xref: /openbmc/linux/drivers/rtc/rtc-sc27xx.c (revision 7bde846d)
1 /*
2  * Copyright (C) 2017 Spreadtrum Communications Inc.
3  *
4  * SPDX-License-Identifier: GPL-2.0
5  */
6 
7 #include <linux/bitops.h>
8 #include <linux/delay.h>
9 #include <linux/err.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/platform_device.h>
13 #include <linux/regmap.h>
14 #include <linux/rtc.h>
15 
16 #define SPRD_RTC_SEC_CNT_VALUE		0x0
17 #define SPRD_RTC_MIN_CNT_VALUE		0x4
18 #define SPRD_RTC_HOUR_CNT_VALUE		0x8
19 #define SPRD_RTC_DAY_CNT_VALUE		0xc
20 #define SPRD_RTC_SEC_CNT_UPD		0x10
21 #define SPRD_RTC_MIN_CNT_UPD		0x14
22 #define SPRD_RTC_HOUR_CNT_UPD		0x18
23 #define SPRD_RTC_DAY_CNT_UPD		0x1c
24 #define SPRD_RTC_SEC_ALM_UPD		0x20
25 #define SPRD_RTC_MIN_ALM_UPD		0x24
26 #define SPRD_RTC_HOUR_ALM_UPD		0x28
27 #define SPRD_RTC_DAY_ALM_UPD		0x2c
28 #define SPRD_RTC_INT_EN			0x30
29 #define SPRD_RTC_INT_RAW_STS		0x34
30 #define SPRD_RTC_INT_CLR		0x38
31 #define SPRD_RTC_INT_MASK_STS		0x3C
32 #define SPRD_RTC_SEC_ALM_VALUE		0x40
33 #define SPRD_RTC_MIN_ALM_VALUE		0x44
34 #define SPRD_RTC_HOUR_ALM_VALUE		0x48
35 #define SPRD_RTC_DAY_ALM_VALUE		0x4c
36 #define SPRD_RTC_SPG_VALUE		0x50
37 #define SPRD_RTC_SPG_UPD		0x54
38 #define SPRD_RTC_SEC_AUXALM_UPD		0x60
39 #define SPRD_RTC_MIN_AUXALM_UPD		0x64
40 #define SPRD_RTC_HOUR_AUXALM_UPD	0x68
41 #define SPRD_RTC_DAY_AUXALM_UPD		0x6c
42 
43 /* BIT & MASK definition for SPRD_RTC_INT_* registers */
44 #define SPRD_RTC_SEC_EN			BIT(0)
45 #define SPRD_RTC_MIN_EN			BIT(1)
46 #define SPRD_RTC_HOUR_EN		BIT(2)
47 #define SPRD_RTC_DAY_EN			BIT(3)
48 #define SPRD_RTC_ALARM_EN		BIT(4)
49 #define SPRD_RTC_HRS_FORMAT_EN		BIT(5)
50 #define SPRD_RTC_AUXALM_EN		BIT(6)
51 #define SPRD_RTC_SPG_UPD_EN		BIT(7)
52 #define SPRD_RTC_SEC_UPD_EN		BIT(8)
53 #define SPRD_RTC_MIN_UPD_EN		BIT(9)
54 #define SPRD_RTC_HOUR_UPD_EN		BIT(10)
55 #define SPRD_RTC_DAY_UPD_EN		BIT(11)
56 #define SPRD_RTC_ALMSEC_UPD_EN		BIT(12)
57 #define SPRD_RTC_ALMMIN_UPD_EN		BIT(13)
58 #define SPRD_RTC_ALMHOUR_UPD_EN		BIT(14)
59 #define SPRD_RTC_ALMDAY_UPD_EN		BIT(15)
60 #define SPRD_RTC_INT_MASK		GENMASK(15, 0)
61 
62 #define SPRD_RTC_TIME_INT_MASK				\
63 	(SPRD_RTC_SEC_UPD_EN | SPRD_RTC_MIN_UPD_EN |	\
64 	 SPRD_RTC_HOUR_UPD_EN | SPRD_RTC_DAY_UPD_EN)
65 
66 #define SPRD_RTC_ALMTIME_INT_MASK				\
67 	(SPRD_RTC_ALMSEC_UPD_EN | SPRD_RTC_ALMMIN_UPD_EN |	\
68 	 SPRD_RTC_ALMHOUR_UPD_EN | SPRD_RTC_ALMDAY_UPD_EN)
69 
70 #define SPRD_RTC_ALM_INT_MASK			\
71 	(SPRD_RTC_SEC_EN | SPRD_RTC_MIN_EN |	\
72 	 SPRD_RTC_HOUR_EN | SPRD_RTC_DAY_EN |	\
73 	 SPRD_RTC_ALARM_EN | SPRD_RTC_AUXALM_EN)
74 
75 /* second/minute/hour/day values mask definition */
76 #define SPRD_RTC_SEC_MASK		GENMASK(5, 0)
77 #define SPRD_RTC_MIN_MASK		GENMASK(5, 0)
78 #define SPRD_RTC_HOUR_MASK		GENMASK(4, 0)
79 #define SPRD_RTC_DAY_MASK		GENMASK(15, 0)
80 
