xref: /openbmc/linux/drivers/rtc/rtc-sa1100.c (revision 384740dc)
1 /*
2  * Real Time Clock interface for StrongARM SA1x00 and XScale PXA2xx
3  *
4  * Copyright (c) 2000 Nils Faerber
5  *
6  * Based on rtc.c by Paul Gortmaker
7  *
8  * Original Driver by Nils Faerber <nils@kernelconcepts.de>
9  *
10  * Modifications from:
11  *   CIH <cih@coventive.com>
12  *   Nicolas Pitre <nico@cam.org>
13  *   Andrew Christian <andrew.christian@hp.com>
14  *
15  * Converted to the RTC subsystem and Driver Model
16  *   by Richard Purdie <rpurdie@rpsys.net>
17  *
18  * This program is free software; you can redistribute it and/or
19  * modify it under the terms of the GNU General Public License
20  * as published by the Free Software Foundation; either version
21  * 2 of the License, or (at your option) any later version.
22  */
23 
24 #include <linux/platform_device.h>
25 #include <linux/module.h>
26 #include <linux/rtc.h>
27 #include <linux/init.h>
28 #include <linux/fs.h>
29 #include <linux/interrupt.h>
30 #include <linux/string.h>
31 #include <linux/pm.h>
32 #include <linux/bitops.h>
33 
34 #include <mach/hardware.h>
35 #include <asm/irq.h>
36 
37 #ifdef CONFIG_ARCH_PXA
38 #include <mach/pxa-regs.h>
39 #endif
40 
41 #define TIMER_FREQ		CLOCK_TICK_RATE
42 #define RTC_DEF_DIVIDER		32768 - 1
43 #define RTC_DEF_TRIM		0
44 
45 static unsigned long rtc_freq = 1024;
46 static struct rtc_time rtc_alarm;
47 static DEFINE_SPINLOCK(sa1100_rtc_lock);
48 
49 static inline int rtc_periodic_alarm(struct rtc_time *tm)
50 {
51 	return  (tm->tm_year == -1) ||
52 		((unsigned)tm->tm_mon >= 12) ||
53 		((unsigned)(tm->tm_mday - 1) >= 31) ||
54 		((unsigned)tm->tm_hour > 23) ||
55 		((unsigned)tm->tm_min > 59) ||
56 		((unsigned)tm->tm_sec > 59);
57 }
58 
59 /*
60  * Calculate the next alarm time given the requested alarm time mask
61  * and the current time.
62  */
63 static void rtc_next_alarm_time(struct rtc_time *next, struct rtc_time *now, struct rtc_time *alrm)
64 {
65 	unsigned long next_time;
66 	unsigned long now_time;
67 
68 	next->tm_year = now->tm_year;
69 	next->tm_mon = now->tm_mon;
70 	next->tm_mday = now->tm_mday;
71 	next->tm_hour = alrm->tm_hour;
72 	next->tm_min = alrm->tm_min;
73 	next->tm_sec = alrm->tm_sec;
74 
75 	rtc_tm_to_time(now, &now_time);
76 	rtc_tm_to_time(next, &next_time);
77 
78 	if (next_time < now_time) {
79 		/* Advance one day */
80 		next_time += 60 * 60 * 24;
81 		rtc_time_to_tm(next_time, next);
82 	}
83 }
84 
85 static int rtc_update_alarm(struct rtc_time *alrm)
86 {
87 	struct rtc_time alarm_tm, now_tm;
88 	unsigned long now, time;
89 	int ret;
90 
91 	do {
92 		now = RCNR;
93 		rtc_time_to_tm(now, &now_tm);
94 		rtc_next_alarm_time(&alarm_tm, &now_tm, alrm);
95 		ret = rtc_tm_to_time(&alarm_tm, &time);
96 		if (ret != 0)
97 			break;
98 
99 		RTSR = RTSR & (RTSR_HZE|RTSR_ALE|RTSR_AL);
100 		RTAR = time;
101 	} while (now != RCNR);
102 
103 	return ret;
104 }
105 
106 static irqreturn_t sa1100_rtc_interrupt(int irq, void *dev_id)
107 {
108 	struct platform_device *pdev = to_platform_device(dev_id);
