1 /* 2 * SuperH On-Chip RTC Support 3 * 4 * Copyright (C) 2006 - 2009 Paul Mundt 5 * Copyright (C) 2006 Jamie Lenehan 6 * Copyright (C) 2008 Angelo Castello 7 * 8 * Based on the old arch/sh/kernel/cpu/rtc.c by: 9 * 10 * Copyright (C) 2000 Philipp Rumpf <prumpf@tux.org> 11 * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka 12 * 13 * This file is subject to the terms and conditions of the GNU General Public 14 * License. See the file "COPYING" in the main directory of this archive 15 * for more details. 16 */ 17 #include <linux/module.h> 18 #include <linux/kernel.h> 19 #include <linux/bcd.h> 20 #include <linux/rtc.h> 21 #include <linux/init.h> 22 #include <linux/platform_device.h> 23 #include <linux/seq_file.h> 24 #include <linux/interrupt.h> 25 #include <linux/spinlock.h> 26 #include <linux/io.h> 27 #include <linux/log2.h> 28 #include <linux/clk.h> 29 #include <asm/rtc.h> 30 31 #define DRV_NAME "sh-rtc" 32 #define DRV_VERSION "0.2.2" 33 34 #define RTC_REG(r) ((r) * rtc_reg_size) 35 36 #define R64CNT RTC_REG(0) 37 38 #define RSECCNT RTC_REG(1) /* RTC sec */ 39 #define RMINCNT RTC_REG(2) /* RTC min */ 40 #define RHRCNT RTC_REG(3) /* RTC hour */ 41 #define RWKCNT RTC_REG(4) /* RTC week */ 42 #define RDAYCNT RTC_REG(5) /* RTC day */ 43 #define RMONCNT RTC_REG(6) /* RTC month */ 44 #define RYRCNT RTC_REG(7) /* RTC year */ 45 #define RSECAR RTC_REG(8) /* ALARM sec */ 46 #define RMINAR RTC_REG(9) /* ALARM min */ 47 #define RHRAR RTC_REG(10) /* ALARM hour */ 48 #define RWKAR RTC_REG(11) /* ALARM week */ 49 #define RDAYAR RTC_REG(12) /* ALARM day */ 50 #define RMONAR RTC_REG(13) /* ALARM month */ 51 #define RCR1 RTC_REG(14) /* Control */ 52 #define RCR2 RTC_REG(15) /* Control */ 53 54 /* 55 * Note on RYRAR and RCR3: Up until this point most of the register 56 * definitions are consistent across all of the available parts. However, 57 * the placement of the optional RYRAR and RCR3 (the RYRAR control 58 * register used to control RYRCNT/RYRAR compare) varies considerably 59 * across various parts, occasionally being mapped in to a completely 60 * unrelated address space. For proper RYRAR support a separate resource 61 * would have to be handed off, but as this is purely optional in 62 * practice, we simply opt not to support it, thereby keeping the code 63 * quite a bit more simplified. 64 */ 65 66 /* ALARM Bits - or with BCD encoded value */ 67 #define AR_ENB 0x80 /* Enable for alarm cmp */ 68 69 /* Period Bits */ 70 #define PF_HP 0x100 /* Enable Half Period to support 8,32,128Hz */ 71 #define PF_COUNT 0x200 /* Half periodic counter */ 72 #define PF_OXS 0x400 /* Periodic One x Second */ 73 #define PF_KOU 0x800 /* Kernel or User periodic request 1=kernel */ 74 #define PF_MASK 0xf00 75 76 /* RCR1 Bits */ 77 #define RCR1_CF 0x80 /* Carry Flag */ 78 #define RCR1_CIE 0x10 /* Carry Interrupt Enable */ 79 #define RCR1_AIE 0x08 /* Alarm Interrupt Enable */ 80 #define RCR1_AF 0x01 /* Alarm Flag */ 81 82 /* RCR2 Bits */ 83 #define RCR2_PEF 0x80 /* PEriodic interrupt