81 /* alarm lock definition for SPRD_RTC_SPG_UPD register */
82 #define SPRD_RTC_ALMLOCK_MASK		GENMASK(7, 0)
83 #define SPRD_RTC_ALM_UNLOCK		0xa5
84 #define SPRD_RTC_ALM_LOCK		(~SPRD_RTC_ALM_UNLOCK &	\
85 					 SPRD_RTC_ALMLOCK_MASK)
86 
87 /* SPG values definition for SPRD_RTC_SPG_UPD register */
88 #define SPRD_RTC_POWEROFF_ALM_FLAG	BIT(8)
89 #define SPRD_RTC_POWER_RESET_FLAG	BIT(9)
90 
91 /* timeout of synchronizing time and alarm registers (us) */
92 #define SPRD_RTC_POLL_TIMEOUT		200000
93 #define SPRD_RTC_POLL_DELAY_US		20000
94 
95 struct sprd_rtc {
96 	struct rtc_device	*rtc;
97 	struct regmap		*regmap;
98 	struct device		*dev;
99 	u32			base;
100 	int			irq;
101 	bool			valid;
102 };
103 
104 /*
105  * The Spreadtrum RTC controller has 3 groups registers, including time, normal
106  * alarm and auxiliary alarm. The time group registers are used to set RTC time,
107  * the normal alarm registers are used to set normal alarm, and the auxiliary
108  * alarm registers are used to set auxiliary alarm. Both alarm event and
109  * auxiliary alarm event can wake up system from deep sleep, but only alarm
110  * event can power up system from power down status.
111  */
112 enum sprd_rtc_reg_types {
113 	SPRD_RTC_TIME,
114 	SPRD_RTC_ALARM,
115 	SPRD_RTC_AUX_ALARM,
116 };
117 
118 static int sprd_rtc_clear_alarm_ints(struct sprd_rtc *rtc)
119 {
120 	return regmap_write(rtc->regmap, rtc->base + SPRD_RTC_INT_CLR,
121 			    SPRD_RTC_ALM_INT_MASK);
122 }
123 
124 static int sprd_rtc_disable_ints(struct sprd_rtc *rtc)
125 {
126 	int ret;
127 
128 	ret = regmap_update_bits(rtc->regmap, rtc->base + SPRD_RTC_INT_EN,
129 				 SPRD_RTC_INT_MASK, 0);
130 	if (ret)
131 		return ret;
132 
133 	return regmap_write(rtc->regmap, rtc->base + SPRD_RTC_INT_CLR,
134 			    SPRD_RTC_INT_MASK);
135 }
136 
137 static int sprd_rtc_lock_alarm(struct sprd_rtc *rtc, bool lock)
138 {
139 	int ret;
140 	u32 val;
141 
142 	ret = regmap_read(rtc->regmap, rtc->base + SPRD_RTC_SPG_VALUE, &val);
143 	if (ret)
144 		return ret;
145 
146 	val &= ~(SPRD_RTC_ALMLOCK_MASK | SPRD_RTC_POWEROFF_ALM_FLAG);
147 	if (lock)
148 		val |= SPRD_RTC_ALM_LOCK;
149 	else
150 		val |= SPRD_RTC_ALM_UNLOCK | SPRD_RTC_POWEROFF_ALM_FLAG;
151 
152 	ret = regmap_write(rtc->regmap, rtc->base + SPRD_RTC_SPG_UPD, val);
153 	if (ret)
154 		return ret;
155 
156 	/* wait until the SPG value is updated successfully */
157 	ret = regmap_read_poll_timeout(rtc->regmap,
158 				       rtc->base + SPRD_RTC_INT_RAW_STS, val,
159 				       (val & SPRD_RTC_SPG_UPD_EN),
160 				       SPRD_RTC_POLL_DELAY_US,
161 				       SPRD_RTC_POLL_TIMEOUT);
162 	if (ret) {
163 		dev_err(rtc->dev, "failed to update SPG value:%d\n", ret);
164 		return ret;
165 	}
166 
167 	return 0;
168 }
169 
170 static int sprd_rtc_get_secs(struct sprd_rtc *rtc, enum sprd_rtc_reg_types type,
171 			     time64_t *secs)