109 	struct rtc_device *rtc = platform_get_drvdata(pdev);
110 	unsigned int rtsr;
111 	unsigned long events = 0;
112 
113 	spin_lock(&sa1100_rtc_lock);
114 
115 	rtsr = RTSR;
116 	/* clear interrupt sources */
117 	RTSR = 0;
118 	RTSR = (RTSR_AL | RTSR_HZ) & (rtsr >> 2);
119 
120 	/* clear alarm interrupt if it has occurred */
121 	if (rtsr & RTSR_AL)
122 		rtsr &= ~RTSR_ALE;
123 	RTSR = rtsr & (RTSR_ALE | RTSR_HZE);
124 
125 	/* update irq data & counter */
126 	if (rtsr & RTSR_AL)
127 		events |= RTC_AF | RTC_IRQF;
128 	if (rtsr & RTSR_HZ)
129 		events |= RTC_UF | RTC_IRQF;
130 
131 	rtc_update_irq(rtc, 1, events);
132 
133 	if (rtsr & RTSR_AL && rtc_periodic_alarm(&rtc_alarm))
134 		rtc_update_alarm(&rtc_alarm);
135 
136 	spin_unlock(&sa1100_rtc_lock);
137 
138 	return IRQ_HANDLED;
139 }
140 
141 static int rtc_timer1_count;
142 
143 static irqreturn_t timer1_interrupt(int irq, void *dev_id)
144 {
145 	struct platform_device *pdev = to_platform_device(dev_id);
146 	struct rtc_device *rtc = platform_get_drvdata(pdev);
147 
148 	/*
149 	 * If we match for the first time, rtc_timer1_count will be 1.
150 	 * Otherwise, we wrapped around (very unlikely but
151 	 * still possible) so compute the amount of missed periods.
152 	 * The match reg is updated only when the data is actually retrieved
153 	 * to avoid unnecessary interrupts.
154 	 */
155 	OSSR = OSSR_M1;	/* clear match on timer1 */
156 
157 	rtc_update_irq(rtc, rtc_timer1_count, RTC_PF | RTC_IRQF);
158 
159 	if (rtc_timer1_count == 1)
160 		rtc_timer1_count = (rtc_freq * ((1<<30)/(TIMER_FREQ>>2)));
161 
162 	return IRQ_HANDLED;
163 }
164 
165 static int sa1100_rtc_read_callback(struct device *dev, int data)
166 {
167 	if (data & RTC_PF) {
168 		/* interpolate missed periods and set match for the next */
169 		unsigned long period = TIMER_FREQ/rtc_freq;
170 		unsigned long oscr = OSCR;
171 		unsigned long osmr1 = OSMR1;
172 		unsigned long missed = (oscr - osmr1)/period;
173 		data += missed << 8;
174 		OSSR = OSSR_M1;	/* clear match on timer 1 */
175 		OSMR1 = osmr1 + (missed + 1)*period;
176 		/* Ensure we didn't miss another match in the mean time.
177 		 * Here we compare (match - OSCR) 8 instead of 0 --
178 		 * see comment in pxa_timer_interrupt() for explanation.
179 		 */
180 		while( (signed long)((osmr1 = OSMR1) - OSCR) <= 8 ) {
181 			data += 0x100;
182 			OSSR = OSSR_M1;	/* clear match on timer 1 */
183 			OSMR1 = osmr1 + period;
184 		}
185 	}
186 	return data;
187 }
188 
189 static int sa1100_rtc_open(struct device *dev)
190 {
191 	int ret;
192 
193 	ret = request_irq(IRQ_RTC1Hz, sa1100_rtc_interrupt, IRQF_DISABLED,
194 				"rtc 1Hz", dev);
195 	if (ret) {
196 		dev_err(dev, "IRQ %d already in use.\n", IRQ_RTC1Hz);
197 		goto fail_ui;
198 	}
199 	ret = request_irq(IRQ_RTCAlrm, sa1100_rtc_interrupt, IRQF_DISABLED,
200 				"rtc Alrm", dev);
201 	if (ret) {
202 		dev_err(dev, "IRQ %d already in use.\n", IRQ_RTCAlrm);
203 		goto fail_ai;
204 	}
205 	ret = request_irq(IRQ_OST1, timer1_interrupt, IRQF_DISABLED,
206 				"rtc timer", dev);
