1 /* 2 * SuperH On-Chip RTC Support 3 * 4 * Copyright (C) 2006 - 2009 Paul Mundt 5 * Copyright (C) 2006 Jamie Lenehan 6 * Copyright (C) 2008 Angelo Castello 7 * 8 * Based on the old arch/sh/kernel/cpu/rtc.c by: 9 * 10 * Copyright (C) 2000 Philipp Rumpf <prumpf@tux.org> 11 * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka 12 * 13 * This file is subject to the terms and conditions of the GNU General Public 14 * License. See the file "COPYING" in the main directory of this archive 15 * for more details. 16 */ 17 #include <linux/module.h> 18 #include <linux/kernel.h> 19 #include <linux/bcd.h> 20 #include <linux/rtc.h> 21 #include <linux/init.h> 22 #include <linux/platform_device.h> 23 #include <linux/seq_file.h> 24 #include <linux/interrupt.h> 25 #include <linux/spinlock.h> 26 #include <linux/io.h> 27 #include <linux/log2.h> 28 #include <linux/clk.h> 29 #include <linux/slab.h> 30 #include <asm/rtc.h> 31 32 #define DRV_NAME "sh-rtc" 33 34 #define RTC_REG(r) ((r) * rtc_reg_size) 35 36 #define R64CNT RTC_REG(0) 37 38 #define RSECCNT RTC_REG(1) /* RTC sec */ 39 #define RMINCNT RTC_REG(2) /* RTC min */ 40 #define RHRCNT RTC_REG(3) /* RTC hour */ 41 #define RWKCNT RTC_REG(4) /* RTC week */ 42 #define RDAYCNT RTC_REG(5) /* RTC day */ 43 #define RMONCNT RTC_REG(6) /* RTC month */ 44 #define RYRCNT RTC_REG(7) /* RTC year */ 45 #define RSECAR RTC_REG(8) /* ALARM sec */ 46 #define RMINAR RTC_REG(9) /* ALARM min */ 47 #define RHRAR RTC_REG(10) /* ALARM hour */ 48 #define RWKAR RTC_REG(11) /* ALARM week */ 49 #define RDAYAR RTC_REG(12) /* ALARM day */ 50 #define RMONAR RTC_REG(13) /* ALARM month */ 51 #define RCR1 RTC_REG(14) /* Control */ 52 #define RCR2 RTC_REG(15) /* Control */ 53 54 /* 55 * Note on RYRAR and RCR3: Up until this point most of the register 56 * definitions are consistent across all of the available parts. However, 57 * the placement of the optional RYRAR and RCR3 (the RYRAR control 58 * register used to control RYRCNT/RYRAR compare) varies considerably 59 * across various parts, occasionally being mapped in to a completely 60 * unrelated address space. For proper RYRAR support a separate resource 61 * would have to be handed off, but as this is purely optional in 62 * practice, we simply opt not to support it, thereby keeping the code 63 * quite a bit more simplified. 64 */ 65 66 /* ALARM Bits - or with BCD encoded value */ 67 #define AR_ENB 0x80 /* Enable for alarm cmp */ 68 69 /* Period Bits */ 70 #define PF_HP 0x100 /* Enable Half Period to support 8,32,128Hz */ 71 #define PF_COUNT 0x200 /* Half periodic counter */ 72 #define PF_OXS 0x400 /* Periodic One x Second */ 73 #define PF_KOU 0x800 /* Kernel or User periodic request 1=kernel */ 74 #define PF_MASK 0xf00 75 76 /* RCR1 Bits */ 77 #define RCR1_CF 0x80 /* Carry Flag */ 78 #define RCR1_CIE 0x10 /* Carry Interrupt Enable */ 79 #define RCR1_AIE 0x08 /* Alarm Interrupt Enable */ 80 #define RCR1_AF 0x01 /* Alarm Flag */ 81 82 /* RCR2 Bits */ 83 #define RCR2_PEF 0x80 /* PEriodic interrupt Flag */ 84 #define RCR2_PESMASK 0x70 /* Periodic interrupt Set */ 85 #define RCR2_RTCEN 0x08 /* ENable RTC */ 