172 {
173 	u32 sec_reg, min_reg, hour_reg, day_reg;
174 	u32 val, sec, min, hour, day;
175 	int ret;
176 
177 	switch (type) {
178 	case SPRD_RTC_TIME:
179 		sec_reg = SPRD_RTC_SEC_CNT_VALUE;
180 		min_reg = SPRD_RTC_MIN_CNT_VALUE;
181 		hour_reg = SPRD_RTC_HOUR_CNT_VALUE;
182 		day_reg = SPRD_RTC_DAY_CNT_VALUE;
183 		break;
184 	case SPRD_RTC_ALARM:
185 		sec_reg = SPRD_RTC_SEC_ALM_VALUE;
186 		min_reg = SPRD_RTC_MIN_ALM_VALUE;
187 		hour_reg = SPRD_RTC_HOUR_ALM_VALUE;
188 		day_reg = SPRD_RTC_DAY_ALM_VALUE;
189 		break;
190 	case SPRD_RTC_AUX_ALARM:
191 		sec_reg = SPRD_RTC_SEC_AUXALM_UPD;
192 		min_reg = SPRD_RTC_MIN_AUXALM_UPD;
193 		hour_reg = SPRD_RTC_HOUR_AUXALM_UPD;
194 		day_reg = SPRD_RTC_DAY_AUXALM_UPD;
195 		break;
196 	default:
197 		return -EINVAL;
198 	}
199 
200 	ret = regmap_read(rtc->regmap, rtc->base + sec_reg, &val);
201 	if (ret)
202 		return ret;
203 
204 	sec = val & SPRD_RTC_SEC_MASK;
205 
206 	ret = regmap_read(rtc->regmap, rtc->base + min_reg, &val);
207 	if (ret)
208 		return ret;
209 
210 	min = val & SPRD_RTC_MIN_MASK;
211 
212 	ret = regmap_read(rtc->regmap, rtc->base + hour_reg, &val);
213 	if (ret)
214 		return ret;
215 
216 	hour = val & SPRD_RTC_HOUR_MASK;
217 
218 	ret = regmap_read(rtc->regmap, rtc->base + day_reg, &val);
219 	if (ret)
220 		return ret;
221 
222 	day = val & SPRD_RTC_DAY_MASK;
223 	*secs = (((time64_t)(day * 24) + hour) * 60 + min) * 60 + sec;
224 	return 0;
225 }
226 
227 static int sprd_rtc_set_secs(struct sprd_rtc *rtc, enum sprd_rtc_reg_types type,
228 			     time64_t secs)
229 {
230 	u32 sec_reg, min_reg, hour_reg, day_reg, sts_mask;
231 	u32 sec, min, hour, day, val;
232 	int ret, rem;
233 
234 	/* convert seconds to RTC time format */
235 	day = div_s64_rem(secs, 86400, &rem);
236 	hour = rem / 3600;
237 	rem -= hour * 3600;
238 	min = rem / 60;
239 	sec = rem - min * 60;
240 
241 	switch (type) {
242 	case SPRD_RTC_TIME:
243 		sec_reg = SPRD_RTC_SEC_CNT_UPD;
244 		min_reg = SPRD_RTC_MIN_CNT_UPD;
245 		hour_reg = SPRD_RTC_HOUR_CNT_UPD;
246 		day_reg = SPRD_RTC_DAY_CNT_UPD;
247 		sts_mask = SPRD_RTC_TIME_INT_MASK;
248 		break;
249 	case SPRD_RTC_ALARM:
250 		sec_reg = SPRD_RTC_SEC_ALM_UPD;
251 		min_reg = SPRD_RTC_MIN_ALM_UPD;
252 		hour_reg = SPRD_RTC_HOUR_ALM_UPD;
253 		day_reg = SPRD_RTC_DAY_ALM_UPD;
254 		sts_mask = SPRD_RTC_ALMTIME_INT_MASK;
255 		break;
256 	case SPRD_RTC_AUX_ALARM:
257 		sec_reg = SPRD_RTC_SEC_AUXALM_UPD;
258 		min_reg = SPRD_RTC_MIN_AUXALM_UPD;
259 		hour_reg = SPRD_RTC_HOUR_AUXALM_UPD;
260 		day_reg = SPRD_RTC_DAY_AUXALM_UPD;
261 		sts_mask = 0;
262 		break;
263 	default:
264 		return -EINVAL;
265 	}
266 
267 	ret = regmap_write(rtc->regmap, rtc->base + sec_reg, sec);
268 	if (ret)
269 		return ret;
270 
271 	ret = regmap_write(rtc->regmap, rtc->base + min_reg, min);
272 	if (ret)
273 		return ret;
274 
