xref: /openbmc/linux/drivers/rtc/rtc-sa1100.c (revision 565d76cb)
1 /*
2  * Real Time Clock interface for StrongARM SA1x00 and XScale PXA2xx
3  *
4  * Copyright (c) 2000 Nils Faerber
5  *
6  * Based on rtc.c by Paul Gortmaker
7  *
8  * Original Driver by Nils Faerber <nils@kernelconcepts.de>
9  *
10  * Modifications from:
11  *   CIH <cih@coventive.com>
12  *   Nicolas Pitre <nico@fluxnic.net>
13  *   Andrew Christian <andrew.christian@hp.com>
14  *
15  * Converted to the RTC subsystem and Driver Model
16  *   by Richard Purdie <rpurdie@rpsys.net>
17  *
18  * This program is free software; you can redistribute it and/or
19  * modify it under the terms of the GNU General Public License
20  * as published by the Free Software Foundation; either version
21  * 2 of the License, or (at your option) any later version.
22  */
23 
24 #include <linux/platform_device.h>
25 #include <linux/module.h>
26 #include <linux/rtc.h>
27 #include <linux/init.h>
28 #include <linux/fs.h>
29 #include <linux/interrupt.h>
30 #include <linux/string.h>
31 #include <linux/pm.h>
32 #include <linux/bitops.h>
33 
34 #include <mach/hardware.h>
35 #include <asm/irq.h>
36 
37 #ifdef CONFIG_ARCH_PXA
38 #include <mach/regs-rtc.h>
39 #include <mach/regs-ost.h>
40 #endif
41 
42 #define RTC_DEF_DIVIDER		(32768 - 1)
43 #define RTC_DEF_TRIM		0
44 
45 static const unsigned long RTC_FREQ = 1024;
46 static struct rtc_time rtc_alarm;
47 static DEFINE_SPINLOCK(sa1100_rtc_lock);
48 
49 static inline int rtc_periodic_alarm(struct rtc_time *tm)
50 {
51 	return  (tm->tm_year == -1) ||
52 		((unsigned)tm->tm_mon >= 12) ||
53 		((unsigned)(tm->tm_mday - 1) >= 31) ||
54 		((unsigned)tm->tm_hour > 23) ||
55 		((unsigned)tm->tm_min > 59) ||
56 		((unsigned)tm->tm_sec > 59);
57 }
58 
59 /*
60  * Calculate the next alarm time given the requested alarm time mask
61  * and the current time.
62  */
63 static void rtc_next_alarm_time(struct rtc_time *next, struct rtc_time *now,
64 	struct rtc_time *alrm)
65 {
66 	unsigned long next_time;
67 	unsigned long now_time;
68 
69 	next->tm_year = now->tm_year;
70 	next->tm_mon = now->tm_mon;
71 	next->tm_mday = now->tm_mday;
72 	next->tm_hour = alrm->tm_hour;
73 	next->tm_min = alrm->tm_min;
74 	next->tm_sec = alrm->tm_sec;
75 
76 	rtc_tm_to_time(now, &now_time);
77 	rtc_tm_to_time(next, &next_time);
78 
79 	if (next_time < now_time) {
80 		/* Advance one day */
81 		next_time += 60 * 60 * 24;
82 		rtc_time_to_tm(next_time, next);
83 	}
84 }
85 
86 static int rtc_update_alarm(struct rtc_time *alrm)
87 {
88 	struct rtc_time alarm_tm, now_tm;
89 	unsigned long now, time;
90 	int ret;
91 
92 	do {
93 		now = RCNR;
94 		rtc_time_to_tm(now, &now_tm);
95 		rtc_next_alarm_time(&alarm_tm, &now_tm, alrm);
96 		ret = rtc_tm_to_time(&alarm_tm, &time);
97 		if (ret != 0)
98 			break;
99 
100 		RTSR = RTSR & (RTSR_HZE|RTSR_ALE|RTSR_AL);
101 		RTAR = time;
102 	} while (now != RCNR);
103 
104 	return ret;
105 }
106 
107 static irqreturn_t sa1100_rtc_interrupt(int irq, void *dev_id)
108 {
109 	struct platform_device *pdev = to_platform_device(dev_id);
110 	struct rtc_device *rtc = platform_get_drvdata(pdev);
111 	unsigned int rtsr;
112 	unsigned long events = 0;
113 
114 	spin_lock(&sa1100_rtc_lock);
115 
116 	rtsr = RTSR;
117 	/* clear interrupt sources */
118 	RTSR = 0;
119 	/* Fix for a nasty initialization problem the in SA11xx RTSR register.
120 	 * See also the comments in sa1100_rtc_probe(). */
121 	if (rtsr & (RTSR_ALE | RTSR_HZE)) {
122 		/* This is the original code, before there was the if test
123 		 * above. This code does not clear interrupts that were not
124 		 * enabled. */
125 		RTSR = (RTSR_AL | RTSR_HZ) & (rtsr >> 2);
126 	} else {
127 		/* For some reason, it is possible to enter this routine
128 		 * without interruptions enabled, it has been tested with
129 		 * several units (Bug in SA11xx chip?).