Flag */ 84 #define RCR2_PESMASK 0x70 /* Periodic interrupt Set */ 85 #define RCR2_RTCEN 0x08 /* ENable RTC */ 86 #define RCR2_ADJ 0x04 /* ADJustment (30-second) */ 87 #define RCR2_RESET 0x02 /* Reset bit */ 88 #define RCR2_START 0x01 /* Start bit */ 89 90 struct sh_rtc { 91 void __iomem *regbase; 92 unsigned long regsize; 93 struct resource *res; 94 int alarm_irq; 95 int periodic_irq; 96 int carry_irq; 97 struct clk *clk; 98 struct rtc_device *rtc_dev; 99 spinlock_t lock; 100 unsigned long capabilities; /* See asm/rtc.h for cap bits */ 101 unsigned short periodic_freq; 102 }; 103 104 static int __sh_rtc_interrupt(struct sh_rtc *rtc) 105 { 106 unsigned int tmp, pending; 107 108 tmp = readb(rtc->regbase + RCR1); 109 pending = tmp & RCR1_CF; 110 tmp &= ~RCR1_CF; 111 writeb(tmp, rtc->regbase + RCR1); 112 113 /* Users have requested One x Second IRQ */ 114 if (pending && rtc->periodic_freq & PF_OXS) 115 rtc_update_irq(rtc->rtc_dev, 1, RTC_UF | RTC_IRQF); 116 117 return pending; 118 } 119 120 static int __sh_rtc_alarm(struct sh_rtc *rtc) 121 { 122 unsigned int tmp, pending; 123 124 tmp = readb(rtc->regbase + RCR1); 125 pending = tmp & RCR1_AF; 126 tmp &= ~(RCR1_AF | RCR1_AIE); 127 writeb(tmp, rtc->regbase + RCR1); 128 129 if (pending) 130 rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF); 131 132 return pending; 133 } 134 135 static int __sh_rtc_periodic(struct sh_rtc *rtc) 136 { 137 struct rtc_device *rtc_dev = rtc->rtc_dev; 138 struct rtc_task *irq_task; 139 unsigned int tmp, pending; 140 141 tmp = readb(rtc->regbase + RCR2); 142 pending = tmp & RCR2_PEF; 143 tmp &= ~RCR2_PEF; 144 writeb(tmp, rtc->regbase + RCR2); 145 146 if (!pending) 147 return 0; 148 149 /* Half period enabled than one skipped and the next notified */ 150 if ((rtc->periodic_freq & PF_HP) && (rtc->periodic_freq & PF_COUNT)) 151 rtc->periodic_freq &= ~PF_COUNT; 152 else { 153 if (rtc->periodic_freq & PF_HP) 154 rtc->periodic_freq |= PF_COUNT; 155 if (rtc->periodic_freq & PF_KOU) { 156 spin_lock(&rtc_dev->irq_task_lock); 157 irq_task = rtc_dev->irq_task; 158 if (irq_task) 159 irq_task->func(irq_task->private_data); 160 spin_unlock(&rtc_dev->irq_task_lock); 161 } else 162 rtc_update_irq(rtc->rtc_dev, 1, RTC_PF | RTC_IRQF); 163 } 164 165 return pending; 166 } 167 168 static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id) 169 { 170 struct sh_rtc *rtc = dev_id; 171 int ret; 172 173 spin_lock(&rtc->lock); 174 ret = __sh_rtc_interrupt(rtc); 175 spin_unlock(&rtc->lock); 176 177 return IRQ_RETVAL(ret); 178 } 179 180 static irqreturn_t sh_rtc_alarm(int irq, void *dev_id) 181 { 182 struct sh_rtc *rtc = dev_id; 183 int ret; 184 185 spin_lock(&rtc->lock); 186 ret = __sh_rtc_alarm(rtc); 187 spin_unlock(&rtc->lock); 188 189 return IRQ_RETVAL(ret); 190 } 191 192 static irqreturn_t sh_rtc_periodic(int irq, void *dev_id) 193 { 194 struct sh_rtc *rtc = dev_id; 195 int ret; 196 197 spin_lock(&rtc->lock); 198 ret = __sh_rtc_periodic(rtc); 199 spin_unlock(&rtc->lock); 200 201 return