh_rtc_periodic(rtc); 196 spin_unlock(&rtc->lock); 197 198 return IRQ_RETVAL(ret); 199 } 200 201 static irqreturn_t sh_rtc_shared(int irq, void *dev_id) 202 { 203 struct sh_rtc *rtc = dev_id; 204 int ret; 205 206 spin_lock(&rtc->lock); 207 ret = __sh_rtc_interrupt(rtc); 208 ret |= __sh_rtc_alarm(rtc); 209 ret |= __sh_rtc_periodic(rtc); 210 spin_unlock(&rtc->lock); 211 212 return IRQ_RETVAL(ret); 213 } 214 215 static inline void sh_rtc_setaie(struct device *dev, unsigned int enable) 216 { 217 struct sh_rtc *rtc = dev_get_drvdata(dev); 218 unsigned int tmp; 219 220 spin_lock_irq(&rtc->lock); 221 222 tmp = readb(rtc->regbase + RCR1); 223 224 if (enable) 225 tmp |= RCR1_AIE; 226 else 227 tmp &= ~RCR1_AIE; 228 229 writeb(tmp, rtc->regbase + RCR1); 230 231 spin_unlock_irq(&rtc->lock); 232 } 233 234 static int sh_rtc_proc(struct device *dev, struct seq_file *seq) 235 { 236 struct sh_rtc *rtc = dev_get_drvdata(dev); 237 unsigned int tmp; 238 239 tmp = readb(rtc->regbase + RCR1); 240 seq_printf(seq, "carry_IRQ\t: %s\n", (tmp & RCR1_CIE) ? "yes" : "no"); 241 242 tmp = readb(rtc->regbase + RCR2); 243 seq_printf(seq, "periodic_IRQ\t: %s\n", 244 (tmp & RCR2_PESMASK) ? "yes" : "no"); 245 246 return 0; 247 } 248 249 static inline void sh_rtc_setcie(struct device *dev, unsigned int enable) 250 { 251 struct sh_rtc *rtc = dev_get_drvdata(dev); 252 unsigned int tmp; 253 254 spin_lock_irq(&rtc->lock); 255 256 tmp = readb(rtc->regbase + RCR1); 257 258 if (!enable) 259 tmp &= ~RCR1_CIE; 260 else 261 tmp |= RCR1_CIE; 262 263 writeb(tmp, rtc->regbase + RCR1); 264 265 spin_unlock_irq(&rtc->lock); 266 } 267 268 static int sh_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled) 269 { 270 sh_rtc_setaie(dev, enabled); 271 return 0; 272 } 273 274 static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm) 275 { 276 struct sh_rtc *rtc = dev_get_drvdata(dev); 277 unsigned int sec128, sec2, yr, yr100, cf_bit; 278 279 if (!(readb(rtc->regbase + RCR2) & RCR2_RTCEN)) 280 return -EINVAL; 281 282 do { 283 unsigned int tmp; 284 285 spin_lock_irq(&rtc->lock); 286 287 tmp = readb(rtc->regbase + RCR1); 288 tmp &= ~RCR1_CF; /* Clear CF-bit */ 289 tmp |= RCR1_CIE; 290 writeb(tmp, rtc->regbase + RCR1); 291 292 sec128 = readb(rtc->regbase + R64CNT); 293 294 tm->tm_sec = bcd2bin(readb(rtc->regbase + RSECCNT)); 295 tm->tm_min = bcd2bin(readb(rtc->regbase + RMINCNT)); 296 tm->tm_hour = bcd2bin(readb(rtc->regbase + RHRCNT)); 297 tm->tm_wday = bcd2bin(readb(rtc->regbase + RWKCNT)); 298 tm->tm_mday = bcd2bin(readb(rtc->regbase + RDAYCNT)); 299 tm->tm_mon = bcd2bin(readb(rtc->regbase + RMONCNT)) - 1; 300 301 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) { 302 yr = readw(rtc->regbase + RYRCNT); 303 yr100 = bcd2bin(yr >> 8); 304 yr &= 0xff; 305 } else { 306 yr = readb(rtc->regbase + RYRCNT); 307 yr100 = bcd2bin((yr == 0x99) ? 0x19 : 0x20); 308 } 309 310 tm->tm_year = (yr100 * 100 + bcd2bin(yr)) - 1900; 311 312 sec2 = readb(rtc->regbase + R64CNT); 313 cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF; 314 315 spin_unlock_irq(&rtc->lock); 316 } while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0); 317 318 #if RTC_BIT_INVERTED != 0 319 if ((sec128 & RTC_BIT_INVERTED)) 320 tm->tm_sec--; 321 #endif 322 323 /* only keep the carry interrupt enabled if UIE is on */ 324 if (!