1 /* 2 * SuperH On-Chip RTC Support 3 * 4 * Copyright (C) 2006 Paul Mundt 5 * Copyright (C) 2006 Jamie Lenehan 6 * 7 * Based on the old arch/sh/kernel/cpu/rtc.c by: 8 * 9 * Copyright (C) 2000 Philipp Rumpf <prumpf@tux.org> 10 * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka 11 * 12 * This file is subject to the terms and conditions of the GNU General Public 13 * License. See the file "COPYING" in the main directory of this archive 14 * for more details. 15 */ 16 #include <linux/module.h> 17 #include <linux/kernel.h> 18 #include <linux/bcd.h> 19 #include <linux/rtc.h> 20 #include <linux/init.h> 21 #include <linux/platform_device.h> 22 #include <linux/seq_file.h> 23 #include <linux/interrupt.h> 24 #include <linux/spinlock.h> 25 #include <linux/io.h> 26 27 #define DRV_NAME "sh-rtc" 28 #define DRV_VERSION "0.1.2" 29 30 #ifdef CONFIG_CPU_SH3 31 #define rtc_reg_size sizeof(u16) 32 #define RTC_BIT_INVERTED 0 /* No bug on SH7708, SH7709A */ 33 #elif defined(CONFIG_CPU_SH4) 34 #define rtc_reg_size sizeof(u32) 35 #define RTC_BIT_INVERTED 0x40 /* bug on SH7750, SH7750S */ 36 #endif 37 38 #define RTC_REG(r) ((r) * rtc_reg_size) 39 40 #define R64CNT RTC_REG(0) 41 42 #define RSECCNT RTC_REG(1) /* RTC sec */ 43 #define RMINCNT RTC_REG(2) /* RTC min */ 44 #define RHRCNT RTC_REG(3) /* RTC hour */ 45 #define RWKCNT RTC_REG(4) /* RTC week */ 46 #define RDAYCNT RTC_REG(5) /* RTC day */ 47 #define RMONCNT RTC_REG(6) /* RTC month */ 48 #define RYRCNT RTC_REG(7) /* RTC year */ 49 #define RSECAR RTC_REG(8) /* ALARM sec */ 50 #define RMINAR RTC_REG(9) /* ALARM min */ 51 #define RHRAR RTC_REG(10) /* ALARM hour */ 52 #define RWKAR RTC_REG(11) /* ALARM week */ 53 #define RDAYAR RTC_REG(12) /* ALARM day */ 54 #define RMONAR RTC_REG(13) /* ALARM month */ 55 #define RCR1 RTC_REG(14) /* Control */ 56 #define RCR2 RTC_REG(15) /* Control */ 57 58 /* ALARM Bits - or with BCD encoded value */ 59 #define AR_ENB 0x80 /* Enable for alarm cmp */ 60 61 /* RCR1 Bits */ 62 #define RCR1_CF 0x80 /* Carry Flag */ 63 #define RCR1_CIE 0x10 /* Carry Interrupt Enable */ 64 #define RCR1_AIE 0x08 /* Alarm Interrupt Enable */ 65 #define RCR1_AF 0x01 /* Alarm Flag */ 66 67 /* RCR2 Bits */ 68 #define RCR2_PEF 0x80 /* PEriodic interrupt Flag */ 69 #define RCR2_PESMASK 0x70 /* Periodic interrupt Set */ 70 #define RCR2_RTCEN 0x08 /* ENable RTC */ 71 #define RCR2_ADJ 0x04 /* ADJustment (30-second) */ 72 #define RCR2_RESET 0x02 /* Reset bit */ 73 #define RCR2_START 0x01 /* Start bit */ 74 75 struct sh_rtc { 76 void __iomem *regbase; 77 unsigned long regsize; 78 struct resource *res; 79 unsigned int alarm_irq, periodic_irq, carry_irq; 80 struct rtc_device *rtc_dev; 81 spinlock_t lock; 82 int rearm_aie; 83 }; 84 85 static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id) 86 { 87 struct platform_device *pdev = to_platform_device(dev_id); 88 struct sh_rtc *rtc = platform_get_drvdata(pdev); 89 unsigned int tmp, events = 0; 