IRQ_RETVAL(ret); 202 } 203 204 static irqreturn_t sh_rtc_shared(int irq, void *dev_id) 205 { 206 struct sh_rtc *rtc = dev_id; 207 int ret; 208 209 spin_lock(&rtc->lock); 210 ret = __sh_rtc_interrupt(rtc); 211 ret |= __sh_rtc_alarm(rtc); 212 ret |= __sh_rtc_periodic(rtc); 213 spin_unlock(&rtc->lock); 214 215 return IRQ_RETVAL(ret); 216 } 217 218 static inline void sh_rtc_setpie(struct device *dev, unsigned int enable) 219 { 220 struct sh_rtc *rtc = dev_get_drvdata(dev); 221 unsigned int tmp; 222 223 spin_lock_irq(&rtc->lock); 224 225 tmp = readb(rtc->regbase + RCR2); 226 227 if (enable) { 228 tmp &= ~RCR2_PEF; /* Clear PES bit */ 229 tmp |= (rtc->periodic_freq & ~PF_HP); /* Set PES2-0 */ 230 } else 231 tmp &= ~(RCR2_PESMASK | RCR2_PEF); 232 233 writeb(tmp, rtc->regbase + RCR2); 234 235 spin_unlock_irq(&rtc->lock); 236 } 237 238 static inline int sh_rtc_setfreq(struct device *dev, unsigned int freq) 239 { 240 struct sh_rtc *rtc = dev_get_drvdata(dev); 241 int tmp, ret = 0; 242 243 spin_lock_irq(&rtc->lock); 244 tmp = rtc->periodic_freq & PF_MASK; 245 246 switch (freq) { 247 case 0: 248 rtc->periodic_freq = 0x00; 249 break; 250 case 1: 251 rtc->periodic_freq = 0x60; 252 break; 253 case 2: 254 rtc->periodic_freq = 0x50; 255 break; 256 case 4: 257 rtc->periodic_freq = 0x40; 258 break; 259 case 8: 260 rtc->periodic_freq = 0x30 | PF_HP; 261 break; 262 case 16: 263 rtc->periodic_freq = 0x30; 264 break; 265 case 32: 266 rtc->periodic_freq = 0x20 | PF_HP; 267 break; 268 case 64: 269 rtc->periodic_freq = 0x20; 270 break; 271 case 128: 272 rtc->periodic_freq = 0x10 | PF_HP; 273 break; 274 case 256: 275 rtc->periodic_freq = 0x10; 276 break; 277 default: 278 ret = -ENOTSUPP; 279 } 280 281 if (ret == 0) { 282 rtc->periodic_freq |= tmp; 283 rtc->rtc_dev->irq_freq = freq; 284 } 285 286 spin_unlock_irq(&rtc->lock); 287 return ret; 288 } 289 290 static inline void sh_rtc_setaie(struct device *dev, unsigned int enable) 291 { 292 struct sh_rtc *rtc = dev_get_drvdata(dev); 293 unsigned int tmp; 294 295 spin_lock_irq(&rtc->lock); 296 297 tmp = readb(rtc->regbase + RCR1); 298 299 if (enable) 300 tmp |= RCR1_AIE; 301 else 302 tmp &= ~RCR1_AIE; 303 304 writeb(tmp, rtc->regbase + RCR1); 305 306 spin_unlock_irq(&rtc->lock); 307 } 308 309 static int sh_rtc_proc(struct device *dev, struct seq_file *seq) 310 { 311 struct sh_rtc *rtc = dev_get_drvdata(dev); 312 unsigned int tmp; 313 314 tmp = readb(rtc->regbase + RCR1); 315 seq_printf(seq, "carry_IRQ\t: %s\n", (tmp & RCR1_CIE) ? "yes" : "no"); 316 317 tmp = readb(rtc->regbase + RCR2); 318 seq_printf(seq, "periodic_IRQ\t: %s\n", 319 (tmp & RCR2_PESMASK) ? "yes" : "no"); 320 321 return 0; 322 } 323 324 static inline void sh_rtc_setcie(struct device *dev, unsigned int enable) 325 { 326 struct sh_rtc *rtc = dev_get_drvdata(dev); 327 unsigned int tmp; 328 329 spin_lock_irq(&rtc->lock); 330 331 tmp = readb(rtc->regbase + RCR1); 332 333 if (!enable) 334 tmp &= ~RCR1_CIE; 335 else 336 tmp |= RCR1_CIE; 337 338 writeb(tmp, rtc->regbase + RCR1); 