xref: /openbmc/linux/drivers/rtc/rtc-sa1100.c (revision 7dd65feb)
1 /*
2  * Real Time Clock interface for StrongARM SA1x00 and XScale PXA2xx
3  *
4  * Copyright (c) 2000 Nils Faerber
5  *
6  * Based on rtc.c by Paul Gortmaker
7  *
8  * Original Driver by Nils Faerber <nils@kernelconcepts.de>
9  *
10  * Modifications from:
11  *   CIH <cih@coventive.com>
12  *   Nicolas Pitre <nico@fluxnic.net>
13  *   Andrew Christian <andrew.christian@hp.com>
14  *
15  * Converted to the RTC subsystem and Driver Model
16  *   by Richard Purdie <rpurdie@rpsys.net>
17  *
18  * This program is free software; you can redistribute it and/or
19  * modify it under the terms of the GNU General Public License
20  * as published by the Free Software Foundation; either version
21  * 2 of the License, or (at your option) any later version.
22  */
23 
24 #include <linux/platform_device.h>
25 #include <linux/module.h>
26 #include <linux/rtc.h>
27 #include <linux/init.h>
28 #include <linux/fs.h>
29 #include <linux/interrupt.h>
30 #include <linux/string.h>
31 #include <linux/pm.h>
32 #include <linux/bitops.h>
33 
34 #include <mach/hardware.h>
35 #include <asm/irq.h>
36 
37 #ifdef CONFIG_ARCH_PXA
38 #include <mach/regs-rtc.h>
39 #include <mach/regs-ost.h>
40 #endif
41 
42 #define RTC_DEF_DIVIDER		32768 - 1
43 #define RTC_DEF_TRIM		0
44 
45 static unsigned long rtc_freq = 1024;
46 static unsigned long timer_freq;
47 static struct rtc_time rtc_alarm;
48 static DEFINE_SPINLOCK(sa1100_rtc_lock);
49 
50 static inline int rtc_periodic_alarm(struct rtc_time *tm)
51 {
52 	return  (tm->tm_year == -1) ||
53 		((unsigned)tm->tm_mon >= 12) ||
54 		((unsigned)(tm->tm_mday - 1) >= 31) ||
55 		((unsigned)tm->tm_hour > 23) ||
56 		((unsigned)tm->tm_min > 59) ||
57 		((unsigned)tm->tm_sec > 59);
58 }
59 
60 /*
61  * Calculate the next alarm time given the requested alarm time mask
62  * and the current time.
63  */
64 static void rtc_next_alarm_time(struct rtc_time *next, struct rtc_time *now, struct rtc_time *alrm)
65 {
66 	unsigned long next_time;
67 	unsigned long now_time;
68 
69 	next->tm_year = now->tm_year;
70 	next->tm_mon = now->tm_mon;
71 	next->tm_mday = now->tm_mday;
72 	next->tm_hour = alrm->tm_hour;
73 	next->tm_min = alrm->tm_min;
74 	next->tm_sec = alrm->tm_sec;
75 
76 	rtc_tm_to_time(now, &now_time);
77 	rtc_tm_to_time(next, &next_time);
78 
79 	if (next_time < now_time) {
80 		/* Advance one day */
81 		next_time += 60 * 60 * 24;
82 		rtc_time_to_tm(next_time, next);
83 	}
84 }
85 
86 static int rtc_update_alarm(struct rtc_time *alrm)
87 {
88 	struct rtc_time alarm_tm, now_tm;
89 	unsigned long now, time;
90 	int ret;
91 
92 	do {
93 		now = RCNR;
94 		rtc_time_to_tm(now, &now_tm);
95 		rtc_next_alarm_time(&alarm_tm, &now_tm, alrm);
96 		ret = rtc_tm_to_time(&alarm_tm, &time);
97 		if (ret != 0)
98 			break;
99 
100 		RTSR = RTSR & (RTSR_HZE|RTSR_ALE|RTSR_AL);
101 		RTAR = time;
102 	} while (now != RCNR);
103 
104 	return ret;
105 }
106 
107 static irqreturn_t sa1100_rtc_interrupt(int irq, void *dev_id)
108 {
109 	struct platform_device *pdev = to_platform_device(dev_id);