90 91 spin_lock(&rtc->lock); 92 93 tmp = readb(rtc->regbase + RCR1); 94 tmp &= ~RCR1_CF; 95 96 if (rtc->rearm_aie) { 97 if (tmp & RCR1_AF) 98 tmp &= ~RCR1_AF; /* try to clear AF again */ 99 else { 100 tmp |= RCR1_AIE; /* AF has cleared, rearm IRQ */ 101 rtc->rearm_aie = 0; 102 } 103 } 104 105 writeb(tmp, rtc->regbase + RCR1); 106 107 rtc_update_irq(rtc->rtc_dev, 1, events); 108 109 spin_unlock(&rtc->lock); 110 111 return IRQ_HANDLED; 112 } 113 114 static irqreturn_t sh_rtc_alarm(int irq, void *dev_id) 115 { 116 struct platform_device *pdev = to_platform_device(dev_id); 117 struct sh_rtc *rtc = platform_get_drvdata(pdev); 118 unsigned int tmp, events = 0; 119 120 spin_lock(&rtc->lock); 121 122 tmp = readb(rtc->regbase + RCR1); 123 124 /* 125 * If AF is set then the alarm has triggered. If we clear AF while 126 * the alarm time still matches the RTC time then AF will 127 * immediately be set again, and if AIE is enabled then the alarm 128 * interrupt will immediately be retrigger. So we clear AIE here 129 * and use rtc->rearm_aie so that the carry interrupt will keep 130 * trying to clear AF and once it stays cleared it'll re-enable 131 * AIE. 132 */ 133 if (tmp & RCR1_AF) { 134 events |= RTC_AF | RTC_IRQF; 135 136 tmp &= ~(RCR1_AF|RCR1_AIE); 137 138 writeb(tmp, rtc->regbase + RCR1); 139 140 rtc->rearm_aie = 1; 141 142 rtc_update_irq(rtc->rtc_dev, 1, events); 143 } 144 145 spin_unlock(&rtc->lock); 146 return IRQ_HANDLED; 147 } 148 149 static irqreturn_t sh_rtc_periodic(int irq, void *dev_id) 150 { 151 struct platform_device *pdev = to_platform_device(dev_id); 152 struct sh_rtc *rtc = platform_get_drvdata(pdev); 153 154 spin_lock(&rtc->lock); 155 156 rtc_update_irq(rtc->rtc_dev, 1, RTC_PF | RTC_IRQF); 157 158 spin_unlock(&rtc->lock); 159 160 return IRQ_HANDLED; 161 } 162 163 static inline void sh_rtc_setpie(struct device *dev, unsigned int enable) 164 { 165 struct sh_rtc *rtc = dev_get_drvdata(dev); 166 unsigned int tmp; 167 168 spin_lock_irq(&rtc->lock); 169 170 tmp = readb(rtc->regbase + RCR2); 171 172 if (enable) { 173 tmp &= ~RCR2_PESMASK; 174 tmp |= RCR2_PEF | (2 << 4); 175 } else 176 tmp &= ~(RCR2_PESMASK | RCR2_PEF); 177 178 writeb(tmp, rtc->regbase + RCR2); 179 180 spin_unlock_irq(&rtc->lock); 181 } 182 183 static inline void sh_rtc_setaie(struct device *dev, unsigned int enable) 184 { 185 struct sh_rtc *rtc = dev_get_drvdata(dev); 186 unsigned int tmp; 187 188 spin_lock_irq(&rtc->lock); 189 190 tmp = readb(rtc->regbase + RCR1); 191 192 if (!enable) { 193 tmp &= ~RCR1_AIE; 194 rtc->rearm_aie = 0; 195 } else if (rtc->rearm_aie == 0) 196 tmp |= RCR1_AIE; 197 198 writeb(tmp, rtc->regbase + RCR1); 199 200 spin_unlock_irq(&rtc->lock); 201 } 202 203 static int sh_rtc_open(struct device *dev) 204 { 205 struct sh_rtc *rtc = dev_get_drvdata(dev); 206 unsigned int tmp; 207 int ret; 208 209 tmp = readb(rtc->regbase + RCR1); 210 tmp &= ~RCR1_CF; 211 tmp |= RCR1_CIE; 212 