86 #define RCR2_ADJ 0x04 /* ADJustment (30-second) */ 87 #define RCR2_RESET 0x02 /* Reset bit */ 88 #define RCR2_START 0x01 /* Start bit */ 89 90 struct sh_rtc { 91 void __iomem *regbase; 92 unsigned long regsize; 93 struct resource *res; 94 int alarm_irq; 95 int periodic_irq; 96 int carry_irq; 97 struct clk *clk; 98 struct rtc_device *rtc_dev; 99 spinlock_t lock; 100 unsigned long capabilities; /* See asm/rtc.h for cap bits */ 101 unsigned short periodic_freq; 102 }; 103 104 static int __sh_rtc_interrupt(struct sh_rtc *rtc) 105 { 106 unsigned int tmp, pending; 107 108 tmp = readb(rtc->regbase + RCR1); 109 pending = tmp & RCR1_CF; 110 tmp &= ~RCR1_CF; 111 writeb(tmp, rtc->regbase + RCR1); 112 113 /* Users have requested One x Second IRQ */ 114 if (pending && rtc->periodic_freq & PF_OXS) 115 rtc_update_irq(rtc->rtc_dev, 1, RTC_UF | RTC_IRQF); 116 117 return pending; 118 } 119 120 static int __sh_rtc_alarm(struct sh_rtc *rtc) 121 { 122 unsigned int tmp, pending; 123 124 tmp = readb(rtc->regbase + RCR1); 125 pending = tmp & RCR1_AF; 126 tmp &= ~(RCR1_AF | RCR1_AIE); 127 writeb(tmp, rtc->regbase + RCR1); 128 129 if (pending) 130 rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF); 131 132 return pending; 133 } 134 135 static int __sh_rtc_periodic(struct sh_rtc *rtc) 136 { 137 struct rtc_device *rtc_dev = rtc->rtc_dev; 138 struct rtc_task *irq_task; 139 unsigned int tmp, pending; 140 141 tmp = readb(rtc->regbase + RCR2); 142 pending = tmp & RCR2_PEF; 143 tmp &= ~RCR2_PEF; 144 writeb(tmp, rtc->regbase + RCR2); 145 146 if (!pending) 147 return 0; 148 149 /* Half period enabled than one skipped and the next notified */ 150 if ((rtc->periodic_freq & PF_HP) && (rtc->periodic_freq & PF_COUNT)) 151 rtc->periodic_freq &= ~PF_COUNT; 152 else { 153 if (rtc->periodic_freq & PF_HP) 154 rtc->periodic_freq |= PF_COUNT; 155 if (rtc->periodic_freq & PF_KOU) { 156 spin_lock(&rtc_dev->irq_task_lock); 157 irq_task = rtc_dev->irq_task; 158 if (irq_task) 159 irq_task->func(irq_task->private_data); 160 spin_unlock(&rtc_dev->irq_task_lock); 161 } else 162 rtc_update_irq(rtc->rtc_dev, 1, RTC_PF | RTC_IRQF); 163 } 164 165 return pending; 166 } 167 168 static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id) 169 { 170 struct sh_rtc *rtc = dev_id; 171 int ret; 172 173 spin_lock(&rtc->lock); 174 ret = __sh_rtc_interrupt(rtc); 175 spin_unlock(&rtc->lock); 176 177 return IRQ_RETVAL(ret); 178 } 179 180 static irqreturn_t sh_rtc_alarm(int irq, void *dev_id) 181 { 182 struct sh_rtc *rtc = dev_id; 183 int ret; 184 185 spin_lock(&rtc->lock); 186 ret = __sh_rtc_alarm(rtc); 187 spin_unlock(&rtc->lock); 188 189 return IRQ_RETVAL(ret); 190 } 191 192 static irqreturn_t sh_rtc_periodic(int irq, void *dev_id) 193 { 194 struct sh_rtc *rtc = dev_id; 195 int ret; 196 197 spin_lock(&rtc->lock); 198 ret = __sh_rtc_periodic(rtc); 199 spin_unlock(&rtc->lock); 200 201 return IRQ_RETVAL(ret); 202 } 203 204 static irqreturn_t sh_rtc_shared(int irq, void *dev_id) 205 { 206 struct sh_rtc *rtc = dev_id; 207 int ret; 208 209 spin_lock(&rtc->lock); 210 ret = __sh_rtc_interrupt(rtc); 211 ret |= __sh_rtc_alarm(rtc); 