110 	struct rtc_device *rtc = platform_get_drvdata(pdev);
111 	unsigned int rtsr;
112 	unsigned long events = 0;
113 
114 	spin_lock(&sa1100_rtc_lock);
115 
116 	rtsr = RTSR;
117 	/* clear interrupt sources */
118 	RTSR = 0;
119 	RTSR = (RTSR_AL | RTSR_HZ) & (rtsr >> 2);
120 
121 	/* clear alarm interrupt if it has occurred */
122 	if (rtsr & RTSR_AL)
123 		rtsr &= ~RTSR_ALE;
124 	RTSR = rtsr & (RTSR_ALE | RTSR_HZE);
125 
126 	/* update irq data & counter */
127 	if (rtsr & RTSR_AL)
128 		events |= RTC_AF | RTC_IRQF;
129 	if (rtsr & RTSR_HZ)
130 		events |= RTC_UF | RTC_IRQF;
131 
132 	rtc_update_irq(rtc, 1, events);
133 
134 	if (rtsr & RTSR_AL && rtc_periodic_alarm(&rtc_alarm))
135 		rtc_update_alarm(&rtc_alarm);
136 
137 	spin_unlock(&sa1100_rtc_lock);
138 
139 	return IRQ_HANDLED;
140 }
141 
142 static int rtc_timer1_count;
143 
144 static irqreturn_t timer1_interrupt(int irq, void *dev_id)
145 {
146 	struct platform_device *pdev = to_platform_device(dev_id);
147 	struct rtc_device *rtc = platform_get_drvdata(pdev);
148 
149 	/*
150 	 * If we match for the first time, rtc_timer1_count will be 1.
151 	 * Otherwise, we wrapped around (very unlikely but
152 	 * still possible) so compute the amount of missed periods.
153 	 * The match reg is updated only when the data is actually retrieved
154 	 * to avoid unnecessary interrupts.
155 	 */
156 	OSSR = OSSR_M1;	/* clear match on timer1 */
157 
158 	rtc_update_irq(rtc, rtc_timer1_count, RTC_PF | RTC_IRQF);
159 
160 	if (rtc_timer1_count == 1)
161 		rtc_timer1_count = (rtc_freq * ((1 << 30) / (timer_freq >> 2)));
162 
163 	return IRQ_HANDLED;
164 }
165 
166 static int sa1100_rtc_read_callback(struct device *dev, int data)
167 {
168 	if (data & RTC_PF) {
169 		/* interpolate missed periods and set match for the next */
170 		unsigned long period = timer_freq / rtc_freq;
171 		unsigned long oscr = OSCR;
172 		unsigned long osmr1 = OSMR1;
173 		unsigned long missed = (oscr - osmr1)/period;
174 		data += missed << 8;
175 		OSSR = OSSR_M1;	/* clear match on timer 1 */
176 		OSMR1 = osmr1 + (missed + 1)*period;
177 		/* Ensure we didn't miss another match in the mean time.
178 		 * Here we compare (match - OSCR) 8 instead of 0 --
179 		 * see comment in pxa_timer_interrupt() for explanation.
180 		 */
181 		while( (signed long)((osmr1 = OSMR1) - OSCR) <= 8 ) {
182 			data += 0x100;
183 			OSSR = OSSR_M1;	/* clear match on timer 1 */
184 			OSMR1 = osmr1 + period;
185 		}
186 	}
187 	return data;
188 }
189 
190 static int sa1100_rtc_open(struct device *dev)
191 {
192 	int ret;
193 
194 	ret = request_irq(IRQ_RTC1Hz, sa1100_rtc_interrupt, IRQF_DISABLED,
195 				"rtc 1Hz", dev);
196 	if (ret) {
197 		dev_err(dev, "IRQ %d already in use.\n", IRQ_RTC1Hz);
198 		goto fail_ui;
199 	}
200 	ret = request_irq(IRQ_RTCAlrm, sa1100_rtc_interrupt, IRQF_DISABLED,
201 				"rtc Alrm", dev);
202 	if (ret) {
203 		dev_err(dev, "IRQ %d already in use.\n", IRQ_RTCAlrm);
204 		goto fail_ai;
205 	}
206 	ret = request_irq(IRQ_OST1, timer1_interrupt, IRQF_DISABLED,
207 				"rtc timer", dev);