(rtc->periodic_freq & PF_OXS)) 325 sh_rtc_setcie(dev, 0); 326 327 dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, " 328 "mday=%d, mon=%d, year=%d, wday=%d\n", 329 __func__, 330 tm->tm_sec, tm->tm_min, tm->tm_hour, 331 tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday); 332 333 return 0; 334 } 335 336 static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm) 337 { 338 struct sh_rtc *rtc = dev_get_drvdata(dev); 339 unsigned int tmp; 340 int year; 341 342 spin_lock_irq(&rtc->lock); 343 344 /* Reset pre-scaler & stop RTC */ 345 tmp = readb(rtc->regbase + RCR2); 346 tmp |= RCR2_RESET; 347 tmp &= ~RCR2_START; 348 writeb(tmp, rtc->regbase + RCR2); 349 350 writeb(bin2bcd(tm->tm_sec), rtc->regbase + RSECCNT); 351 writeb(bin2bcd(tm->tm_min), rtc->regbase + RMINCNT); 352 writeb(bin2bcd(tm->tm_hour), rtc->regbase + RHRCNT); 353 writeb(bin2bcd(tm->tm_wday), rtc->regbase + RWKCNT); 354 writeb(bin2bcd(tm->tm_mday), rtc->regbase + RDAYCNT); 355 writeb(bin2bcd(tm->tm_mon + 1), rtc->regbase + RMONCNT); 356 357 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) { 358 year = (bin2bcd((tm->tm_year + 1900) / 100) << 8) | 359 bin2bcd(tm->tm_year % 100); 360 writew(year, rtc->regbase + RYRCNT); 361 } else { 362 year = tm->tm_year % 100; 363 writeb(bin2bcd(year), rtc->regbase + RYRCNT); 364 } 365 366 /* Start RTC */ 367 tmp = readb(rtc->regbase + RCR2); 368 tmp &= ~RCR2_RESET; 369 tmp |= RCR2_RTCEN | RCR2_START; 370 writeb(tmp, rtc->regbase + RCR2); 371 372 spin_unlock_irq(&rtc->lock); 373 374 return 0; 375 } 376 377 static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off) 378 { 379 unsigned int byte; 380 int value = -1; /* return -1 for ignored values */ 381 382 byte = readb(rtc->regbase + reg_off); 383 if (byte & AR_ENB) { 384 byte &= ~AR_ENB; /* strip the enable bit */ 385 value = bcd2bin(byte); 386 } 387 388 return value; 389 } 390 391 static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm) 392 { 393 struct sh_rtc *rtc = dev_get_drvdata(dev); 394 struct rtc_time *tm = &wkalrm->time; 395 396 spin_lock_irq(&rtc->lock); 397 398 tm->tm_sec = sh_rtc_read_alarm_value(rtc, RSECAR); 399 tm->tm_min = sh_rtc_read_alarm_value(rtc, RMINAR); 400 tm->tm_hour = sh_rtc_read_alarm_value(rtc, RHRAR); 401 tm->tm_wday = sh_rtc_read_alarm_value(rtc, RWKAR); 402 tm->tm_mday = sh_rtc_read_alarm_value(rtc, RDAYAR); 403 tm->tm_mon = sh_rtc_read_alarm_value(rtc, RMONAR); 404 if (tm->tm_mon > 0) 405 tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */ 406 407 wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0; 408 409 spin_unlock_irq(&rtc->lock); 410 411 return 0; 412 } 413 414 static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc, 415 int value, int reg_off) 416 { 417 /* < 0 for a value that is ignored */ 418 if (value < 0) 419 writeb(0, rtc->regbase + reg_off); 420 else 421 writeb(bin2bcd(value) | AR_ENB, rtc->regbase + reg_off); 422 } 423 424 static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm) 425 { 426 struct sh_rtc *rtc = dev_get_drvdata(dev); 427 unsigned int rcr1; 428 struct rtc_time *tm = &wkalrm->time; 429 int mon; 430 431 spin_lock_irq(&rtc->lock); 432 433 /* disable alarm interrupt and clear the alarm flag */ 434 rcr1 = readb(rtc->regbase + RCR1); 435 rcr1 &= ~(RCR1_AF | RCR1_AIE); 436 writeb(rcr1, rtc->regbase + RCR1); 437 438 /* set alarm time */ 439 sh_rtc_write_alarm_value(rtc, tm->tm_sec, RSECAR); 440 sh_rtc_write_alarm_value(rtc, tm->tm_min, RMINAR); 