339 340 spin_unlock_irq(&rtc->lock); 341 } 342 343 static int sh_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg) 344 { 345 struct sh_rtc *rtc = dev_get_drvdata(dev); 346 unsigned int ret = 0; 347 348 switch (cmd) { 349 case RTC_PIE_OFF: 350 case RTC_PIE_ON: 351 sh_rtc_setpie(dev, cmd == RTC_PIE_ON); 352 break; 353 case RTC_AIE_OFF: 354 case RTC_AIE_ON: 355 sh_rtc_setaie(dev, cmd == RTC_AIE_ON); 356 break; 357 case RTC_UIE_OFF: 358 rtc->periodic_freq &= ~PF_OXS; 359 sh_rtc_setcie(dev, 0); 360 break; 361 case RTC_UIE_ON: 362 rtc->periodic_freq |= PF_OXS; 363 sh_rtc_setcie(dev, 1); 364 break; 365 case RTC_IRQP_READ: 366 ret = put_user(rtc->rtc_dev->irq_freq, 367 (unsigned long __user *)arg); 368 break; 369 case RTC_IRQP_SET: 370 ret = sh_rtc_setfreq(dev, arg); 371 break; 372 default: 373 ret = -ENOIOCTLCMD; 374 } 375 376 return ret; 377 } 378 379 static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm) 380 { 381 struct platform_device *pdev = to_platform_device(dev); 382 struct sh_rtc *rtc = platform_get_drvdata(pdev); 383 unsigned int sec128, sec2, yr, yr100, cf_bit; 384 385 do { 386 unsigned int tmp; 387 388 spin_lock_irq(&rtc->lock); 389 390 tmp = readb(rtc->regbase + RCR1); 391 tmp &= ~RCR1_CF; /* Clear CF-bit */ 392 tmp |= RCR1_CIE; 393 writeb(tmp, rtc->regbase + RCR1); 394 395 sec128 = readb(rtc->regbase + R64CNT); 396 397 tm->tm_sec = bcd2bin(readb(rtc->regbase + RSECCNT)); 398 tm->tm_min = bcd2bin(readb(rtc->regbase + RMINCNT)); 399 tm->tm_hour = bcd2bin(readb(rtc->regbase + RHRCNT)); 400 tm->tm_wday = bcd2bin(readb(rtc->regbase + RWKCNT)); 401 tm->tm_mday = bcd2bin(readb(rtc->regbase + RDAYCNT)); 402 tm->tm_mon = bcd2bin(readb(rtc->regbase + RMONCNT)) - 1; 403 404 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) { 405 yr = readw(rtc->regbase + RYRCNT); 406 yr100 = bcd2bin(yr >> 8); 407 yr &= 0xff; 408 } else { 409 yr = readb(rtc->regbase + RYRCNT); 410 yr100 = bcd2bin((yr == 0x99) ? 0x19 : 0x20); 411 } 412 413 tm->tm_year = (yr100 * 100 + bcd2bin(yr)) - 1900; 414 415 sec2 = readb(rtc->regbase + R64CNT); 416 cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF; 417 418 spin_unlock_irq(&rtc->lock); 419 } while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0); 420 421 #if RTC_BIT_INVERTED != 0 422 if ((sec128 & RTC_BIT_INVERTED)) 423 tm->tm_sec--; 424 #endif 425 426 /* only keep the carry interrupt enabled if UIE is on */ 427 if (!(rtc->periodic_freq & PF_OXS)) 428 sh_rtc_setcie(dev, 0); 429 430 dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, " 431 "mday=%d, mon=%d, year=%d, wday=%d\n", 432 __func__, 433 tm->tm_sec, tm->tm_min, tm->tm_hour, 434 tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday); 435 436 return rtc_valid_tm(tm); 437 } 438 439 static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm) 440 { 441 struct platform_device *pdev = to_platform_device(dev); 442 struct sh_rtc *rtc = platform_get_drvdata(pdev); 443 unsigned int tmp; 444 int year; 445 446 spin_lock_irq(&rtc->lock); 447 448 /* Reset pre-scaler & stop RTC */ 449 tmp = readb(rtc->regbase + RCR2); 450 tmp |= RCR2_RESET; 451 tmp &= ~RCR2_START; 452 writeb(tmp, rtc->regbase + RCR2); 453 454 writeb(bin2bcd(tm->tm_sec), rtc->regbase + RSECCNT); 455 writeb(bin2bcd(tm->tm_min), rtc->regbase + RMINCNT); 456 writeb(bin2bcd(tm->tm_hour), rtc->regbase + RHRCNT); 457 writeb(bin2bcd(tm->tm_wday), rtc->regbase + RWKCNT); 458 writeb(bin2bcd(tm->tm_mday), rtc->regbase + RDAYCNT); 459 writeb(bin2bcd(tm->tm_mon + 1), rtc->regbase + RMONCNT); 460 461 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) { 462 year = (bin2bcd((tm->tm_year + 1900) / 100) << 8) | 463 bin2bcd(tm->tm_year % 100); 464 writew(year, rtc->regbase + RYRCNT); 465 } else { 466 year = tm->tm_year % 100; 467 writeb(bin2bcd(year), rtc->regbase + RYRCNT); 468 } 469 470 /* Start RTC */ 471 tmp = readb(rtc->regbase + RCR2); 472 tmp &= ~RCR2_RESET; 473 tmp |= RCR2_RTCEN | RCR2_START; 474 writeb(tmp, rtc->regbase + RCR2); 475 476 spin_unlock_irq(&rtc->lock); 477 478 return 0; 479 } 480 481 static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off) 482 { 483 unsigned int byte; 484 int value = 0xff; /* return 0xff for ignored values */ 485 486 byte = readb(rtc->regbase + reg_off); 487 if (byte & AR_ENB) { 488 byte &= ~AR_ENB; /* strip the enable bit */ 489 value = bcd2bin(byte); 490 } 491 492 return value; 493 } 494 495 static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm) 496 { 497 struct platform_device *pdev = to_platform_device(dev); 498 struct sh_rtc *rtc = platform_get_drvdata(pdev); 499 struct rtc_time *tm = &wkalrm->time; 500 501 spin_lock_irq(&rtc->lock); 502 503 tm->tm_sec = sh_rtc_read_alarm_value(rtc, RSECAR); 504 tm->tm_min = sh_rtc_read_alarm_value(rtc, RMINAR); 505 tm->tm_hour = sh_rtc_read_alarm_value(rtc, RHRAR); 506 tm->tm_wday = sh_rtc_read_alarm_value(rtc, RWKAR); 507 tm->tm_mday = sh_rtc_read_alarm_value(rtc, RDAYAR); 508 tm->tm_mon = sh_rtc_read_alarm_value(rtc, RMONAR); 509 if (tm->tm_mon > 0) 510 tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */ 511 tm->tm_year = 0xffff; 512 513 wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0; 514 515 spin_unlock_irq(&rtc->lock); 516 517 return 0; 518 } 519 520 static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc, 521 int value, int reg_off) 522 { 523 /* < 0 for a value that is ignored */ 524 if (value < 0) 525 writeb(0, rtc->regbase + reg_off); 526 else 527 writeb(bin2bcd(value) | AR_ENB, rtc->regbase + reg_off); 528 } 529 530 static int sh_rtc_check_alarm(struct rtc_time *tm) 531 { 532 /* 533 * The original rtc says anything > 0xc0 is "don't care" or "match 534 * all" - most users use 0xff but rtc-dev uses -1 for the same thing. 535 * The original rtc doesn't support years - some things use -1 and 536 * some 0xffff. We use -1 to make out tests easier. 