writeb(tmp, rtc->regbase + RCR1); 213 214 ret = request_irq(rtc->periodic_irq, sh_rtc_periodic, IRQF_DISABLED, 215 "sh-rtc period", dev); 216 if (unlikely(ret)) { 217 dev_err(dev, "request period IRQ failed with %d, IRQ %d\n", 218 ret, rtc->periodic_irq); 219 return ret; 220 } 221 222 ret = request_irq(rtc->carry_irq, sh_rtc_interrupt, IRQF_DISABLED, 223 "sh-rtc carry", dev); 224 if (unlikely(ret)) { 225 dev_err(dev, "request carry IRQ failed with %d, IRQ %d\n", 226 ret, rtc->carry_irq); 227 free_irq(rtc->periodic_irq, dev); 228 goto err_bad_carry; 229 } 230 231 ret = request_irq(rtc->alarm_irq, sh_rtc_alarm, IRQF_DISABLED, 232 "sh-rtc alarm", dev); 233 if (unlikely(ret)) { 234 dev_err(dev, "request alarm IRQ failed with %d, IRQ %d\n", 235 ret, rtc->alarm_irq); 236 goto err_bad_alarm; 237 } 238 239 return 0; 240 241 err_bad_alarm: 242 free_irq(rtc->carry_irq, dev); 243 err_bad_carry: 244 free_irq(rtc->periodic_irq, dev); 245 246 return ret; 247 } 248 249 static void sh_rtc_release(struct device *dev) 250 { 251 struct sh_rtc *rtc = dev_get_drvdata(dev); 252 253 sh_rtc_setpie(dev, 0); 254 sh_rtc_setaie(dev, 0); 255 256 free_irq(rtc->periodic_irq, dev); 257 free_irq(rtc->carry_irq, dev); 258 free_irq(rtc->alarm_irq, dev); 259 } 260 261 static int sh_rtc_proc(struct device *dev, struct seq_file *seq) 262 { 263 struct sh_rtc *rtc = dev_get_drvdata(dev); 264 unsigned int tmp; 265 266 tmp = readb(rtc->regbase + RCR1); 267 seq_printf(seq, "carry_IRQ\t: %s\n", 268 (tmp & RCR1_CIE) ? "yes" : "no"); 269 270 tmp = readb(rtc->regbase + RCR2); 271 seq_printf(seq, "periodic_IRQ\t: %s\n", 272 (tmp & RCR2_PEF) ? "yes" : "no"); 273 274 return 0; 275 } 276 277 static int sh_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg) 278 { 279 unsigned int ret = -ENOIOCTLCMD; 280 281 switch (cmd) { 282 case RTC_PIE_OFF: 283 case RTC_PIE_ON: 284 sh_rtc_setpie(dev, cmd == RTC_PIE_ON); 285 ret = 0; 286 break; 287 case RTC_AIE_OFF: 288 case RTC_AIE_ON: 289 sh_rtc_setaie(dev, cmd == RTC_AIE_ON); 290 ret = 0; 291 break; 292 } 293 294 return ret; 295 } 296 297 static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm) 298 { 299 struct platform_device *pdev = to_platform_device(dev); 300 struct sh_rtc *rtc = platform_get_drvdata(pdev); 301 unsigned int sec128, sec2, yr, yr100, cf_bit; 302 303 do { 304 unsigned int tmp; 305 306 spin_lock_irq(&rtc->lock); 307 308 tmp = readb(rtc->regbase + RCR1); 309 tmp &= ~RCR1_CF; /* Clear CF-bit */ 310 tmp |= RCR1_CIE; 311 writeb(tmp, rtc->regbase + RCR1); 312 313 sec128 = readb(rtc->regbase + R64CNT); 314 315 tm->tm_sec = BCD2BIN(readb(rtc->regbase + RSECCNT)); 316 tm->tm_min = BCD2BIN(readb(rtc->regbase + RMINCNT)); 317 tm->tm_hour = BCD2BIN(readb(rtc->regbase + RHRCNT)); 318 tm->tm_wday = BCD2BIN(readb(rtc->regbase + RWKCNT)); 319 tm->tm_mday = BCD2BIN(readb(rtc->regbase + RDAYCNT)); 320 tm->tm_mon = BCD2BIN(readb(rtc->regbase + RMONCNT)) - 1; 321 322 #if defined(CONFIG_CPU_SH4) 323 yr = readw(rtc->regbase + RYRCNT); 324 yr100 = BCD2BIN(yr >> 8); 325 yr &= 0xff; 326 #else 327 yr = readb(rtc->regbase + RYRCNT); 328 yr100 = BCD2BIN((yr == 0x99) ? 