208 	if (ret) {
209 		dev_err(dev, "IRQ %d already in use.\n", IRQ_OST1);
210 		goto fail_pi;
211 	}
212 	return 0;
213 
214  fail_pi:
215 	free_irq(IRQ_RTCAlrm, dev);
216  fail_ai:
217 	free_irq(IRQ_RTC1Hz, dev);
218  fail_ui:
219 	return ret;
220 }
221 
222 static void sa1100_rtc_release(struct device *dev)
223 {
224 	spin_lock_irq(&sa1100_rtc_lock);
225 	RTSR = 0;
226 	OIER &= ~OIER_E1;
227 	OSSR = OSSR_M1;
228 	spin_unlock_irq(&sa1100_rtc_lock);
229 
230 	free_irq(IRQ_OST1, dev);
231 	free_irq(IRQ_RTCAlrm, dev);
232 	free_irq(IRQ_RTC1Hz, dev);
233 }
234 
235 
236 static int sa1100_rtc_ioctl(struct device *dev, unsigned int cmd,
237 		unsigned long arg)
238 {
239 	switch(cmd) {
240 	case RTC_AIE_OFF:
241 		spin_lock_irq(&sa1100_rtc_lock);
242 		RTSR &= ~RTSR_ALE;
243 		spin_unlock_irq(&sa1100_rtc_lock);
244 		return 0;
245 	case RTC_AIE_ON:
246 		spin_lock_irq(&sa1100_rtc_lock);
247 		RTSR |= RTSR_ALE;
248 		spin_unlock_irq(&sa1100_rtc_lock);
249 		return 0;
250 	case RTC_UIE_OFF:
251 		spin_lock_irq(&sa1100_rtc_lock);
252 		RTSR &= ~RTSR_HZE;
253 		spin_unlock_irq(&sa1100_rtc_lock);
254 		return 0;
255 	case RTC_UIE_ON:
256 		spin_lock_irq(&sa1100_rtc_lock);
257 		RTSR |= RTSR_HZE;
258 		spin_unlock_irq(&sa1100_rtc_lock);
259 		return 0;
260 	case RTC_PIE_OFF:
261 		spin_lock_irq(&sa1100_rtc_lock);
262 		OIER &= ~OIER_E1;
263 		spin_unlock_irq(&sa1100_rtc_lock);
264 		return 0;
265 	case RTC_PIE_ON:
266 		spin_lock_irq(&sa1100_rtc_lock);
267 		OSMR1 = timer_freq / rtc_freq + OSCR;
268 		OIER |= OIER_E1;
269 		rtc_timer1_count = 1;
270 		spin_unlock_irq(&sa1100_rtc_lock);
271 		return 0;
272 	case RTC_IRQP_READ:
273 		return put_user(rtc_freq, (unsigned long *)arg);
274 	case RTC_IRQP_SET:
275 		if (arg < 1 || arg > timer_freq)
276 			return -EINVAL;
277 		rtc_freq = arg;
278 		return 0;
279 	}
280 	return -ENOIOCTLCMD;
281 }
282 
283 static int sa1100_rtc_read_time(struct device *dev, struct rtc_time *tm)
284 {
285 	rtc_time_to_tm(RCNR, tm);
286 	return 0;
287 }
288 
289 static int sa1100_rtc_set_time(struct device *dev, struct rtc_time *tm)
290 {
291 	unsigned long time;
292 	int ret;
293 
294 	ret = rtc_tm_to_time(tm, &time);
295 	if (ret == 0)
296 		RCNR = time;
297 	return ret;
298 }
299 
300 static int sa1100_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
301 {
302 	u32	rtsr;
303 
304 	memcpy(&alrm->time, &rtc_alarm, sizeof(struct rtc_time));
305 	rtsr = RTSR;
306 	alrm->enabled = (rtsr & RTSR_ALE) ? 1 : 0;
307 	alrm->pending = (rtsr & RTSR_AL) ? 1 : 0;
308 	return 0;
309 }
310 
311 static int sa1100_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
312 {
313 	int ret;
314 
315 	spin_lock_irq(&sa1100_rtc_lock);
316 	ret = rtc_update_alarm(&alrm->time);
317 	if (ret == 0) {
318 		if (alrm->enabled)
319 			RTSR |= RTSR_ALE;
320 		else
321 			RTSR &= ~RTSR_ALE;
322 	}
323 	spin_unlock_irq(&sa1100_rtc_lock);
324 
325 	return ret;
326 }
327 
328 static int sa1100_rtc_proc(struct device *dev, struct seq_file *seq)
329 {
330 	seq_printf(seq, "trim/divider\t: 0x%08x\n", (u32) RTTR);
331 	seq_printf(seq, "update_IRQ\t: %s\n",