537 */ 538 if (tm->tm_year == 0xffff) 539 tm->tm_year = -1; 540 if (tm->tm_mon >= 0xff) 541 tm->tm_mon = -1; 542 if (tm->tm_mday >= 0xff) 543 tm->tm_mday = -1; 544 if (tm->tm_wday >= 0xff) 545 tm->tm_wday = -1; 546 if (tm->tm_hour >= 0xff) 547 tm->tm_hour = -1; 548 if (tm->tm_min >= 0xff) 549 tm->tm_min = -1; 550 if (tm->tm_sec >= 0xff) 551 tm->tm_sec = -1; 552 553 if (tm->tm_year > 9999 || 554 tm->tm_mon >= 12 || 555 tm->tm_mday == 0 || tm->tm_mday >= 32 || 556 tm->tm_wday >= 7 || 557 tm->tm_hour >= 24 || 558 tm->tm_min >= 60 || 559 tm->tm_sec >= 60) 560 return -EINVAL; 561 562 return 0; 563 } 564 565 static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm) 566 { 567 struct platform_device *pdev = to_platform_device(dev); 568 struct sh_rtc *rtc = platform_get_drvdata(pdev); 569 unsigned int rcr1; 570 struct rtc_time *tm = &wkalrm->time; 571 int mon, err; 572 573 err = sh_rtc_check_alarm(tm); 574 if (unlikely(err < 0)) 575 return err; 576 577 spin_lock_irq(&rtc->lock); 578 579 /* disable alarm interrupt and clear the alarm flag */ 580 rcr1 = readb(rtc->regbase + RCR1); 581 rcr1 &= ~(RCR1_AF | RCR1_AIE); 582 writeb(rcr1, rtc->regbase + RCR1); 583 584 /* set alarm time */ 585 sh_rtc_write_alarm_value(rtc, tm->tm_sec, RSECAR); 586 sh_rtc_write_alarm_value(rtc, tm->tm_min, RMINAR); 587 sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR); 588 sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR); 589 sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR); 590 mon = tm->tm_mon; 591 if (mon >= 0) 592 mon += 1; 593 sh_rtc_write_alarm_value(rtc, mon, RMONAR); 594 595 if (wkalrm->enabled) { 596 rcr1 |= RCR1_AIE; 597 writeb(rcr1, rtc->regbase + RCR1); 598 } 599 600 spin_unlock_irq(&rtc->lock); 601 602 return 0; 603 } 604 605 static int sh_rtc_irq_set_state(struct device *dev, int enabled) 606 { 607 struct platform_device *pdev = to_platform_device(dev); 608 struct sh_rtc *rtc = platform_get_drvdata(pdev); 609 610 if (enabled) { 611 rtc->periodic_freq |= PF_KOU; 612 return sh_rtc_ioctl(dev, RTC_PIE_ON, 0); 613 } else { 614 rtc->periodic_freq &= ~PF_KOU; 615 return sh_rtc_ioctl(dev, RTC_PIE_OFF, 0); 616 } 617 } 618 619 static int sh_rtc_irq_set_freq(struct device *dev, int freq) 620 { 621 if (!is_power_of_2(freq)) 622 return -EINVAL; 623 624 return sh_rtc_ioctl(dev, RTC_IRQP_SET, freq); 625 } 626 627 static struct rtc_class_ops sh_rtc_ops = { 628 .ioctl = sh_rtc_ioctl, 629 .read_time = sh_rtc_read_time, 630 .set_time = sh_rtc_set_time, 631 .read_alarm = sh_rtc_read_alarm, 632 .set_alarm = sh_rtc_set_alarm, 633 .irq_set_state = sh_rtc_irq_set_state, 634 .irq_set_freq = sh_rtc_irq_set_freq, 635 .proc = sh_rtc_proc, 636 }; 637 638 static int __devinit sh_rtc_probe(struct platform_device *pdev) 639 { 640 struct sh_rtc *rtc; 641 struct resource *res; 642 struct rtc_time r; 643 char clk_name[6]; 644 int clk_id, ret; 645 646 rtc = kzalloc(sizeof(struct sh_rtc), GFP_KERNEL); 647 if (unlikely(!rtc)) 648 return -ENOMEM; 649 650 spin_lock_init(&rtc->lock); 651 652 /* get periodic/carry/alarm irqs */ 653 ret = platform_get_irq(pdev, 0); 654 if (unlikely(ret <= 0)) { 655 ret = -ENOENT; 656 dev_err(&pdev->dev, "No IRQ resource\n"); 657 