212 ret |= __sh_rtc_periodic(rtc); 213 spin_unlock(&rtc->lock); 214 215 return IRQ_RETVAL(ret); 216 } 217 218 static int sh_rtc_irq_set_state(struct device *dev, int enable) 219 { 220 struct sh_rtc *rtc = dev_get_drvdata(dev); 221 unsigned int tmp; 222 223 spin_lock_irq(&rtc->lock); 224 225 tmp = readb(rtc->regbase + RCR2); 226 227 if (enable) { 228 rtc->periodic_freq |= PF_KOU; 229 tmp &= ~RCR2_PEF; /* Clear PES bit */ 230 tmp |= (rtc->periodic_freq & ~PF_HP); /* Set PES2-0 */ 231 } else { 232 rtc->periodic_freq &= ~PF_KOU; 233 tmp &= ~(RCR2_PESMASK | RCR2_PEF); 234 } 235 236 writeb(tmp, rtc->regbase + RCR2); 237 238 spin_unlock_irq(&rtc->lock); 239 240 return 0; 241 } 242 243 static int sh_rtc_irq_set_freq(struct device *dev, int freq) 244 { 245 struct sh_rtc *rtc = dev_get_drvdata(dev); 246 int tmp, ret = 0; 247 248 spin_lock_irq(&rtc->lock); 249 tmp = rtc->periodic_freq & PF_MASK; 250 251 switch (freq) { 252 case 0: 253 rtc->periodic_freq = 0x00; 254 break; 255 case 1: 256 rtc->periodic_freq = 0x60; 257 break; 258 case 2: 259 rtc->periodic_freq = 0x50; 260 break; 261 case 4: 262 rtc->periodic_freq = 0x40; 263 break; 264 case 8: 265 rtc->periodic_freq = 0x30 | PF_HP; 266 break; 267 case 16: 268 rtc->periodic_freq = 0x30; 269 break; 270 case 32: 271 rtc->periodic_freq = 0x20 | PF_HP; 272 break; 273 case 64: 274 rtc->periodic_freq = 0x20; 275 break; 276 case 128: 277 rtc->periodic_freq = 0x10 | PF_HP; 278 break; 279 case 256: 280 rtc->periodic_freq = 0x10; 281 break; 282 default: 283 ret = -ENOTSUPP; 284 } 285 286 if (ret == 0) 287 rtc->periodic_freq |= tmp; 288 289 spin_unlock_irq(&rtc->lock); 290 return ret; 291 } 292 293 static inline void sh_rtc_setaie(struct device *dev, unsigned int enable) 294 { 295 struct sh_rtc *rtc = dev_get_drvdata(dev); 296 unsigned int tmp; 297 298 spin_lock_irq(&rtc->lock); 299 300 tmp = readb(rtc->regbase + RCR1); 301 302 if (enable) 303 tmp |= RCR1_AIE; 304 else 305 tmp &= ~RCR1_AIE; 306 307 writeb(tmp, rtc->regbase + RCR1); 308 309 spin_unlock_irq(&rtc->lock); 310 } 311 312 static int sh_rtc_proc(struct device *dev, struct seq_file *seq) 313 { 314 struct sh_rtc *rtc = dev_get_drvdata(dev); 315 unsigned int tmp; 316 317 tmp = readb(rtc->regbase + RCR1); 318 seq_printf(seq, "carry_IRQ\t: %s\n", (tmp & RCR1_CIE) ? "yes" : "no"); 319 320 tmp = readb(rtc->regbase + RCR2); 321 seq_printf(seq, "periodic_IRQ\t: %s\n", 322 (tmp & RCR2_PESMASK) ? "yes" : "no"); 323 324 return 0; 325 } 326 327 static inline void sh_rtc_setcie(struct device *dev, unsigned int enable) 328 { 329 struct sh_rtc *rtc = dev_get_drvdata(dev); 330 unsigned int tmp; 331 332 spin_lock_irq(&rtc->lock); 333 334 tmp = readb(rtc->regbase + RCR1); 335 336 if (!enable) 337 tmp &= ~RCR1_CIE; 338 else 339 tmp |= RCR1_CIE; 340 341 writeb(tmp, rtc->regbase + RCR1); 342 343 spin_unlock_irq(&rtc->lock); 344 } 345 346 static int sh_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled) 347 { 348 sh_rtc_setaie(dev, enabled); 349 return 0; 350 } 351 352 static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm) 353 { 354 struct platform_device *pdev = to_platform_device(dev); 355 struct sh_rtc *rtc = platform_get_drvdata(pdev); 356 unsigned int sec128, sec2, yr, yr100, cf_bit; 357 358 do { 359 unsigned int tmp; 360 361 spin_lock_irq(&rtc->lock); 362 363 tmp = readb(rtc->regbase + RCR1); 364 tmp &= ~RCR1_CF; /* Clear CF-bit */ 365 tmp |= RCR1_CIE; 366 writeb(tmp, rtc->regbase + RCR1); 367 368 sec128 = readb(rtc->regbase + R64CNT); 369 370 tm->tm_sec = bcd2bin(readb(rtc->regbase + RSECCNT)); 371 tm->tm_min = bcd2bin(readb(rtc->regbase + RMINCNT)); 372 tm->tm_hour = bcd2bin(readb(rtc->regbase + RHRCNT)); 373 tm->tm_wday = bcd2bin(readb(rtc->regbase + RWKCNT)); 374 tm->tm_mday = bcd2bin(readb(rtc->regbase + RDAYCNT)); 375 tm->tm_mon = bcd2bin(readb(rtc->regbase + RMONCNT)) - 1; 376 377 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) { 378 yr = readw(rtc->regbase + RYRCNT); 379 yr100 = bcd2bin(yr >> 8); 380 yr &= 0xff; 381 } else { 382 yr = readb(rtc->regbase + RYRCNT); 383 yr100 = bcd2bin((yr == 0x99) ? 0x19 : 0x20); 384 } 385 386 tm->tm_year = (yr100 * 100 + bcd2bin(yr)) - 1900; 387 388 sec2 = readb(rtc->regbase + R64CNT); 389 cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF; 390 391 spin_unlock_irq(&rtc->lock); 392 } while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0); 393 394 #if RTC_BIT_INVERTED != 0 395 if ((sec128 & RTC_BIT_INVERTED)) 396 tm->tm_sec--; 397 #endif 398 399 /* only keep the carry interrupt enabled if UIE is on */ 400 if (!(rtc->periodic_freq & PF_OXS)) 401 sh_rtc_setcie(dev, 0); 402 403 dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, " 404 "mday=%d, mon=%d, year=%d, wday=%d\n", 405 __func__, 406 tm->tm_sec, tm->tm_min, tm->tm_hour, 407 tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday); 408 409 return rtc_valid_tm(tm); 410 } 411 412 static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm) 413 { 414 struct platform_device *pdev = to_platform_device(dev); 415 struct sh_rtc *rtc = platform_get_drvdata(pdev); 416 unsigned int tmp; 417 int year; 418 419 spin_lock_irq(&rtc->lock); 420 421 /* Reset pre-scaler & stop RTC */ 422 tmp = readb(rtc->regbase + RCR2); 423 tmp |= RCR2_RESET; 424 tmp &= ~RCR2_START; 425 writeb(tmp, rtc->regbase + RCR2); 426 427 writeb(bin2bcd(tm->tm_sec), rtc->regbase + RSECCNT); 428 writeb(bin2bcd(tm->tm_min), rtc->regbase + RMINCNT); 429 writeb(bin2bcd(tm->tm_hour), rtc->regbase + RHRCNT); 430 writeb(bin2bcd(tm->tm_wday), rtc->regbase + RWKCNT); 431 writeb(bin2bcd(tm->tm_mday), rtc->regbase + RDAYCNT); 432 writeb(bin2bcd(tm->tm_mon + 1), rtc->regbase + RMONCNT); 433 434 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) { 435 year = (bin2bcd((tm->tm_year + 1900) / 100) << 8) | 436 bin2bcd(tm->tm_year % 100); 437 writew(year, rtc->regbase + RYRCNT); 438 } else { 439 year = tm->tm_year % 100; 440 writeb(bin2bcd(year), rtc->regbase + RYRCNT); 441 } 442 443 /* Start RTC */ 444 tmp = readb(rtc->regbase + RCR2); 445 tmp &= ~RCR2_RESET; 446 tmp |= RCR2_RTCEN | RCR2_START; 447 writeb(tmp, rtc->regbase + RCR2); 448 449 spin_unlock_irq(&rtc->lock); 450 451 return 0; 452 } 453 454 static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off) 