332 			(RTSR & RTSR_HZE) ? "yes" : "no");
333 	seq_printf(seq, "periodic_IRQ\t: %s\n",
334 			(OIER & OIER_E1) ? "yes" : "no");
335 	seq_printf(seq, "periodic_freq\t: %ld\n", rtc_freq);
336 
337 	return 0;
338 }
339 
340 static const struct rtc_class_ops sa1100_rtc_ops = {
341 	.open = sa1100_rtc_open,
342 	.read_callback = sa1100_rtc_read_callback,
343 	.release = sa1100_rtc_release,
344 	.ioctl = sa1100_rtc_ioctl,
345 	.read_time = sa1100_rtc_read_time,
346 	.set_time = sa1100_rtc_set_time,
347 	.read_alarm = sa1100_rtc_read_alarm,
348 	.set_alarm = sa1100_rtc_set_alarm,
349 	.proc = sa1100_rtc_proc,
350 };
351 
352 static int sa1100_rtc_probe(struct platform_device *pdev)
353 {
354 	struct rtc_device *rtc;
355 
356 	timer_freq = get_clock_tick_rate();
357 
358 	/*
359 	 * According to the manual we should be able to let RTTR be zero
360 	 * and then a default diviser for a 32.768KHz clock is used.
361 	 * Apparently this doesn't work, at least for my SA1110 rev 5.
362 	 * If the clock divider is uninitialized then reset it to the
363 	 * default value to get the 1Hz clock.
364 	 */
365 	if (RTTR == 0) {
366 		RTTR = RTC_DEF_DIVIDER + (RTC_DEF_TRIM << 16);
367 		dev_warn(&pdev->dev, "warning: initializing default clock divider/trim value\n");
368 		/* The current RTC value probably doesn't make sense either */
369 		RCNR = 0;
370 	}
371 
372 	device_init_wakeup(&pdev->dev, 1);
373 
374 	rtc = rtc_device_register(pdev->name, &pdev->dev, &sa1100_rtc_ops,
375 				THIS_MODULE);
376 
377 	if (IS_ERR(rtc))
378 		return PTR_ERR(rtc);
379 
380 	platform_set_drvdata(pdev, rtc);
381 
382 	return 0;
383 }
384 
385 static int sa1100_rtc_remove(struct platform_device *pdev)
386 {
387 	struct rtc_device *rtc = platform_get_drvdata(pdev);
388 
389  	if (rtc)
390 		rtc_device_unregister(rtc);
391 
392 	return 0;
393 }
394 
395 #ifdef CONFIG_PM
396 static int sa1100_rtc_suspend(struct device *dev)
397 {
398 	if (device_may_wakeup(dev))
399 		enable_irq_wake(IRQ_RTCAlrm);
400 	return 0;
401 }
402 
403 static int sa1100_rtc_resume(struct device *dev)
404 {
405 	if (device_may_wakeup(dev))
406 		disable_irq_wake(IRQ_RTCAlrm);
407 	return 0;
408 }
409 
410 static const struct dev_pm_ops sa1100_rtc_pm_ops = {
411 	.suspend	= sa1100_rtc_suspend,
412 	.resume		= sa1100_rtc_resume,
413 };
414 #endif
415 
416 static struct platform_driver sa1100_rtc_driver = {
417 	.probe		= sa1100_rtc_probe,
418 	.remove		= sa1100_rtc_remove,
419 	.driver		= {
420 		.name	= "sa1100-rtc",
421 #ifdef CONFIG_PM
422 		.pm	= &sa1100_rtc_pm_ops,
423 #endif
424 	},
425 };
426 
427 static int __init sa1100_rtc_init(void)
428 {
429 	return platform_driver_register(&sa1100_rtc_driver);
430 }
431 
432 static void __exit sa1100_rtc_exit(void)
433 {
434 	platform_driver_unregister(&sa1100_rtc_driver);
435 }
436 
437 module_init(sa1100_rtc_init);
438 module_exit(sa1100_rtc_exit);
439 
440 MODULE_AUTHOR("Richard Purdie <rpurdie@rpsys.net>");
441 MODULE_DESCRIPTION("SA11x0/PXA2xx Realtime Clock Driver (RTC)");
442 MODULE_LICENSE("GPL");
443 MODULE_ALIAS("platform:sa1100-rtc");
444