441 sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR); 442 sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR); 443 sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR); 444 mon = tm->tm_mon; 445 if (mon >= 0) 446 mon += 1; 447 sh_rtc_write_alarm_value(rtc, mon, RMONAR); 448 449 if (wkalrm->enabled) { 450 rcr1 |= RCR1_AIE; 451 writeb(rcr1, rtc->regbase + RCR1); 452 } 453 454 spin_unlock_irq(&rtc->lock); 455 456 return 0; 457 } 458 459 static const struct rtc_class_ops sh_rtc_ops = { 460 .read_time = sh_rtc_read_time, 461 .set_time = sh_rtc_set_time, 462 .read_alarm = sh_rtc_read_alarm, 463 .set_alarm = sh_rtc_set_alarm, 464 .proc = sh_rtc_proc, 465 .alarm_irq_enable = sh_rtc_alarm_irq_enable, 466 }; 467 468 static int __init sh_rtc_probe(struct platform_device *pdev) 469 { 470 struct sh_rtc *rtc; 471 struct resource *res; 472 char clk_name[6]; 473 int clk_id, ret; 474 475 rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL); 476 if (unlikely(!rtc)) 477 return -ENOMEM; 478 479 spin_lock_init(&rtc->lock); 480 481 /* get periodic/carry/alarm irqs */ 482 ret = platform_get_irq(pdev, 0); 483 if (unlikely(ret <= 0)) { 484 dev_err(&pdev->dev, "No IRQ resource\n"); 485 return -ENOENT; 486 } 487 488 rtc->periodic_irq = ret; 489 rtc->carry_irq = platform_get_irq(pdev, 1); 490 rtc->alarm_irq = platform_get_irq(pdev, 2); 491 492 res = platform_get_resource(pdev, IORESOURCE_IO, 0); 493 if (!res) 494 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 495 if (unlikely(res == NULL)) { 496 dev_err(&pdev->dev, "No IO resource\n"); 497 return -ENOENT; 498 } 499 500 rtc->regsize = resource_size(res); 501 502 rtc->res = devm_request_mem_region(&pdev->dev, res->start, 503 rtc->regsize, pdev->name); 504 if (unlikely(!rtc->res)) 505 return -EBUSY; 506 507 rtc->regbase = devm_ioremap(&pdev->dev, rtc->res->start, rtc->regsize); 508 if (unlikely(!rtc->regbase)) 509 return -EINVAL; 510 511 if (!pdev->dev.of_node) { 512 clk_id = pdev->id; 513 /* With a single device, the clock id is still "rtc0" */ 514 if (clk_id < 0) 515 clk_id = 0; 516 517 snprintf(clk_name, sizeof(clk_name), "rtc%d", clk_id); 518 } else 519 snprintf(clk_name, sizeof(clk_name), "fck"); 520 521 rtc->clk = devm_clk_get(&pdev->dev, clk_name); 522 if (IS_ERR(rtc->clk)) { 523 /* 524 * No error handling for rtc->clk intentionally, not all 525 * platforms will have a unique clock for the RTC, and 526 * the clk API can handle the struct clk pointer being 527 * NULL. 528 */ 529 rtc->clk = NULL; 530 } 531 532 rtc->rtc_dev = devm_rtc_allocate_device(&pdev->dev); 533 if (IS_ERR(rtc->rtc_dev)) 534 return PTR_ERR(rtc->rtc_dev); 535 536 clk_enable(rtc->clk); 537 538 rtc->capabilities = RTC_DEF_CAPABILITIES; 539 540 #ifdef CONFIG_SUPERH 541 if (dev_get_platdata(&pdev->dev)) { 542 struct sh_rtc_platform_info *pinfo = 543 dev_get_platdata(&pdev->dev); 544 545 /* 546 * Some CPUs have special capabilities in addition to the 547 * default set. Add those in here. 548 */ 549 rtc->capabilities |= pinfo->capabilities; 550 } 551 #endif 552 553 if (rtc->carry_irq <= 0) { 554 /* register shared periodic/carry/alarm irq */ 555 ret = devm_request_irq(&pdev->dev, rtc->periodic_irq, 556 sh_rtc_shared, 0, "sh-rtc", rtc); 557 if (unlikely(ret)) { 558 dev_err(&pdev->dev, 559 "request IRQ failed with %d, IRQ %d\n", ret, 560 rtc->periodic_irq); 561 goto