130 		 *
131 		 * This situation leads to an infinite "loop" of interrupt
132 		 * routine calling and as a result the processor seems to
133 		 * lock on its first call to open(). */
134 		RTSR = RTSR_AL | RTSR_HZ;
135 	}
136 
137 	/* clear alarm interrupt if it has occurred */
138 	if (rtsr & RTSR_AL)
139 		rtsr &= ~RTSR_ALE;
140 	RTSR = rtsr & (RTSR_ALE | RTSR_HZE);
141 
142 	/* update irq data & counter */
143 	if (rtsr & RTSR_AL)
144 		events |= RTC_AF | RTC_IRQF;
145 	if (rtsr & RTSR_HZ)
146 		events |= RTC_UF | RTC_IRQF;
147 
148 	rtc_update_irq(rtc, 1, events);
149 
150 	if (rtsr & RTSR_AL && rtc_periodic_alarm(&rtc_alarm))
151 		rtc_update_alarm(&rtc_alarm);
152 
153 	spin_unlock(&sa1100_rtc_lock);
154 
155 	return IRQ_HANDLED;
156 }
157 
158 static int sa1100_rtc_open(struct device *dev)
159 {
160 	int ret;
161 	struct platform_device *plat_dev = to_platform_device(dev);
162 	struct rtc_device *rtc = platform_get_drvdata(plat_dev);
163 
164 	ret = request_irq(IRQ_RTC1Hz, sa1100_rtc_interrupt, IRQF_DISABLED,
165 		"rtc 1Hz", dev);
166 	if (ret) {
167 		dev_err(dev, "IRQ %d already in use.\n", IRQ_RTC1Hz);
168 		goto fail_ui;
169 	}
170 	ret = request_irq(IRQ_RTCAlrm, sa1100_rtc_interrupt, IRQF_DISABLED,
171 		"rtc Alrm", dev);
172 	if (ret) {
173 		dev_err(dev, "IRQ %d already in use.\n", IRQ_RTCAlrm);
174 		goto fail_ai;
175 	}
176 	rtc->max_user_freq = RTC_FREQ;
177 	rtc_irq_set_freq(rtc, NULL, RTC_FREQ);
178 
179 	return 0;
180 
181  fail_ai:
182 	free_irq(IRQ_RTC1Hz, dev);
183  fail_ui:
184 	return ret;
185 }
186 
187 static void sa1100_rtc_release(struct device *dev)
188 {
189 	spin_lock_irq(&sa1100_rtc_lock);
190 	RTSR = 0;
191 	OIER &= ~OIER_E1;
192 	OSSR = OSSR_M1;
193 	spin_unlock_irq(&sa1100_rtc_lock);
194 
195 	free_irq(IRQ_RTCAlrm, dev);
196 	free_irq(IRQ_RTC1Hz, dev);
197 }
198 
199 static int sa1100_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
200 {
201 	spin_lock_irq(&sa1100_rtc_lock);
202 	if (enabled)
203 		RTSR |= RTSR_ALE;
204 	else
205 		RTSR &= ~RTSR_ALE;
206 	spin_unlock_irq(&sa1100_rtc_lock);
207 	return 0;
208 }
209 
210 static int sa1100_rtc_read_time(struct device *dev, struct rtc_time *tm)
211 {
212 	rtc_time_to_tm(RCNR, tm);
213 	return 0;
214 }
215 
216 static int sa1100_rtc_set_time(struct device *dev, struct rtc_time *tm)
217 {
218 	unsigned long time;
219 	int ret;
220 
221 	ret = rtc_tm_to_time(tm, &time);
222 	if (ret == 0)
223 		RCNR = time;
224 	return ret;
225 }
226 
227 static int sa1100_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
228 {
229 	u32	rtsr;
230 
231 	memcpy(&alrm->time, &rtc_alarm, sizeof(struct rtc_time));
232 	rtsr = RTSR;
233 	alrm->enabled = (rtsr & RTSR_ALE) ? 1 : 0;
234 	alrm->pending = (rtsr & RTSR_AL) ? 1 : 0;
235 	return 0;
236 }
237 
238 static int sa1100_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
239 {
240 	int ret;
241 
242 	spin_lock_irq(&sa1100_rtc_lock);
243 	ret = rtc_update_alarm(&alrm->time);
244 	if (ret == 0) {
245 		if (alrm->enabled)
246 			RTSR |= RTSR_ALE;
247 		else
248 			RTSR &= ~RTSR_ALE;
249 	}
250 	spin_unlock_irq(&sa1100_rtc_lock);
251 
252 	return ret;
253 }
254 
255 static int sa1100_rtc_proc(struct device *dev, struct seq_file *seq)
256 {
257 	seq_printf(seq, "trim/divider\t\t: 0x%08x\n", (u32) RTTR);
258 	seq_printf(seq, "RTSR\t\t\t: 0x%08x\n", (u32)RTSR);
259 
260 	return 0;
261 }
262 
263 static const struct rtc_class_ops sa1100_rtc_ops = {
264 	.open = sa1100_rtc_open,
265 	.release = sa1100_rtc_release,
266 	.read_time = sa1100_rtc_read_time,
267 	.set_time = sa1100_rtc_set_time,
268 	.read_alarm = sa1100_rtc_read_alarm,
269 	.set_alarm = sa1100_rtc_set_alarm,
270 	.proc = sa1100_rtc_proc,
271 	.alarm_irq_enable = sa1100_rtc_alarm_irq_enable,
272 };
273 
274 static int sa1100_rtc_probe(struct platform_device *pdev)
275 {
276 	struct rtc_device *rtc;
277 
278 	/*
279 	 * According to the manual we should be able to let RTTR be zero
280 	 * and then a default diviser for a 32.768KHz clock is used.