207 	if (ret) {
208 		dev_err(dev, "IRQ %d already in use.\n", IRQ_OST1);
209 		goto fail_pi;
210 	}
211 	return 0;
212 
213  fail_pi:
214 	free_irq(IRQ_RTCAlrm, dev);
215  fail_ai:
216 	free_irq(IRQ_RTC1Hz, dev);
217  fail_ui:
218 	return ret;
219 }
220 
221 static void sa1100_rtc_release(struct device *dev)
222 {
223 	spin_lock_irq(&sa1100_rtc_lock);
224 	RTSR = 0;
225 	OIER &= ~OIER_E1;
226 	OSSR = OSSR_M1;
227 	spin_unlock_irq(&sa1100_rtc_lock);
228 
229 	free_irq(IRQ_OST1, dev);
230 	free_irq(IRQ_RTCAlrm, dev);
231 	free_irq(IRQ_RTC1Hz, dev);
232 }
233 
234 
235 static int sa1100_rtc_ioctl(struct device *dev, unsigned int cmd,
236 		unsigned long arg)
237 {
238 	switch(cmd) {
239 	case RTC_AIE_OFF:
240 		spin_lock_irq(&sa1100_rtc_lock);
241 		RTSR &= ~RTSR_ALE;
242 		spin_unlock_irq(&sa1100_rtc_lock);
243 		return 0;
244 	case RTC_AIE_ON:
245 		spin_lock_irq(&sa1100_rtc_lock);
246 		RTSR |= RTSR_ALE;
247 		spin_unlock_irq(&sa1100_rtc_lock);
248 		return 0;
249 	case RTC_UIE_OFF:
250 		spin_lock_irq(&sa1100_rtc_lock);
251 		RTSR &= ~RTSR_HZE;
252 		spin_unlock_irq(&sa1100_rtc_lock);
253 		return 0;
254 	case RTC_UIE_ON:
255 		spin_lock_irq(&sa1100_rtc_lock);
256 		RTSR |= RTSR_HZE;
257 		spin_unlock_irq(&sa1100_rtc_lock);
258 		return 0;
259 	case RTC_PIE_OFF:
260 		spin_lock_irq(&sa1100_rtc_lock);
261 		OIER &= ~OIER_E1;
262 		spin_unlock_irq(&sa1100_rtc_lock);
263 		return 0;
264 	case RTC_PIE_ON:
265 		spin_lock_irq(&sa1100_rtc_lock);
266 		OSMR1 = TIMER_FREQ/rtc_freq + OSCR;
267 		OIER |= OIER_E1;
268 		rtc_timer1_count = 1;
269 		spin_unlock_irq(&sa1100_rtc_lock);
270 		return 0;
271 	case RTC_IRQP_READ:
272 		return put_user(rtc_freq, (unsigned long *)arg);
273 	case RTC_IRQP_SET:
274 		if (arg < 1 || arg > TIMER_FREQ)
275 			return -EINVAL;
276 		rtc_freq = arg;
277 		return 0;
278 	}
279 	return -ENOIOCTLCMD;
280 }
281 
282 static int sa1100_rtc_read_time(struct device *dev, struct rtc_time *tm)
283 {
284 	rtc_time_to_tm(RCNR, tm);
285 	return 0;
286 }
287 
288 static int sa1100_rtc_set_time(struct device *dev, struct rtc_time *tm)
289 {
290 	unsigned long time;
291 	int ret;
292 
293 	ret = rtc_tm_to_time(tm, &time);
294 	if (ret == 0)
295 		RCNR = time;
296 	return ret;
297 }
298 
299 static int sa1100_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
300 {
301 	u32	rtsr;
302 
303 	memcpy(&alrm->time, &rtc_alarm, sizeof(struct rtc_time));
304 	rtsr = RTSR;
305 	alrm->enabled = (rtsr & RTSR_ALE) ? 1 : 0;
306 	alrm->pending = (rtsr & RTSR_AL) ? 1 : 0;
307 	return 0;
308 }
309 
310 static int sa1100_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
311 {
312 	int ret;
313 
314 	spin_lock_irq(&sa1100_rtc_lock);
315 	ret = rtc_update_alarm(&alrm->time);
316 	if (ret == 0) {
317 		if (alrm->enabled)
318 			RTSR |= RTSR_ALE;
319 		else
320 			RTSR &= ~RTSR_ALE;
321 	}
322 	spin_unlock_irq(&sa1100_rtc_lock);
323 
324 	return ret;
325 }
326 
327 static int sa1100_rtc_proc(struct device *dev, struct seq_file *seq)
328 {
329 	seq_printf(seq, "trim/divider\t: 0x%08x\n", (u32) RTTR);