err_unmap; 562 } 563 } else { 564 /* register periodic/carry/alarm irqs */ 565 ret = devm_request_irq(&pdev->dev, rtc->periodic_irq, 566 sh_rtc_periodic, 0, "sh-rtc period", rtc); 567 if (unlikely(ret)) { 568 dev_err(&pdev->dev, 569 "request period IRQ failed with %d, IRQ %d\n", 570 ret, rtc->periodic_irq); 571 goto err_unmap; 572 } 573 574 ret = devm_request_irq(&pdev->dev, rtc->carry_irq, 575 sh_rtc_interrupt, 0, "sh-rtc carry", rtc); 576 if (unlikely(ret)) { 577 dev_err(&pdev->dev, 578 "request carry IRQ failed with %d, IRQ %d\n", 579 ret, rtc->carry_irq); 580 goto err_unmap; 581 } 582 583 ret = devm_request_irq(&pdev->dev, rtc->alarm_irq, 584 sh_rtc_alarm, 0, "sh-rtc alarm", rtc); 585 if (unlikely(ret)) { 586 dev_err(&pdev->dev, 587 "request alarm IRQ failed with %d, IRQ %d\n", 588 ret, rtc->alarm_irq); 589 goto err_unmap; 590 } 591 } 592 593 platform_set_drvdata(pdev, rtc); 594 595 /* everything disabled by default */ 596 sh_rtc_setaie(&pdev->dev, 0); 597 sh_rtc_setcie(&pdev->dev, 0); 598 599 rtc->rtc_dev->ops = &sh_rtc_ops; 600 rtc->rtc_dev->max_user_freq = 256; 601 602 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) { 603 rtc->rtc_dev->range_min = RTC_TIMESTAMP_BEGIN_1900; 604 rtc->rtc_dev->range_max = RTC_TIMESTAMP_END_9999; 605 } else { 606 rtc->rtc_dev->range_min = mktime64(1999, 1, 1, 0, 0, 0); 607 rtc->rtc_dev->range_max = mktime64(2098, 12, 31, 23, 59, 59); 608 } 609 610 ret = devm_rtc_register_device(rtc->rtc_dev); 611 if (ret) 612 goto err_unmap; 613 614 device_init_wakeup(&pdev->dev, 1); 615 return 0; 616 617 err_unmap: 618 clk_disable(rtc->clk); 619 620 return ret; 621 } 622 623 static int __exit sh_rtc_remove(struct platform_device *pdev) 624 { 625 struct sh_rtc *rtc = platform_get_drvdata(pdev); 626 627 sh_rtc_setaie(&pdev->dev, 0); 628 sh_rtc_setcie(&pdev->dev, 0); 629 630 clk_disable(rtc->clk); 631 632 return 0; 633 } 634 635 static void sh_rtc_set_irq_wake(struct device *dev, int enabled) 636 { 637 struct sh_rtc *rtc = dev_get_drvdata(dev); 638 639 irq_set_irq_wake(rtc->periodic_irq, enabled); 640 641 if (rtc->carry_irq > 0) { 642 irq_set_irq_wake(rtc->carry_irq, enabled); 643 irq_set_irq_wake(rtc->alarm_irq, enabled); 644 } 645 } 646 647 static int __maybe_unused sh_rtc_suspend(struct device *dev) 648 { 649 if (device_may_wakeup(dev)) 650 sh_rtc_set_irq_wake(dev, 1); 651 652 return 0; 653 } 654 655 static int __maybe_unused sh_rtc_resume(struct device *dev) 656 { 657 if (device_may_wakeup(dev)) 658 sh_rtc_set_irq_wake(dev, 0); 659 660 return 0; 661 } 662 663 static SIMPLE_DEV_PM_OPS(sh_rtc_pm_ops, sh_rtc_suspend, sh_rtc_resume); 664 665 static const struct of_device_id sh_rtc_of_match[] = { 666 { .compatible = "renesas,sh-rtc", }, 667 { /* sentinel */ } 668 }; 669 MODULE_DEVICE_TABLE(of, sh_rtc_of_match); 670 671 static struct platform_driver sh_rtc_platform_driver = { 672 .driver = { 673 .name = DRV_NAME, 674 .pm = &sh_rtc_pm_ops, 675 .of_match_table = sh_rtc_of_match, 676 }, 677 .remove = __exit_p(sh_rtc_remove), 678 }; 679 680 module_platform_driver_probe(sh_rtc_platform_driver, sh_rtc_probe); 681 682 MODULE_DESCRIPTION("SuperH on-chip RTC driver"); 683 MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, " 684 "Jamie Lenehan <lenehan@twibble.org>, " 685 "Angelo Castello <angelo.castello@st.com>"); 686 MODULE_LICENSE("GPL v2"); 687 MODULE_ALIAS("platform:" DRV_NAME); 688