455 { 456 unsigned int byte; 457 int value = 0xff; /* return 0xff for ignored values */ 458 459 byte = readb(rtc->regbase + reg_off); 460 if (byte & AR_ENB) { 461 byte &= ~AR_ENB; /* strip the enable bit */ 462 value = bcd2bin(byte); 463 } 464 465 return value; 466 } 467 468 static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm) 469 { 470 struct platform_device *pdev = to_platform_device(dev); 471 struct sh_rtc *rtc = platform_get_drvdata(pdev); 472 struct rtc_time *tm = &wkalrm->time; 473 474 spin_lock_irq(&rtc->lock); 475 476 tm->tm_sec = sh_rtc_read_alarm_value(rtc, RSECAR); 477 tm->tm_min = sh_rtc_read_alarm_value(rtc, RMINAR); 478 tm->tm_hour = sh_rtc_read_alarm_value(rtc, RHRAR); 479 tm->tm_wday = sh_rtc_read_alarm_value(rtc, RWKAR); 480 tm->tm_mday = sh_rtc_read_alarm_value(rtc, RDAYAR); 481 tm->tm_mon = sh_rtc_read_alarm_value(rtc, RMONAR); 482 if (tm->tm_mon > 0) 483 tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */ 484 tm->tm_year = 0xffff; 485 486 wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0; 487 488 spin_unlock_irq(&rtc->lock); 489 490 return 0; 491 } 492 493 static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc, 494 int value, int reg_off) 495 { 496 /* < 0 for a value that is ignored */ 497 if (value < 0) 498 writeb(0, rtc->regbase + reg_off); 499 else 500 writeb(bin2bcd(value) | AR_ENB, rtc->regbase + reg_off); 501 } 502 503 static int sh_rtc_check_alarm(struct rtc_time *tm) 504 { 505 /* 506 * The original rtc says anything > 0xc0 is "don't care" or "match 507 * all" - most users use 0xff but rtc-dev uses -1 for the same thing. 508 * The original rtc doesn't support years - some things use -1 and 509 * some 0xffff. We use -1 to make out tests easier. 510 */ 511 if (tm->tm_year == 0xffff) 512 tm->tm_year = -1; 513 if (tm->tm_mon >= 0xff) 514 tm->tm_mon = -1; 515 if (tm->tm_mday >= 0xff) 516 tm->tm_mday = -1; 517 if (tm->tm_wday >= 0xff) 518 tm->tm_wday = -1; 519 if (tm->tm_hour >= 0xff) 520 tm->tm_hour = -1; 521 if (tm->tm_min >= 0xff) 522 tm->tm_min = -1; 523 if (tm->tm_sec >= 0xff) 524 tm->tm_sec = -1; 525 526 if (tm->tm_year > 9999 || 527 tm->tm_mon >= 12 || 528 tm->tm_mday == 0 || tm->tm_mday >= 32 || 529 tm->tm_wday >= 7 || 530 tm->tm_hour >= 24 || 531 tm->tm_min >= 60 || 532 tm->tm_sec >= 60) 533 return -EINVAL; 534 535 return 0; 536 } 537 538 static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm) 539 { 540 struct platform_device *pdev = to_platform_device(dev); 541 struct sh_rtc *rtc = platform_get_drvdata(pdev); 542 unsigned int rcr1; 543 struct rtc_time *tm = &wkalrm->time; 544 int mon, err; 545 546 err = sh_rtc_check_alarm(tm); 547 if (unlikely(err < 0)) 548 return err; 549 550 spin_lock_irq(&rtc->lock); 551 552 /* disable alarm interrupt and clear the alarm flag */ 553 rcr1 = readb(rtc->regbase + RCR1); 554 rcr1 &= ~(RCR1_AF | RCR1_AIE); 555 writeb(rcr1, rtc->regbase + RCR1); 556 557 /* set alarm time */ 558 sh_rtc_write_alarm_value(rtc, tm->tm_sec, RSECAR); 559 sh_rtc_write_alarm_value(rtc, tm->tm_min, RMINAR); 560 sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR); 561 sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR); 562 sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR); 563 mon = tm->tm_mon; 564 if (mon >= 0) 565 mon += 1; 566 sh_rtc_write_alarm_value(rtc, mon, RMONAR); 567 568 if (wkalrm->enabled) { 569 rcr1 |= RCR1_AIE; 570 writeb(rcr1, rtc->regbase + RCR1); 571 } 572 573 spin_unlock_irq(&rtc->lock); 574 575 return 0; 576 } 577 578 static struct rtc_class_ops sh_rtc_ops = { 579 .read_time = sh_rtc_read_time, 580 .set_time = sh_rtc_set_time, 581 .read_alarm = sh_rtc_read_alarm, 582 .set_alarm = sh_rtc_set_alarm, 583 .proc = sh_rtc_proc, 584 .alarm_irq_enable = sh_rtc_alarm_irq_enable, 585 }; 586 587 static int __init sh_rtc_probe(struct platform_device *pdev) 588 { 589 struct sh_rtc *rtc; 590 struct resource *res; 591 struct rtc_time r; 592 char clk_name[6]; 593 int clk_id, ret; 594 595 rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL); 596 if (unlikely(!rtc)) 597 return -ENOMEM; 598 599 spin_lock_init(&rtc->lock); 600 601 /* get periodic/carry/alarm irqs */ 602 ret = platform_get_irq(pdev, 0); 603 if (unlikely(ret <= 0)) { 604 dev_err(&pdev->dev, "No IRQ resource\n"); 605 return -ENOENT; 606 } 607 608 rtc->periodic_irq = ret; 609 rtc->carry_irq = platform_get_irq(pdev, 1); 610 rtc->alarm_irq = platform_get_irq(pdev, 2); 611 612 res = platform_get_resource(pdev, IORESOURCE_IO, 0); 613 if (unlikely(res == NULL)) { 614 dev_err(&pdev->dev, "No IO resource\n"); 615 return -ENOENT; 616 } 617 618 rtc->regsize = resource_size(res); 619 620 rtc->res = devm_request_mem_region(&pdev->dev, res->start, 621 rtc->regsize, pdev->name); 622 if (unlikely(!rtc->res)) 623 return -EBUSY; 624 625 rtc->regbase = devm_ioremap_nocache(&pdev->dev, rtc->res->start, 626 rtc->regsize); 627 if (unlikely(!rtc->regbase)) 628 return -EINVAL; 629 630 clk_id = pdev->id; 631 /* With a single device, the clock id is still "rtc0" */ 632 if (clk_id < 0) 633 clk_id = 0; 634 635 snprintf(clk_name, sizeof(clk_name), "rtc%d", clk_id); 636 637 rtc->clk = devm_clk_get(&pdev->dev, clk_name); 638 if (IS_ERR(rtc->clk)) { 639 /* 640 * No error handling for rtc->clk intentionally, not all 641 * platforms will have a unique clock for the RTC, and 642 * the clk API can handle the struct clk pointer being 643 * NULL. 644 */ 645 rtc->clk = NULL; 646 } 647 648 clk_enable(rtc->clk); 649 650 rtc->capabilities = RTC_DEF_CAPABILITIES; 651 if (dev_get_platdata(&pdev->dev)) { 652 struct sh_rtc_platform_info *pinfo = 653 dev_get_platdata(&pdev->dev); 654 655 /* 656 * Some CPUs have special capabilities in addition to the 657 * default set. Add those in here. 658 */ 659 rtc->capabilities |= pinfo->capabilities; 660 } 661 662 if (rtc->carry_irq <= 0) { 663 /* register shared periodic/carry/alarm irq */ 664 ret = devm_request_irq(&pdev->dev, rtc->periodic_irq, 665 sh_rtc_shared, 0, "sh-rtc", rtc); 666 if (unlikely(ret)) { 667 dev_err(&pdev->dev, 668 "request IRQ failed with %d, IRQ %d\n", ret, 669 rtc->periodic_irq); 670 goto err_unmap; 671 } 672 } else { 673 /* register periodic/carry/alarm irqs */ 674 ret = devm_request_irq(&pdev->dev, rtc->periodic_irq, 675 sh_rtc_periodic, 