goto err_badres; 658 } 659 660 rtc->periodic_irq = ret; 661 rtc->carry_irq = platform_get_irq(pdev, 1); 662 rtc->alarm_irq = platform_get_irq(pdev, 2); 663 664 res = platform_get_resource(pdev, IORESOURCE_IO, 0); 665 if (unlikely(res == NULL)) { 666 ret = -ENOENT; 667 dev_err(&pdev->dev, "No IO resource\n"); 668 goto err_badres; 669 } 670 671 rtc->regsize = resource_size(res); 672 673 rtc->res = request_mem_region(res->start, rtc->regsize, pdev->name); 674 if (unlikely(!rtc->res)) { 675 ret = -EBUSY; 676 goto err_badres; 677 } 678 679 rtc->regbase = ioremap_nocache(rtc->res->start, rtc->regsize); 680 if (unlikely(!rtc->regbase)) { 681 ret = -EINVAL; 682 goto err_badmap; 683 } 684 685 clk_id = pdev->id; 686 /* With a single device, the clock id is still "rtc0" */ 687 if (clk_id < 0) 688 clk_id = 0; 689 690 snprintf(clk_name, sizeof(clk_name), "rtc%d", clk_id); 691 692 rtc->clk = clk_get(&pdev->dev, clk_name); 693 if (IS_ERR(rtc->clk)) { 694 /* 695 * No error handling for rtc->clk intentionally, not all 696 * platforms will have a unique clock for the RTC, and 697 * the clk API can handle the struct clk pointer being 698 * NULL. 699 */ 700 rtc->clk = NULL; 701 } 702 703 clk_enable(rtc->clk); 704 705 rtc->rtc_dev = rtc_device_register("sh", &pdev->dev, 706 &sh_rtc_ops, THIS_MODULE); 707 if (IS_ERR(rtc->rtc_dev)) { 708 ret = PTR_ERR(rtc->rtc_dev); 709 goto err_unmap; 710 } 711 712 rtc->capabilities = RTC_DEF_CAPABILITIES; 713 if (pdev->dev.platform_data) { 714 struct sh_rtc_platform_info *pinfo = pdev->dev.platform_data; 715 716 /* 717 * Some CPUs have special capabilities in addition to the 718 * default set. Add those in here. 719 */ 720 rtc->capabilities |= pinfo->capabilities; 721 } 722 723 rtc->rtc_dev->max_user_freq = 256; 724 725 platform_set_drvdata(pdev, rtc); 726 727 if (rtc->carry_irq <= 0) { 728 /* register shared periodic/carry/alarm irq */ 729 ret = request_irq(rtc->periodic_irq, sh_rtc_shared, 730 IRQF_DISABLED, "sh-rtc", rtc); 731 if (unlikely(ret)) { 732 dev_err(&pdev->dev, 733 "request IRQ failed with %d, IRQ %d\n", ret, 734 rtc->periodic_irq); 735 goto err_unmap; 736 } 737 } else { 738 /* register periodic/carry/alarm irqs */ 739 ret = request_irq(rtc->periodic_irq, sh_rtc_periodic, 740 IRQF_DISABLED, "sh-rtc period", rtc); 741 if (unlikely(ret)) { 742 dev_err(&pdev->dev, 743 "request period IRQ failed with %d, IRQ %d\n", 744 ret, rtc->periodic_irq); 745 goto err_unmap; 746 } 747 748 ret = request_irq(rtc->carry_irq, sh_rtc_interrupt, 749 IRQF_DISABLED, "sh-rtc carry", rtc); 750 if (unlikely(ret)) { 751 dev_err(&pdev->dev, 752 "request carry IRQ failed with %d, IRQ %d\n", 753 ret, rtc->carry_irq); 754 free_irq(rtc->periodic_irq, rtc); 755 goto err_unmap; 756 } 757 758 ret = request_irq(rtc->alarm_irq, sh_rtc_alarm, 759 IRQF_DISABLED, "sh-rtc alarm", rtc); 760 if (unlikely(ret)) { 761 dev_err(&pdev->dev, 762 "request alarm IRQ failed with %d, IRQ %d\n", 763 ret, rtc->alarm_irq); 764 free_irq(rtc->carry_irq, rtc); 765 free_irq(rtc->periodic_irq, rtc); 