275 	ret = regmap_write(rtc->regmap, rtc->base + hour_reg, hour);
276 	if (ret)
277 		return ret;
278 
279 	ret = regmap_write(rtc->regmap, rtc->base + day_reg, day);
280 	if (ret)
281 		return ret;
282 
283 	if (type == SPRD_RTC_AUX_ALARM)
284 		return 0;
285 
286 	/*
287 	 * Since the time and normal alarm registers are put in always-power-on
288 	 * region supplied by VDDRTC, then these registers changing time will
289 	 * be very long, about 125ms. Thus here we should wait until all
290 	 * values are updated successfully.
291 	 */
292 	ret = regmap_read_poll_timeout(rtc->regmap,
293 				       rtc->base + SPRD_RTC_INT_RAW_STS, val,
294 				       ((val & sts_mask) == sts_mask),
295 				       SPRD_RTC_POLL_DELAY_US,
296 				       SPRD_RTC_POLL_TIMEOUT);
297 	if (ret < 0) {
298 		dev_err(rtc->dev, "set time/alarm values timeout\n");
299 		return ret;
300 	}
301 
302 	return regmap_write(rtc->regmap, rtc->base + SPRD_RTC_INT_CLR,
303 			    sts_mask);
304 }
305 
306 static int sprd_rtc_read_aux_alarm(struct device *dev, struct rtc_wkalrm *alrm)
307 {
308 	struct sprd_rtc *rtc = dev_get_drvdata(dev);
309 	time64_t secs;
310 	u32 val;
311 	int ret;
312 
313 	ret = sprd_rtc_get_secs(rtc, SPRD_RTC_AUX_ALARM, &secs);
314 	if (ret)
315 		return ret;
316 
317 	rtc_time64_to_tm(secs, &alrm->time);
318 
319 	ret = regmap_read(rtc->regmap, rtc->base + SPRD_RTC_INT_EN, &val);
320 	if (ret)
321 		return ret;
322 
323 	alrm->enabled = !!(val & SPRD_RTC_AUXALM_EN);
324 
325 	ret = regmap_read(rtc->regmap, rtc->base + SPRD_RTC_INT_RAW_STS, &val);
326 	if (ret)
327 		return ret;
328 
329 	alrm->pending = !!(val & SPRD_RTC_AUXALM_EN);
330 	return 0;
331 }
332 
333 static int sprd_rtc_set_aux_alarm(struct device *dev, struct rtc_wkalrm *alrm)
334 {
335 	struct sprd_rtc *rtc = dev_get_drvdata(dev);
336 	time64_t secs = rtc_tm_to_time64(&alrm->time);
337 	int ret;
338 
339 	/* clear the auxiliary alarm interrupt status */
340 	ret = regmap_write(rtc->regmap, rtc->base + SPRD_RTC_INT_CLR,
341 			   SPRD_RTC_AUXALM_EN);
342 	if (ret)
343 		return ret;
344 
345 	ret = sprd_rtc_set_secs(rtc, SPRD_RTC_AUX_ALARM, secs);
346 	if (ret)
347 		return ret;
348 
349 	if (alrm->enabled) {
350 		ret = regmap_update_bits(rtc->regmap,
351 					 rtc->base + SPRD_RTC_INT_EN,
352 					 SPRD_RTC_AUXALM_EN,
353 					 SPRD_RTC_AUXALM_EN);
354 	} else {
355 		ret = regmap_update_bits(rtc->regmap,
356 					 rtc->base + SPRD_RTC_INT_EN,
357 					 SPRD_RTC_AUXALM_EN, 0);
358 	}
359 
360 	return ret;
361 }
362 
363 static int sprd_rtc_read_time(struct device *dev, struct rtc_time *tm)
364 {
365 	struct sprd_rtc *rtc = dev_get_drvdata(dev);
366 	time64_t secs;
367 	int ret;
368 
369 	if (!rtc->valid) {
370 		dev_warn(dev, "RTC values are invalid\n");
371 		return -EINVAL;
372 	}
373 
374 	ret = sprd_rtc_get_secs(rtc, SPRD_RTC_TIME, &secs);
375 	if (ret)
376 		return ret;