281 	 * Apparently this doesn't work, at least for my SA1110 rev 5.
282 	 * If the clock divider is uninitialized then reset it to the
283 	 * default value to get the 1Hz clock.
284 	 */
285 	if (RTTR == 0) {
286 		RTTR = RTC_DEF_DIVIDER + (RTC_DEF_TRIM << 16);
287 		dev_warn(&pdev->dev, "warning: "
288 			"initializing default clock divider/trim value\n");
289 		/* The current RTC value probably doesn't make sense either */
290 		RCNR = 0;
291 	}
292 
293 	device_init_wakeup(&pdev->dev, 1);
294 
295 	rtc = rtc_device_register(pdev->name, &pdev->dev, &sa1100_rtc_ops,
296 		THIS_MODULE);
297 
298 	if (IS_ERR(rtc))
299 		return PTR_ERR(rtc);
300 
301 	platform_set_drvdata(pdev, rtc);
302 
303 	/* Fix for a nasty initialization problem the in SA11xx RTSR register.
304 	 * See also the comments in sa1100_rtc_interrupt().
305 	 *
306 	 * Sometimes bit 1 of the RTSR (RTSR_HZ) will wake up 1, which means an
307 	 * interrupt pending, even though interrupts were never enabled.
308 	 * In this case, this bit it must be reset before enabling
309 	 * interruptions to avoid a nonexistent interrupt to occur.
310 	 *
311 	 * In principle, the same problem would apply to bit 0, although it has
312 	 * never been observed to happen.
313 	 *
314 	 * This issue is addressed both here and in sa1100_rtc_interrupt().
315 	 * If the issue is not addressed here, in the times when the processor
316 	 * wakes up with the bit set there will be one spurious interrupt.
317 	 *
318 	 * The issue is also dealt with in sa1100_rtc_interrupt() to be on the
319 	 * safe side, once the condition that lead to this strange
320 	 * initialization is unknown and could in principle happen during
321 	 * normal processing.
322 	 *
323 	 * Notice that clearing bit 1 and 0 is accomplished by writting ONES to
324 	 * the corresponding bits in RTSR. */
325 	RTSR = RTSR_AL | RTSR_HZ;
326 
327 	return 0;
328 }
329 
330 static int sa1100_rtc_remove(struct platform_device *pdev)
331 {
332 	struct rtc_device *rtc = platform_get_drvdata(pdev);
333 
334 	if (rtc)
335 		rtc_device_unregister(rtc);
336 
337 	return 0;
338 }
339 
340 #ifdef CONFIG_PM
341 static int sa1100_rtc_suspend(struct device *dev)
342 {
343 	if (device_may_wakeup(dev))
344 		enable_irq_wake(IRQ_RTCAlrm);
345 	return 0;
346 }
347 
348 static int sa1100_rtc_resume(struct device *dev)
349 {
350 	if (device_may_wakeup(dev))
351 		disable_irq_wake(IRQ_RTCAlrm);
352 	return 0;
353 }
354 
355 static const struct dev_pm_ops sa1100_rtc_pm_ops = {
356 	.suspend	= sa1100_rtc_suspend,
357 	.resume		= sa1100_rtc_resume,
358 };
359 #endif
360 
361 static struct platform_driver sa1100_rtc_driver = {
362 	.probe		= sa1100_rtc_probe,
363 	.remove		= sa1100_rtc_remove,
364 	.driver		= {
365 		.name	= "sa1100-rtc",
366 #ifdef CONFIG_PM
367 		.pm	= &sa1100_rtc_pm_ops,
368 #endif
369 	},
370 };
371 
372 static int __init sa1100_rtc_init(void)
373 {
374 	return platform_driver_register(&sa1100_rtc_driver);
375 }
376 
377 static void __exit sa1100_rtc_exit(void)
378 {
379 	platform_driver_unregister(&sa1100_rtc_driver);
380 }
381 
382 module_init(sa1100_rtc_init);
383 module_exit(sa1100_rtc_exit);
384 
385 MODULE_AUTHOR("Richard Purdie <rpurdie@rpsys.net>");
386 MODULE_DESCRIPTION("SA11x0/PXA2xx Realtime Clock Driver (RTC)");
387 MODULE_LICENSE("GPL");
388 MODULE_ALIAS("platform:sa1100-rtc");
389