0x19 : 0x20); 329 #endif 330 331 tm->tm_year = (yr100 * 100 + BCD2BIN(yr)) - 1900; 332 333 sec2 = readb(rtc->regbase + R64CNT); 334 cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF; 335 336 spin_unlock_irq(&rtc->lock); 337 } while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0); 338 339 #if RTC_BIT_INVERTED != 0 340 if ((sec128 & RTC_BIT_INVERTED)) 341 tm->tm_sec--; 342 #endif 343 344 dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, " 345 "mday=%d, mon=%d, year=%d, wday=%d\n", 346 __FUNCTION__, 347 tm->tm_sec, tm->tm_min, tm->tm_hour, 348 tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday); 349 350 if (rtc_valid_tm(tm) < 0) 351 dev_err(dev, "invalid date\n"); 352 353 return 0; 354 } 355 356 static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm) 357 { 358 struct platform_device *pdev = to_platform_device(dev); 359 struct sh_rtc *rtc = platform_get_drvdata(pdev); 360 unsigned int tmp; 361 int year; 362 363 spin_lock_irq(&rtc->lock); 364 365 /* Reset pre-scaler & stop RTC */ 366 tmp = readb(rtc->regbase + RCR2); 367 tmp |= RCR2_RESET; 368 writeb(tmp, rtc->regbase + RCR2); 369 370 writeb(BIN2BCD(tm->tm_sec), rtc->regbase + RSECCNT); 371 writeb(BIN2BCD(tm->tm_min), rtc->regbase + RMINCNT); 372 writeb(BIN2BCD(tm->tm_hour), rtc->regbase + RHRCNT); 373 writeb(BIN2BCD(tm->tm_wday), rtc->regbase + RWKCNT); 374 writeb(BIN2BCD(tm->tm_mday), rtc->regbase + RDAYCNT); 375 writeb(BIN2BCD(tm->tm_mon + 1), rtc->regbase + RMONCNT); 376 377 #ifdef CONFIG_CPU_SH3 378 year = tm->tm_year % 100; 379 writeb(BIN2BCD(year), rtc->regbase + RYRCNT); 380 #else 381 year = (BIN2BCD((tm->tm_year + 1900) / 100) << 8) | 382 BIN2BCD(tm->tm_year % 100); 383 writew(year, rtc->regbase + RYRCNT); 384 #endif 385 386 /* Start RTC */ 387 tmp = readb(rtc->regbase + RCR2); 388 tmp &= ~RCR2_RESET; 389 tmp |= RCR2_RTCEN | RCR2_START; 390 writeb(tmp, rtc->regbase + RCR2); 391 392 spin_unlock_irq(&rtc->lock); 393 394 return 0; 395 } 396 397 static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off) 398 { 399 unsigned int byte; 400 int value = 0xff; /* return 0xff for ignored values */ 401 402 byte = readb(rtc->regbase + reg_off); 403 if (byte & AR_ENB) { 404 byte &= ~AR_ENB; /* strip the enable bit */ 405 value = BCD2BIN(byte); 406 } 407 408 return value; 409 } 410 411 static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm) 412 { 413 struct platform_device *pdev = to_platform_device(dev); 414 struct sh_rtc *rtc = platform_get_drvdata(pdev); 415 struct rtc_time* tm = &wkalrm->time; 416 417 spin_lock_irq(&rtc->lock); 418 419 tm->tm_sec = sh_rtc_read_alarm_value(rtc, RSECAR); 420 tm->tm_min = sh_rtc_read_alarm_value(rtc, RMINAR); 421 tm->tm_hour = sh_rtc_read_alarm_value(rtc, RHRAR); 422 tm->tm_wday = sh_rtc_read_alarm_value(rtc, RWKAR); 423 tm->tm_mday = sh_rtc_read_alarm_value(rtc, RDAYAR); 424 tm->tm_mon = sh_rtc_read_alarm_value(rtc, RMONAR); 425 if (tm->tm_mon > 0) 426 tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */ 427 tm->tm_year = 0xffff; 428 429 wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0; 430 431 spin_unlock_irq(&rtc->lock); 432 433 return 0; 434 } 435 436 static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc, 437 int value, int reg_off) 438 { 439 /* < 0 for a value that is ignored */ 440 if (value < 0) 441 writeb(0, rtc->regbase + reg_off); 442 else 443 writeb(BIN2BCD(value) | AR_ENB, rtc->regbase + reg_off); 444 } 445 446 static int sh_rtc_check_alarm(struct rtc_time* tm) 447 { 448 /* 449 * The original rtc says anything > 0xc0 is "don't care" or "match 450 * all" - most users use 0xff but rtc-dev uses -1 for the same thing. 451 * The original rtc doesn't support years - some things use -1 and 452 * some 0xffff. We use -1 to make out tests easier. 453 */ 454 if (tm->tm_year == 0xffff) 455 tm->tm_year = -1; 456 if (tm->tm_mon >= 0xff) 457 tm->tm_mon = -1; 458 if (tm->tm_mday >= 0xff) 459 tm->tm_mday = -1; 460 if (tm->tm_wday >= 0xff) 461 tm->tm_wday = -1; 462 if (tm->tm_hour >= 0xff) 463 tm->tm_hour = -1; 464 if (tm->tm_min >= 0xff) 465 tm->tm_min = -1; 466 if (tm->tm_sec >= 0xff) 467 tm->tm_sec = -1; 468 469 if (tm->tm_year > 9999 || 470 tm->tm_mon >= 12 || 471 tm->tm_mday == 0 || tm->tm_mday >= 32 || 472 tm->tm_wday >= 7 || 473 tm->tm_hour >= 24 || 474 tm->tm_min >= 60 || 475 tm->tm_sec >= 60) 476 return -EINVAL; 477 478 return 0; 479 } 480 481 static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm) 482 { 483 struct platform_device *pdev = to_platform_device(dev); 484 struct sh_rtc *rtc = platform_get_drvdata(pdev); 485 unsigned int rcr1; 486 struct rtc_time *tm = &wkalrm->time; 487 int mon, err; 488 489 err = sh_rtc_check_alarm(tm); 490 if (unlikely(err < 0)) 491 return err; 492 493 spin_lock_irq(&rtc->lock); 494 495 /* disable alarm interrupt and clear the alarm flag */ 496 rcr1 = readb(rtc->regbase + RCR1); 497 rcr1 &= ~(RCR1_AF|RCR1_AIE); 498 writeb(rcr1, rtc->regbase + RCR1); 499 500 rtc->rearm_aie = 0; 501 502 /* set alarm time */ 503 sh_rtc_write_alarm_value(rtc, tm->tm_sec, RSECAR); 504 sh_rtc_write_alarm_value(rtc, tm->tm_min, RMINAR); 505 sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR); 506 sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR); 507 sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR); 508 mon = tm->tm_mon; 509 if (mon >= 0) 510 mon += 1; 511 sh_rtc_write_alarm_value(rtc, mon, RMONAR); 512 513 if (wkalrm->enabled) { 514 rcr1 |= RCR1_AIE; 515 writeb(rcr1, rtc->regbase + RCR1); 516 } 517 518 spin_unlock_irq(&rtc->lock); 519 520 return 0; 521 } 522 523 static struct rtc_class_ops sh_rtc_ops = { 524 .open = sh_rtc_open, 525 .release = sh_rtc_release, 526 .ioctl = sh_rtc_ioctl, 527 .read_time = sh_rtc_read_time, 528 .set_time = sh_rtc_set_time, 529 .read_alarm = sh_rtc_read_alarm, 530 .set_alarm = sh_rtc_set_alarm, 531 .proc = sh_rtc_proc, 532 }; 533 534 static int __devinit sh_rtc_probe(struct platform_device *pdev) 535 { 536 struct sh_rtc *rtc; 537 struct resource *res; 538 int ret = -ENOENT; 539 540 rtc = kzalloc(sizeof(struct sh_rtc), GFP_KERNEL); 541 if (unlikely(!rtc)) 542 return -ENOMEM; 543 544 spin_lock_init(&rtc->lock); 545 546 rtc->periodic_irq = platform_get_irq(pdev, 0); 547 if (unlikely(rtc->periodic_irq < 0)) { 548 dev_err(&pdev->dev, "No IRQ for period\n"); 549 goto err_badres; 550 } 551 552 rtc->carry_irq = platform_get_irq(pdev, 1); 553 if (unlikely(rtc->carry_irq < 0)) { 554 dev_err(&pdev->dev, "No IRQ for carry\n"); 555 goto err_badres; 556 } 557 558 rtc->alarm_irq = platform_get_irq(pdev, 2); 559 if (unlikely(rtc->alarm_irq < 0)) { 560 dev_err(&pdev->dev, "No IRQ for alarm\n"); 561 goto err_badres; 562 } 563 564 res = platform_get_resource(pdev, IORESOURCE_IO, 0); 565 if (unlikely(res == NULL)) { 566 dev_err(&pdev->dev, "No IO resource\n"); 567 goto err_badres; 568 } 569 570 rtc->regsize = res->end - res->start + 1; 571 572 rtc->res = request_mem_region(res->start, rtc->regsize, pdev->name); 573 if (unlikely(!rtc->res)) { 574 ret = -EBUSY; 575 goto err_badres; 576 } 577 578 rtc->regbase = (void __iomem *)rtc->res->start; 579 if (unlikely(!rtc->regbase)) { 580 ret = -EINVAL; 581 goto err_badmap; 582 } 583 584 rtc->rtc_dev = rtc_device_register("sh", &pdev->dev, 585 &sh_rtc_ops, THIS_MODULE); 586 if (IS_ERR(rtc)) { 587 ret = PTR_ERR(rtc->rtc_dev); 588 goto err_badmap; 589 } 590 591 platform_set_drvdata(pdev, rtc); 592 593 return 0; 594 595 err_badmap: 596 release_resource(rtc->res); 597 err_badres: 598 kfree(rtc); 599 600 return ret; 601 } 602 603 static int __devexit sh_rtc_remove(struct platform_device *pdev) 604 { 605 struct sh_rtc *rtc = platform_get_drvdata(pdev); 606 607 if (likely(rtc->rtc_dev)) 608 rtc_device_unregister(rtc->rtc_dev); 609 610 sh_rtc_setpie(&pdev->dev, 0); 611 sh_rtc_setaie(&pdev->dev, 0); 612 613 release_resource(rtc->res); 614 615 platform_set_drvdata(pdev, NULL); 616 617 kfree(rtc); 618 619 return 0; 620 } 621 static struct platform_driver sh_rtc_platform_driver = { 622 .driver = { 623 .name = DRV_NAME, 624 .owner = THIS_MODULE, 625 }, 626 .probe = sh_rtc_probe, 627 .remove = __devexit_p(sh_rtc_remove), 628 }; 629 630 static int __init sh_rtc_init(void) 631 { 632 return platform_driver_register(&sh_rtc_platform_driver); 633 } 634 635 static void __exit sh_rtc_exit(void) 636 { 637 platform_driver_unregister(&sh_rtc_platform_driver); 638 } 639 640 module_init(sh_rtc_init); 641 module_exit(sh_rtc_exit); 642 643 MODULE_DESCRIPTION("SuperH on-chip RTC driver"); 644 MODULE_VERSION(DRV_VERSION); 645 MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, Jamie Lenehan <lenehan@twibble.org>"); 646 MODULE_LICENSE("GPL"); 647