766 goto err_unmap; 767 } 768 } 769 770 /* everything disabled by default */ 771 rtc->periodic_freq = 0; 772 rtc->rtc_dev->irq_freq = 0; 773 sh_rtc_setpie(&pdev->dev, 0); 774 sh_rtc_setaie(&pdev->dev, 0); 775 sh_rtc_setcie(&pdev->dev, 0); 776 777 /* reset rtc to epoch 0 if time is invalid */ 778 if (rtc_read_time(rtc->rtc_dev, &r) < 0) { 779 rtc_time_to_tm(0, &r); 780 rtc_set_time(rtc->rtc_dev, &r); 781 } 782 783 device_init_wakeup(&pdev->dev, 1); 784 return 0; 785 786 err_unmap: 787 clk_disable(rtc->clk); 788 clk_put(rtc->clk); 789 iounmap(rtc->regbase); 790 err_badmap: 791 release_resource(rtc->res); 792 err_badres: 793 kfree(rtc); 794 795 return ret; 796 } 797 798 static int __devexit sh_rtc_remove(struct platform_device *pdev) 799 { 800 struct sh_rtc *rtc = platform_get_drvdata(pdev); 801 802 if (likely(rtc->rtc_dev)) 803 rtc_device_unregister(rtc->rtc_dev); 804 805 sh_rtc_setpie(&pdev->dev, 0); 806 sh_rtc_setaie(&pdev->dev, 0); 807 sh_rtc_setcie(&pdev->dev, 0); 808 809 free_irq(rtc->periodic_irq, rtc); 810 811 if (rtc->carry_irq > 0) { 812 free_irq(rtc->carry_irq, rtc); 813 free_irq(rtc->alarm_irq, rtc); 814 } 815 816 release_resource(rtc->res); 817 818 iounmap(rtc->regbase); 819 820 clk_disable(rtc->clk); 821 clk_put(rtc->clk); 822 823 platform_set_drvdata(pdev, NULL); 824 825 kfree(rtc); 826 827 return 0; 828 } 829 830 static void sh_rtc_set_irq_wake(struct device *dev, int enabled) 831 { 832 struct platform_device *pdev = to_platform_device(dev); 833 struct sh_rtc *rtc = platform_get_drvdata(pdev); 834 835 set_irq_wake(rtc->periodic_irq, enabled); 836 837 if (rtc->carry_irq > 0) { 838 set_irq_wake(rtc->carry_irq, enabled); 839 set_irq_wake(rtc->alarm_irq, enabled); 840 } 841 } 842 843 static int sh_rtc_suspend(struct device *dev) 844 { 845 if (device_may_wakeup(dev)) 846 sh_rtc_set_irq_wake(dev, 1); 847 848 return 0; 849 } 850 851 static int sh_rtc_resume(struct device *dev) 852 { 853 if (device_may_wakeup(dev)) 854 sh_rtc_set_irq_wake(dev, 0); 855 856 return 0; 857 } 858 859 static struct dev_pm_ops sh_rtc_dev_pm_ops = { 860 .suspend = sh_rtc_suspend, 861 .resume = sh_rtc_resume, 862 }; 863 864 static struct platform_driver sh_rtc_platform_driver = { 865 .driver = { 866 .name = DRV_NAME, 867 .owner = THIS_MODULE, 868 .pm = &sh_rtc_dev_pm_ops, 869 }, 870 .probe = sh_rtc_probe, 871 .remove = __devexit_p(sh_rtc_remove), 872 }; 873 874 static int __init sh_rtc_init(void) 875 { 876 return platform_driver_register(&sh_rtc_platform_driver); 877 } 878 879 static void __exit sh_rtc_exit(void) 880 { 881 platform_driver_unregister(&sh_rtc_platform_driver); 882 } 883 884 module_init(sh_rtc_init); 885 module_exit(sh_rtc_exit); 886 887 MODULE_DESCRIPTION("SuperH on-chip RTC driver"); 888 MODULE_VERSION(DRV_VERSION); 889 MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, " 890 "Jamie Lenehan <lenehan@twibble.org>, " 891 "Angelo Castello <angelo.castello@st.com>"); 892 MODULE_LICENSE("GPL"); 893 MODULE_ALIAS("platform:" DRV_NAME); 894