377 
378 	rtc_time64_to_tm(secs, tm);
379 	return rtc_valid_tm(tm);
380 }
381 
382 static int sprd_rtc_set_time(struct device *dev, struct rtc_time *tm)
383 {
384 	struct sprd_rtc *rtc = dev_get_drvdata(dev);
385 	time64_t secs = rtc_tm_to_time64(tm);
386 	u32 val;
387 	int ret;
388 
389 	ret = sprd_rtc_set_secs(rtc, SPRD_RTC_TIME, secs);
390 	if (ret)
391 		return ret;
392 
393 	if (!rtc->valid) {
394 		/*
395 		 * Set SPRD_RTC_POWER_RESET_FLAG to indicate now RTC has valid
396 		 * time values.
397 		 */
398 		ret = regmap_update_bits(rtc->regmap,
399 					 rtc->base + SPRD_RTC_SPG_UPD,
400 					 SPRD_RTC_POWER_RESET_FLAG,
401 					 SPRD_RTC_POWER_RESET_FLAG);
402 		if (ret)
403 			return ret;
404 
405 		ret = regmap_read_poll_timeout(rtc->regmap,
406 					       rtc->base + SPRD_RTC_INT_RAW_STS,
407 					       val, (val & SPRD_RTC_SPG_UPD_EN),
408 					       SPRD_RTC_POLL_DELAY_US,
409 					       SPRD_RTC_POLL_TIMEOUT);
410 		if (ret) {
411 			dev_err(rtc->dev, "failed to update SPG value:%d\n",
412 				ret);
413 			return ret;
414 		}
415 
416 		rtc->valid = true;
417 	}
418 
419 	return 0;
420 }
421 
422 static int sprd_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
423 {
424 	struct sprd_rtc *rtc = dev_get_drvdata(dev);
425 	time64_t secs;
426 	int ret;
427 	u32 val;
428 
429 	/*
430 	 * If aie_timer is enabled, we should get the normal alarm time.
431 	 * Otherwise we should get auxiliary alarm time.
432 	 */
433 	if (rtc->rtc && rtc->rtc->aie_timer.enabled == 0)
434 		return sprd_rtc_read_aux_alarm(dev, alrm);
435 
436 	ret = sprd_rtc_get_secs(rtc, SPRD_RTC_ALARM, &secs);
437 	if (ret)
438 		return ret;
439 
440 	rtc_time64_to_tm(secs, &alrm->time);
441 
442 	ret = regmap_read(rtc->regmap, rtc->base + SPRD_RTC_INT_EN, &val);
443 	if (ret)
444 		return ret;
445 
446 	alrm->enabled = !!(val & SPRD_RTC_ALARM_EN);
447 
448 	ret = regmap_read(rtc->regmap, rtc->base + SPRD_RTC_INT_RAW_STS, &val);
449 	if (ret)
450 		return ret;
451 
452 	alrm->pending = !!(val & SPRD_RTC_ALARM_EN);
453 	return 0;
454 }
455 
456 static int sprd_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
457 {
458 	struct sprd_rtc *rtc = dev_get_drvdata(dev);
459 	time64_t secs = rtc_tm_to_time64(&alrm->time);
460 	struct rtc_time aie_time =
461 		rtc_ktime_to_tm(rtc->rtc->aie_timer.node.expires);
462 	int ret;
463 
464 	/*
465 	 * We have 2 groups alarms: normal alarm and auxiliary alarm. Since
466 	 * both normal alarm event and auxiliary alarm event can wake up system
467 	 * from deep sleep, but only alarm event can power up system from power
468 	 * down status. Moreover we do not need to poll about 125ms when
469 	 * updating auxiliary alarm registers. Thus we usually set auxiliary
470 	 * alarm when wake up system from deep sleep, and for other scenarios,
471 	 * we should set normal alarm with polling status.