0, "sh-rtc period", rtc); 676 if (unlikely(ret)) { 677 dev_err(&pdev->dev, 678 "request period IRQ failed with %d, IRQ %d\n", 679 ret, rtc->periodic_irq); 680 goto err_unmap; 681 } 682 683 ret = devm_request_irq(&pdev->dev, rtc->carry_irq, 684 sh_rtc_interrupt, 0, "sh-rtc carry", rtc); 685 if (unlikely(ret)) { 686 dev_err(&pdev->dev, 687 "request carry IRQ failed with %d, IRQ %d\n", 688 ret, rtc->carry_irq); 689 goto err_unmap; 690 } 691 692 ret = devm_request_irq(&pdev->dev, rtc->alarm_irq, 693 sh_rtc_alarm, 0, "sh-rtc alarm", rtc); 694 if (unlikely(ret)) { 695 dev_err(&pdev->dev, 696 "request alarm IRQ failed with %d, IRQ %d\n", 697 ret, rtc->alarm_irq); 698 goto err_unmap; 699 } 700 } 701 702 platform_set_drvdata(pdev, rtc); 703 704 /* everything disabled by default */ 705 sh_rtc_irq_set_freq(&pdev->dev, 0); 706 sh_rtc_irq_set_state(&pdev->dev, 0); 707 sh_rtc_setaie(&pdev->dev, 0); 708 sh_rtc_setcie(&pdev->dev, 0); 709 710 rtc->rtc_dev = devm_rtc_device_register(&pdev->dev, "sh", 711 &sh_rtc_ops, THIS_MODULE); 712 if (IS_ERR(rtc->rtc_dev)) { 713 ret = PTR_ERR(rtc->rtc_dev); 714 goto err_unmap; 715 } 716 717 rtc->rtc_dev->max_user_freq = 256; 718 719 /* reset rtc to epoch 0 if time is invalid */ 720 if (rtc_read_time(rtc->rtc_dev, &r) < 0) { 721 rtc_time_to_tm(0, &r); 722 rtc_set_time(rtc->rtc_dev, &r); 723 } 724 725 device_init_wakeup(&pdev->dev, 1); 726 return 0; 727 728 err_unmap: 729 clk_disable(rtc->clk); 730 731 return ret; 732 } 733 734 static int __exit sh_rtc_remove(struct platform_device *pdev) 735 { 736 struct sh_rtc *rtc = platform_get_drvdata(pdev); 737 738 sh_rtc_irq_set_state(&pdev->dev, 0); 739 740 sh_rtc_setaie(&pdev->dev, 0); 741 sh_rtc_setcie(&pdev->dev, 0); 742 743 clk_disable(rtc->clk); 744 745 return 0; 746 } 747 748 static void sh_rtc_set_irq_wake(struct device *dev, int enabled) 749 { 750 struct platform_device *pdev = to_platform_device(dev); 751 struct sh_rtc *rtc = platform_get_drvdata(pdev); 752 753 irq_set_irq_wake(rtc->periodic_irq, enabled); 754 755 if (rtc->carry_irq > 0) { 756 irq_set_irq_wake(rtc->carry_irq, enabled); 757 irq_set_irq_wake(rtc->alarm_irq, enabled); 758 } 759 } 760 761 #ifdef CONFIG_PM_SLEEP 762 static int sh_rtc_suspend(struct device *dev) 763 { 764 if (device_may_wakeup(dev)) 765 sh_rtc_set_irq_wake(dev, 1); 766 767 return 0; 768 } 769 770 static int sh_rtc_resume(struct device *dev) 771 { 772 if (device_may_wakeup(dev)) 773 sh_rtc_set_irq_wake(dev, 0); 774 775 return 0; 776 } 777 #endif 778 779 static SIMPLE_DEV_PM_OPS(sh_rtc_pm_ops, sh_rtc_suspend, sh_rtc_resume); 780 781 static struct platform_driver sh_rtc_platform_driver = { 782 .driver = { 783 .name = DRV_NAME, 784 .pm = &sh_rtc_pm_ops, 785 }, 786 .remove = __exit_p(sh_rtc_remove), 787 }; 788 789 module_platform_driver_probe(sh_rtc_platform_driver, sh_rtc_probe); 790 791 MODULE_DESCRIPTION("SuperH on-chip RTC driver"); 792 MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, " 793 "Jamie Lenehan <lenehan@twibble.org>, " 794 "Angelo Castello <angelo.castello@st.com>"); 795 MODULE_LICENSE("GPL"); 796 MODULE_ALIAS("platform:" DRV_NAME); 797