330 	seq_printf(seq, "update_IRQ\t: %s\n",
331 			(RTSR & RTSR_HZE) ? "yes" : "no");
332 	seq_printf(seq, "periodic_IRQ\t: %s\n",
333 			(OIER & OIER_E1) ? "yes" : "no");
334 	seq_printf(seq, "periodic_freq\t: %ld\n", rtc_freq);
335 
336 	return 0;
337 }
338 
339 static const struct rtc_class_ops sa1100_rtc_ops = {
340 	.open = sa1100_rtc_open,
341 	.read_callback = sa1100_rtc_read_callback,
342 	.release = sa1100_rtc_release,
343 	.ioctl = sa1100_rtc_ioctl,
344 	.read_time = sa1100_rtc_read_time,
345 	.set_time = sa1100_rtc_set_time,
346 	.read_alarm = sa1100_rtc_read_alarm,
347 	.set_alarm = sa1100_rtc_set_alarm,
348 	.proc = sa1100_rtc_proc,
349 };
350 
351 static int sa1100_rtc_probe(struct platform_device *pdev)
352 {
353 	struct rtc_device *rtc;
354 
355 	/*
356 	 * According to the manual we should be able to let RTTR be zero
357 	 * and then a default diviser for a 32.768KHz clock is used.
358 	 * Apparently this doesn't work, at least for my SA1110 rev 5.
359 	 * If the clock divider is uninitialized then reset it to the
360 	 * default value to get the 1Hz clock.
361 	 */
362 	if (RTTR == 0) {
363 		RTTR = RTC_DEF_DIVIDER + (RTC_DEF_TRIM << 16);
364 		dev_warn(&pdev->dev, "warning: initializing default clock divider/trim value\n");
365 		/* The current RTC value probably doesn't make sense either */
366 		RCNR = 0;
367 	}
368 
369 	device_init_wakeup(&pdev->dev, 1);
370 
371 	rtc = rtc_device_register(pdev->name, &pdev->dev, &sa1100_rtc_ops,
372 				THIS_MODULE);
373 
374 	if (IS_ERR(rtc))
375 		return PTR_ERR(rtc);
376 
377 	platform_set_drvdata(pdev, rtc);
378 
379 	return 0;
380 }
381 
382 static int sa1100_rtc_remove(struct platform_device *pdev)
383 {
384 	struct rtc_device *rtc = platform_get_drvdata(pdev);
385 
386  	if (rtc)
387 		rtc_device_unregister(rtc);
388 
389 	return 0;
390 }
391 
392 #ifdef CONFIG_PM
393 static int sa1100_rtc_suspend(struct platform_device *pdev, pm_message_t state)
394 {
395 	if (device_may_wakeup(&pdev->dev))
396 		enable_irq_wake(IRQ_RTCAlrm);
397 	return 0;
398 }
399 
400 static int sa1100_rtc_resume(struct platform_device *pdev)
401 {
402 	if (device_may_wakeup(&pdev->dev))
403 		disable_irq_wake(IRQ_RTCAlrm);
404 	return 0;
405 }
406 #else
407 #define sa1100_rtc_suspend	NULL
408 #define sa1100_rtc_resume	NULL
409 #endif
410 
411 static struct platform_driver sa1100_rtc_driver = {
412 	.probe		= sa1100_rtc_probe,
413 	.remove		= sa1100_rtc_remove,
414 	.suspend	= sa1100_rtc_suspend,
415 	.resume		= sa1100_rtc_resume,
416 	.driver		= {
417 		.name		= "sa1100-rtc",
418 	},
419 };
420 
421 static int __init sa1100_rtc_init(void)
422 {
423 	return platform_driver_register(&sa1100_rtc_driver);
424 }
425 
426 static void __exit sa1100_rtc_exit(void)
427 {
428 	platform_driver_unregister(&sa1100_rtc_driver);
429 }
430 
431 module_init(sa1100_rtc_init);
432 module_exit(sa1100_rtc_exit);
433 
434 MODULE_AUTHOR("Richard Purdie <rpurdie@rpsys.net>");
435 MODULE_DESCRIPTION("SA11x0/PXA2xx Realtime Clock Driver (RTC)");
436 MODULE_LICENSE("GPL");
437 MODULE_ALIAS("platform:sa1100-rtc");
438