472 	 *
473 	 * So here we check if the alarm time is set by aie_timer, if yes, we
474 	 * should set normal alarm, if not, we should set auxiliary alarm which
475 	 * means it is just a wake event.
476 	 */
477 	if (!rtc->rtc->aie_timer.enabled || rtc_tm_sub(&aie_time, &alrm->time))
478 		return sprd_rtc_set_aux_alarm(dev, alrm);
479 
480 	/* clear the alarm interrupt status firstly */
481 	ret = regmap_write(rtc->regmap, rtc->base + SPRD_RTC_INT_CLR,
482 			   SPRD_RTC_ALARM_EN);
483 	if (ret)
484 		return ret;
485 
486 	ret = sprd_rtc_set_secs(rtc, SPRD_RTC_ALARM, secs);
487 	if (ret)
488 		return ret;
489 
490 	if (alrm->enabled) {
491 		ret = regmap_update_bits(rtc->regmap,
492 					 rtc->base + SPRD_RTC_INT_EN,
493 					 SPRD_RTC_ALARM_EN,
494 					 SPRD_RTC_ALARM_EN);
495 		if (ret)
496 			return ret;
497 
498 		/* unlock the alarm to enable the alarm function. */
499 		ret = sprd_rtc_lock_alarm(rtc, false);
500 	} else {
501 		regmap_update_bits(rtc->regmap,
502 				   rtc->base + SPRD_RTC_INT_EN,
503 				   SPRD_RTC_ALARM_EN, 0);
504 
505 		/*
506 		 * Lock the alarm function in case fake alarm event will power
507 		 * up systems.
508 		 */
509 		ret = sprd_rtc_lock_alarm(rtc, true);
510 	}
511 
512 	return ret;
513 }
514 
515 static int sprd_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
516 {
517 	struct sprd_rtc *rtc = dev_get_drvdata(dev);
518 	int ret;
519 
520 	if (enabled) {
521 		ret = regmap_update_bits(rtc->regmap,
522 					 rtc->base + SPRD_RTC_INT_EN,
523 					 SPRD_RTC_ALARM_EN | SPRD_RTC_AUXALM_EN,
524 					 SPRD_RTC_ALARM_EN | SPRD_RTC_AUXALM_EN);
525 		if (ret)
526 			return ret;
527 
528 		ret = sprd_rtc_lock_alarm(rtc, false);
529 	} else {
530 		regmap_update_bits(rtc->regmap, rtc->base + SPRD_RTC_INT_EN,
531 				   SPRD_RTC_ALARM_EN | SPRD_RTC_AUXALM_EN, 0);
532 
533 		ret = sprd_rtc_lock_alarm(rtc, true);
534 	}
535 
536 	return ret;
537 }
538 
539 static const struct rtc_class_ops sprd_rtc_ops = {
540 	.read_time = sprd_rtc_read_time,
541 	.set_time = sprd_rtc_set_time,
542 	.read_alarm = sprd_rtc_read_alarm,
543 	.set_alarm = sprd_rtc_set_alarm,
544 	.alarm_irq_enable = sprd_rtc_alarm_irq_enable,
545 };
546 
547 static irqreturn_t sprd_rtc_handler(int irq, void *dev_id)
548 {
549 	struct sprd_rtc *rtc = dev_id;
550 	int ret;
551 
552 	ret = sprd_rtc_clear_alarm_ints(rtc);
553 	if (ret)
554 		return IRQ_RETVAL(ret);
555 
556 	rtc_update_irq(rtc->rtc, 1, RTC_AF | RTC_IRQF);
557 	return IRQ_HANDLED;
558 }
559 
560 static int sprd_rtc_check_power_down(struct sprd_rtc *rtc)
561 {
562 	u32 val;
563 	int ret;
564 
565 	ret = regmap_read(rtc->regmap, rtc->base + SPRD_RTC_SPG_VALUE, &val);
566 	if (ret)
567 		return ret;
568 
569 	/*
570 	 * If the SPRD_RTC_POWER_RESET_FLAG was not set, which means the RTC has
571 	 * been powered down, so the RTC time values are invalid.
572 	 */
573 	rtc->valid = (val & SPRD_RTC_POWER_RESET_FLAG) ? true : false;
574 	return 0;
575 }
576 
577 static int sprd_rtc_probe(struct platform_device *pdev)
578 {
579 	struct device_node *node = pdev->dev.of_node;
580 	struct sprd_rtc *rtc;
581 	int ret;
582 
583 	rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
584 	if (!rtc)
585 		return -ENOMEM;
586 
587 	rtc->regmap = dev_get_regmap(pdev->dev.parent, NULL);
588 	if (!rtc->regmap)
589 		return -ENODEV;
590 
591 	ret = of_property_read_u32(node, "reg", &rtc->base);
592 	if (ret) {
593 		dev_err(&pdev->dev, "failed to get RTC base address\n");
594 		return ret;
595 	}
596 
597 	rtc->irq = platform_get_irq(pdev, 0);
598 	if (rtc->irq < 0) {
599 		dev_err(&pdev->dev, "failed to get RTC irq number\n");
600 		return rtc->irq;
601 	}
602 
603 	rtc->dev = &pdev->dev;
604 	platform_set_drvdata(pdev, rtc);
605 
606 	/* clear all RTC interrupts and disable all RTC interrupts */
607 	ret = sprd_rtc_disable_ints(rtc);
608 	if (ret) {
609 		dev_err(&pdev->dev, "failed to disable RTC interrupts\n");
610 		return ret;
611 	}
612 
613 	/* check if RTC time values are valid */
614 	ret = sprd_rtc_check_power_down(rtc);
615 	if (ret) {
616 		dev_err(&pdev->dev, "failed to check RTC time values\n");
617 		return ret;
618 	}
619 
620 	ret = devm_request_threaded_irq(&pdev->dev, rtc->irq, NULL,
621 					sprd_rtc_handler,
622 					IRQF_ONESHOT | IRQF_EARLY_RESUME,
623 					pdev->name, rtc);
624 	if (ret < 0) {
625 		dev_err(&pdev->dev, "failed to request RTC irq\n");
626 		return ret;
627 	}
628 
629 	rtc->rtc = devm_rtc_device_register(&pdev->dev, pdev->name,
630 					    &sprd_rtc_ops, THIS_MODULE);
631 	if (IS_ERR(rtc->rtc))
632 		return PTR_ERR(rtc->rtc);
633 
634 	device_init_wakeup(&pdev->dev, 1);
635 	return 0;
636 }
637 
638 static int sprd_rtc_remove(struct platform_device *pdev)
639 {
640 	device_init_wakeup(&pdev->dev, 0);
641 	return 0;
642 }
643 
644 static const struct of_device_id sprd_rtc_of_match[] = {
645 	{ .compatible = "sprd,sc2731-rtc", },
646 	{ },
647 };
648 MODULE_DEVICE_TABLE(of, sprd_rtc_of_match);
649 
650 static struct platform_driver sprd_rtc_driver = {
651 	.driver = {
652 		.name = "sprd-rtc",
653 		.of_match_table = sprd_rtc_of_match,
654 	},
655 	.probe	= sprd_rtc_probe,
656 	.remove = sprd_rtc_remove,
657 };
658 module_platform_driver(sprd_rtc_driver);
659 
660 MODULE_LICENSE("GPL v2");
661 MODULE_DESCRIPTION("Spreadtrum RTC Device Driver");
662 MODULE_AUTHOR("Baolin Wang <baolin.wang@spreadtrum.com>");
663